Case No. $\qquad$
UNITED STATES COURT OF APPEALS
FOR THE NINTH CIRCUIT

IN RE HIGH-TECH EMPLOYEE ANTITRUST LITIGATION

Petition for permission to appeal from the United States District Court
Northern District of California
The Honorable Lucy H. Koh, Presiding
Case No. 5:11-2509-LHK

## DEFENDANT-PETITIONERS' EXCERPTS OF RECORD VOLUME III OF VIII

ROBERT A. VAN NEST, \#84065<br>DANIEL PURCELL, \#191424<br>EUGENE M. PAIGE, \#202849<br>JUSTINA SESSIONS, \#270914<br>KEKER \& VAN NEST LLP<br>633 Battery Street<br>San Francisco, CA 94111-1809<br>Telephone: 4153915400<br>Facsimile: 4153977188<br>Attorneys for Defendant and Petitioner<br>Google Inc.

## EXCERPTS OF RECORD

|  | N.D.CAL. Docket \# | Document | Page |
| :---: | :---: | :---: | :---: |
| Volume I of VIIII(District Court Orders-Public Versions) |  |  |  |
| 1. | 531 | Oct. 24, 2013 Order Granting Plaintiffs’ Supplemental Motion for Class Certification (public redacted version) | 0001 |
| 2. | 382 | April 15, 2013 Order Granting in Part and Denying in Part Plaintiffs' Motion for Class Certification (public redacted version) | 0087 |
| Volume II of VIII(Expert Reports - Public Versions) |  |  |  |
| 3. | $\begin{aligned} & 518-2- \\ & 518-4 \end{aligned}$ | Expert Report of Professor Kevin M. Murphy (public redacted version) | 0140 |
| 4. | 424-2 | Supplemental Expert Report of Edward E. Leamer, Ph.D. <br> (public redacted version) | 0340 |
| Volume III of VIII(Expert Reports - Public Versions) |  |  |  |
| 5. | 440 | Supplemental Expert Report of Professor Kevin M. Murphy <br> (public redacted version) | 0402 |
| 6. | 442 | Expert Report of Kathryn M. Shaw, Ph.D. (public redacted version) | 0570 |
| Volume IV of VIII(Depositions and Declarations - Public Versions) |  |  |  |
| 7. | $\begin{array}{l\|} \hline 308-1, \\ 44-2, \end{array}$ | Deposition of Edward Leamer | 0676 |
| 8. | $\begin{array}{\|l\|} 538-8-1 \\ 538-11 \end{array}$ | Declaration of Danny McKell in Support of Defendants' Opposition to Plaintiffs' Motion for Class Certification (public redacted version) | 0691 |


|  | N.D.CAL. Docket \# | Document | Page |
| :---: | :---: | :---: | :---: |
| 9. | 516-6 | Declaration of Frank Wagner in Support of Defendants' Opposition to Plaintiffs' Motion for Class Certification (public redacted version) | 0713 |
| 10. |  | District Court Docket Report | 0725 |
| Volume V of VIII(District Court Orders FILED UNDER SEAL) |  |  |  |
| 11. |  | Oct. 24, 2013 Order Granting Plaintiffs’ Motion for Class Certification (under seal version) | 0804 |
| 12. | 383 | April 15, 2013 Order Granting in Part and Denying in Part Plaintiffs' Motion for Class Certification (under seal version) | 0890 |
| Volume VI of VIII(Expert Reports FILED UNDER SEAL) |  |  |  |
| 13. |  | Expert Report of Professor Kevin M. Murphy (under seal version) | 0944 |
| 14. |  | Supplemental Expert Report of Edward E. Leamer, Ph.D. <br> (under seal version) | 1144 |
| Volume VII of VIII(Expert Reports FILED UNDER SEAL) |  |  |  |
| 15. |  | Supplemental Expert Report of Professor Kevin M. Murphy (under seal version) | 1180 |
| 16. |  | Expert Report of Kathryn M. Shaw, Ph.D. (under seal version) | 1348 |
| 17. |  | Expert Witness Report of Kevin F. Hallock, Figure 7 | 1454 |


|  | N.D.CAL. <br> Docket \# | Document | Page |
| :---: | :---: | :---: | :---: |
| Volume VIII of VIII (Depositions and Declarations FILED UNDER SEAL) |  |  |  |
| 18. |  | Deposition of Michael Devine | 1455 |
| 19. |  | Declaration of Danny McKell in Support of Defendants' Opposition to Plaintiffs' Motion for Class Certification (under seal version) | 1458 |
| 20. |  | Declaration of Frank Wagner in Support of Defendants' Opposition to Plaintiffs' Motion for Class Certification (under seal version) | 1480 |
| 21. |  | Exhibit 24 to Declaration of Lin W. Kahn in Support of Defendants' Opposition to Plaintiffs' Supplemental Motion for Class Certification | 1492 |



# UNITED STATES DISTRICT COURT <br> NORTHERN DISTRICT OF CALIFORNIA <br> SAN JOSE DIVISION 

IN RE HIGH-TECH EMPLOYEE ANTITRUST LITIGATION<br>Master Docket No. 11-CV-2509 LHK<br>THIS DOCUMENT RELATES TO:<br>ALL ACTIONS

# SUPPLEMENTAL EXPERT REPORT OF PROFESSOR KEVIN M. MURPHY 

June 21, 2013

## Table of Contents

I. INTRODUCTION ..... 1 -
II. THE VARIATION IN INDIVIDUAL COMPENSATION, WHICH DR. LEAMER'S ANALYSES IGNORE, SHOWS THAT A RAISE FOR ONE OR SOME DOES NOT NECESSARILY CAUSE A RAISE FOR ALL OR NEARLY ALL ..... -2.
A. Dr. Leamer Focuses on Correlations of Average Compensation for Job Titles with Overall Average Compensation and He does Not Analyze the Substantial Variation in Compensation Changes FOR INDIVIDUAL EMPLOYEES ..... 2-
B. There Is Sufficient Variation in Compensation Across Individuals With The Same Job Title That One Cannot Assume That Adjusting One Employee's Compensation Requires adjusting OTHERS ..... 5 -
III. PROPERLY INTERPRETED, DR. LEAMER'S "CORRELATION" EVIDENCE SHOWS THAT LITTLE VARIATION IN AVERAGE JOB-LEVEL COMPENSATION IS "EXPLAINED" BY CHANGES IN CLASS-WIDE AVERAGE COMPENSATION ..... 7.
A. It is Deviations in Compensation, Not Correlations, that Matter for Evaluating Plaintiffs' Claims ..... 8 -
B. CORreLation Levels that Dr. Leamer Finds "Astounding" Imply that Almost all the Variation in Job-Level Compensation is Not Explained by Class-Wide Average Compensation. ..... 10 -
IV. DR, LEAMER'S REGRESSION ANALYSIS DOES NOT SHOW THAT FORCES OF INTERNAL EQUITY COMBINED WITH THE HYPOTHESIZED "SOMEWHAT RIGID" WAGE STRUCTURE GENERATE CLASS-WIDE IMPACT FROM THE CHALLENGED AGREEMENTS ..... 12 -
A. Dr. Leamer Ignores the "Reflection Problem" ..... $13-$
B. Dr. Leamer's "Horse Race" Is Uninformative ..... 16 -
C. Dr. Leamer Does not Take Into account the Tendency of Compensation to "Revert to the Mean" ..... 18 -
D. Empirical Evidence Shows that Dr. Leamer's Regression Results do not Reflect the Causality Required by his Theory to Support Plaintiffs' Claims of Class-Wide Impact ..... 22 -

1. The Same False "Causality" is Found with Another Compensation Dataset ..... - 22 -
2. A Regression Model that Explains the Change in Chicago Temperature as "Catch-up" from the Difference between Chicago and Milwaukee Temperatures Illustrates Dr. Leamer's Misleading Conclusions ..... $24-$
E. CONCLUSION ..... 25 -
V. DR. LEAMER DOES NOT ESTABLISH THAT THE PROPOSED TECHNICAL CLASS IS PROPERLY DEFINED ..... 26 -
VI. DR. LEAMER'S CONDUCT REGRESSION REMAINS UNINFORMATIVE ..... 27.
TECHNICAL APPENDIX: MODELLING THE REFLECTION PROBLEM ..... 29 -

## I. INTRODUCTION

1. I have been asked by Counsel for Defendants to respond to the Supplemental Expert Report of Edward E. Leamer, Ph.D. ("Leamer Supplemental Report") ${ }^{1}$ and to consider whether Dr. Leamer's analysis answers the Court's question whether "Defendants' salary structures were so rigid that compensation for employees with entirely different titles would necessarily move together through time such that a detrimental impact to an employee with one job title would necessarily result in an impact to other employees in entirely different jobs (i.e., that any impact would ripple across the entire salary structure)." ${ }^{\prime 2}$ I have concluded that Dr. Leamer's report contains fundamental errors of economics and statistics, and provides no evidence that the Defendants had such rigid compensation structures that suppressing wages of some employees would necessarily suppress wages of all or nearly all members of the proposed class.
2. First, Dr. Leamer's analysis is based on averages of compensation by job titles and average compensation for all job titles in the proposed class. He does not analyze the compensation of individual employees, so he ignores differences in compensation and compensation changes among employees with the same job title. Thus, his analysis cannot demonstrate the first required link in his theory of how the challenged conduct had class-wide impact, i.e., that a raise to employees who receive a cold call would increase compensation even to other employees with the same job title.
3. Second, correlations of average compensation by job title with overall average compensation for the proposed Technical Class cannot show that raises for some employees necessarily would result in raises for some or all.
4. Third, neither his correlation analysis nor his regression analysis can distinguish a "somewhat rigid" compensation structure from one that is not. In particular, Dr. Leamer falls victim to two well-known statistical fallacies in constructing his regression model. In combination, these two fallacies virtually guarantee that Dr. Leamer will obtain the type of

[^0]regression results that he does, even if there is zero effect of an individual's pay on the pay of others.
5. Fourth, Dr. Leamer does not establish that the proposed class is properly defined.
6. Finally, Dr. Leamer did not address the Court's invitation to "improve the accuracy" of the Conduct Regression that he offers as evidence of "generalized" impact and damages, and thus did not respond to the lack of precision of his estimates. ${ }^{3}$

## II. THE VARIATION IN INDIVIDUAL COMPENSATION, WHICH DR. LEAMER'S ANALYSES IGNORE, SHOWS THAT A RAISE FOR ONE OR SOME DOES NOT NECESSARILY CAUSE A RAISE FOR ALL OR NEARLY ALL

7. The question that I consider relevant for evaluating the Court's concerns about Plaintiffs' claims is whether a change in compensation at one point in the compensation structure would cause a change in compensation for the class as a whole. This is different than whether average compensation for different job titles moves together, since co-movement could simply reflect the response to common factors that have nothing to do with Dr. Leamer's "sharing" theory. Comovement, which is the focus of Dr. Leamer's empirical analysis, is not informative as to how compensation of different class members would differ absent the alleged cold-calling agreements. To illustrate the difference between correlation (or co-movement) and causation, the use of umbrellas and windshield wipers in a city are highly correlated, but neither causes the other. Rather, they are both caused by a common external factor: rain.

## A. Dr. Leamer Focuses on Correlations of Average Compensation for Job Titles with Overall Average Compensation and He Does Not Analyze the Substantial Variation in Compensation Changes for Individual Employees

8. Dr Leamer's empirical analysis focuses on whether changes in average compensation for various job titles are correlated with movements in the average compensation level for the proposed class as a whole. He does not examine whether changes in compensation at the individual level, which is where the initial impact of any cold call would occur, necessarily cause

[^1]changes in compensation for all or nearly all employees in the same job title or for the proposed class as a whole.
9. Dr. Leamer offers no empirical evidence that demonstrates the type of propagation that Plaintiffs postulate-either across individuals within the same job title or across job titles. He acknowledged that the compensation data available to him could be studied at the individual level. But he chose to work with "title averages," claiming that "the individual data is likely to be dominated by forces that operate at the individual level" and that "[a]veraging across individuals in a title can average out the individual effects." ${ }^{44}$ However, it is precisely those forces and individual effects that determine whether, as the Court asked, "Defendants' salary structures were so rigid that compensation for employees with entirely different titles would necessarily move together through time such that a detrimental impact to an employee with one job title would necessarily result in an impact to other employees in entirely different jobs (i.e., that any impact would ripple across the entire salary structure)." ${ }^{5}$
10. The amount of variation in compensation of individual employees over time determines whether a firm has to adjust compensation of a large number of individuals if it chooses to increase the compensation of an individual who receives a cold call. If individual pay were always identical for individuals within a job title, or if compensation were determined by a fixed formula (e.g., based only on objective factors such as level of tenure in the job with no deviation permitted), then a change in compensation for one individual would require a change for other individuals in that same job (assuming that the firm does not respond when an individual receives a cold call by promoting her to a better paid job title). In contrast, if, as a regular matter, there is wide variation in compensation changes for individuals in the same job, one cannot presume (as Dr. Leamer appears to do) that an increase in compensation for one employee in response to a cold-call would cause an increase in compensation for all employees with the same job title, because the firm has sufficient flexibility to respond to outside pressure on compensation of a given individual (such as pressure resulting from a cold call) to adjust compensation for that employee without changing compensation for other employees, even those

[^2]in the same job title. For example, the firm can provide one-time retention bonuses or stock grants, increase base salary within the existing salary range for that title, or promote the individual to another job title with a higher salary. Moreover, the firm would have an incentive to respond in one of these other ways rather than adjust compensation broadly, since doing so would allow the firm to minimize its labor costs.
11. Data on compensation of individuals, which I discuss below, show that, consistent with that flexibility, there is substantial divergence in compensation of individuals within a job title. In particular, the Defendants routinely differentiate increases (and decreases) in pay across employees. Even within individual job titles, annual compensation changes at the individual level show a mixture of large and small increases and decreases at a given point in time. While compensation received by individual employees at a firm tends to be positively correlated over time, there is substantial individualization of pay.
12. The existence of positive correlations does not support Dr. Leamer's "sharing" theory, because it reflects the fact that there are many common factors that can cause similar adjustments in employee compensation firm wide. Dr Leamer himself identifies such a factor when he argues that "the Pixar data are contaminated by very large bonuses for producers and directors in 2002 and 2006," ${ }^{, 6}$ although he fails to acknowledge that this type of "contamination" is exactly what his correlation analysis reflects. Similarly, Intel's decision to freeze salaries in $2009^{7}$ is a common factor that would have affected compensation levels and changes in that year. Apple's tremendous success in recent years and Google's transformation from a relative newcomer to a well-established tech firm fall into a similar category. However, while compensation received by individual employees is affected by common factors, it also is affected by other factors that result in substantial "uncommon" changes over time.

[^3]
## B. There Is Sufficient Variation in Compensation Across Individuals With The Same Job Title That One Cannot Assume That Adjusting One Employee's Compensation Requires Adjusting Others

13. I performed several analyses to understand the extent to which compensation of individual employees moves together. Exhibit 1 displays the cumulative compensation histories for all employees within a single selected job title at each of the Defendants. ${ }^{8}$ These exhibits are meant simply to illustrate the type of variation in compensation of individual employees that is present throughout the data (and that I summarize more systematically in my subsequent exhibits).
14. Exhibit 1 shows that individuals who start with the same job title have very different cumulative changes in compensation over time, and can end up with very different compensation in 2010 compared to 2005. This substantial divergence in compensation over time is fully consistent with correlation levels that are "high." ${ }^{9}$ In other words, correlated time series can diverge substantially, and can have substantial year-to-year changes in levels.
15. Exhibit 2 examines compensation changes between 2007 and 2008 (years in the middle of the class period) in the top three job titles at each Defendant (based on number of employees in 2007). The exhibit summarizes the large annual variation in changes in compensation for individuals who start in the same job. ${ }^{10}$ For example, compensation changes for Adobe's employees with the title of $\square$ vary in sign and magnitude, with some individuals receiving large increases (more than 25 percent) and others

[^4]suffering large decreases (more than 25 percent). Taken together, Exhibit 2 and the summary statistics based on this type of analysis for more years and a larger number of jobs at each of the seven Defendant firms in Appendix B show that there is substantial room for a firm to adjust compensation differently for different individual employees, including those with the same job title, and that Defendants take advantage of this flexibility,
16. Exhibit 3 examines average annual changes in individuals' compensation between 2001 and 2011 after adjusting for individual characteristics (in effect, standardizing the changes across individuals by eliminating systematic impacts on compensation that reflect age, tenure, gender and job title). ${ }^{11}$ The differentiation summarized in this exhibit reflects the differences between the change in compensation for an individual and what would be predicted based on changes in the overall compensation structure and that individual's characteristics and job. A value of +10 percent indicates that the individual obtained an increase 10 percent greater than equivalent "peers," while -10 percent indicates that the individual received 10 percent less than equivalent peers. Again, the results show that Defendants exercise substantial flexibility in adjusting individual compensation, with a wide distribution of annual adjusted changes (shown in the exhibit as deviations from the average change for the year).
17. Exhibit 4 summarizes the data from Exhibit 3. I group the data into four categories by compensation change, and show in the exhibit the top and bottom 10 percent (deciles) and the top and bottom 25 percent (quartiles). The exhibit shows the large differences in compensation changes between employees with the lowest compensation changes and those with the highest compensation changes (after controlling for age, tenure, gender, and job title). For example, at Adobe, employees in the bottom decile of the distribution have annual compensation changes that are 29 percent below the average; employees in the top decile of the distribution have annual compensation changes that are 29 percent above the average. Thus, the difference in the compensation changes between these two groups is nearly 60 percent - the top group's annual compensation increase is, on average, 60 percent higher than the increase of the bottom group. Similarly, the difference in the compensation changes between the employees in the bottom

[^5]quartile at Adobe and those in the top quartile is almost 40 percent. ${ }^{12}$ The large variation in compensation changes at Adobe, as well as at the other six Defendants, shows that there is ample room for a firm to adjust the compensation of one employee without adjusting the compensation of others.
18. Thus, Exhibits $1-4$ show that the Defendant firms routinely adjust compensation at the individual level. As a result, there is sufficient variation in rates of compensation growth for individual employees, even within the same job title, that a firm can increase compensation of an employee who receives an outside offer without adjusting compensation of other employees with the same job title. ${ }^{13}$

## III. PROPERLY INTERPRETED, DR. LEAMER'S "CORRELATION" EVIDENCE SHOWS THAT LITTLE VARIATION IN AVERAGE JOB-LEVEL COMPENSATION IS "EXPLAINED" BY CHANGES IN CLASS-WIDE AVERAGE COMPENSATION

19. Dr. Leamer presents "correlations that compare the movement over time of the average compensation of each title with the average compensation of the firm's Technical Class," and claims that these calculations reveal a "large amount of co-movement of compensation among most of the Technical Class titles of each defendant. ${ }^{14} \mathrm{He}$ claims that this co-movement is "consistent with a top-down budgeting method" and a "somewhat rigid' salary structure, which allows the effects of the anti-cold-calling conspiracy to spread broadly across each firm. ${ }^{\circ 15}$
20. However, whether the correlation evidence is "consistent with" his theory is only part of the issue that Dr. Leamer must address in order to support his theory. More relevant for purposes of understanding whether Plaintiffs' claims have merit is whether evidence of comovement is inconsistent with a compensation structure that is not rigid in the way that Dr. Leamer claims. The essence of hypothesis testing is not to provide evidence "consistent with" a

[^6]hypothesis, but to offer evidence capable of rejecting that hypothesis if it were not true. Evidence that is equally consistent with the theory being true and the theory being false is not informative. Dr. Leamer's analysis fails to meet this essential principle of scientific methodology.
21. In the language of economics, Dr. Leamer implies that his correlations reflect causality ${ }^{16}$ - that a change in one variable leads to or causes a change in the other - but he then offers only evidence of co-movement. However, correlation, or similar movement, in average job-title compensation does not establish the necessary causation to support Dr. Leamer's theory. Moreover, as I explain below, Dr. Leamer also overstates the similarity in movement and mischaracterizes the implications of the measured correlations.

## A. It is Deviations in Compensation, Not Correlations, that Matter for Evaluating Plaintiffs' Claims

22. Dr Leamer does not explain what his correlation coefficients imply about his claim of a somewhat rigid compensation. Correlation measures the degree to which two series are linearly related to one another, ${ }^{17}$ but not how much the two series deviate over time. There can be large deviations between the series, even though they have a "high" correlation coefficient. Economics tells us that what is relevant in understanding the rigidity of a firm's compensation structure is the extent to which compensation of alternative job titles deviate from one another, not whether they are weakly or strongly correlated. If they track closely, then the firm has exercised little scope to differentiate pay across job titles. If they diverge substantially, then the firm can and does differentiate pay across job titles. Even if, as Dr. Leamer claims, a "Large Share of [Job Title] Change Correlations are Positive," it does not follow that Defendants have compensation structures that require them to change compensation for all, or nearly all, class members if they raise one employee's compensation in response to a cold call.
23. Exhibit 5 shows the variation in annual changes in job-level average compensation after adjusting for individual characteristics (age, tenure, gender and job title) over the period 2001-

[^7]2011. ${ }^{18}$ The exhibit shows that there is substantial variation in annual changes for all firms. This distribution of changes in job-level average compensation is summarized in Exhibit $6{ }^{19}$ As I did in Exhibit 4 (which summarizes the employee-level changes), I group data into categories by compensation change to show the large differences between the jobs (weighted by the number of employee-years) with the largest compensation changes and those with the smallest compensation changes. Using Adobe as an example, the jobs in the top decile increased by 16 percent relative to the average, while the jobs with the largest negative deviations decreased by 15 percent relative to the average. Thus, the annual change in job average compensation at Adobe was about 30 percent higher in jobs in the top decile than in jobs in the bottom decile (after adjusting for differences in the characteristics of the employees in each job). Similarly, the changes in job average compensation at Adobe was almost 20 percent higher in jobs in the top quartile than in jobs in the bottom quartile. The variation in changes in job average compensation is largest for Google and Pixar and smallest for Intel, but is economically large for all Defendants.
24. Exhibits 7 and 8 extend the analysis of the top 25 job titles from my initial report (see Exhibit 18 in that report), where I showed that there was wide variation in annual compensation changes for these job titles. In Exhibit 7, I select a sample of the most common jobs that span across each of Dr. Leamer's deciles for each Defendant, and plot the annual changes in average compensation at each job ${ }^{20}$ The exhibits confirm that, rather than moving in lockstep, average

[^8]job-level compensation changes in any given year vary both in sign and magnitude, with some jobs seeing large increases, some large decreases and others smaller increases or decreases. ${ }^{21}$
25. Exhibit 8 extends the time period and looks at 2-, 3-, 4- and 5-year changes in average job-title compensation relative to 2005 , rather than the sequence of annual changes. ${ }^{22}$ Over longer time frames, compensation for the majority of jobs increased, which simply means that wage growth is greater over the long term than the short term, But a "somewhat rigid" wage structure requires more than that. Rigidity has to do with whether the increase in compensation for all jobs is roughly the same or, at a minimum, changes in a systematic way. If, for example, average compensation routinely increases by 50 percent for one job and only 10 percent for another job, one cannot conclude that an increase in pay for one group caused by an employee receiving a cold-call or for some other reason was "shared" with the other group. Indeed, the fact that pay went up 40 percent more for one group than the other implies that increases in pay across jobs were not common, and that the wage "structure" changes substantially over time rather than remains rigid.

## B. Correlation Levels that Dr. Leamer Finds "Astounding"23 Imply that Almost All the Variation in Job-Level Compensation is Not Explained by Class-Wide Average Compensation

26. Dr. Leamer reached the wrong conclusion about the rigidity of the Defendants' compensation structures from his correlation analysis because it appears that he did not consider what a particular level of correlation implies for the supposed rigidity of the compensation structure. He provides no means of evaluating whether a correlation of, say, 0.4 is sufficient to conclude that a compensation structure is somewhat rigid.

[^9]27. Dr. Leamer calculates correlation between changes in job-level averages and the classwide average compensation ${ }^{24}$ that range from -0.96 to 0.99 across the seven Defendants. This average hides wide variation in the estimated correlations across jobs. But, his conclusion would be unwarranted even if all of the true correlations between job-level compensation changes and class-wide average compensation were equal to his average estimated correlation (roughly 0.60 ) ${ }^{25}$
28. It is important to understand what a correlation means in order to interpret and evaluate Dr. Leamer's findings. A correlation of 0.6 between the average compensation for a job title and the class-wide average means that 64 percent of the variance remains after controlling for changes in the class-wide average $\left(=1-6^{2}\right)$. The amount of variation that remains after accounting for movements in the class-wide average equals the square root of 0.64 , or 0.80 . This means that the remaining variation in job-level compensation after controlling for changes in average class-level compensation is 80 percent of the total variation in job-level compensation in the raw data, or only 20 percent less than if there were no correlation at all. ${ }^{26}$
29. Given that Defendants' data show that job-level compensation does not move in lockstep, or anything close to it, there is no economically meaningful sense in which Defendants have somewhat rigid compensation structures that would necessitate sharing of compensation jobs across the class irrespective of the correlation coefficients that Dr. Leamer calculates. The wide variation across individual employees within a job title does not support Dr. Leamer's inference that, in the Court's words, "the Defendants' salary structures were so rigid that compensation for employees with entirely different titles would necessarily move together through time such that a detrimental impact to an employee with one job title would necessarily result in an impact to

[^10]other employees in entirely different jobs (i.e., that any impact would ripple across the entire salary structure)., ${ }^{, 27}$

## IV. DR. LEAMER'S REGRESSION ANALYSIS DOES NOT SHOW THAT FORCES OF INTERNAL EQUITY COMBINED WITH THE HYPOTHESIZED "SOMEWHAT RIGID" WAGE STRUCTURE GENERATE CLASS-WIDE IMPACT FROM THE CHALLENGED AGREEMENTS

30. Dr. Leamer explains the rationale for and conclusions to be drawn from his regression model as follows:

Correlation of title compensation and class compensation could come from sharing effects but could also come from third variables that operate on both title and class compensation at the same time, for example, "market forces." To confirm the existence of a somewhat rigid compensation structure revealed by my correlation analysis, I examine (company by company) a multiple regression model which forces the class compensation to compete with other variables as an explanation of title compensation. ${ }^{28}$

Based on this analysis, Dr. Leamer claims to demonstrate that increased compensation for individuals in one part of the firm (e.g, within a particular job title) would "ripple" to (or, as he refers to it, "be shared" with) all other employees in the proposed Technical Class. He claims to do so with a regression model that demonstrates two types of "sharing." First, Dr. Leamer claims to find contemporaneous sharing in which an increase in compensation for one group (a job title) causes a contemporaneous increase in compensation for other groups (other job titles in the class). Second, he claims to find lagged sharing that demonstrates a form of "catch-up" in which compensation for a group that falls behind in one year increases the following year through some unspecified "corrective action" to become closer to its "normal" level relative to the rest of the class.
31. However, both of Dr. Leamer's inferences regarding sharing are unsupported by his regression and are entirely unfounded. His regression model suffers from two well-known statistical fallacies - the "reflection problem" and "reversion to the mean" - that make his interpretation of the sign and statistical significance of coefficients on the sharing and external variables in his regression for purposes of evaluating his theory improper. In combination, these

[^11]two statistical fallacies virtually guarantee that Dr. Leamer will obtain the results that he does, even if his theory is wrong and there is no effect of one individual's compensation on the compensation of other employees and no impact of changes in average compensation for one job on average compensation for other jobs (i,e. no "sharing").

## A. Dr. Leamer Ignores the "Reflection Problem"

32. Dr. Leamer commits a long-recognized error of statistical inference. He ignores the "reflection problem" in concluding that the change in average class compensation causes the average compensation of a job title to increase. As a consequence, Dr. Leamer would expect to obtain the same regression results even if there were no "sharing," and no propagation of a coldcall related increase in compensation for one employee or a small group of employees into increases in compensation for the rest of the proposed class.
33. The canonical example to illustrate the reflection problem is the relationship between one individual's test scores and the average test scores of the individual's classmates. There will tend to be a positive relationship between the performance of the individual and her classmates. If one uses a regression like Dr. Leamer's, the positive coefficient on the classmates' average test scores will show that a higher average score for an individual's classmates are associated with higher score for the individual. However, this result provides no information to distinguish between two alternative theories: (1) that the student does better because she is in a class with higher performing classmates (in Dr. Leamer's terminology, that the achievements of classmates are "shared" or transmitted to an individual student) or (2) that both the student and her classmates are influenced by common factors, such as the quality of the school or teacher or a more advantageous family background. A regression like that estimated by Dr. Leamer does not permit one to tell which is correct, because both theories could explain why a student performs better when she is in classroom with better students. ${ }^{29}$
34. This is the reflection problem, and it is the fallacy that Dr. Leamer commits. The coefficient on his contemporaneous variable merely shows that there is correlation between changes in compensation of one job title and the average compensation of the class, but it does not reveal the cause of that correlation. Indeed, finding that compensation for a given job

[^12]increases more than normal when the average increase for all other jobs in the class is larger than normal is hardly surprising, even in the absence of sharing. After all, the class-wide average outcome is essentially the average of the outcomes for the constituent groups.
35. The "reflection problem" is a well-known pitfall in interpreting regressions like those offered by Dr. Leamer that attempt to identify whether group-level outcomes (in this case, compensation for the class as a whole) influences individual-level outcomes (in this case, average job-level compensation). As described by Professor Charles F. Manski, who pioneered the research in this area, correlation between group behavior and individual behavior cannot by itself answer the question whether group behavior influenced individual behavior:

This identification problem arises because mean [average] behavior in the group is itself determined by the behavior of group members. Hence, data on outcomes do not reveal whether group behavior actually affects individual behavior, or group behavior is simply the aggregation of individual behaviors. This reflection problem is similar to the problem of interpreting the (almost) simultaneous movements of a person and his reflection in a mirror. Does the mirror image cause the person's movements or reflect them? ${ }^{30}$

Generally, when individuals in a group are subject to at least some common influences, it will appear that they are responding to each other even when they are not. Moreover, this can be true even when such common factors are relatively unimportant determinants of individual outcomes.
36. In the Technical Appendix, I explain how the statistical property known as the reflection problem makes Dr. Leamer's conclusions about "sharing" and "catch-up" unjustified. The import of that analysis is as follows. Consider a hypothetical firm with many job titles. Compensation in each job title is determined solely by the sum of two types of factors: (1) common factors (firm-level success, changes in the general economy, etc.) and (2) job-specific factors (group-level performance, changes in the market for individual skills, etc.). One can illustrate the fallacy in Dr. Leamer's results by considering the case where these job-specific factors are completely independent across jobs. In other words, there is no "sharing" - no impact of compensation in one job on compensation in any other job - because the job-specific factors are entirely independent of and do not influence one another.

[^13]37. Now consider Dr, Leamer's regression, which he says demonstrates that there is "sharing" of compensation adjustments between job titles. In essence, what Dr. Leamer does is to substitute a variable that measures the change in average compensation for the rest of the class (his "contemporaneous sharing" variable) for the common and job-specific variables that are the true determinants of job-specific compensation. Thus, his sharing variable reflects changes in compensation for all the other jobs at the firm, even though, by assumption, compensation changes for those other jobs have no direct causal impact on the change in compensation of a particular job (because job-specific factors are totally independent). The consequence is that his estimated coefficient on this variable will reflect the variance of changes in the common factors and the variance of the changes in job title-specific factors for all the job titles, but (for the technical reason that I explain in the Technical Appendix) the magnitude of the estimate will be dominated by the common factors (rather than job-specific factors) when the firm has many different job titles contributing to firm-wide average compensation. As a result, the measure of the change in average compensation for the firm effectively serves as a proxy for the common factors that affect both compensation of the particular job title and compensation of all other jobs at the firm. The coefficient on the change in class-wide compensation does not measure "sharing" or any causal relationship between compensation of a particular job and the jobspecific factors that influence compensation for other jobs. Nevertheless, Dr. Leamer interprets his results as proof that the change in job title compensation is caused by sharing because he fails to recognize the reflection problem.
38. Dr Leamer's confusion about what he can conclude from this correlation evidence, and the relevance of external factors, was apparent at this deposition. He testified that changes in compensation for the various job titles at Adobe between 2001 and 2003, during the "tech bust," were particularly useful for testing his rigid compensation structure and sharing theories ${ }^{31}$ But this is exactly the wrong type of variation (a shock common to Adobe as a whole and indeed to the entire tech industry) to test his theory that cold calls to individual employees would be "shared" with all or nearly all Technical Class employees. The fact that compensation for many or even all groups of employees at Adobe fell when there was a common shock (the tech-bust) that affected Adobe's business as a whole and the local labor market broadly, and then rose when

[^14]economic conditions improved, does not show that a force that operates directly on one group of employees would ripple out to (cause compensation changes for) others. Shocks that directly affect many groups would be reflected in correlation of compensation of those groups, even if there were no linkages at all.
39. Furthermore, Dr Leamer's characterization of his average compensation change and lagged compensation change variables as "internal factors" that cause changes in average compensation for a job makes no sense. Changes in average compensation of the class cannot be the ultimate "cause" of changes in job-level compensation, because the change in the overall average is determined by the changes in average compensation of the jobs that comprise that class average. In a sense, this conceptual error is at the heart of the "reflection problem" - as a matter of economic logic, both the overall average and its components must be determined by some underlying factors that Dr. Leamer has not identified. His analysis cannot reveal whether these underlying factors are internal (which one might define to be firm-specific factors) or instead are driven by the external marketplace.
40. The simple, but important, implication of Dr. Leamer's confounding of internal and external factors is that there must be omitted factors in Dr. Leamer's model, or there can be no adjustment process of the type that he claims. If we accept his estimated "sharing" model, then there must be some cause that initiates the deviations from his somewhat rigid compensation structure, and thus leads to the changes in overall average compensation which then are propagated throughout the compensation structure. Once one admits that such unmeasured factors exist, but that they are unidentified, it is pure faith to claim, as Dr. Leamer does, that they are not common.

## B. Dr. Leamer's "Horse Race" Is Uninformative

41. Dr. Leamer does not completely ignore the fact that common factors can generate the appearance of sharing even when none actually exists. To test whether his "sharing effect" simply reflects "external factors" that are common across job titles, ${ }^{32}$ he claims to have run a "horse race" between the "sharing" effects that underlie his theory and external factors that, if they were the cause of his results, would refute his theory. Based on this analysis, which he

[^15]implements by including "external" factors in the same regression as the two "sharing" variables, he concludes that " $[t]$ he regression analysis reported above indicates that the internal sharing effects are generally more detectable than either revenue sharing or the external market forces., ${ }^{33}$
42. Dr, Leamer's "horse race" is flawed, just like his methodology in general. His results simply reinforce his errors of interpretation rather than providing information about the underlying data. In the Technical Appendix, I illustrate this by showing what happens when some measured common factors are added to the model. I show that, when measured common factors (in his case San Jose employment and firm revenue) that capture only a portion of the variance in common factors (with the rest being unmeasured) are included, the coefficient on the measured external factors will reflect only a small fraction of the true impact of the external factors, while the estimated coefficient on the firm-wide average compensation change will decline only slightly (the technical explanation for this is in the Appendix). For example, in the model that I develop in the Technical Appendix, adding factors that account for 50 percent (a relatively large fraction) of the common factors reduces the estimated sharing effect from 0.86 to 0.75. In addition, the estimated impact of the common factors that are included in the regression is only one-quarter of its true size.
43. This downward bias in the estimated effect of Dr. Leamer's "external factors" is once again a well-known problem in econometrics. The classic example can be seen in the economics of education. If an analyst constructed a regression model in which income was a function of education and an individual's lagged income, the coefficient on education in the regression will understate, perhaps dramatically, how much education contributes to the individual's income. The problem is that education also increases lagged income and therefore part (maybe most) of the effect of education on income will be captured by this lagged effect rather than by the education variable itself. At a technical level, Dr. Leamer's regression model suffers from what is known in econometrics as an "endogeneity problem," which arises when some of the same unmeasured common factors drive both the independent and dependent variables. It is well known that including an endogenous variable (i.e., one that is correlated with the omitted factors - here, lagged income) will bias coefficients on both the endogenous variable (in this case the

[^16]sharing variable) and on the other variables included in the regression (in this case, education), ${ }^{34}$ and that controlling for some of these omitted factors does not solve this problem.
44. The consequence is that Dr. Leamer's analysis and the "horse race" that he claims supports the "somewhat rigid" compensation structure on which his theory relies are uninformative. His "horse race" between his "sharing" and "external" variables was fixed, because the statistical properties of the model predetermine that the "external" variables he added would not matter substantially and that his "result" that internal sharing was important would survive even when it does not represent the underlying process that generates the data (i.e. even when there is no sharing).

## C. Dr. Leamer Does Not Take Into Account the Tendency of Compensation to "Revert to the Mean"

45. Dr. Leamer's second statistical fallacy arises from "reversion to the mean" and is known as the "regression fallacy. " ${ }^{35}$ The regression fallacy arises when an analyst examines a data series that is subject to shocks that are, at least to some extent, temporary, and ignores the tendency of such data to "regress" or revert to the mean of the distribution. Reversion to the mean describes many phenomena, such as the tendency for athletes who perform extremely well or extremely poorly in one year to perform more like the average athlete in the following year. With employee compensation data, it reflects the tendency of an individual who receives an exceptionally large bonus or other form of compensation in one year to receive a smaller bonus or other compensation in the following year (although one that still may be above average).
46. A simple illustration of this phenomenon is the expected compensation of a salesman who is paid on commission. In any year, the salesman's compensation can be low (assume $\$ 75,000)$, medium $(\$ 100,000)$, or high $(\$ 125,000)$ based on whether it was a bad, average or good year. Assume that one third of the years are good, another third are average, and the rest are bad. If year one is good, and the salesman earns $\$ 125,000$, then there are three equally likely

[^17]possible changes for next year: next year is good (compensation of $\$ 125,000$ and no change from year one); next year is average (compensation of $\$ 100,000$ and a decline of $\$ 25,000$ in compensation year over year); and next year is bad (compensation of $\$ 75,000$ and a decline of $\$ 50,000$ in compensation year over year). Since, by assumption, the three outcomes are equally likely, the expected change in compensation is $-\$ 25,000((\$ 0-\$ 25,000-\$ 50,000) / 3)$. In contrast, if year one were a bad year (compensation of $\$ 75,000$ ), the potential changes in compensation the follow year are $+\$ 50,000,+\$ 25,000$ and zero, and the expected change is therefore $+\$ 25,000$. If year one is an average year, the three possibilities are no change, $+\$ 25,000$ and $-\$ 25,000$, for an expected change of zero. The first two scenarios demonstrate expected reversion to the mean compensation level of $\$ 100,000$.
47. Exhibit 9 plots the data generated by this process. The level of compensation in year one is measured on the horizontal axis and the change in compensation from year one to year two is measured on the vertical axis. The exhibit shows the regression line that would result from regressing the change in compensation from year one to year two on the level of compensation in year one. The line has slope -1.0 , which reflects the fact that the extra compensation (relative to the average) earned today - which is $+\$ 25,000$ in a good year and $-\$ 25,000$ in a bad year - is not expected to persist in year two, but instead will "revert" in year two to the average of $\$ 0^{36} \mathrm{An}$ analyst that applied Dr. Leamer's methodology could mistakenly conclude from a regression analysis of the change in compensation from year one to year two on the level of compensation in year one that the firm is constantly adjusting the salesman's compensation to keep it in line with the long-run average (that the firm is actively "catching-up" the salesman's compensation to the normal level in Dr. Leamer's terminology), when in fact the firm plays no active role at all. Rather, it is the natural variation in pay that generates what appear to be systematic adjustments to compensation.

[^18]48. At his deposition, Dr. Leamer claimed that reversion to the mean was not a problem that affected interpretation of his analysis or its relevance in supporting Plaintiffs' claims. ${ }^{37} \mathrm{He}$ appeared to acknowledge that firms could respond to the pressures for internal equity with bonuses and stock grants, which are less visible and so might not be as likely to generate internal equity concerns. ${ }^{38}$ However, even if this were true, it does not vindicate Dr. Leamer's methodology or make his conclusions sensible, but instead explains why his theory makes no sense. A firm that uses less visible forms of compensation (bonuses and stock grants) to increase compensation for some individuals without succumbing to pressures for internal equity and adjusting all employees' compensation can avoid "sharing." The compensation data would then make it appear that there was a large "lagged sharing" or "catch-up" effect in Dr. Leamer's regression because of the strong reversion to the mean generated when compensation is adjusted through one-time stock grants and bonuses, rather than through adjustment in base pay, even if there was no sharing at all. In such an example, the sharing effect that Dr. Leamer claims he has estimated instead would result from the firm's decision to use a form of compensation that avoided sharing. ${ }^{39}$ In other words, Dr. Leamer's model gets it completely backwards.
49. Of course, compensation, especially bonuses and stock grants, has transitory components for reasons unrelated to internal equity. Firms use bonuses and stock grants to provide incentivebased pay ${ }^{40}$ that is based on a measure of performance, such as individual or group performance or an individual's or group's contribution to firm profits or revenues. But human performance is subject to many random factors, and exceptional performance often will not recur (or recur as strongly) in subsequent years ${ }^{41}$ This is reflected in the salesman example I gave above. In that

[^19]case, we will observe reversion to the mean absent any concerns over internal equity, any rigidity in pay structure, and any conscious action by the firm other than to pay for performance.
50. Thus, Dr. Leamer's conclusion that Defendants' data is generated by a causal "sharing" relationship, and that the coefficient on the lagged sharing variable "measures the extent to which corrective action is taken at the company, ${ }^{, 42}$ is unjustified. It reflects a misinterpretation of the data, because he fails to take into account the empirical regularity of reversion to the mean.
51. Plaintiffs rely heavily on this lagged sharing term as evidence for their sharing and somewhat rigid compensation structure claims. In particular, they claim in their Motion that I cannot explain Dr. Leamer's finding that "gains for some are shared with others in a subsequent year., ${ }^{34}$ But their claim is false - there is a very simple explanation for this finding, one that is well-established in the labor and econometrics literature ${ }^{44}$ but overlooked by Dr. Leamernamely, that reversion to the mean is expected in job-level compensation data. This is not because firms are "sharing" increases or trying to equalize compensation changes across firm. Plaintiff's simply rely on the mistaken belief that one can infer a causal relationship from the fact that high values of a time series are followed by lower values, and low values are followed by higher values.
52. Thus, Dr. Leamer confuses predictable reversion to the mean in the data with evidence of a somewhat rigid compensation structure. The data on compensation growth by title says something very different. There is substantial long-run volatility in compensation across jobs, and this volatility results in reversion to the mean.

[^20]
## D. Empirical Evidence Shows that Dr. Leamer's Regression Results do not Reflect the Causality Required by his Theory to Support Plaintiffs' Claims of ClassWide Impact

53. Dr. Leamer claims that his regression identified impacts of "sharing" and "catch-up" (or "corrective action") from forces of internal equity and a "somewhat rigid" compensation structure at each Defendant. He also claims that the relative unimportance of external market forces (measured by information sector employment in the San Jose MSA) demonstrates that the change in compensation for a job title within a firm is not driven by outside influences, such as changes in market compensation. I now use other data where "sharing" forces are not present to demonstrate that the (misnamed) "sharing" effect is an artifact of Dr. Leamer's regression specification.

## 1. The Same False "Causality" is Found with Another Compensation Dataset

54. The fallacy of Dr. Leamer's inference is demonstrated by applying his regression model to wage and employment data for the overall U.S. economy. In these data, compensation cannot be driven by the force of internal equity combined with a rigid compensation structure within a firm. I use data on individuals from the American Community Surveys ("ACS") ${ }^{45}$ for the period 2001 to 2010 to calculate average annual compensation for hundreds of occupations in the U.S. economy - jobs such as computer software (applications) engineers; farmers and ranchers; and paralegals and legal assistants. I replicate Dr. Leamer's regression by substituting occupationlevel compensation for job-title compensation; U.S. average annual compensation for average class-wide compensation; ${ }^{46}$ U.S. real GDP per worker for average firm revenue per employee; and U.S. total employment for San Jose information sector employment. Thus, my regression replicates both the factors that Dr. Leamer claims determine average job-title compensation (his

[^21]"sharing" and "catch-up" variables) and the factors that he claims do not affect, or have a much weaker influence on, average job-title compensation (firm revenue and external factors).
55. Exhibit 10 compares Dr. Leamer's results with those I obtain using the ACS data. As the exhibit shows, coefficient estimates on variables that are analogous to variables in Dr. Leamer's specification are similar to those he finds in his regression. If anything, they show a stronger impact in the supposed "causal" directions of "sharing" and "catch-up" than he finds. For the data as a whole, the weighted average coefficient estimate on the "contemporaneous effect" variable is 1.09 , compared to only 0.72 in Dr. Leamer's regression. The "lagged effect" or "catch-up" variable has a coefficient estimate of 1.32 , compared to only 0.41 in his regression.
56. In addition, as an analogue of Dr. Leamer's "decile-based" regressions using Defendants' data, I performed an analysis where I rank U.S. occupations by their overall average real earnings during the 2001-2010 period in the ACS data, and group them into deciles of roughly the same size (in terms of their fraction in total U.S. employment in the data over this period). Exhibit 11 compares the coefficient estimates from regressions using the ACS data and those from Dr. Leamer's regressions. I find that, in almost all cases across the deciles, the estimated "sharing" and "catch-up" effects are stronger using the ACS data than the ones Dr. Leamer finds using Defendants' data. Thus, interpreted through Dr. Leamer's view of how the marketplace operates, this means that there is greater sharing and catch-up between extremely diverse occupations and unrelated industries and employers than there is for "technical" jobs within an employer
57. These results, which use national data for widely disparate jobs across all kinds of industries and firms, strongly suggest that Dr. Leamer's results are not capturing what he claims - in short, that his results likely are spurious. The logical interpretation is that they suffer from the reflection problem and reversion to the mean that we expect to be there. While the findings from running his regression on national occupation-level compensation are senseless viewed through Dr. Leamer's economic theory, they are not surprising when that theory is discarded.
58. A variety of common factors would cause average compensation in one occupation to be correlated with average compensation for the U.S. economy as a whole, but Dr. Leamer's hypothesized "internal equity" and "rigid compensation structures" are not among those factors. Common influences, such as the overall performance of the economy, will cause average
compensation for most occupations to move in a common way with the aggregate economy. But this no more demonstrates that compensation for farmers is "catching" up to preserve "fairness" relative to paralegals than it can be concluded that Dr. Leamer's regressions demonstrate "fairness" and causation within the Defendants" data.

## 2. A Regression Model that Explains the Change in Chicago Temperature as "Catchup" from the Difference between Chicago and Milwaukee Temperatures Illustrates Dr. Leamer's Misleading Conclusions

59. The misleading conclusions caused by ignoring the "reflection problem" and "reversion to the mean" are not limited to regressions using labor market compensation data. To illustrate how easy it is to get results like those presented by Dr. Leamer, and how wrong the conclusions that can be drawn when an analyst ignores basic statistics, I use data on daily temperature for two cities: Chicago (where I live) and Milwaukee (a nearby city). In keeping with Dr. Leamer's specification, I examine changes in daily temperature in one of the two cities (e.g. Chicago), using as explanatory variables (a) changes in the temperature of the "reference" city (e,g. Milwaukee), and (b) prior day's temperature difference between the reference city and the city under study. The first explanatory variable is analogous to Dr. Leamer's contemporaneous "sharing" variable, and the second variable is analogous to his "catch-up effect" variable.
60. Exhibit 12 shows the results of this analysis. The left panel presents results for Chicago and the right panel presents results for Milwaukee. "Model 1" shows estimates from a simple specification including just the "sharing" and "catch-up" variables. Not surprisingly, the results mirror those presented by Dr. Leamer. The coefficient estimates on both variables are positive. Given how Dr. Leamer interprets similar results from his regression, he would conclude that, for example, the positive coefficient on the second variable implies that there is "corrective" action to lower Chicago's temperature and increase the temperature in Milwaukee when yesterday's temperature in Chicago is warmer than normal.
61. The effect of adding common factor variables, and thus running the Dr. Leamer-type horse race, is illustrated in the next two columns. "Model 2 " includes only indicator variables for months of the year as explanatory variables, and does not contain the "sharing" or "catch-up" variables. The results agree with intuition: as can be seen from coefficient estimates on the
month indicator variables, temperature begins to fall in August, declines rapidly through the fall, and then begins to rise in February.
62. In the next "Model 3 " column, I combine the explanatory variables from Model 1 and 2. Now the sensible monthly pattern is gone. Instead, coefficient estimates on the month variables would seem to suggest that for Chicago, temperature increases in every month of the year and for Milwaukee, temperature decreases in every month of the year. This happens because coefficients on the month variables no longer reflect their actual effects on temperature. Instead, measurement of the monthly pattern is confounded by what Dr. Leamer would call contemporaneous "sharing" and lagged "catch-up" variables. Dr. Leamer would thus come to two conclusions - both of which contrary to common sense - that changes in Chicago temperature can be explained by "sharing" or "catch-up" effects with Milwaukee temperature.

## E. Conclusion

63. Dr. Leamer's correlation and regression results reflect the same pattern of "sharing effects" that one would find in national level labor market data, a regression analysis to explain changes in the daily temperature in Chicago based on the lag of temperature in Milwaukee, or using other data on related time series that have both common and idiosyncratic effects. Dr. Leamer confuses well-known and predictable properties of regressions of related time series with causal effects. He characterizes his results as evidence of "sharing" generated by concerns about internal equity and compensation policies that enforce a somewhat rigid wage structure, but his inference is at odds with sound econometric practice.
64. In their Motion for Reconsideration, Plaintiffs dispute the explanation I provided in my previous report ${ }^{47}$ for why the data are consistent with Defendants' employees' compensation being determined by competition in a broad labor market, with highly individualized adjustments for unique circumstances of individual employees, such as information received through a cold call. ${ }^{48}$ They claim instead that Dr Leamer's regression analysis in his Supplemental Report demonstrates that my "speculation" is "unsupportable." Yet, the evidence that I provided above,

[^22]like that in my previous report, shows that, far from disproving my conclusion, Dr. Leamer's empirical findings are consistent with the existence of a broad labor market in which employee compensation is affected by individual factors, such as information revealed during a cold call, but the impact of such events on other employees is limited and does not spread to the entire proposed class. Dr. Leamer's results are fully consistent, and indeed expected, if a reduction in cold-calling would not have class-wide impact.

## V. DR. LEAMER DOES NOT ESTABLISH THAT THE PROPOSED TECHNICAL CLASS IS PROPERLY DEFINED

65. Dr. Leamer claims that he "do[es] not find persuasive evidence to suggest that there are sizeable groups whose compensation might have been disconnected from Defendants' somewhat rigid compensation structure" ${ }^{49}$ or that there is any way to "identify and exclude from the Technical Class job titles based on a lack of these positive correlative relationships." ${ }^{50}$ In other words, Dr. Leamer appears to argue that Plaintiffs' have defined the class "just right," or at a minimum in a way that would permit the boundary of that proposed class to be evaluated empirically, no basis for including all jobs that could qualify as "technical" in their proposed class, no matter where located in the country.
66. Dr. Leamer's opinions about the composition of the proposed class have no merit given that, as I demonstrated above, his empirical evidence has not established any causal relationship between cold-calls that affect one job title and compensation provided to employees with other job titles, let alone a class-wide impact. While it is possible that there would be some forces within a company that would cause adjustment of compensation of some other employees in response to a cold-call, Dr. Leamer has no basis on which to identify the scope of such influence or to conclude that large portions of the proposed class are not unaffected by the challenged agreements. What matters in determining "common impact" for a class as large and diverse as the proposed Technical Class is not the average extent of linkage between different groups (such as job titles), but that the linkages spread across all (or nearly all) the groups included in the proposed class. Even if correlation mattered for understanding whether some kind of "causal"

[^23]relationship existed between certain groups, the average level of correlation would not be informative about whether all those groups belong in the same class. Rather, the correlation would have to be high for all, or nearly all groups in the proposed class (again, if as Dr. Leamer claims, correlation itself were informative, which it is not)

## VI. DR. LEAMER'S CONDUCT REGRESSION REMAINS UNINFORMATIVE

67. Dr. Leamer's Conduct Regression suffers from errors that render it uninformative.
68. First, the Court noted that "Dr. Leamer's report is slightly ambiguous as to whether any variables besides revenue should have been included to control for correlations across employees ... To the extent there are other variables that may improve the accuracy of the Conduct Regression and obviate the need for clustering, Dr. Leamer is encouraged to include them in his next report. ${ }^{51}$ Dr. Leamer did not take the opportunity to do so. His argument that these common factors all can be taken into account simply by including additional measured common factors is simply wrong, even if it were feasible to do so given that these factors will differ across Defendants (thereby requiring inclusion of Defendant-specific variables). In any event, Dr. Leamer's failure to respond to the Court's suggestion leaves unknown what method he thinks could be used to demonstrate that his Conduct Regression has any probative value.
69. Second, Dr Leamer acknowledged at his deposition that he responded only to one of the models that I offered in my original report to demonstrate that he wrongly assumed a common conduct effect for all Defendants, ${ }^{52}$ and he claimed that the model that he had critiqued had "overwhelmed the data." ${ }^{53}$ However, he did not comment on the more parsimonious model that I also offered, which included fewer explanatory variables but which still permitted measurement of separate Defendant-specific conduct effects. ${ }^{54}$ My second model (Appendix 11 of my Original Report ) includes Defendant-specific conduct measures by interacting the conduct

[^24]variable with each defendant. I reduced the number of explanatory variables by not including interactions between conduct and age, and conduct and hiring rate, because as I explained the interactions with age and hiring rate added very little power to the regression. My results (on which Dr Leamer did not comment on) showed large variation in the size and even the sign of the estimated undercompensation effects, with the estimates indicating that employees at Adobe, Lucasfilm and Pixar were not undercompensated, but instead were overcompensated. This indicates that Dr. Leamer had no basis to assume a common impact across Defendants. Dr. Leamer's Table 1 and 2 in his Supplemental Report, which show that there are low or even negative correlations in average total compensation between certain Defendants, also show that one cannot simply assume common impact across Defendants.


June 21, 2013

## TECHNICAL APPENDIX: MODELLING THE REFLECTION PROBLEM

1. In order to mathematically model the reflection problem in the context of Dr. Leamer's analysis, and thereby illustrate why his conclusions are unjustified, I consider a hypothetical firm with J jobs, each of which has an equal number of employees. Compensation in each job is determined by two types of factors: (1) common factors (firm-level success, changes in the general economy, etc.) and (2) job-specific factors (group-level performance, changes in the market for individual skills, etc.). I assume that compensation for each job is determined by the sum of these two factors. I denote the common factors by A, and the job specific factors by e. Thus, compensation of job j in year $\mathrm{t}, w_{j t}$ is given by
(1) $w_{j t}=A_{t}+e_{j t}$,
where $A_{t}$ reflects the influence of the common factors in year $t$ and $e_{j 1}$ reflects job-specific factors for job j in that year.
2. I assume that the job-specific factors are independent of (uncorrelated with) one another, and thus there is no "sharing." Transforming equation (1) into year-over-year changes yields for job $j$
(2) $w_{j t}-w_{j t-1}=\left(A_{t}-A_{t-1}\right)+\left(e_{j t}-e_{j t-1}\right)$

The change in average compensation for jobs other than job j is given by
(3)

$$
w_{-j t}-w_{-j t-1}=\left(A_{t}-A_{t-1}\right)+\frac{1}{J-1} \sum_{i=1}\left(e_{i t}-e_{i t-1}\right)
$$

3. Equations (2) and (3) describe the true process that determines compensation changes in this model, namely the contributions of changes in common and job-specific factors.
4. Now consider a regression analysis analogous to that performed by Dr. Leamer, in which the researcher wants to use these data to understand whether there is "sharing" of the type he claims. The type of regression model specified by Dr. Leamer is:

$$
\begin{equation*}
w_{j t}-w_{j t-1}=\alpha+\beta\left(w_{-j t}-w_{-j t-1}\right)+\varepsilon_{j t}, \tag{4}
\end{equation*}
$$

with the change in compensation for one job modeled to be "explained by" the change in compensation of all other jobs, rather than by the changes in common and job-specific factors
that generate the data. It then is straight forward to show that the regression coefficient on the change in the average compensation, $\beta$, in equation (4) will be given by
(5) $\hat{\beta}=\frac{\sigma_{A}^{2}}{\sigma_{A}^{2}+\frac{1}{J-1} \sigma_{e}^{2}}$
where $\sigma_{A}^{2}$ is the variance of the changes in the common factors and $\sigma_{e}^{2}$ is the variance of the changes in the job-specific factors.
5. Equation (5) has the important implication that, when the average outcome variable (in this case average compensation growth) is obtained by averaging over a large number of jobs, the resulting average largely will reflect common factors because the idiosyncratic job-level factors will tend to average out. The denominator in equation (5) is the variance of the change in class-wide average compensation, while the variance of changes in job-level compensation is
(6) $\sigma_{A}^{2}+\sigma_{e}^{2}$

Equation (5) shows that the importance of common factors is amplified in the class-wide variables because the contribution of job-specific factors is reduced by the factor $1 /(\mathrm{J}-1)<1$. For example, if there are 25 jobs, then the contribution of job-specific factors is reduced by a factor of $24(=25-1)$. This means that the change in average compensation variable effectively serves a proxy for the common factors that affect firm-wide compensation. These common factors will be picked up by (and attributed to by an analyst using Dr Leamer's approach) the average compensation change variable, even if they are a small part of what drives job-level compensation.
6. This proxy effect can be illustrated by considering a simple example where common factors account for only 20 percent of job-level variation and there are 25 equally sized jobs in the firm. The fraction of variance in job-level compensation changes accounted for by the common factors is equal to $\sigma_{A}^{2} /\left(\sigma_{A}^{2}+\sigma_{e}^{2}\right)$, which implies that $\sigma_{e}^{2} / \sigma_{A}^{2}=4$. Under these conditions, equation (5) implies that we would expect a regression coefficient of $1 /(1+4 / 24)=0.86$ on the average wage change variable and a correlation between job-level and average compensation. Thus, even though by construction, common factors account for only 20 percent of overall changes in compensation and there is no sharing at all (i.e., changes in compensation for an individual job have no effect on compensation in other jobs by construction), an analyst using Dr Leamer's methodology would conclude that the compensation structure displays
"astounding" correlation, is "somewhat rigid" and most importantly (and most egregiously for purposes of evaluating Plaintiffs' claims) that 86 percent of the change in average compensation is "shared." This would be true in spite of the fact that there is zero actual sharing and thus no reason why an entire putative "class" of all employees at the firm possibly could be harmed by actions that affect some individuals or even some jobs.
7. Dr. Leamer claims that he was able to reject an alternative theory that his results reflected the influence of common factors by running a horse raise with his "sharing" theory. However, my model shows why he is wrong. Assume that there are some measured common factors, and that these variables capture a fraction $R^{2}$ of the variance of the common factors. Then, the coefficient on the average compensation change variable becomes

$$
\begin{equation*}
\widehat{\beta}=\frac{\left(1-R^{2}\right) \sigma_{A}^{2}}{\left(1-R^{2}\right) \sigma_{A}^{2}+\frac{1}{J-1} \sigma_{e}^{2}} \tag{7}
\end{equation*}
$$

8. If one adds variables to the regression that explain one-half of the common factor effect (i.e. $R^{2}=0.50$ ), this implies a regression coefficient of 0.75 (versus 0.86 in the regression without the control variable). Importantly, the estimated coefficient on the common factors in the regression would be only one-fourth of its true size, causing the researcher to greatly understate its influence. Adding factors that explain less than 50 percent of the common components generates even smaller changes. For example, adding factors that explain 20 percent of the common factors would result in a "sharing" coefficient of 0.83 (versus 0.86 without controls) and a coefficient on the common variable equal to only about one sixth of its actual size.

## Derivation of Equation (7) and Estimated Coefficient on Common Factors

For simplicity of notation, I now denote everything in changes. Consider also that everything on the right hand side is independent of each other
$w_{f}=A_{t}+e_{j}$
$w_{-j t}=\frac{1}{J-1} \sum_{i \neq j} w_{i t}=A_{t}+\frac{1}{J-1} \sum_{i=j} e_{i t}$
Now assume that

$$
A_{t}=X_{t}+u_{t}
$$

$X$ is observed variable orthogonal to $u$.
Regress $\mathrm{w}_{\mathrm{jt}}$ and $\mathrm{w}_{-\mathrm{jt}}$ on X to get residuals. These are
$\tilde{w}_{j t}=u_{t}+e_{j t}$
$\tilde{w}_{-i t}=u_{t}+\frac{1}{J-1} \sum_{i \in J} e_{i t}$
Now run OLS to get $\beta$.
$\beta=\frac{\sigma_{u}^{2}}{\sigma_{u}^{2}+\frac{1}{J-1} \sigma_{e}^{2}}$
By definition
$\sigma_{u}^{2}=\sigma_{A}^{2}\left(1-R^{2}\right)$
This yields

$$
\beta=\frac{\sigma_{A}^{2}\left(1-R^{2}\right)}{\sigma_{A}^{2}\left(1-R^{2}\right)+\frac{1}{J-1} \sigma_{e}^{2}}
$$

To get the coefficient on X we regress
$w_{f t}-\beta w_{-j t}=(1-\beta)\left(X_{t}+u_{t}\right)+e_{j t}-\frac{\beta}{J-1} \sum_{i \neq j} e_{i t}$
on X .
This gives a coefficient of $(1-\beta)$ versus the true coefficient of 1 .

## Exhibit 1 Adobe

There is Substantial Variation in the Cumulative Change in Total Compensation Among Employees with the Same 2005 Job

Adobe -


Notes:
[1] Each line represents the cumulative compensation change for an individual employee.
[2] Data are restricted to those employees who remained in RD class positions through 2010. I then selected the Adobe job title with 25 employees (or the closest number to 25 ).

Source: Dr. Leamer's backup data and materials.

## Exhibit 1 Apple \& Google

## There is Substantial Variation in the Cumulative Change in Total Compensation Among Employees with the Same 2005 Job

Notes:
[1] Each line represents the cumulative compensation change for an individual employee.
[2] Data are restricted to those employees who remained in RD class positions through 2010. I then selected from each Defendant the job title that included 25 employees (or the closest number to 25).

Source: Dr. Leamer's backup data and materials.

## Exhibit 1 Intel \& Intuit

## There is Substantial Variation in the Cumulative Change in Total Compensation Among Employees with the Same 2005 Job



Notes:
[1] Each line represents the cumulative compensation change for an individual employee.
[2] Data are restricted to those employees who remained in RD class positions through 2010. I then selected from each Defendant the job title that included 25 employees (or the closest number to 25 ).

Source: Dr. Leamer's backup data and materials.

## Exhibit 1 Lucasfilm \& Pixar

## There is Substantial Variation in the Cumulative Change in Total Compensation Among Employees with the Same 2005 Job



Notes:
[1] Each line represents the cumulative compensation change for an individual employee.
[2] Data are restricted to those employees who remained in RD class positions through 2010. I then selected from each Defendant the job title that included 25 employees (or the closest number to 25 ).
[3] The Lucasfilm chart begins in 2006, which is the first year for which I have data on Lucasfilm job titles.
Source: Dr. Leamer's backup data and materials.

## Exhibit 2 Adobe

## There is Substantial Variation in Total Compensation Changes Among Employees in the Same Job in 2007



Notes:
[1] The top 3 Adobe jobs by 2007 employment are shown. See Appendix B for additional jobs and years.
[2] Some large positive and large negative changes may be capped at $+/-50$ percent for ease of display.

Source: Dr. Leamer's backup data and materials.

## Exhibit 2 Apple

There is Substantial Variation in Total Compensation Changes Among Employees in the Same Job in 2007

Notes:
[1] The top 3 Apple jobs by 2007 employment are shown. See Appendix B for additional jobs and years.
[2] Some large positive and large negative changes may be capped at $+/-75$ percent for ease of display.
Source: Dr. Leamer's backup data and materials.

## Exhibit 2 Google

There is Substantial Variation in Total Compensation Changes Among Employees in the Same Job in 2007

Notes:
[1] The top 3 Google jobs by 2007 employment are shown. See Appendix B for additional jobs and years.
2] Some large positive and large negative changes may be capped at $+/-75$ percent for ease of display.
Source: Dr. Leamer's backup data and materials.

## Exhibit 2 Intel

There is Substantial Variation in Total Compensation Changes Among Employees in the Same Job in 2007

Notes:
[1] The top 3 Intel jobs by 2007 employment are shown. See Appendix B for additional jobs and years.
2. Some large positive and large negative changes may be capped at $+/-50$ percent for ease of display.

Source: Dr. Leamer's backup data and materials.

## Exhibit 2 Intuit

## There is Substantial Variation in Total Compensation Changes Among Employees in the Same Job in 2007



Notes:
[1] The top 3 Intuit jobs by 2007 employment are shown. See Appendix B for additional jobs and years.
[2] Some large positive and large negative changes may be capped at $+/-50$ percent for ease of display.
Source: Dr. Leamer's backup data and materials.

## Exhibit 2 Lucasfilm

## There is Substantial Variation in Total Compensation Changes

 Among Employees in the Same Job in 2007SOFTWARE ENGINEER


## SENIOR ARTIST I




Percent Change (2007-2008)
$\square$ Decrease
Increase

Notes:
[1] The top 3 Lucasfilm jobs by 2007 employment are shown. See Appendix B for additional jobs and years.
[2] Some large positive and large negative changes may be capped at $+/-50$ percent for ease of display.
Source: Dr. Leamer's backup data and materials.

Exhibit 2 Pixar
There is Substantial Variation in Total Compensation Changes Among Employees in the Same Job in 2007

TECHNICAL DIRECTOR



Notes:
[1]. The top 3 Pixar jobs by 2007 employment are shown. See Appendix B for additional jobs and years.
[2] Some large positive and large negative changes may be capped at $+/-50$ percent for ease of display.
Source: Dr. Leamer's backup data and materials.

## Exhibit 3

## There is Substantial Variation in Changes in Employee Total Compensation (Adjusted for Individual Characteristics and Job)



Source: Dr. Leamer's backup data and materials.

There Are Large Differences in Compensation Changes Between the Employees with the Lowest Changes and Those with the Highest

| Employer | Percent Deviation from Mean Compensation Change |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Bottom Decile | Bottom Quartile | Top Quartile | Top Decile |
|  | $-29 \%$ | $-19 \%$ | $19 \%$ |  |
|  |  |  | $29 \%$ |  |
| Google | $-72 \%$ | $-44 \%$ | $47 \%$ |  |
| Intel | $-17 \%$ | $-11 \%$ | $11 \%$ | $78 \%$ |
| Intuit | $-24 \%$ | $-16 \%$ | $17 \%$ | $19 \%$ |
| Lucasfilm | $-9 \%$ | $-5 \%$ | $6 \%$ | $26 \%$ |
| Pixar | $-45 \%$ | $-25 \%$ | $25 \%$ | $10 \%$ |
|  |  |  | $42 \%$ |  |

Notes:
[1] Data shown are percent deviations from the average change for the employer and year after adjusting for age, tenure, gender, and job title.
[2] Percent deviations shown are averages within each decile or quartile.
[3] Analysis is based on 2006-2011 data for Lucasfilm and 2001-2011 data for other defendants.
[4] Deciles and quartiles are based on the share of employee years at each defendant.
Source: Dr. Leamer's backup data and materials.

## Exhibit 5

## There is Substantial Variation in Changes in Job Average Total Compensation (Adjusted for Individual Characteristics and Job)



Google



Intuit



Pixar


Notes:
[1] Data shown are percent deviations from the mean change in job averages for the employer and year after adjusting for age, tenure, gender, and job title.
[2] Analysis is based on 2006-2011 data for Lucasfilm and 2001-2011 data for all other defendants. Changes are measured annually and are pooled across years.
[3] Changes are capped for ease of display.
Deviation from the Mean Change (\%)
Source: Dr. Leamer's backup data and materials.

## Exhibit 6

There Are Large Differences in the Changes in Average Compensation Between Jobs with the Lowest Changes and Those with the Highest

| Employer | Percent Deviation from Mean Change in Job Average |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Bottom Decile | Bottom Quartile | Top Quartile | Top Decile |
|  | $-15 \%$ | $-9 \%$ | $10 \%$ |  |
|  |  |  |  | $16 \%$ |
| Google | $-29 \%$ | $-19 \%$ | $16 \%$ |  |
| Intel | $-6 \%$ | $-4 \%$ | $5 \%$ | $7 \%$ |
| Intuit | $-14 \%$ | $-8 \%$ | $8 \%$ | $14 \%$ |
| Lucasfilm | $-14 \%$ | $-9 \%$ | $8 \%$ | $13 \%$ |
| Pixar | $-27 \%$ | $-14 \%$ | $13 \%$ | $23 \%$ |

Notes:
[1] Data shown are percent deviations from the mean change (weighted by employees) in job averages for the employer and year after adjusting for age, tenure, gender, and job title.
[2] Percent deviations shown are averages within each decile or quartile.
[3] Analysis is based on 2006-2011 data for Lucasfilm and 2001-2011 data for all other defendants.
[4] Deciles and quartiles are based on the share of employee weighted job-years at each defendant.
Source: Dr. Leamer's backup data and materials.

## Exhibit 7

## There is Substantial Variation in Annual Changes in Job Average Total Compensation at Each Defendant

Sample of Jobs (A Maximum of 50 from Each Defendant)


Notes:
[1] Each dot represents the percent change in the average real total compensation for a given job from the previous year to the current year.
[2] The jobs selected are the five largest jobs (based on 2001-2011 employment) from each decile in Figures 9-12 of Dr. Leamer's Supplemental Report. If there are fewer than five jobs in any decile, then the next largest jobs across all deciles are included to reach 50 . In addition, I require that the average number of employees in the job across the two years over which I calculate the compensation change to be at least five.
[3] Annual changes are capped at -50 and +75 percent.
[4] Lucasfilm data are missing job titles prior to 2006.

Source: Dr. Leamer's backup data and materials.

## Exhibit 8 <br> There is Substantial Variation in Cumulative Changes in Job Average Total Compensation at Each Defendant

Sample of Jobs (A Maximum of 50 from Each Defendant), Base Year = 2005


Notes:
[1] Each dot represents the percent change in the average real total compensation for a given job from the previous year to the current year.
[2] The jobs selected are the five largest jobs (based on 2001-2011 employment) from each decile in Figures 9-12 of Dr. Leamer's Supplemental Report. If there are fewer than five jobs in any decile, then the next largest jobs across all deciles are included to reach 50 . In addition, I require that the average number of employees in the job across the two years over which I calculate the compensation change to be at least five.
[3] Cumulative changes are capped at -50 and +75 percent.
[4] Lucasfilm is excluded because its data are missing job titles prior to 2006.

[^25]
## Exhibit 9

"Reversion to the Mean" Implies Negative Relationship Between Expected Compensation Change and Lagged Compensation Level


## Exhibit 10 <br> Dr. Leamer's Regression Model Does Not Establish "Sharing" or "Catch-Up" between Jobs

## Panel A: Leamer Model Using Defendants' Data

Number of Job Titles

Dependent Variable
DLog(Title Average Annual Total Compensation)
"Contemporaneous Effect Variable"
DLog(R\&D Average Annual Total Compensation)
"Lagged Effect Variable"
Log(R\&D Avg Annual Total Comp (-1) /
Title Avg Annual Total Compensation ( -1 ))
"External Forces Variables"
Log(Firm Revenue Per Employee (-1) /
Title Avg Annual Total Compensation (-1))

DLog(San-Jose Information Sector Employment)

889

| Coefficient Estimate |
| :---: |
| 0.72 |
| 0.41 |
| 0.12 |
| -0.20 |

## Panel B: Leamer Model Using U.S. Economy-Wide Data (ACS)

| Number of U.S. Occupations | 465 |
| :---: | :---: |
| Dependent Variable <br> DLog(Occupation Average Annual Wage) |  |
|  |  |
|  | Coefficient Estimate |
| "Contemporaneous Effect Variable" |  |
| Dlog(U.S. Average Annual Wage) | 1.09 |
| "Lagged Effect Variable" |  |
| Log(U.S. Avg Annual Wage (-1) / <br> Occupation Avg Annual Wage (-1)) | 1.32 |
| "External Forces Variables" |  |
| Log(U.S. Real GDP per Worker (-1) / Occupation Avg Annual Wage (-1)) | -0.14 |
| DLog(U.S. Total Employment) | 0.03 |

Notes: Coefficient estimates shown are weighted averages across regressions for all job titles or occupations.
Source: Panel $A$ is based on Leamer Supplemental Report Exhibits 1 and 2. Panel $B$ is based on data from the following public sources:
American Community Surveys (ACS), 2001-2010: Steven Ruggles, J. Trent Alexander, Katie Genadek, Ronald Goeken, Matthew B. Schroeder, Matthew Sobek.
Integrated Public Use Microdata Series: Version 5.0 [Machine-readable database]. Minneapolis: University of Minnesota, 2010, https://usa.ipums.org.
U.S. Real GDP (GDPC1): U.S. Department of Commerce Bureau of Economic Analysis. U.S. Total Employment (LNUO2000000): U.S. Department of Labor Bureau of Labor Statistics.

## Exhibit 11

## Dr. Leamer's Decile-Based Regressions Do Not Establish "Sharing" or "Catch-Up" between Jobs

Panel A: Leamer Model Using Defendants' Data

| Decile | Regression Coefficient Estimates |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | "Contemporaneous <br> Sharing" | "Catch-Up" | "External Variable 1" <br> (Firm Revenue) | "External Variable 2" <br> (San Jose IT Employment) |
|  | 0.60 | 0.37 | -0.27 | 0.19 |
| $\mathbf{2}$ | 0.55 | 0.28 | -0.09 | -0.07 |
| $\mathbf{3}$ | 0.71 | 0.40 | -0.18 | 0.13 |
| $\mathbf{4}$ | 0.58 | 0.20 | 0.01 | 0.05 |
| $\mathbf{5}$ | 0.73 | 0.24 | 0.04 | 0.04 |
| $\mathbf{6}$ | 0.66 | 0.36 | 0.12 | -0.36 |
| $\mathbf{7}$ | 0.75 | 0.33 | -0.02 | -0.07 |
| $\mathbf{8}$ | 0.71 | 0.36 | 0.29 | -0.52 |
| $\mathbf{9}$ | 0.85 | 0.47 | 0.15 | -0.18 |
| $\mathbf{1 0}$ | $\mathbf{1 0}$ | $\mathbf{0 . 0 4}$ | 0.61 | -0.37 |
| Average: | $\mathbf{0 . 7 3}$ | $\mathbf{0 . 3 1}$ | $\mathbf{0 . 0 7}$ | -0.12 |

Panel B: Leamer Model Using U.S. Economy-Wide Data (ACS)

| Decile | Regression Coefficient Estimates |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | "Contemporaneous <br> Sharing" | "Catch-Up" | "External Variable 1" <br> (U.S. GDP) | "External Variable 2" <br> (U.S. Employment) |
|  | 1.36 | 1.54 | -0.48 | 0.10 |
| $\mathbf{2}$ | 0.94 | 1.12 | -0.36 | -0.28 |
| $\mathbf{3}$ | 0.85 | 0.85 | -0.12 | -0.36 |
| $\mathbf{4}$ | 1.18 | 1.74 | -0.34 | 0.16 |
| $\mathbf{5}$ | 0.86 | 1.35 | -0.21 | 0.00 |
| $\mathbf{6}$ | 0.81 | 0.62 | -0.10 | -0.25 |
| $\mathbf{7}$ | 0.84 | 1.16 | 0.19 | -0.17 |
| $\mathbf{8}$ | 1.02 | 0.91 | 0.15 | 0.31 |
| $\mathbf{9}$ | 1.56 | 0.37 | 0.36 | -0.57 |
| $\mathbf{1 0}$ | 0.57 | 0.92 | 0.54 | -0.02 |
| Average: | $\mathbf{1 . 0 0}$ | $\mathbf{1 . 0 6}$ | $\mathbf{- 0 . 0 4}$ | -0.11 |

Notes: Estimates shown in Panel A are weighted averages across defendants. Deciles in Panel B are defined according to a similar methodology as Dr. Leamer's decile-based analyses, using U.S. occupation's overall average real wage and employment.
Source: Panel A is based on Dr. Leamer's backup materials for Leamer Supplemental Report Figures 9 to 12. Panel B is based on data from the following public sources:
American Community Surveys (ACS), 2001-2010: Steven Ruggles, J. Trent Alexander, Katie Genadek, Ronald Goeken, Matthew B. Schroeder, Matthew Sobek
Integrated Public Use Microdata Series: Version 5.0 [Machine-readable database]. Minneapolis: University of Minnesota, 2010, https://usa.ipums.org.
U.S. Real GDP (GDPC1); U.S. Department of Commerce Bureau of Economic Analysis. U.S. Total Employment (LNUO2000000); U.S. Department of Labor Bureau of Labor Statistics.

## Exhibit 12

Dr. Leamer's Interpretation of His Regression Results Would Imply that Changes in Chicago Temperature Can be Explained by "Sharing" or "Catch-Up" with Milwaukee Temperature (and Vice Versa)
(Chicago and Milwaukee Daily Temperature Data - January 1995 to May 2013)

Dependent Variable: Change in Chicago Temperature

| Variable | Model 1 | Model 2 | Model 3 |
| :---: | :---: | :---: | :---: |
|  | Coefficient Estimates |  |  |
| Change in Milwaukee Temperature | 0.94 |  | 0.93 |
| Lagged Difference in Temperature (Milwaukee minus Chicago) | 0.48 |  | 0.56 |
| January |  | -0.20 | 0.64 |
| February |  | 0.27 | 0.91 |
| March |  | 0.45 | 1.51 |
| April |  | 0.28 | 1.96 |
| May |  | 0.37 | 2.20 |
| June |  | 0.19 | 1.76 |
| July |  | 0.11 | 1.38 |
| August |  | -0.17 | 0.99 |
| September |  | -0.40 | 0.77 |
| October |  | -0.30 | 0.69 |
| November |  | -0.43 | 0.68 |
| December |  | -0.20 | 0.55 |
| Constant | Yes | No | No |
| R-Squared | 0.89 | 0.00 | 0.89 |
| Number of Observations | 6,633 | 6,692 | 6,633 |

Dependent Variable: Change in Milwaukee Temperature

| Variable | Model 1 | Model 2 | Model 3 |
| :---: | :---: | :---: | :---: |
|  | Coefficient Estimates |  |  |
| Change in Chicago Temperature | 0.94 |  | 0.95 |
| Lagged Difference in Temperature (Chicago minus Milwaukee) | 0.46 |  | 0.54 |
| January |  | -0.19 | -0.64 |
| February |  | 0.25 | -0.85 |
| March |  | 0.34 | -1.42 |
| April |  | 0.27 | -1.86 |
| May |  | 0.37 | -2.08 |
| June |  | 0.26 | -1.67 |
| July |  | 0.11 | -1.32 |
| August |  | -0.19 | -0.98 |
| September |  | -0.38 | -0.79 |
| October |  | -0.31 | -0.70 |
| November |  | -0.44 | -0.70 |
| December |  | -0.18 | -0.56 |
| Constant | Yes | No | No |
| R-Squared | 0.88 | 0.00 | 0.89 |
| Number of Observations | 6,633 | 6,637 | 6,633 |

[^26]
## Appendix A

## Dr. Leamer's Evidence Does not Show "Lack of Variation" in Individual Compensation

Materials Dr. Leamer submitted with his earlier reports further demonstrate the variation in individual compensation. At paragraph 63 of Dr. Leamer's Reply Report, Dr. Leamer cites an


Attached as Exhibit 1 are tables with data as provided in Dr. Leamer's backup materials showing compensation and job titles for these same 28 Intel employees and 4 Apple employees over time:

- Page 1 provides the base salaries for each of the 28 Intel employees for the year 2007 to 2011. The columns on the far right show the dollar and percentage increases in base salary for each employee during this period, and the bottom rows show the minimum and maximum base salaries each year and the ranges between them.
- Page 2 provides the total compensation (including base salaries, bonuses, and equity compensation) for each of the 28 Intel employees for the years 2007 to 2011. The columns on the far right show the increases in total compensation for each employee during this period, and the bottom rows show the minimum and maximum total compensation each year and the corresponding ranges.
- Page 3 provides the job titles of each of the 28 Intel employees in each year from 2007 to 2011.
- Pages 4-6 provide this same data for the 4 Apple employees referenced in Dr. Leamer's Reply Report for the years 2008 to 2011.

Attached as Exhibit 2 are charts showing graphically how the compensation of these employees changed over time.

## Exhibit 1

Base Salary Growth of 28 Similarly Situated Intel Emolovees

Total Compensation Growth of 28 Similarly Situated Intel Employees

Job Progressions of 28 Similarly Situated Intel Employees


Note: The Dollar Range Percentage is calculated as the difference between the logs of the maximum and minimum.
Sources: Dr. Leamer's backup data; Dr. Leamer's Reply Report at 964 .

Total Compensation Growth of 4 Similarly Situated Apple Employees


Note: The Dollar Range Percentage is calculated as the difference between the logs of the maximum and minimum.
Sources: Dr. Leamer's backup data; Dr. Leamer's Reply Report at 964.

Job Progressions of 4 Similarly Situated Apple Employees

| 2008, Apple, |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |

[^27]
## Exhibit 2

0468

Total Compensation Growth of 9 Similarly Situated Intel Employees

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)



## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | ADOBE |  | 40 | -13\% | -31\% | -28\% | -18\% | -12\% | -7\% | -1\% | 9\% |
| 2009 | ADOBE |  | 37 | 10\% | -11\% | -9\% | 3\% | 9\% | 17\% | 37\% | 40\% |
| 2010 | ADOBE |  | 28 | 4\% | -12\% | -10\% | 1\% | 4\% | 7\% | 25\% | 26\% |
| 2005 | ADOBE |  | 25 | 5\% | -19\% | -9\% | -3\% | 1\% | 8\% | 35\% | 48\% |
| 2006 | ADOBE |  | 25 | 12\% | -10\% | -6\% | 6\% | 12\% | 18\% | 26\% | 37\% |
| 2009 | ADOBE |  | 30 | 6\% | -20\% | -17\% | -9\% | 3\% | 9\% | 25\% | 105\% |
| 2010 | ADOBE |  | 30 | 21\% | -33\% | -16\% | 4\% | 29\% | 33\% | 51\% | 63\% |
| 2009 | ADOBE |  | 25 | -4\% | -53\% | -52\% | -13\% | 0\% | 7\% | 25\% | 31\% |
| 2010 | ADOBE |  | 29 | 34\% | -20\% | -18\% | 28\% | 38\% | 43\% | 68\% | 79\% |
| 2010 | ADOBE |  | 28 | 30\% | -30\% | -28\% | 6\% | 32\% | 46\% | 75\% | 110\% |
| 2001 | ADOBE |  | 34 | -27\% | -60\% | -53\% | -43\% | -25\% | -19\% | 12\% | 14\% |
| 2002 | ADOBE |  | 29 | -8\% | -42\% | -38\% | -23\% | -12\% | 10\% | 29\% | 30\% |
| 2005 | ADOBE |  | 32 | 13\% | -20\% | -6\% | 1\% | 12\% | 26\% | 40\% | 41\% |
| 2008 | ADOBE |  | 27 | -5\% | -27\% | -22\% | -13\% | -10\% | -1\% | 29\% | 39\% |
| 2010 | ADOBE |  | 29 | 24\% | -25\% | -24\% | 10\% | 28\% | 35\% | 57\% | 58\% |
| 2001 | ADOBE |  | 28 | -26\% | -51\% | -50\% | -40\% | -24\% | -20\% | 6\% | 7\% |
| 2002 | ADOBE |  | 30 | -8\% | -40\% | -32\% | -21\% | -12\% | 9\% | 26\% | 26\% |
| 2003 | ADOBE |  | 39 | 10\% | -17\% | -14\% | -2\% | 9\% | 24\% | 33\% | 46\% |
| 2004 | ADOBE |  | 57 | 16\% | -25\% | -4\% | 5\% | 10\% | 18\% | 59\% | 130\% |
| 2005 | ADOBE |  | 49 | 8\% | -16\% | -11\% | -3\% | 5\% | 12\% | 49\% | 63\% |
| 2006 | ADOBE |  | 52 | 21\% | -9\% | -6\% | 7\% | 16\% | 29\% | 65\% | 104\% |
| 2007 | ADOBE |  | 58 | 8\% | -29\% | -11\% | -2\% | 5\% | 15\% | 32\% | 62\% |
| 2008 | ADOBE |  | 68 | -10\% | -39\% | -33\% | -25\% | -15\% | -9\% | 27\% | 138\% |
| 2009 | ADOBE |  | 65 | 2\% | -35\% | -19\% | -4\% | 1\% | 8\% | 23\% | 57\% |
| 2010 | ADOBE |  | 51 | 34\% | -16\% | 16\% | 29\% | 36\% | 40\% | 54\% | 59\% |
| 2001 | ADOBE |  | 25 | -26\% | -53\% | -50\% | -46\% | -30\% | -25\% | 9\% | 125\% |
| 2004 | ADOBE |  | 31 | 8\% | -14\% | -13\% | 2\% | 9\% | 14\% | 27\% | 28\% |
| 2005 | ADOBE |  | 55 | 8\% | -34\% | -18\% | -3\% | 4\% | 12\% | 57\% | 97\% |
| 2006 | ADOBE |  | 58 | 16\% | -46\% | -9\% | 7\% | 14\% | 26\% | 51\% | 56\% |
| 2007 | ADOBE |  | 68 | 12\% | -15\% | -13\% | -2\% | 6\% | 18\% | 50\% | 217\% |
| 2008 | ADOBE |  | 67 | -10\% | -41\% | -30\% | -20\% | -12\% | -6\% | 1\% | 137\% |
| 2009 | ADOBE |  | 64 | 2\% | -55\% | -19\% | -9\% | 3\% | 7\% | 43\% | 56\% |
| 2010 | ADOBE |  | 72 | 33\% | -23\% | -1\% | 27\% | 31\% | 37\% | 73\% | 108\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | ADOBE |  | 28 | 19\% | -24\% | -9\% | -4\% | 12\% | 40\% | 54\% | 78\% |
| 2008 | ADOBE |  | 25 | -14\% | -32\% | -31\% | -19\% | -12\% | -7\% | -1\% | 8\% |
| 2005 | ADOBE |  | 25 | 14\% | -7\% | -5\% | -1\% | 9\% | 29\% | 48\% | 51\% |
| 2006 | ADOBE |  | 29 | 18\% | -9\% | 2\% | 8\% | 14\% | 24\% | 40\% | 57\% |
| 2007 | ADOBE |  | 29 | 3\% | -18\% | -17\% | -6\% | 2\% | 9\% | 31\% | 32\% |
| 2008 | ADOBE |  | 27 | -15\% | -31\% | -29\% | -26\% | -15\% | -7\% | 0\% | 16\% |
| 2009 | ADOBE |  | 29 | 4\% | -18\% | -17\% | -3\% | 5\% | 11\% | 26\% | 34\% |
| 2001 | ADOBE |  | 32 | -20\% | -36\% | -35\% | -23\% | -22\% | -17\% | -7\% | 3\% |
| 2002 | ADOBE |  | 26 | 8\% | -15\% | -15\% | 2\% | 7\% | 15\% | 25\% | 26\% |
| 2001 | ADOBE |  | 80 | -18\% | -56\% | -38\% | -24\% | -19\% | -11\% | 5\% | 11\% |
| 2002 | ADOBE |  | 62 | 12\% | -18\% | -13\% | 3\% | 10\% | 15\% | 52\% | 65\% |
| 2003 | ADOBE |  | 53 | -4\% | -31\% | -25\% | -10\% | -4\% | 2\% | 15\% | 25\% |
| 2004 | ADOBE |  | 44 | 15\% | -8\% | -5\% | 10\% | 16\% | 21\% | 32\% | 40\% |
| 2005 | ADOBE |  | 66 | 3\% | -20\% | -18\% | -8\% | -1\% | 12\% | 35\% | 53\% |
| 2006 | ADOBE |  | 59 | 14\% | -12\% | -8\% | 1\% | 12\% | 24\% | 38\% | 65\% |
| 2007 | ADOBE |  | 91 | 4\% | -35\% | -31\% | -16\% | 7\% | 18\% | 40\% | 67\% |
| 2008 | ADOBE |  | 109 | -13\% | -37\% | -33\% | -27\% | -11\% | -3\% | 19\% | 34\% |
| 2009 | ADOBE |  | 158 | 1\% | -38\% | -24\% | -17\% | 2\% | 15\% | 31\% | 57\% |
| 2010 | ADOBE |  | 144 | 3\% | -29\% | -23\% | -7\% | 5\% | 11\% | 24\% | 44\% |
| 2003 | ADOBE |  | 26 | 14\% | -33\% | -15\% | 4\% | 14\% | 28\% | 43\% | 58\% |
| 2005 | ADOBE |  | 35 | 20\% | -23\% | -18\% | -4\% | 12\% | 27\% | 76\% | 135\% |
| 2006 | ADOBE |  | 33 | 15\% | -27\% | -17\% | -2\% | 3\% | 29\% | 55\% | 158\% |
| 2007 | ADOBE |  | 35 | 28\% | -16\% | -11\% | 11\% | 32\% | 40\% | 57\% | 78\% |
| 2008 | ADOBE |  | 38 | 14\% | -35\% | -33\% | -15\% | -12\% | 43\% | 131\% | 136\% |
| 2009 | ADOBE |  | 38 | -20\% | -57\% | -57\% | -38\% | -19\% | -5\% | 24\% | 41\% |
| 2010 | ADOBE |  | 41 | 42\% | -47\% | -33\% | 20\% | 47\% | 55\% | 135\% | 196\% |
| 2005 | ADOBE |  | 31 | 22\% | -7\% | -6\% | 6\% | 17\% | 38\% | 58\% | 63\% |
| 2006 | ADOBE |  | 35 | 16\% | -9\% | -3\% | 6\% | 16\% | 23\% | 41\% | 49\% |
| 2007 | ADOBE |  | 43 | 15\% | -26\% | -22\% | 4\% | 14\% | 27\% | 45\% | 53\% |
| 2008 | ADOBE |  | 37 | -11\% | -27\% | -26\% | -18\% | -13\% | -7\% | 15\% | 16\% |
| 2009 | ADOBE |  | 32 | 5\% | -26\% | -18\% | 0\% | 4\% | 11\% | 34\% | 38\% |
| 2010 | ADOBE |  | 30 | 24\% | -23\% | -19\% | 11\% | 28\% | 43\% | 56\% | 59\% |
| 2005 | ADOBE |  | 26 | 7\% | -18\% | -9\% | -5\% | 3\% | 10\% | 16\% | 94\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | ADOBE |  | 27 | 25\% | -12\% | 0\% | 12\% | 23\% | 40\% | 47\% | 55\% |
| 2007 | ADOBE |  | 31 | 9\% | -29\% | -13\% | -5\% | 8\% | 19\% | 52\% | 54\% |
| 2008 | ADOBE |  | 46 | -4\% | -27\% | -26\% | -19\% | -8\% | 0\% | 25\% | 167\% |
| 2009 | ADOBE |  | 44 | 5\% | -54\% | -25\% | -5\% | 6\% | 12\% | 41\% | 42\% |
| 2010 | ADOBE |  | 42 | 7\% | -17\% | -13\% | -4\% | 8\% | 12\% | 34\% | 46\% |
| 2001 | ADOBE |  | 28 | -24\% | -69\% | -52\% | -35\% | -29\% | -14\% | 8\% | 16\% |
| 2002 | ADOBE |  | 37 | -8\% | -49\% | -44\% | -22\% | -16\% | 10\% | 32\% | 33\% |
| 2003 | ADOBE |  | 44 | 11\% | -18\% | -11\% | 3\% | 9\% | 17\% | 29\% | 51\% |
| 2004 | ADOBE |  | 40 | 10\% | -15\% | -11\% | 6\% | 9\% | 15\% | 26\% | 28\% |
| 2005 | ADOBE |  | 41 | 2\% | -23\% | -20\% | -7\% | -1\% | 6\% | 45\% | 49\% |
| 2006 | ADOBE |  | 35 | 24\% | -9\% | 2\% | 14\% | 20\% | 32\% | 59\% | 65\% |
| 2007 | ADOBE |  | 48 | 8\% | -24\% | -10\% | -4\% | 3\% | 16\% | 42\% | 116\% |
| 2008 | ADOBE |  | 63 | -11\% | -41\% | -27\% | -18\% | -9\% | -5\% | 7\% | 9\% |
| 2009 | ADOBE |  | 64 | 9\% | -21\% | -14\% | -3\% | 6\% | 15\% | 39\% | 71\% |
| 2010 | ADOBE |  | 48 | 7\% | -68\% | -14\% | 0\% | 7\% | 11\% | 35\% | 67\% |
| 2006 | ADOBE |  | 26 | 28\% | -13\% | -7\% | 16\% | 25\% | 45\% | 61\% | 77\% |
| 2007 | ADOBE |  | 29 | 0\% | -36\% | -33\% | -11\% | -3\% | 6\% | 19\% | 138\% |
| 2008 | ADOBE |  | 39 | 0\% | -21\% | -21\% | -13\% | -8\% | -4\% | 74\% | 74\% |
| 2009 | ADOBE |  | 39 | 1\% | -48\% | -47\% | -8\% | 5\% | 11\% | 43\% | 70\% |
| 2010 | ADOBE |  | 42 | 18\% | -67\% | -35\% | -6\% | 7\% | 22\% | 109\% | 147\% |
| 2006 | ADOBE |  | 26 | 1\% | -18\% | -16\% | -6\% | 4\% | 6\% | 17\% | 18\% |
| 2001 | ADOBE |  | 25 | -9\% | -50\% | -50\% | -36\% | -21\% | -5\% | 114\% | 139\% |
| 2002 | ADOBE |  | 31 | -3\% | -45\% | -35\% | -22\% | -3\% | 13\% | 44\% | 51\% |
| 2003 | ADOBE |  | 32 | 3\% | -24\% | -9\% | -5\% | 3\% | 8\% | 17\% | 33\% |
| 2004 | ADOBE |  | 39 | 12\% | -20\% | -14\% | 5\% | 14\% | 18\% | 30\% | 38\% |
| 2005 | ADOBE |  | 45 | 3\% | -32\% | -14\% | -8\% | -2\% | 11\% | 37\% | 58\% |
| 2006 | ADOBE |  | 50 | 20\% | -13\% | -1\% | 11\% | 18\% | 26\% | 42\% | 102\% |
| 2007 | ADOBE |  | 52 | 1\% | -24\% | -20\% | -9\% | 0\% | 7\% | 23\% | 39\% |
| 2008 | ADOBE |  | 48 | -8\% | -26\% | -19\% | -13\% | -6\% | -4\% | 6\% | 11\% |
| 2009 | ADOBE |  | 51 | 11\% | -50\% | -10\% | -1\% | 7\% | 15\% | 30\% | 143\% |
| 2010 | ADOBE |  | 49 | 6\% | -54\% | -31\% | -2\% | 5\% | 10\% | 67\% | 84\% |
| 2001 | ADOBE |  | 135 | -18\% | -49\% | -46\% | -36\% | -21\% | -11\% | 39\% | 94\% |
| 2002 | ADOBE |  | 139 | 7\% | -42\% | -27\% | -8\% | 6\% | 17\% | 28\% | 233\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | ADOBE |  | 152 | -1\% | -61\% | -28\% | -10\% | -1\% | 5\% | 21\% | 183\% |
| 2004 | ADOBE |  | 166 | 13\% | -37\% | -17\% | 3\% | 14\% | 20\% | 37\% | 122\% |
| 2005 | ADOBE |  | 175 | 1\% | -39\% | -23\% | -8\% | -2\% | 5\% | 27\% | 136\% |
| 2006 | ADOBE |  | 218 | 14\% | -56\% | -12\% | 1\% | 14\% | 25\% | 47\% | 78\% |
| 2007 | ADOBE |  | 212 | 6\% | -32\% | -21\% | -4\% | 4\% | 15\% | 37\% | 97\% |
| 2008 | ADOBE |  | 220 | -8\% | -37\% | -31\% | -18\% | -6\% | -3\% | 14\% | 80\% |
| 2009 | ADOBE |  | 219 | 9\% | -71\% | -15\% | 1\% | 7\% | 15\% | 40\% | 83\% |
| 2010 | ADOBE |  | 203 | 2\% | -59\% | -27\% | -7\% | 4\% | 8\% | 29\% | 48\% |
| 2001 | ADOBE |  | 31 | -21\% | -51\% | -46\% | -33\% | -24\% | -18\% | -3\% | 108\% |
| 2003 | ADOBE |  | 27 | 5\% | -51\% | -21\% | -3\% | 5\% | 16\% | 28\% | 42\% |
| 2004 | ADOBE |  | 26 | 9\% | -3\% | -1\% | 2\% | 10\% | 15\% | 21\% | 26\% |
| 2005 | ADOBE |  | 39 | 14\% | -23\% | -18\% | -4\% | 10\% | 31\% | 61\% | 64\% |
| 2006 | ADOBE |  | 42 | 12\% | -22\% | -19\% | 1\% | 12\% | 20\% | 40\% | 46\% |
| 2007 | ADOBE |  | 57 | 11\% | -24\% | -19\% | -2\% | 9\% | 23\% | 44\% | 58\% |
| 2008 | ADOBE |  | 67 | -13\% | -35\% | -29\% | -22\% | -17\% | -6\% | 17\% | 42\% |
| 2009 | ADOBE |  | 60 | 8\% | -22\% | -16\% | -4\% | 3\% | 12\% | 47\% | 144\% |
| 2010 | ADOBE |  | 73 | 31\% | -31\% | -22\% | 19\% | 35\% | 39\% | 69\% | 111\% |
| 2005 | ADOBE |  | 25 | 11\% | -16\% | -16\% | 5\% | 9\% | 19\% | 31\% | 31\% |
| 2006 | ADOBE |  | 31 | 1\% | -15\% | -13\% | -5\% | 3\% | 7\% | 16\% | 19\% |
| 2007 | ADOBE |  | 32 | 7\% | -15\% | -11\% | 3\% | 7\% | 12\% | 33\% | 36\% |
| 2008 | ADOBE |  | 32 | -7\% | -24\% | -20\% | -10\% | -5\% | -2\% | 4\% | 4\% |
| 2009 | ADOBE |  | 30 | 11\% | -9\% | -9\% | 5\% | 9\% | 13\% | 33\% | 33\% |
| 2001 | ADOBE |  | 35 | -14\% | -35\% | -35\% | -23\% | -13\% | -7\% | 3\% | 9\% |
| 2001 | ADOBE |  | 125 | -15\% | -40\% | -34\% | -24\% | -17\% | -10\% | 9\% | 53\% |
| 2002 | ADOBE |  | 112 | 12\% | -25\% | -20\% | 2\% | 10\% | 21\% | 45\% | 58\% |
| 2003 | ADOBE |  | 95 | -4\% | -37\% | -24\% | -11\% | -1\% | 2\% | 14\% | 25\% |
| 2004 | ADOBE |  | 83 | 13\% | -33\% | -17\% | 7\% | 14\% | 23\% | 38\% | 52\% |
| 2005 | ADOBE |  | 123 | 6\% | -27\% | -20\% | -8\% | 5\% | 16\% | 37\% | 45\% |
| 2006 | ADOBE |  | 110 | 11\% | -16\% | -8\% | 0\% | 6\% | 21\% | 38\% | 49\% |
| 2007 | ADOBE |  | 96 | 7\% | -32\% | -26\% | 0\% | 8\% | 18\% | 37\% | 70\% |
| 2008 | ADOBE |  | 89 | -12\% | -37\% | -33\% | -17\% | -12\% | -8\% | 6\% | 13\% |
| 2009 | ADOBE |  | 65 | 8\% | -23\% | -18\% | 3\% | 9\% | 13\% | 27\% | 53\% |
| 2010 | ADOBE |  | 39 | 6\% | -26\% | -23\% | 0\% | 5\% | 13\% | 30\% | 32\% |

## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation
(Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)
Year Employer Job Title

## Appendix B

Distribution of Yearly Change in Total Compensation
(Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation
(Job Titles in Leamer Supplemental Report Regressions)

| Year Employer Job Title |
| :---: |

## Appendix B

Distribution of Yearly Change in Total Compensation
(Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)
Year Employer Job Title

## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation
(Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation
(Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation
(Job Titles in Leamer Supplemental Report Regressions)


## Appendix B

Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 2001 INTEL |  | 66 | -1\% | -25\% | -14\% | -12\% | -6\% | 6\% | 23\% | 57\% |
| 2002 INTEL |  | 78 | -2\% | -23\% | -22\% | -7\% | -2\% | 5\% | 13\% | 33\% |
| 2003 INTEL |  | 58 | 12\% | -3\% | -2\% | 7\% | 10\% | 17\% | 27\% | 42\% |
| 2004 INTEL |  | 46 | 6\% | -9\% | -5\% | 2\% | 7\% | 9\% | 14\% | 24\% |
| 2005 INTEL |  | 61 | 17\% | -11\% | 3\% | 10\% | 15\% | 23\% | 34\% | 35\% |
| 2006 INTEL |  | 76 | 16\% | -7\% | 1\% | 10\% | 15\% | 22\% | 33\% | 37\% |
| 2007 INTEL |  | 68 | 13\% | 0\% | 3\% | 7\% | 11\% | 19\% | 26\% | 29\% |
| 2008 INTEL |  | 82 | 1\% | -11\% | -7\% | -2\% | 1\% | 4\% | 12\% | 21\% |
| 2009 INTEL |  | 95 | 15\% | 1\% | 4\% | 10\% | 15\% | 19\% | 26\% | 31\% |
| 2010 INTEL |  | 82 | 23\% | -2\% | 9\% | 16\% | 22\% | 29\% | 47\% | 49\% |
| 2001 INTEL |  | 68 | -3\% | -27\% | -15\% | -12\% | -3\% | 5\% | 15\% | 42\% |
| 2002 INTEL |  | 58 | -7\% | -34\% | -23\% | -13\% | -7\% | -2\% | 10\% | 10\% |
| 2003 INTEL |  | 68 | 10\% | -18\% | -3\% | 7\% | 9\% | 14\% | 23\% | 26\% |
| 2004 INTEL |  | 79 | 1\% | -18\% | -11\% | -3\% | 0\% | 4\% | 10\% | 23\% |
| 2005 INTEL |  | 110 | 13\% | -9\% | 0\% | 8\% | 11\% | 19\% | 31\% | 42\% |
| 2006 INTEL |  | 93 | 11\% | -11\% | 0\% | 6\% | 10\% | 16\% | 23\% | 24\% |
| 2007 INTEL |  | 105 | 9\% | -9\% | -1\% | 6\% | 8\% | 14\% | 23\% | 28\% |
| 2008 INTEL |  | 106 | 3\% | -7\% | -5\% | -1\% | 3\% | 6\% | 9\% | 23\% |
| 2009 INTEL |  | 104 | 7\% | -6\% | -1\% | 4\% | 7\% | 11\% | 15\% | 18\% |
| 2010 INTEL |  | 97 | 16\% | -5\% | 3\% | 11\% | 15\% | 22\% | 32\% | 46\% |
| 2001 INTEL |  | 74 | -7\% | -48\% | -38\% | -13\% | -8\% | -2\% | 22\% | 55\% |
| 2002 INTEL |  | 96 | -7\% | -38\% | -30\% | -13\% | -6\% | -1\% | 6\% | 38\% |
| 2003 INTEL |  | 102 | 15\% | -19\% | -6\% | 7\% | 11\% | 21\% | 76\% | 90\% |
| 2004 INTEL |  | 97 | -1\% | -31\% | -17\% | -7\% | -1\% | 4\% | 12\% | 46\% |
| 2005 INTEL |  | 139 | 15\% | -4\% | 5\% | 8\% | 14\% | 20\% | 29\% | 74\% |
| 2006 INTEL |  | 147 | 10\% | -12\% | -7\% | 5\% | 10\% | 16\% | 22\% | 32\% |
| 2007 INTEL |  | 145 | 14\% | -2\% | 5\% | 10\% | 13\% | 17\% | 25\% | 59\% |
| 2008 INTEL |  | 161 | 5\% | -13\% | -6\% | 1\% | 4\% | 8\% | 16\% | 34\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 163 | 8\% | -9\% | 0\% | 4\% | 7\% | 11\% | 20\% | 31\% |
| 2010 | INTEL |  | 169 | 17\% | -3\% | 4\% | 12\% | 18\% | 22\% | 32\% | 52\% |
| 2001 | INTEL |  | 82 | -4\% | -53\% | -41\% | -15\% | -10\% | 2\% | 49\% | 86\% |
| 2002 | INTEL |  | 93 | -14\% | -50\% | -43\% | -19\% | -13\% | -7\% | 3\% | 48\% |
| 2003 | INTEL |  | 87 | 20\% | -21\% | 1\% | 10\% | 17\% | 22\% | 36\% | 139\% |
| 2004 | INTEL |  | 90 | -5\% | -33\% | -22\% | -7\% | -5\% | 0\% | 6\% | 17\% |
| 2005 | INTEL |  | 113 | 17\% | -5\% | 4\% | 12\% | 17\% | 21\% | 30\% | 71\% |
| 2006 | INTEL |  | 121 | 6\% | -23\% | -9\% | 3\% | 6\% | 11\% | 16\% | 27\% |
| 2007 | INTEL |  | 129 | 14\% | -4\% | 4\% | 10\% | 13\% | 18\% | 27\% | 49\% |
| 2008 | INTEL |  | 163 | 5\% | -22\% | -12\% | 0\% | 5\% | 9\% | 17\% | 40\% |
| 2009 | INTEL |  | 163 | 7\% | -13\% | -1\% | 2\% | 7\% | 11\% | 21\% | 24\% |
| 2010 | INTEL |  | 170 | 14\% | -13\% | 3\% | 9\% | 13\% | 18\% | 26\% | 52\% |
| 2001 | INTEL |  | 49 | -2\% | -39\% | -27\% | -15\% | -8\% | 4\% | 49\% | 61\% |
| 2002 | INTEL |  | 50 | -11\% | -49\% | -43\% | -20\% | -11\% | -5\% | 22\% | 59\% |
| 2003 | INTEL |  | 57 | 25\% | -18\% | -13\% | 11\% | 19\% | 26\% | 123\% | 137\% |
| 2004 | INTEL |  | 64 | -6\% | -26\% | -18\% | -11\% | -6\% | -2\% | 7\% | 9\% |
| 2005 | INTEL |  | 66 | 17\% | -8\% | 4\% | 11\% | 13\% | 20\% | 46\% | 82\% |
| 2006 | INTEL |  | 82 | 3\% | -41\% | -14\% | -2\% | 3\% | 8\% | 15\% | 54\% |
| 2007 | INTEL |  | 93 | 19\% | -11\% | 9\% | 14\% | 16\% | 23\% | 48\% | 65\% |
| 2008 | INTEL |  | 102 | 8\% | -22\% | -4\% | 2\% | 7\% | 13\% | 25\% | 46\% |
| 2009 | INTEL |  | 99 | 3\% | -15\% | -8\% | -3\% | 2\% | 9\% | 18\% | 27\% |
| 2010 | INTEL |  | 112 | 16\% | -1\% | 8\% | 12\% | 15\% | 20\% | 28\% | 54\% |
| 2002 | INTEL |  | 69 | -1\% | -13\% | -11\% | -7\% | -1\% | 3\% | 11\% | 19\% |
| 2003 | INTEL |  | 40 | 12\% | -13\% | 0\% | 9\% | 13\% | 17\% | 23\% | 30\% |
| 2004 | INTEL |  | 29 | 2\% | -13\% | -6\% | -1\% | 3\% | 5\% | 9\% | 13\% |
| 2005 | INTEL |  | 34 | 10\% | -4\% | -3\% | 2\% | 9\% | 16\% | 23\% | 24\% |
| 2006 | INTEL |  | 30 | 8\% | -4\% | -4\% | 0\% | 6\% | 13\% | 23\% | 25\% |
| 2002 | INTEL |  | 170 | -4\% | -21\% | -15\% | -9\% | -5\% | 0\% | 13\% | 22\% |
| 2003 | INTEL |  | 149 | 12\% | -3\% | -1\% | 8\% | 11\% | 16\% | 23\% | 41\% |
| 2004 | INTEL |  | 123 | 0\% | -10\% | -8\% | -4\% | -1\% | 3\% | 9\% | 26\% |
| 2005 | INTEL |  | 130 | 10\% | -5\% | -3\% | 3\% | 9\% | 16\% | 25\% | 38\% |
| 2006 | INTEL |  | 100 | 10\% | -7\% | -3\% | 1\% | 8\% | 16\% | 24\% | 49\% |
| 2007 | INTEL |  | 71 | 12\% | 1\% | 3\% | 7\% | 10\% | 19\% | 24\% | 33\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 60 | 2\% | -8\% | -5\% | -1\% | 2\% | 4\% | 9\% | 22\% |
| 2009 | INTEL |  | 62 | 12\% | -1\% | 1\% | 7\% | 10\% | 18\% | 24\% | 30\% |
| 2010 | INTEL |  | 48 | 8\% | -3\% | -1\% | 4\% | 6\% | 10\% | 21\% | 23\% |
| 2002 | INTEL |  | 242 | -7\% | -31\% | -21\% | -13\% | -6\% | -2\% | 6\% | 34\% |
| 2003 | INTEL |  | 210 | 11\% | -7\% | -4\% | 5\% | 9\% | 17\% | 27\% | 42\% |
| 2004 | INTEL |  | 207 | -4\% | -27\% | -13\% | -7\% | -5\% | -1\% | 7\% | 32\% |
| 2005 | INTEL |  | 221 | 7\% | -11\% | -3\% | 3\% | 5\% | 11\% | 17\% | 25\% |
| 2006 | INTEL |  | 229 | 5\% | -19\% | -6\% | 1\% | 4\% | 9\% | 20\% | 35\% |
| 2007 | INTEL |  | 185 | 9\% | -10\% | 2\% | 6\% | 8\% | 13\% | 19\% | 27\% |
| 2008 | INTEL |  | 161 | 4\% | -11\% | -5\% | 0\% | 4\% | 8\% | 15\% | 29\% |
| 2009 | INTEL |  | 158 | 6\% | -7\% | -4\% | 1\% | 6\% | 11\% | 18\% | 24\% |
| 2010 | INTEL |  | 144 | 7\% | -7\% | -2\% | 4\% | 5\% | 10\% | 20\% | 30\% |
| 2002 | INTEL |  | 159 | -8\% | -38\% | -26\% | -16\% | -7\% | -3\% | 8\% | 52\% |
| 2003 | INTEL |  | 180 | 11\% | -23\% | -5\% | 6\% | 11\% | 17\% | 26\% | 98\% |
| 2004 | INTEL |  | 183 | -3\% | -17\% | -12\% | -7\% | -4\% | 0\% | 7\% | 19\% |
| 2005 | INTEL |  | 177 | 7\% | -9\% | -3\% | 3\% | 5\% | 10\% | 16\% | 54\% |
| 2006 | INTEL |  | 194 | 4\% | -11\% | -6\% | -1\% | 2\% | 8\% | 20\% | 42\% |
| 2007 | INTEL |  | 176 | 11\% | -19\% | 4\% | 8\% | 11\% | 15\% | 21\% | 28\% |
| 2008 | INTEL |  | 172 | 5\% | -7\% | -4\% | 1\% | 5\% | 9\% | 14\% | 20\% |
| 2009 | INTEL |  | 166 | 5\% | -5\% | -3\% | 1\% | 5\% | 9\% | 15\% | 25\% |
| 2010 | INTEL |  | 170 | 7\% | -6\% | 0\% | 4\% | 5\% | 9\% | 16\% | 31\% |
| 2002 | INTEL |  | 43 | -8\% | -43\% | -36\% | -14\% | -7\% | -3\% | 4\% | 29\% |
| 2003 | INTEL |  | 41 | 11\% | -10\% | -7\% | 7\% | 12\% | 17\% | 28\% | 30\% |
| 2004 | INTEL |  | 41 | -6\% | -46\% | -16\% | -10\% | -5\% | -3\% | 9\% | 11\% |
| 2005 | INTEL |  | 33 | 8\% | -1\% | 0\% | 5\% | 7\% | 11\% | 19\% | 29\% |
| 2006 | INTEL |  | 49 | 0\% | -25\% | -22\% | -4\% | 0\% | 6\% | 16\% | 31\% |
| 2007 | INTEL |  | 51 | 12\% | 4\% | 6\% | 9\% | 13\% | 15\% | 19\% | 21\% |
| 2008 | INTEL |  | 71 | 7\% | -12\% | -3\% | 2\% | 6\% | 13\% | 19\% | 29\% |
| 2009 | INTEL |  | 64 | 4\% | -11\% | -6\% | 0\% | 4\% | 8\% | 16\% | 24\% |
| 2010 | INTEL |  | 66 | 5\% | -3\% | 1\% | 3\% | 5\% | 7\% | 13\% | 20\% |
| 2004 | INTEL |  | 75 | -2\% | -19\% | -16\% | -6\% | -2\% | 3\% | 12\% | 17\% |
| 2005 | INTEL |  | 103 | 9\% | -6\% | -1\% | 3\% | 8\% | 15\% | 19\% | 24\% |
| 2006 | INTEL |  | 76 | 9\% | -6\% | -4\% | 2\% | 8\% | 16\% | 21\% | 26\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | INTEL |  | 34 | 14\% | 1\% | 2\% | 7\% | 16\% | 20\% | 25\% | 29\% |
| 2004 | INTEL |  | 60 | 0\% | -10\% | -8\% | -3\% | -1\% | 2\% | 13\% | 21\% |
| 2005 | INTEL |  | 118 | 8\% | -6\% | -2\% | 3\% | 7\% | 14\% | 22\% | 31\% |
| 2006 | INTEL |  | 132 | 7\% | -8\% | -3\% | 1\% | 5\% | 12\% | 21\% | 28\% |
| 2007 | INTEL |  | 91 | 10\% | -2\% | 2\% | 6\% | 8\% | 12\% | 22\% | 27\% |
| 2008 | INTEL |  | 74 | 0\% | -9\% | -5\% | -2\% | 0\% | 3\% | 6\% | 9\% |
| 2009 | INTEL |  | 60 | 10\% | 2\% | 2\% | 7\% | 9\% | 12\% | 25\% | 28\% |
| 2010 | INTEL |  | 56 | 9\% | -2\% | -1\% | 3\% | 4\% | 15\% | 24\% | 30\% |
| 2004 | INTEL |  | 65 | -4\% | -13\% | -11\% | -6\% | -4\% | 0\% | 6\% | 9\% |
| 2005 | INTEL |  | 127 | 9\% | -7\% | 0\% | 3\% | 7\% | 11\% | 28\% | 34\% |
| 2006 | INTEL |  | 124 | 4\% | -18\% | -7\% | 1\% | 3\% | 6\% | 15\% | 21\% |
| 2007 | INTEL |  | 103 | 9\% | -4\% | 2\% | 6\% | 7\% | 12\% | 19\% | 27\% |
| 2008 | INTEL |  | 95 | 3\% | -11\% | -5\% | 0\% | 4\% | 6\% | 9\% | 15\% |
| 2009 | INTEL |  | 77 | 6\% | -12\% | -6\% | 2\% | 6\% | 10\% | 16\% | 23\% |
| 2010 | INTEL |  | 62 | 5\% | -5\% | -3\% | 3\% | 4\% | 9\% | 16\% | 17\% |
| 2004 | INTEL |  | 33 | -2\% | -14\% | -13\% | -8\% | -3\% | 3\% | 12\% | 13\% |
| 2005 | INTEL |  | 45 | 9\% | -4\% | -1\% | 4\% | 8\% | 12\% | 23\% | 31\% |
| 2006 | INTEL |  | 57 | 3\% | -27\% | -6\% | -1\% | 3\% | 6\% | 16\% | 22\% |
| 2007 | INTEL |  | 60 | 10\% | -14\% | 0\% | 6\% | 10\% | 13\% | 18\% | 21\% |
| 2008 | INTEL |  | 64 | 4\% | -47\% | -6\% | 2\% | 5\% | 8\% | 12\% | 15\% |
| 2009 | INTEL |  | 59 | 7\% | -5\% | -3\% | 2\% | 6\% | 10\% | 16\% | 94\% |
| 2010 | INTEL |  | 63 | 6\% | -4\% | 0\% | 4\% | 5\% | 7\% | 13\% | 17\% |
| 2005 | INTEL |  | 33 | 10\% | -4\% | -2\% | 5\% | 8\% | 16\% | 28\% | 28\% |
| 2006 | INTEL |  | 34 | 4\% | -11\% | -9\% | -1\% | 2\% | 9\% | 22\% | 25\% |
| 2007 | INTEL |  | 25 | 9\% | -2\% | -2\% | 5\% | 9\% | 14\% | 22\% | 26\% |
| 2009 | INTEL |  | 26 | 8\% | -2\% | -1\% | 5\% | 7\% | 11\% | 18\% | 22\% |
| 2010 | INTEL |  | 25 | 4\% | -4\% | -2\% | 3\% | 4\% | 6\% | 10\% | 14\% |
| 2005 | INTEL |  | 56 | 10\% | -6\% | -2\% | 5\% | 7\% | 13\% | 31\% | 39\% |
| 2006 | INTEL |  | 59 | 4\% | -9\% | -5\% | -1\% | 2\% | 9\% | 17\% | 27\% |
| 2007 | INTEL |  | 60 | 12\% | 0\% | 5\% | 8\% | 11\% | 17\% | 23\% | 23\% |
| 2008 | INTEL |  | 55 | 4\% | -22\% | -5\% | 1\% | 4\% | 7\% | 12\% | 14\% |
| 2009 | INTEL |  | 57 | 9\% | -1\% | -1\% | 4\% | 9\% | 13\% | 20\% | 27\% |
| 2010 | INTEL |  | 52 | 7\% | -3\% | -2\% | 4\% | 5\% | 10\% | 16\% | 17\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | INTEL |  | 28 | 12\% | -5\% | -1\% | 9\% | 13\% | 16\% | 20\% | 26\% |
| 2008 | INTEL |  | 36 | 5\% | -14\% | -7\% | 1\% | 4\% | 10\% | 16\% | 17\% |
| 2009 | INTEL |  | 37 | 6\% | -9\% | -7\% | 3\% | 5\% | 10\% | 15\% | 22\% |
| 2010 | INTEL |  | 51 | 7\% | -4\% | -2\% | 4\% | 7\% | 10\% | 21\% | 24\% |
| 2001 | INTEL |  | 34 | 2\% | -14\% | -11\% | -9\% | 2\% | 10\% | 27\% | 44\% |
| 2001 | INTEL |  | 125 | 0\% | -19\% | -14\% | -9\% | -3\% | 7\% | 26\% | 45\% |
| 2002 | INTEL |  | 117 | -4\% | -23\% | -19\% | -9\% | -4\% | 2\% | 14\% | 22\% |
| 2003 | INTEL |  | 93 | 15\% | -6\% | -2\% | 8\% | 13\% | 20\% | 29\% | 57\% |
| 2004 | INTEL |  | 75 | 1\% | -18\% | -11\% | -5\% | -1\% | 4\% | 22\% | 29\% |
| 2005 | INTEL |  | 77 | 11\% | -5\% | -1\% | 5\% | 10\% | 16\% | 24\% | 27\% |
| 2006 | INTEL |  | 41 | 9\% | -7\% | -6\% | 3\% | 7\% | 16\% | 32\% | 35\% |
| 2010 | INTEL |  | 26 | 13\% | 0\% | 3\% | 6\% | 10\% | 21\% | 28\% | 30\% |
| 2001 | INTEL |  | 126 | -5\% | -26\% | -20\% | -13\% | -9\% | 1\% | 18\% | 37\% |
| 2002 | INTEL |  | 141 | -7\% | -35\% | -22\% | -13\% | -7\% | -1\% | 6\% | 18\% |
| 2003 | INTEL |  | 141 | 10\% | -10\% | -4\% | 5\% | 10\% | 16\% | 23\% | 32\% |
| 2004 | INTEL |  | 147 | -2\% | -18\% | -12\% | -5\% | -3\% | 2\% | 8\% | 20\% |
| 2005 | INTEL |  | 106 | 8\% | -10\% | -1\% | 3\% | 7\% | 11\% | 21\% | 35\% |
| 2006 | INTEL |  | 57 | 7\% | -9\% | -3\% | 3\% | 6\% | 11\% | 19\% | 25\% |
| 2007 | INTEL |  | 42 | 12\% | -3\% | 4\% | 7\% | 11\% | 16\% | 25\% | 34\% |
| 2008 | INTEL |  | 30 | 3\% | -11\% | -2\% | 0\% | 2\% | 6\% | 12\% | 12\% |
| 2009 | INTEL |  | 31 | 7\% | -4\% | -1\% | 2\% | 7\% | 8\% | 21\% | 24\% |
| 2010 | INTEL |  | 32 | 9\% | 0\% | 1\% | 4\% | 6\% | 11\% | 21\% | 50\% |
| 2001 | INTEL |  | 204 | -6\% | -44\% | -25\% | -13\% | -9\% | 0\% | 22\% | 59\% |
| 2002 | INTEL |  | 209 | -10\% | -40\% | -37\% | -17\% | -10\% | -4\% | 8\% | 64\% |
| 2003 | INTEL |  | 215 | 12\% | -20\% | -13\% | 7\% | 11\% | 18\% | 30\% | 98\% |
| 2004 | INTEL |  | 227 | -3\% | -31\% | -15\% | -8\% | -4\% | 1\% | 8\% | 46\% |
| 2005 | INTEL |  | 180 | 11\% | -10\% | -1\% | 5\% | 10\% | 16\% | 27\% | 43\% |
| 2006 | INTEL |  | 78 | 6\% | -7\% | -4\% | -1\% | 4\% | 11\% | 22\% | 30\% |
| 2007 | INTEL |  | 51 | 14\% | 5\% | 6\% | 10\% | 13\% | 17\% | 26\% | 28\% |
| 2008 | INTEL |  | 52 | 4\% | -10\% | -5\% | -1\% | 3\% | 7\% | 14\% | 15\% |
| 2009 | INTEL |  | 50 | 8\% | -3\% | -1\% | 3\% | 8\% | 11\% | 18\% | 24\% |
| 2010 | INTEL |  | 43 | 8\% | -6\% | -2\% | 2\% | 6\% | 14\% | 21\% | 31\% |
| 2001 | INTEL |  | 170 | -6\% | -46\% | -28\% | -15\% | -11\% | 0\% | 40\% | 59\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2002 | INTEL |  | 200 | -11\% | -64\% | -38\% | -18\% | -11\% | -3\% | 9\% | 47\% |
| 2003 | INTEL |  | 189 | 13\% | -19\% | -6\% | 8\% | 12\% | 17\% | 26\% | 100\% |
| 2004 | INTEL |  | 182 | -4\% | -23\% | -14\% | -8\% | -5\% | -1\% | 10\% | 52\% |
| 2005 | INTEL |  | 93 | 10\% | -11\% | -1\% | 6\% | 10\% | 14\% | 19\% | 49\% |
| 2006 | INTEL |  | 46 | 2\% | -12\% | -7\% | -3\% | 0\% | 6\% | 14\% | 25\% |
| 2007 | INTEL |  | 31 | 13\% | -1\% | 6\% | 10\% | 14\% | 16\% | 22\% | 32\% |
| 2008 | INTEL |  | 34 | 6\% | -9\% | -6\% | 2\% | 6\% | 10\% | 15\% | 21\% |
| 2009 | INTEL |  | 36 | 6\% | -7\% | -1\% | 2\% | 6\% | 8\% | 16\% | 30\% |
| 2010 | INTEL |  | 35 | 6\% | 0\% | 0\% | 2\% | 5\% | 7\% | 15\% | 21\% |
| 2001 | INTEL |  | 83 | -9\% | -47\% | -40\% | -14\% | -10\% | -2\% | 8\% | 40\% |
| 2002 | INTEL |  | 101 | -12\% | -55\% | -43\% | -20\% | -12\% | -6\% | 19\% | 38\% |
| 2003 | INTEL |  | 112 | 14\% | -30\% | -21\% | 10\% | 16\% | 24\% | 30\% | 79\% |
| 2004 | INTEL |  | 117 | -6\% | -40\% | -17\% | -9\% | -5\% | -1\% | 6\% | 14\% |
| 2005 | INTEL |  | 44 | 16\% | 1\% | 2\% | 8\% | 13\% | 21\% | 54\% | 64\% |
| 2001 | INTEL |  | 46 | -9\% | -56\% | -33\% | -15\% | -12\% | -5\% | 18\% | 85\% |
| 2002 | INTEL |  | 29 | -9\% | -58\% | -52\% | -21\% | -15\% | -7\% | 81\% | 82\% |
| 2001 | INTEL |  | 143 | 1\% | -22\% | -11\% | -7\% | 1\% | 7\% | 16\% | 29\% |
| 2002 | INTEL |  | 128 | -3\% | -21\% | -18\% | -8\% | -4\% | 4\% | 11\% | 68\% |
| 2003 | INTEL |  | 95 | 13\% | -15\% | -6\% | 8\% | 15\% | 19\% | 26\% | 45\% |
| 2004 | INTEL |  | 80 | 2\% | -12\% | -9\% | -2\% | 1\% | 7\% | 17\% | 21\% |
| 2005 | INTEL |  | 156 | 17\% | -9\% | 4\% | 11\% | 15\% | 24\% | 30\% | 42\% |
| 2006 | INTEL |  | 174 | 16\% | -6\% | 1\% | 12\% | 16\% | 22\% | 29\% | 34\% |
| 2007 | INTEL |  | 123 | 18\% | 1\% | 6\% | 12\% | 18\% | 23\% | 31\% | 41\% |
| 2008 | INTEL |  | 103 | 4\% | -7\% | -3\% | 0\% | 4\% | 6\% | 16\% | 19\% |
| 2009 | INTEL |  | 125 | 19\% | 4\% | 8\% | 14\% | 20\% | 23\% | 27\% | 35\% |
| 2010 | INTEL |  | 84 | 18\% | -1\% | 2\% | 12\% | 19\% | 24\% | 30\% | 42\% |
| 2001 | INTEL |  | 702 | 1\% | -32\% | -14\% | -10\% | -4\% | 10\% | 25\% | 73\% |
| 2002 | INTEL |  | 683 | -3\% | -27\% | -17\% | -9\% | -4\% | 2\% | 12\% | 35\% |
| 2003 | INTEL |  | 622 | 13\% | -13\% | -2\% | 7\% | 12\% | 18\% | 26\% | 42\% |
| 2004 | INTEL |  | 559 | 1\% | -16\% | -10\% | -4\% | -1\% | 5\% | 12\% | 31\% |
| 2005 | INTEL |  | 681 | 14\% | -7\% | 1\% | 9\% | 13\% | 21\% | 30\% | 43\% |
| 2006 | INTEL |  | 728 | 11\% | -9\% | -2\% | 5\% | 10\% | 16\% | 26\% | 39\% |
| 2007 | INTEL |  | 739 | 13\% | -11\% | 3\% | 7\% | 11\% | 19\% | 27\% | 43\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 722 | 2\% | -11\% | -5\% | -2\% | 1\% | 5\% | 17\% | 27\% |
| 2009 | INTEL |  | 818 | 16\% | -13\% | 5\% | 11\% | 16\% | 21\% | 27\% | 50\% |
| 2010 | INTEL |  | 801 | 15\% | -2\% | 2\% | 7\% | 15\% | 22\% | 34\% | 46\% |
| 2001 | INTEL |  | 666 | -5\% | -38\% | -19\% | -12\% | -8\% | 1\% | 15\% | 67\% |
| 2002 | INTEL |  | 738 | -7\% | -49\% | -22\% | -13\% | -7\% | -1\% | 8\% | 46\% |
| 2003 | INTEL |  | 815 | 11\% | -21\% | -5\% | 6\% | 10\% | 16\% | 25\% | 87\% |
| 2004 | INTEL |  | 839 | -3\% | -19\% | -11\% | -7\% | -4\% | 0\% | 7\% | 40\% |
| 2005 | INTEL |  | 958 | 11\% | -10\% | -2\% | 6\% | 10\% | 15\% | 23\% | 38\% |
| 2006 | INTEL |  | 898 | 8\% | -19\% | -3\% | 3\% | 7\% | 12\% | 20\% | 43\% |
| 2007 | INTEL |  | 839 | 11\% | -7\% | 1\% | 6\% | 10\% | 14\% | 21\% | 44\% |
| 2008 | INTEL |  | 859 | 3\% | -13\% | -5\% | 0\% | 3\% | 6\% | 12\% | 30\% |
| 2009 | INTEL |  | 884 | 8\% | -7\% | -1\% | 4\% | 8\% | 11\% | 18\% | 41\% |
| 2010 | INTEL |  | 956 | 8\% | -8\% | 0\% | 4\% | 7\% | 11\% | 17\% | 48\% |
| 2001 | INTEL |  | 760 | -5\% | -56\% | -24\% | -13\% | -8\% | 1\% | 24\% | 75\% |
| 2002 | INTEL |  | 832 | -8\% | -49\% | -35\% | -14\% | -7\% | -2\% | 10\% | 45\% |
| 2003 | INTEL |  | 913 | 12\% | -24\% | -12\% | 7\% | 11\% | 18\% | 28\% | 105\% |
| 2004 | INTEL |  | 945 | -3\% | -35\% | -13\% | -7\% | -3\% | 1\% | 9\% | 47\% |
| 2005 | INTEL |  | 1,113 | 12\% | -10\% | -1\% | 7\% | 11\% | 17\% | 28\% | 75\% |
| 2006 | INTEL |  | 1,157 | 6\% | -25\% | -5\% | 1\% | 5\% | 10\% | 20\% | 69\% |
| 2007 | INTEL |  | 1,233 | 13\% | -18\% | 4\% | 9\% | 12\% | 16\% | 25\% | 65\% |
| 2008 | INTEL |  | 1,226 | 4\% | -15\% | -5\% | 0\% | 4\% | 8\% | 14\% | 27\% |
| 2009 | INTEL |  | 1,254 | 8\% | -15\% | -1\% | 4\% | 8\% | 11\% | 19\% | 39\% |
| 2010 | INTEL |  | 1,298 | 8\% | -13\% | 1\% | 4\% | 7\% | 11\% | 19\% | 42\% |
| 2001 | INTEL |  | 612 | -6\% | -53\% | -28\% | -15\% | -10\% | 0\% | 32\% | 76\% |
| 2002 | INTEL |  | 669 | -11\% | -58\% | -41\% | -19\% | -10\% | -4\% | 10\% | 69\% |
| 2003 | INTEL |  | 730 | 13\% | -35\% | -11\% | 8\% | 13\% | 20\% | 31\% | 125\% |
| 2004 | INTEL |  | 776 | -4\% | -41\% | -15\% | -8\% | -5\% | 0\% | 9\% | 55\% |
| 2005 | INTEL |  | 851 | 12\% | -21\% | 0\% | 7\% | 11\% | 16\% | 26\% | 83\% |
| 2006 | INTEL |  | 889 | 4\% | -49\% | -8\% | -1\% | 2\% | 8\% | 18\% | 80\% |
| 2007 | INTEL |  | 925 | 14\% | -20\% | 3\% | 10\% | 13\% | 17\% | 27\% | 87\% |
| 2008 | INTEL |  | 965 | 5\% | -24\% | -7\% | 1\% | 5\% | 10\% | 17\% | 41\% |
| 2009 | INTEL |  | 967 | 6\% | -20\% | -3\% | 1\% | 6\% | 10\% | 19\% | 44\% |
| 2010 | INTEL |  | 1,067 | 8\% | -98\% | 0\% | 4\% | 7\% | 11\% | 18\% | 49\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | INTEL |  | 355 | -5\% | -48\% | -33\% | -15\% | -9\% | 0\% | 42\% | 119\% |
| 2002 | INTEL |  | 387 | -11\% | -50\% | -42\% | -20\% | -12\% | -5\% | 30\% | 95\% |
| 2003 | INTEL |  | 445 | 15\% | -35\% | -20\% | 9\% | 15\% | 22\% | 34\% | 158\% |
| 2004 | INTEL |  | 459 | -4\% | -45\% | -16\% | -8\% | -4\% | 1\% | 8\% | 71\% |
| 2005 | INTEL |  | 464 | 15\% | -32\% | 2\% | 8\% | 13\% | 18\% | 41\% | 101\% |
| 2006 | INTEL |  | 524 | 2\% | -32\% | -14\% | -4\% | 0\% | 5\% | 27\% | 94\% |
| 2007 | INTEL |  | 566 | 16\% | -29\% | -3\% | 11\% | 15\% | 20\% | 33\% | 87\% |
| 2008 | INTEL |  | 612 | 9\% | -25\% | -6\% | 4\% | 8\% | 14\% | 22\% | 61\% |
| 2009 | INTEL |  | 616 | 3\% | -24\% | -9\% | -2\% | 2\% | 8\% | 17\% | 51\% |
| 2010 | INTEL |  | 641 | 11\% | -10\% | 2\% | 8\% | 11\% | 14\% | 23\% | 52\% |
| 2005 | INTEL |  | 31 | 15\% | -5\% | -2\% | 5\% | 12\% | 26\% | 37\% | 48\% |
| 2005 | INTEL |  | 48 | 14\% | -3\% | 2\% | 8\% | 12\% | 19\% | 37\% | 47\% |
| 2006 | INTEL |  | 52 | 3\% | -12\% | -10\% | -2\% | 2\% | 9\% | 17\% | 20\% |
| 2007 | INTEL |  | 45 | 9\% | -4\% | -4\% | 6\% | 9\% | 14\% | 17\% | 18\% |
| 2008 | INTEL |  | 51 | 4\% | -4\% | -4\% | -1\% | 4\% | 8\% | 14\% | 16\% |
| 2009 | INTEL |  | 38 | 7\% | -9\% | -3\% | 2\% | 7\% | 11\% | 23\% | 26\% |
| 2010 | INTEL |  | 36 | 11\% | -3\% | -1\% | 3\% | 10\% | 17\% | 32\% | 35\% |
| 2004 | INTEL |  | 35 | 0\% | -10\% | -10\% | -5\% | -2\% | 4\% | 19\% | 24\% |
| 2005 | INTEL |  | 96 | 13\% | -7\% | 5\% | 9\% | 13\% | 16\% | 22\% | 61\% |
| 2006 | INTEL |  | 98 | 4\% | -12\% | -4\% | 0\% | 4\% | 8\% | 15\% | 32\% |
| 2007 | INTEL |  | 85 | 12\% | -2\% | 1\% | 7\% | 10\% | 15\% | 24\% | 53\% |
| 2008 | INTEL |  | 81 | 4\% | -8\% | -4\% | 0\% | 4\% | 8\% | 11\% | 17\% |
| 2009 | INTEL |  | 68 | 5\% | -5\% | -4\% | 2\% | 4\% | 9\% | 15\% | 17\% |
| 2010 | INTEL |  | 75 | 8\% | -1\% | 1\% | 4\% | 6\% | 10\% | 22\% | 30\% |
| 2005 | INTEL |  | 39 | 15\% | 5\% | 6\% | 8\% | 11\% | 16\% | 44\% | 67\% |
| 2006 | INTEL |  | 39 | 1\% | -23\% | -19\% | -3\% | 0\% | 5\% | 45\% | 52\% |
| 2007 | INTEL |  | 46 | 14\% | -17\% | 3\% | 10\% | 15\% | 18\% | 23\% | 50\% |
| 2008 | INTEL |  | 55 | 6\% | -15\% | -3\% | 2\% | 6\% | 10\% | 13\% | 17\% |
| 2009 | INTEL |  | 51 | 3\% | -14\% | -3\% | -1\% | 3\% | 6\% | 11\% | 11\% |
| 2010 | INTEL |  | 56 | 10\% | 1\% | 2\% | 4\% | 6\% | 13\% | 29\% | 40\% |
| 2008 | INTEL |  | 28 | 9\% | -5\% | -4\% | 7\% | 9\% | 13\% | 18\% | 21\% |
| 2010 | INTEL |  | 26 | 13\% | 5\% | 5\% | 9\% | 11\% | 15\% | 24\% | 36\% |
| 2001 | INTEL |  | 35 | -3\% | -24\% | -21\% | -12\% | -9\% | 5\% | 27\% | 41\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2002 | INTEL |  | 30 | -4\% | -26\% | -16\% | -13\% | -4\% | 4\% | 11\% | 13\% |
| 2001 | INTEL |  | 33 | -12\% | -26\% | -26\% | -16\% | -12\% | -10\% | 0\% | 1\% |
| 2002 | INTEL |  | 34 | -7\% | -24\% | -20\% | -13\% | -7\% | 0\% | 3\% | 5\% |
| 2003 | INTEL |  | 30 | 8\% | -21\% | -19\% | 6\% | 9\% | 17\% | 21\% | 27\% |
| 2004 | INTEL |  | 27 | 2\% | -10\% | -8\% | -1\% | 0\% | 7\% | 14\% | 16\% |
| 2005 | INTEL |  | 34 | 10\% | -12\% | -5\% | 2\% | 9\% | 17\% | 28\% | 46\% |
| 2006 | INTEL |  | 34 | 3\% | -12\% | -8\% | -4\% | -2\% | 8\% | 44\% | 59\% |
| 2007 | INTEL |  | 34 | 4\% | -54\% | -54\% | -2\% | 8\% | 12\% | 25\% | 25\% |
| 2005 | INTEL |  | 32 | 10\% | -8\% | 0\% | 6\% | 10\% | 14\% | 20\% | 36\% |
| 2006 | INTEL |  | 29 | 2\% | -8\% | -5\% | -2\% | 2\% | 6\% | 13\% | 18\% |
| 2004 | INTEL |  | 27 | -1\% | -10\% | -9\% | -6\% | -1\% | 0\% | 12\% | 35\% |
| 2005 | INTEL |  | 38 | 10\% | -1\% | 0\% | 6\% | 10\% | 12\% | 19\% | 39\% |
| 2006 | INTEL |  | 45 | 2\% | -9\% | -6\% | -2\% | 2\% | 4\% | 10\% | 16\% |
| 2007 | INTEL |  | 44 | 11\% | 4\% | 5\% | 7\% | 10\% | 14\% | 20\% | 20\% |
| 2008 | INTEL |  | 40 | 5\% | -10\% | -5\% | 1\% | 5\% | 9\% | 16\% | 26\% |
| 2009 | INTEL |  | 32 | 6\% | -1\% | -1\% | 0\% | 6\% | 10\% | 17\% | 17\% |
| 2010 | INTEL |  | 38 | 7\% | -3\% | -2\% | 4\% | 7\% | 10\% | 19\% | 19\% |
| 2002 | INTEL |  | 25 | -4\% | -19\% | -19\% | -8\% | -5\% | 1\% | 6\% | 9\% |
| 2003 | INTEL |  | 33 | 13\% | -6\% | -3\% | 8\% | 11\% | 19\% | 27\% | 30\% |
| 2004 | INTEL |  | 31 | -4\% | -14\% | -13\% | -8\% | -5\% | -1\% | 14\% | 20\% |
| 2001 | INTEL |  | 32 | -5\% | -24\% | -23\% | -12\% | -9\% | 0\% | 12\% | 61\% |
| 2002 | INTEL |  | 27 | -11\% | -42\% | -42\% | -16\% | -10\% | -4\% | 5\% | 6\% |
| 2003 | INTEL |  | 31 | 12\% | -4\% | 0\% | 7\% | 10\% | 15\% | 27\% | 40\% |
| 2004 | INTEL |  | 27 | -4\% | -15\% | -13\% | -8\% | -3\% | 0\% | 4\% | 7\% |
| 2008 | INTEL |  | 25 | 5\% | -9\% | -4\% | 2\% | 5\% | 8\% | 13\% | 14\% |
| 2009 | INTEL |  | 25 | 5\% | -4\% | -3\% | 2\% | 3\% | 9\% | 14\% | 16\% |
| 2002 | INTEL |  | 25 | -7\% | -34\% | -27\% | -15\% | -6\% | -2\% | 10\% | 21\% |
| 2002 | INTEL |  | 36 | -17\% | -39\% | -38\% | -32\% | -15\% | -6\% | 5\% | 41\% |
| 2003 | INTEL |  | 36 | 11\% | -19\% | -17\% | -4\% | 10\% | 22\% | 35\% | 89\% |
| 2004 | INTEL |  | 32 | -2\% | -31\% | -14\% | -8\% | -4\% | 2\% | 11\% | 38\% |
| 2003 | INTEL |  | 25 | 15\% | -18\% | -17\% | -8\% | 10\% | 20\% | 100\% | 109\% |
| 2004 | INTEL |  | 29 | 1\% | -31\% | -30\% | -8\% | -4\% | 10\% | 25\% | 54\% |
| 2001 | INTEL |  | 341 | -5\% | -62\% | -46\% | -17\% | -11\% | 1\% | 67\% | 150\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2002 | INTEL |  | 341 | -11\% | -65\% | -52\% | -23\% | -13\% | -6\% | 52\% | 100\% |
| 2003 | INTEL |  | 387 | 30\% | -41\% | -31\% | 13\% | 19\% | 30\% | 145\% | 345\% |
| 2004 | INTEL |  | 392 | -10\% | -60\% | -50\% | -13\% | -5\% | -1\% | 8\% | 86\% |
| 2005 | INTEL |  | 368 | 21\% | -8\% | 3\% | 10\% | 13\% | 22\% | 71\% | 86\% |
| 2006 | INTEL |  | 374 | 2\% | -38\% | -28\% | -9\% | -3\% | 5\% | 59\% | 105\% |
| 2007 | INTEL |  | 380 | 19\% | -29\% | -22\% | 12\% | 18\% | 24\% | 73\% | 97\% |
| 2008 | INTEL |  | 369 | 11\% | -31\% | -17\% | 3\% | 11\% | 18\% | 32\% | 74\% |
| 2009 | INTEL |  | 344 | 0\% | -30\% | -15\% | -6\% | -1\% | 4\% | 15\% | 89\% |
| 2010 | INTEL |  | 358 | 14\% | -5\% | 4\% | 11\% | 13\% | 17\% | 26\% | 77\% |
| 2001 | INTEL |  | 119 | -5\% | -61\% | -44\% | -22\% | -14\% | 2\% | 76\% | 118\% |
| 2002 | INTEL |  | 129 | -10\% | -67\% | -58\% | -26\% | -14\% | -5\% | 58\% | 113\% |
| 2003 | INTEL |  | 130 | 36\% | -50\% | -39\% | 13\% | 22\% | 35\% | 158\% | 259\% |
| 2004 | INTEL |  | 133 | -9\% | -53\% | -51\% | -13\% | -4\% | 1\% | 13\% | 116\% |
| 2005 | INTEL |  | 143 | 31\% | -4\% | 4\% | 13\% | 19\% | 31\% | 86\% | 260\% |
| 2006 | INTEL |  | 133 | 3\% | -32\% | -28\% | -9\% | -1\% | 11\% | 52\% | 78\% |
| 2007 | INTEL |  | 144 | 25\% | -27\% | -17\% | 16\% | 23\% | 35\% | 84\% | 109\% |
| 2008 | INTEL |  | 145 | 14\% | -31\% | -21\% | 3\% | 15\% | 27\% | 47\% | 64\% |
| 2009 | INTEL |  | 147 | -4\% | -34\% | -23\% | -13\% | -7\% | 3\% | 25\% | 67\% |
| 2010 | INTEL |  | 143 | 13\% | -11\% | 0\% | 9\% | 11\% | 17\% | 27\% | 97\% |
| 2003 | INTEL |  | 28 | 52\% | -42\% | -39\% | 20\% | 28\% | 109\% | 175\% | 183\% |
| 2004 | INTEL |  | 25 | -12\% | -57\% | -57\% | -23\% | -6\% | 2\% | 19\% | 19\% |
| 2005 | INTEL |  | 26 | 53\% | 12\% | 15\% | 18\% | 24\% | 77\% | 113\% | 241\% |
| 2006 | INTEL |  | 33 | 9\% | -41\% | -37\% | -22\% | -7\% | 5\% | 81\% | 239\% |
| 2007 | INTEL |  | 31 | 28\% | -21\% | -18\% | 11\% | 33\% | 42\% | 91\% | 97\% |
| 2008 | INTEL |  | 26 | 18\% | -18\% | -14\% | 11\% | 17\% | 30\% | 40\% | 62\% |
| 2009 | INTEL |  | 25 | -6\% | -25\% | -24\% | -18\% | -6\% | 0\% | 13\% | 15\% |
| 2005 | INTEL |  | 32 | 14\% | 0\% | 2\% | 10\% | 14\% | 17\% | 21\% | 47\% |
| 2006 | INTEL |  | 26 | 9\% | -2\% | -2\% | 3\% | 9\% | 14\% | 22\% | 27\% |
| 2010 | INTEL |  | 36 | 10\% | -2\% | 0\% | 7\% | 9\% | 17\% | 19\% | 20\% |
| 2001 | INTEL |  | 207 | -3\% | -49\% | -41\% | -13\% | -9\% | 4\% | 44\% | 80\% |
| 2002 | INTEL |  | 201 | -6\% | -41\% | -35\% | -14\% | -4\% | 2\% | 15\% | 57\% |
| 2003 | INTEL |  | 193 | 12\% | -27\% | -8\% | 8\% | 12\% | 18\% | 28\% | 44\% |
| 2004 | INTEL |  | 193 | -2\% | -31\% | -11\% | -6\% | -3\% | 2\% | 9\% | 13\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 269 | 16\% | -6\% | 5\% | 10\% | 15\% | 20\% | 31\% | 73\% |
| 2006 | INTEL |  | 208 | 9\% | -11\% | -4\% | 2\% | 7\% | 12\% | 25\% | 64\% |
| 2007 | INTEL |  | 181 | 16\% | -13\% | 6\% | 10\% | 14\% | 20\% | 30\% | 70\% |
| 2008 | INTEL |  | 139 | 3\% | -18\% | -6\% | 0\% | 3\% | 7\% | 13\% | 16\% |
| 2009 | INTEL |  | 168 | 9\% | -6\% | 0\% | 5\% | 9\% | 13\% | 19\% | 24\% |
| 2010 | INTEL |  | 158 | 9\% | -5\% | 1\% | 5\% | 8\% | 13\% | 20\% | 26\% |
| 2001 | INTEL |  | 411 | -6\% | -52\% | -23\% | -15\% | -11\% | 0\% | 23\% | 85\% |
| 2002 | INTEL |  | 425 | -9\% | -52\% | -39\% | -15\% | -7\% | -2\% | 9\% | 61\% |
| 2003 | INTEL |  | 468 | 14\% | -32\% | -5\% | 9\% | 14\% | 20\% | 32\% | 91\% |
| 2004 | INTEL |  | 462 | -4\% | -43\% | -13\% | -7\% | -4\% | -1\% | 7\% | 51\% |
| 2005 | INTEL |  | 545 | 15\% | -13\% | 2\% | 8\% | 12\% | 18\% | 36\% | 79\% |
| 2006 | INTEL |  | 450 | 3\% | -27\% | -11\% | -1\% | 2\% | 8\% | 18\% | 87\% |
| 2007 | INTEL |  | 394 | 15\% | -21\% | 1\% | 11\% | 14\% | 19\% | 30\% | 65\% |
| 2008 | INTEL |  | 399 | 5\% | -21\% | -7\% | 2\% | 6\% | 10\% | 16\% | 41\% |
| 2009 | INTEL |  | 413 | 5\% | -17\% | -5\% | 1\% | 5\% | 10\% | 18\% | 33\% |
| 2010 | INTEL |  | 451 | 8\% | -10\% | 0\% | 4\% | 6\% | 12\% | 19\% | 54\% |
| 2001 | INTEL |  | 521 | -6\% | -48\% | -28\% | -15\% | -10\% | 0\% | 30\% | 99\% |
| 2002 | INTEL |  | 527 | -10\% | -59\% | -42\% | -19\% | -11\% | -4\% | 26\% | 73\% |
| 2003 | INTEL |  | 549 | 17\% | -32\% | -19\% | 10\% | 17\% | 23\% | 40\% | 169\% |
| 2004 | INTEL |  | 553 | -5\% | -43\% | -15\% | -9\% | -5\% | -1\% | 8\% | 63\% |
| 2005 | INTEL |  | 645 | 15\% | -26\% | 1\% | 7\% | 11\% | 16\% | 52\% | 92\% |
| 2006 | INTEL |  | 564 | 2\% | -41\% | -19\% | -5\% | -1\% | 5\% | 36\% | 115\% |
| 2007 | INTEL |  | 534 | 17\% | -25\% | -9\% | 12\% | 15\% | 20\% | 40\% | 104\% |
| 2008 | INTEL |  | 532 | 8\% | -23\% | -8\% | 2\% | 8\% | 14\% | 23\% | 46\% |
| 2009 | INTEL |  | 526 | 3\% | -16\% | -9\% | -2\% | 2\% | 7\% | 15\% | 46\% |
| 2010 | INTEL |  | 559 | 11\% | -73\% | 3\% | 8\% | 10\% | 14\% | 23\% | 57\% |
| 2005 | INTEL |  | 82 | 24\% | -2\% | 3\% | 9\% | 15\% | 25\% | 78\% | 107\% |
| 2006 | INTEL |  | 93 | 4\% | -32\% | -28\% | -7\% | -1\% | 6\% | 60\% | 77\% |
| 2007 | INTEL |  | 107 | 18\% | -44\% | -21\% | 11\% | 18\% | 26\% | 72\% | 88\% |
| 2008 | INTEL |  | 90 | 9\% | -29\% | -21\% | 5\% | 12\% | 19\% | 28\% | 34\% |
| 2009 | INTEL |  | 85 | 1\% | -20\% | -12\% | -5\% | -1\% | 6\% | 17\% | 26\% |
| 2010 | INTEL |  | 95 | 13\% | -5\% | 5\% | 9\% | 13\% | 17\% | 24\% | 37\% |
| 2005 | INTEL |  | 27 | 38\% | 7\% | 8\% | 17\% | 26\% | 68\% | 85\% | 96\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | INTEL |  | 31 | 7\% | -35\% | -35\% | -9\% | -1\% | 21\% | 65\% | 82\% |
| 2007 | INTEL |  | 32 | 38\% | -16\% | -8\% | 17\% | 29\% | 36\% | 127\% | 141\% |
| 2008 | INTEL |  | 27 | 11\% | -23\% | -23\% | -7\% | 9\% | 21\% | 47\% | 64\% |
| 2009 | INTEL |  | 26 | 4\% | -23\% | -20\% | -12\% | 2\% | 17\% | 31\% | 54\% |
| 2005 | INTEL |  | 49 | 17\% | -9\% | 5\% | 12\% | 16\% | 22\% | 27\% | 59\% |
| 2006 | INTEL |  | 37 | 8\% | -2\% | -2\% | 3\% | 7\% | 14\% | 18\% | 22\% |
| 2007 | INTEL |  | 42 | 15\% | 4\% | 6\% | 11\% | 14\% | 18\% | 26\% | 27\% |
| 2008 | INTEL |  | 40 | 5\% | -5\% | -2\% | 1\% | 6\% | 8\% | 12\% | 14\% |
| 2009 | INTEL |  | 42 | 7\% | -2\% | -1\% | 2\% | 6\% | 10\% | 17\% | 22\% |
| 2010 | INTEL |  | 40 | 10\% | 0\% | 1\% | 6\% | 10\% | 14\% | 22\% | 24\% |
| 2005 | INTEL |  | 125 | 17\% | -5\% | 3\% | 9\% | 14\% | 18\% | 55\% | 74\% |
| 2006 | INTEL |  | 117 | 8\% | -21\% | -13\% | -1\% | 4\% | 11\% | 51\% | 63\% |
| 2007 | INTEL |  | 126 | 16\% | -11\% | 2\% | 13\% | 16\% | 20\% | 28\% | 49\% |
| 2008 | INTEL |  | 120 | 5\% | -19\% | -6\% | 2\% | 5\% | 10\% | 16\% | 31\% |
| 2009 | INTEL |  | 123 | 6\% | -8\% | -3\% | 2\% | 6\% | 10\% | 17\% | 25\% |
| 2010 | INTEL |  | 119 | 9\% | -2\% | 1\% | 5\% | 8\% | 12\% | 21\% | 44\% |
| 2004 | INTEL |  | 34 | -6\% | -41\% | -38\% | -9\% | -5\% | -1\% | 16\% | 16\% |
| 2005 | INTEL |  | 149 | 14\% | -12\% | 2\% | 8\% | 12\% | 16\% | 38\% | 82\% |
| 2006 | INTEL |  | 151 | 5\% | -27\% | -17\% | -2\% | 2\% | 9\% | 41\% | 68\% |
| 2007 | INTEL |  | 163 | 18\% | -25\% | -13\% | 14\% | 19\% | 23\% | 59\% | 85\% |
| 2008 | INTEL |  | 162 | 9\% | -24\% | -7\% | 5\% | 10\% | 14\% | 21\% | 30\% |
| 2009 | INTEL |  | 155 | 2\% | -15\% | -8\% | -2\% | 1\% | 6\% | 14\% | 34\% |
| 2010 | INTEL |  | 184 | 13\% | -2\% | 5\% | 9\% | 11\% | 16\% | 28\% | 75\% |
| 2001 | INTEL |  | 112 | 1\% | -17\% | -13\% | -7\% | 0\% | 9\% | 24\% | 34\% |
| 2001 | INTEL |  | 113 | -9\% | -24\% | -22\% | -14\% | -11\% | -4\% | 7\% | 9\% |
| 2001 | INTEL |  | 88 | -3\% | -26\% | -24\% | -13\% | -5\% | 4\% | 32\% | 52\% |
| 2001 | INTEL |  | 33 | -18\% | -48\% | -45\% | -21\% | -18\% | -13\% | -1\% | 9\% |
| 2005 | INTEL |  | 31 | 16\% | 2\% | 6\% | 12\% | 15\% | 20\% | 37\% | 43\% |
| 2006 | INTEL |  | 30 | 4\% | -12\% | -7\% | -1\% | 3\% | 9\% | 18\% | 23\% |
| 2005 | INTEL |  | 59 | 13\% | -5\% | 1\% | 5\% | 9\% | 14\% | 37\% | 89\% |
| 2006 | INTEL |  | 68 | 3\% | -18\% | -10\% | -3\% | 1\% | 6\% | 29\% | 39\% |
| 2007 | INTEL |  | 71 | 13\% | -20\% | -9\% | 7\% | 13\% | 18\% | 26\% | 39\% |
| 2008 | INTEL |  | 53 | 7\% | -6\% | -4\% | 2\% | 6\% | 13\% | 20\% | 49\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 52 | 5\% | -8\% | -5\% | -1\% | 4\% | 9\% | 17\% | 22\% |
| 2010 | INTEL |  | 47 | 5\% | -4\% | -3\% | 2\% | 4\% | 6\% | 14\% | 18\% |
| 2005 | INTEL |  | 32 | 16\% | -1\% | 3\% | 9\% | 11\% | 17\% | 54\% | 88\% |
| 2006 | INTEL |  | 36 | 0\% | -20\% | -13\% | -7\% | -1\% | 3\% | 14\% | 68\% |
| 2007 | INTEL |  | 37 | 18\% | -1\% | 5\% | 11\% | 16\% | 22\% | 50\% | 61\% |
| 2008 | INTEL |  | 49 | 9\% | -17\% | -3\% | 1\% | 9\% | 15\% | 22\% | 38\% |
| 2009 | INTEL |  | 46 | 3\% | -11\% | -8\% | -1\% | 3\% | 9\% | 15\% | 20\% |
| 2010 | INTEL |  | 50 | 9\% | -1\% | 2\% | 7\% | 9\% | 12\% | 17\% | 19\% |
| 2006 | INTEL |  | 26 | 8\% | -1\% | -1\% | 1\% | 7\% | 14\% | 19\% | 22\% |
| 2006 | INTEL |  | 29 | 4\% | -5\% | -5\% | -1\% | 3\% | 8\% | 17\% | 33\% |
| 2007 | INTEL |  | 29 | 12\% | -1\% | 7\% | 10\% | 11\% | 14\% | 23\% | 28\% |
| 2008 | INTEL |  | 30 | 5\% | -8\% | -6\% | 0\% | 6\% | 10\% | 23\% | 24\% |
| 2009 | INTEL |  | 31 | 8\% | -5\% | 0\% | 3\% | 7\% | 13\% | 18\% | 23\% |
| 2010 | INTEL |  | 33 | 8\% | 0\% | 1\% | 4\% | 7\% | 10\% | 18\% | 28\% |
| 2001 | INTEL |  | 35 | 28\% | -16\% | -6\% | 7\% | 30\% | 41\% | 66\% | 99\% |
| 2002 | INTEL |  | 28 | -1\% | -25\% | -22\% | -12\% | -5\% | 9\% | 23\% | 38\% |
| 2003 | INTEL |  | 27 | 48\% | 19\% | 23\% | 28\% | 34\% | 42\% | 123\% | 123\% |
| 2004 | INTEL |  | 25 | 18\% | -1\% | -1\% | 2\% | 6\% | 13\% | 89\% | 92\% |
| 2005 | INTEL |  | 35 | 40\% | 7\% | 14\% | 23\% | 25\% | 30\% | 147\% | 148\% |
| 2006 | INTEL |  | 28 | 4\% | -22\% | -20\% | -16\% | -9\% | 8\% | 91\% | 102\% |
| 2001 | INTEL |  | 58 | 25\% | -69\% | -13\% | 18\% | 28\% | 34\% | 52\% | 85\% |
| 2002 | INTEL |  | 46 | -1\% | -17\% | -14\% | -10\% | -5\% | -3\% | 33\% | 68\% |
| 2003 | INTEL |  | 38 | 25\% | -12\% | -9\% | 23\% | 28\% | 29\% | 42\% | 42\% |
| 2004 | INTEL |  | 47 | 5\% | -2\% | -1\% | 2\% | 4\% | 7\% | 12\% | 44\% |
| 2005 | INTEL |  | 50 | 33\% | 2\% | 19\% | 21\% | 22\% | 25\% | 124\% | 136\% |
| 2006 | INTEL |  | 46 | -15\% | -24\% | -23\% | -19\% | -18\% | -14\% | -10\% | 62\% |
| 2007 | INTEL |  | 64 | 52\% | 13\% | 29\% | 32\% | 36\% | 46\% | 130\% | 175\% |
| 2008 | INTEL |  | 46 | 0\% | -13\% | -10\% | -5\% | -3\% | 2\% | 6\% | 82\% |
| 2009 | INTEL |  | 47 | 28\% | 16\% | 17\% | 20\% | 22\% | 25\% | 86\% | 132\% |
| 2010 | INTEL |  | 46 | 11\% | 6\% | 7\% | 8\% | 8\% | 10\% | 13\% | 100\% |
| 2001 | INTEL |  | 132 | 0\% | -14\% | -12\% | -7\% | -1\% | 5\% | 16\% | 27\% |
| 2002 | INTEL |  | 80 | 0\% | -14\% | -14\% | -7\% | -1\% | 4\% | 13\% | 21\% |
| 2003 | INTEL |  | 40 | 13\% | -4\% | -4\% | 7\% | 14\% | 19\% | 24\% | 31\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | INTEL |  | 56 | 2\% | -9\% | -8\% | -2\% | 1\% | 6\% | 22\% | 26\% |
| 2005 | INTEL |  | 84 | 15\% | -5\% | 0\% | 9\% | 14\% | 22\% | 30\% | 37\% |
| 2006 | INTEL |  | 59 | 9\% | -5\% | -3\% | 1\% | 10\% | 16\% | 21\% | 32\% |
| 2007 | INTEL |  | 28 | 15\% | 2\% | 3\% | 7\% | 16\% | 23\% | 27\% | 30\% |
| 2008 | INTEL |  | 26 | 1\% | -5\% | -5\% | -2\% | 0\% | 3\% | 8\% | 10\% |
| 2001 | INTEL |  | 233 | 0\% | -27\% | -22\% | -9\% | -5\% | 8\% | 27\% | 69\% |
| 2002 | INTEL |  | 185 | -1\% | -25\% | -16\% | -7\% | -1\% | 4\% | 16\% | 28\% |
| 2003 | INTEL |  | 161 | 10\% | -12\% | -2\% | 6\% | 9\% | 15\% | 24\% | 30\% |
| 2004 | INTEL |  | 156 | 1\% | -13\% | -9\% | -3\% | -1\% | 5\% | 22\% | 32\% |
| 2005 | INTEL |  | 149 | 10\% | -4\% | -1\% | 4\% | 8\% | 16\% | 25\% | 32\% |
| 2006 | INTEL |  | 141 | 7\% | -10\% | -3\% | 1\% | 4\% | 12\% | 22\% | 38\% |
| 2007 | INTEL |  | 105 | 14\% | -13\% | 1\% | 8\% | 11\% | 21\% | 28\% | 35\% |
| 2008 | INTEL |  | 94 | 1\% | -9\% | -5\% | -2\% | 0\% | 4\% | 11\% | 23\% |
| 2009 | INTEL |  | 89 | 12\% | 1\% | 4\% | 8\% | 11\% | 17\% | 23\% | 28\% |
| 2010 | INTEL |  | 80 | 12\% | 2\% | 2\% | 4\% | 8\% | 19\% | 29\% | 39\% |
| 2001 | INTEL |  | 256 | -7\% | -37\% | -28\% | -14\% | -9\% | 1\% | 14\% | 50\% |
| 2002 | INTEL |  | 219 | -8\% | -41\% | -27\% | -15\% | -7\% | -1\% | 7\% | 32\% |
| 2003 | INTEL |  | 204 | 11\% | -24\% | -10\% | 6\% | 10\% | 17\% | 23\% | 91\% |
| 2004 | INTEL |  | 199 | -2\% | -29\% | -12\% | -5\% | -2\% | 1\% | 11\% | 41\% |
| 2005 | INTEL |  | 184 | 10\% | -9\% | -1\% | 4\% | 9\% | 15\% | 26\% | 35\% |
| 2006 | INTEL |  | 174 | 5\% | -8\% | -3\% | 0\% | 3\% | 9\% | 17\% | 24\% |
| $2007$ | INTEL |  | 131 | 11\% | -3\% | 1\% | 7\% | 11\% | 15\% | 23\% | 41\% |
| 2008 | INTEL |  | 123 | 3\% | -12\% | -4\% | 0\% | 3\% | 6\% | 12\% | 23\% |
| 2009 | INTEL |  | 112 | 8\% | -5\% | -2\% | 4\% | 8\% | 13\% | 20\% | 25\% |
| 2010 | INTEL |  | 90 | 7\% | -5\% | -2\% | 3\% | 5\% | 12\% | 19\% | 29\% |
| 2001 | INTEL |  | 259 | -7\% | -47\% | -36\% | -18\% | -12\% | 1\% | 31\% | 71\% |
| 2002 | INTEL |  | 229 | -9\% | -43\% | -37\% | -16\% | -9\% | -2\% | 13\% | 69\% |
| 2003 | INTEL |  | 181 | 13\% | -26\% | -9\% | 7\% | 11\% | 19\% | 31\% | 101\% |
| 2004 | INTEL |  | 189 | -1\% | -29\% | -12\% | -6\% | -3\% | 2\% | 13\% | 49\% |
| 2005 | INTEL |  | 193 | 11\% | -19\% | 0\% | 6\% | 9\% | 16\% | 26\% | 41\% |
| 2006 | INTEL |  | 194 | 5\% | -11\% | -6\% | -1\% | 2\% | 10\% | 18\% | 57\% |
| 2007 | INTEL |  | 182 | 14\% | -1\% | 5\% | 9\% | 12\% | 17\% | 27\% | 60\% |
| 2008 | INTEL |  | 162 | 4\% | -15\% | -6\% | 0\% | 3\% | 8\% | 13\% | 30\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 157 | 9\% | -5\% | -1\% | 5\% | 8\% | 12\% | 21\% | 27\% |
| 2010 | INTEL |  | 169 | 8\% | -19\% | 1\% | 5\% | 7\% | 12\% | 18\% | 34\% |
| 2001 | INTEL |  | 164 | -7\% | -52\% | -29\% | -18\% | -12\% | 0\% | 41\% | 57\% |
| 2002 | INTEL |  | 174 | -12\% | -54\% | -41\% | -20\% | -12\% | -5\% | 9\% | 73\% |
| 2003 | INTEL |  | 142 | 15\% | -28\% | -8\% | 9\% | 13\% | 22\% | 34\% | 131\% |
| 2004 | INTEL |  | 157 | -3\% | -37\% | -17\% | -9\% | -5\% | -1\% | 13\% | 62\% |
| 2005 | INTEL |  | 134 | 14\% | -6\% | 1\% | 9\% | 12\% | 17\% | 33\% | 42\% |
| 2006 | INTEL |  | 134 | 2\% | -17\% | -10\% | -3\% | 0\% | 6\% | 15\% | 37\% |
| 2007 | INTEL |  | 129 | 11\% | -18\% | 0\% | 9\% | 12\% | 15\% | 21\% | 46\% |
| 2008 | INTEL |  | 128 | 5\% | -15\% | -5\% | 0\% | 5\% | 9\% | 16\% | 33\% |
| 2009 | INTEL |  | 136 | 6\% | -40\% | -4\% | 1\% | 6\% | 10\% | 17\% | 71\% |
| 2010 | INTEL |  | 137 | 8\% | -4\% | 0\% | 4\% | 6\% | 9\% | 20\% | 46\% |
| 2001 | INTEL |  | 70 | -14\% | -47\% | -40\% | -20\% | -14\% | -9\% | 16\% | 40\% |
| 2002 | INTEL |  | 66 | -11\% | -56\% | -39\% | -19\% | -10\% | -4\% | 11\% | 79\% |
| 2003 | INTEL |  | 63 | 20\% | -27\% | -19\% | 9\% | 14\% | 23\% | 133\% | 174\% |
| 2004 | INTEL |  | 73 | -7\% | -43\% | -19\% | -12\% | -6\% | -2\% | 6\% | 16\% |
| 2005 | INTEL |  | 69 | 18\% | -11\% | -1\% | 9\% | 13\% | 23\% | 47\% | 61\% |
| 2006 | INTEL |  | 68 | 0\% | -29\% | -17\% | -5\% | -3\% | 4\% | 32\% | 57\% |
| 2007 | INTEL |  | 69 | 14\% | -18\% | -13\% | 9\% | 14\% | 18\% | 34\% | 49\% |
| 2008 | INTEL |  | 63 | 9\% | -16\% | -6\% | 0\% | 10\% | 15\% | 26\% | 48\% |
| 2009 | INTEL |  | 70 | 3\% | -13\% | -10\% | -2\% | 2\% | 8\% | 17\% | 23\% |
| 2010 | INTEL |  | 80 | 11\% | 0\% | 3\% | 8\% | 10\% | 13\% | 21\% | 26\% |
| 2001 | INTEL |  | 95 | -2\% | -23\% | -13\% | -10\% | -3\% | 5\% | 16\% | 22\% |
| 2002 | INTEL |  | 71 | -2\% | -20\% | -13\% | -7\% | -3\% | 4\% | 11\% | 21\% |
| 2003 | INTEL |  | 50 | 13\% | 0\% | 5\% | 9\% | 13\% | 18\% | 23\% | 28\% |
| 2004 | INTEL |  | 31 | 4\% | -7\% | -6\% | -1\% | 4\% | 6\% | 16\% | 26\% |
| 2005 | INTEL |  | 49 | 10\% | -4\% | -1\% | 3\% | 10\% | 15\% | 21\% | 25\% |
| 2006 | INTEL |  | 51 | 11\% | -2\% | -2\% | 4\% | 11\% | 16\% | 24\% | 28\% |
| 2001 | INTEL |  | 122 | -2\% | -18\% | -15\% | -11\% | -4\% | 6\% | 16\% | 44\% |
| 2002 | INTEL |  | 107 | -3\% | -23\% | -17\% | -9\% | -3\% | 3\% | 15\% | 22\% |
| 2003 | INTEL |  | 122 | 12\% | -10\% | 0\% | 8\% | 10\% | 16\% | 24\% | 32\% |
| 2004 | INTEL |  | 133 | -1\% | -13\% | -9\% | -5\% | -2\% | 4\% | 9\% | 23\% |
| 2005 | INTEL |  | 122 | 8\% | -4\% | -3\% | 3\% | 7\% | 11\% | 22\% | 29\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | INTEL |  | 103 | 7\% | -9\% | -4\% | 1\% | 4\% | 13\% | 21\% | 25\% |
| 2007 | INTEL |  | 70 | 13\% | 1\% | 6\% | 8\% | 11\% | 18\% | 26\% | 28\% |
| 2008 | INTEL |  | 56 | 1\% | -9\% | -6\% | -1\% | 1\% | 3\% | 8\% | 10\% |
| 2009 | INTEL |  | 44 | 13\% | 1\% | 5\% | 7\% | 11\% | 18\% | 24\% | 33\% |
| 2010 | INTEL |  | 43 | 12\% | -6\% | -2\% | 4\% | 10\% | 19\% | 28\% | 37\% |
| 2001 | INTEL |  | 108 | -6\% | -26\% | -22\% | -15\% | -10\% | 3\% | 11\% | 59\% |
| 2002 | INTEL |  | 97 | -5\% | -31\% | -19\% | -11\% | -6\% | -2\% | 11\% | 35\% |
| 2003 | INTEL |  | 101 | 12\% | -15\% | -4\% | 7\% | 11\% | 17\% | 26\% | 44\% |
| 2004 | INTEL |  | 100 | -5\% | -26\% | -15\% | -7\% | -5\% | -1\% | 8\% | 11\% |
| 2005 | INTEL |  | 95 | 8\% | -7\% | 0\% | 3\% | 8\% | 12\% | 19\% | 34\% |
| 2006 | INTEL |  | 93 | 4\% | -15\% | -6\% | 0\% | 4\% | 9\% | 16\% | 20\% |
| 2007 | INTEL |  | 85 | 11\% | -4\% | 2\% | 6\% | 9\% | 15\% | 24\% | 45\% |
| 2008 | INTEL |  | 66 | 3\% | -12\% | -3\% | 0\% | 2\% | 6\% | 11\% | 13\% |
| 2009 | INTEL |  | 54 | 6\% | -7\% | -2\% | 3\% | 5\% | 8\% | 14\% | 18\% |
| 2010 | INTEL |  | 57 | 5\% | -6\% | -3\% | 2\% | 4\% | 8\% | 16\% | 21\% |
| 2001 | INTEL |  | 35 | -7\% | -19\% | -18\% | -13\% | -8\% | -2\% | 6\% | 13\% |
| 2002 | INTEL |  | 38 | -6\% | -38\% | -37\% | -14\% | -6\% | -2\% | 26\% | 37\% |
| 2003 | INTEL |  | 57 | 12\% | -16\% | -2\% | 8\% | 13\% | 17\% | 25\% | 31\% |
| 2004 | INTEL |  | 53 | -3\% | -14\% | -13\% | -7\% | -4\% | 1\% | 13\% | 28\% |
| 2005 | INTEL |  | 53 | 10\% | -2\% | 0\% | 4\% | 8\% | 14\% | 27\% | 32\% |
| 2006 | INTEL |  | 49 | 4\% | -8\% | -6\% | -1\% | 2\% | 7\% | 16\% | 33\% |
| 2007 | INTEL |  | 53 | 14\% | -1\% | 5\% | 8\% | 13\% | 16\% | 26\% | 60\% |
| 2008 | INTEL |  | 55 | 6\% | -9\% | -5\% | 2\% | 7\% | 10\% | 13\% | 32\% |
| 2009 | INTEL |  | 50 | 5\% | -7\% | -4\% | 0\% | 5\% | 10\% | 15\% | 17\% |
| 2010 | INTEL |  | 53 | 7\% | -11\% | 1\% | 4\% | 6\% | 9\% | 14\% | 37\% |
| 2001 | INTEL |  | 51 | -5\% | -54\% | -22\% | -16\% | -11\% | -4\% | 67\% | 69\% |
| 2002 | INTEL |  | 65 | -21\% | -57\% | -53\% | -28\% | -16\% | -12\% | -2\% | 48\% |
| 2003 | INTEL |  | 65 | 34\% | -27\% | 1\% | 13\% | 21\% | 31\% | 140\% | 162\% |
| 2004 | INTEL |  | 62 | -12\% | -57\% | -53\% | -15\% | -7\% | -4\% | 4\% | 22\% |
| 2005 | INTEL |  | 80 | 18\% | -1\% | 4\% | 9\% | 12\% | 18\% | 62\% | 71\% |
| 2006 | INTEL |  | 74 | -1\% | -33\% | -30\% | -13\% | -5\% | 0\% | 60\% | 96\% |
| 2007 | INTEL |  | 78 | 18\% | -27\% | -22\% | 11\% | 16\% | 24\% | 79\% | 92\% |
| 2008 | INTEL |  | 62 | 11\% | -26\% | -24\% | 2\% | 12\% | 19\% | 32\% | 34\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 60 | 0\% | -17\% | -14\% | -10\% | -3\% | 6\% | 17\% | 111\% |
| 2010 | INTEL |  | 68 | 12\% | -13\% | 2\% | 10\% | 12\% | 15\% | 23\% | 29\% |
| 2005 | INTEL |  | 31 | 31\% | 5\% | 8\% | 11\% | 17\% | 57\% | 82\% | 88\% |
| 2008 | INTEL |  | 26 | 21\% | -23\% | -17\% | 5\% | 21\% | 37\% | 54\% | 55\% |
| 2009 | INTEL |  | 26 | -11\% | -32\% | -27\% | -21\% | -10\% | -4\% | 7\% | 14\% |
| 2001 | INTEL |  | 148 | -3\% | -50\% | -37\% | -13\% | -8\% | 1\% | 41\% | 77\% |
| 2002 | INTEL |  | 137 | -8\% | -43\% | -35\% | -15\% | -6\% | 1\% | 13\% | 38\% |
| 2003 | INTEL |  | 104 | 13\% | -29\% | -3\% | 8\% | 11\% | 21\% | 29\% | 77\% |
| 2004 | INTEL |  | 96 | -3\% | -36\% | -11\% | -6\% | -3\% | 1\% | 10\% | 12\% |
| 2005 | INTEL |  | 147 | 13\% | -2\% | 4\% | 8\% | 13\% | 18\% | 26\% | 47\% |
| 2006 | INTEL |  | 82 | 7\% | -6\% | -5\% | 0\% | 6\% | 12\% | 22\% | 59\% |
| 2007 | INTEL |  | 52 | 14\% | 4\% | 5\% | 9\% | 15\% | 18\% | 23\% | 24\% |
| 2008 | INTEL |  | 46 | 5\% | -5\% | -3\% | 0\% | 5\% | 8\% | 14\% | 17\% |
| 2009 | INTEL |  | 48 | 8\% | -3\% | -1\% | 4\% | 7\% | 12\% | 19\% | 21\% |
| 2010 | INTEL |  | 41 | 10\% | 0\% | 2\% | 4\% | 9\% | 16\% | 24\% | 31\% |
| 2001 | INTEL |  | 203 | -5\% | -48\% | -25\% | -14\% | -10\% | 4\% | 32\% | 53\% |
| 2002 | INTEL |  | 226 | -11\% | -49\% | -42\% | -18\% | -10\% | -4\% | 10\% | 60\% |
| 2003 | INTEL |  | 199 | 14\% | -34\% | -15\% | 8\% | 13\% | 20\% | 36\% | 102\% |
| 2004 | INTEL |  | 176 | -5\% | -20\% | -14\% | -8\% | -5\% | -1\% | 7\% | 25\% |
| 2005 | INTEL |  | 250 | 13\% | -6\% | 3\% | 7\% | 11\% | 16\% | 26\% | 74\% |
| 2006 | INTEL |  | 171 | 4\% | -17\% | -7\% | -2\% | 1\% | 6\% | 25\% | 62\% |
| 2007 | INTEL |  | 146 | 13\% | -10\% | 1\% | 9\% | 12\% | 15\% | 29\% | 71\% |
| 2008 | INTEL |  | 123 | 5\% | -23\% | -8\% | 0\% | 5\% | 10\% | 16\% | 24\% |
| 2009 | INTEL |  | 129 | 5\% | -12\% | -5\% | 0\% | 4\% | 10\% | 15\% | 28\% |
| 2010 | INTEL |  | 136 | 7\% | -9\% | 0\% | 3\% | 6\% | 9\% | 20\% | 34\% |
| 2001 | INTEL |  | 123 | -5\% | -47\% | -31\% | -15\% | -11\% | 0\% | 39\% | 105\% |
| 2002 | INTEL |  | 140 | -12\% | -50\% | -40\% | -22\% | -13\% | -6\% | 26\% | 58\% |
| 2003 | INTEL |  | 155 | 16\% | -34\% | -17\% | 11\% | 16\% | 22\% | 38\% | 142\% |
| 2004 | INTEL |  | 138 | -5\% | -21\% | -15\% | -7\% | -5\% | -2\% | 6\% | 12\% |
| 2005 | INTEL |  | 174 | 13\% | -5\% | 1\% | 6\% | 10\% | 14\% | 58\% | 78\% |
| 2006 | INTEL |  | 167 | 2\% | -27\% | -11\% | -5\% | -1\% | 4\% | 47\% | 80\% |
| 2007 | INTEL |  | 161 | 16\% | -24\% | -11\% | 9\% | 14\% | 18\% | 53\% | 92\% |
| 2008 | INTEL |  | 149 | 7\% | -20\% | -12\% | 1\% | 8\% | 13\% | 22\% | 39\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 143 | 3\% | -15\% | -8\% | -2\% | 3\% | 7\% | 14\% | 22\% |
| 2010 | INTEL |  | 159 | 11\% | -2\% | 4\% | 8\% | 10\% | 13\% | 20\% | 34\% |
| 2001 | INTEL |  | 33 | -16\% | -51\% | -42\% | -27\% | -20\% | -7\% | 11\% | 90\% |
| 2002 | INTEL |  | 38 | -14\% | -70\% | -57\% | -26\% | -19\% | -9\% | 78\% | 110\% |
| 2003 | INTEL |  | 39 | 42\% | -35\% | -33\% | 13\% | 23\% | 40\% | 145\% | 182\% |
| 2004 | INTEL |  | 37 | -13\% | -55\% | -55\% | -15\% | -6\% | -1\% | 17\% | 17\% |
| 2005 | INTEL |  | 37 | 28\% | -6\% | 3\% | 17\% | 22\% | 29\% | 93\% | 128\% |
| 2006 | INTEL |  | 41 | 7\% | -37\% | -32\% | -10\% | -5\% | 10\% | 87\% | 94\% |
| 2007 | INTEL |  | 39 | 37\% | -20\% | -18\% | 19\% | 32\% | 60\% | 93\% | 96\% |
| 2008 | INTEL |  | 36 | 12\% | -32\% | -23\% | 1\% | 16\% | 21\% | 40\% | 65\% |
| 2009 | INTEL |  | 42 | -5\% | -34\% | -26\% | -14\% | -8\% | -2\% | 33\% | 44\% |
| 2010 | INTEL |  | 44 | 12\% | -15\% | -14\% | 5\% | 12\% | 17\% | 41\% | 53\% |
| 2001 | INTEL |  | 46 | 1\% | -12\% | -11\% | -8\% | -2\% | 4\% | 23\% | 62\% |
| 2002 | INTEL |  | 36 | -4\% | -27\% | -25\% | -13\% | -3\% | 2\% | 13\% | 16\% |
| 2003 | INTEL |  | 28 | 11\% | -1\% | -1\% | 6\% | 9\% | 16\% | 22\% | 22\% |
| 2004 | INTEL |  | 26 | 3\% | -8\% | -6\% | -1\% | 0\% | 7\% | 16\% | 16\% |
| 2005 | INTEL |  | 81 | 4\% | -7\% | -5\% | 0\% | 3\% | 7\% | 17\% | 23\% |
| 2006 | INTEL |  | 77 | 7\% | -6\% | -5\% | 1\% | 4\% | 15\% | 22\% | 49\% |
| 2007 | INTEL |  | 36 | 14\% | -3\% | -1\% | 7\% | 14\% | 21\% | $32 \%$ | 35\% |
| 2002 | INTEL |  | 25 | 0\% | -13\% | -10\% | -4\% | 0\% | 5\% | 9\% | 12\% |
| 2003 | INTEL |  | 35 | 17\% | 1\% | 4\% | 9\% | 18\% | 22\% | 34\% | 37\% |
| 2004 | INTEL |  | 33 | 1\% | -10\% | -7\% | -3\% | -1\% | 5\% | 13\% | 14\% |
| 2005 | INTEL |  | 76 | 6\% | -7\% | -4\% | 1\% | 5\% | 10\% | 18\% | 21\% |
| 2006 | INTEL |  | 77 | 5\% | -6\% | -4\% | 1\% | 3\% | 8\% | 20\% | 23\% |
| 2007 | INTEL |  | 77 | 13\% | 0\% | 3\% | 7\% | 12\% | 17\% | 28\% | 31\% |
| 2008 | INTEL |  | 61 | 1\% | -8\% | -6\% | -2\% | 1\% | 4\% | 8\% | 9\% |
| 2009 | INTEL |  | 61 | 10\% | -1\% | 0\% | 5\% | 9\% | 12\% | 27\% | 31\% |
| 2010 | INTEL |  | 48 | 9\% | -3\% | -2\% | 4\% | 5\% | 15\% | 22\% | 27\% |
| 2004 | INTEL |  | 25 | -5\% | -19\% | -11\% | -8\% | -5\% | -2\% | 6\% | 8\% |
| 2005 | INTEL |  | 45 | 7\% | -2\% | -1\% | 3\% | 7\% | 10\% | 15\% | 21\% |
| 2006 | INTEL |  | 59 | 4\% | -14\% | -5\% | 0\% | 3\% | 10\% | 19\% | 23\% |
| 2007 | INTEL |  | 71 | 9\% | -4\% | 2\% | 5\% | 8\% | 12\% | 18\% | 28\% |
| 2008 | INTEL |  | 70 | 3\% | -4\% | -3\% | -1\% | 2\% | 7\% | 13\% | 19\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 60 | 5\% | -6\% | -5\% | 2\% | 5\% | 8\% | 11\% | 17\% |
| 2010 | INTEL |  | 54 | 5\% | -5\% | -3\% | 3\% | 4\% | 9\% | 13\% | 18\% |
| 2007 | INTEL |  | 28 | 9\% | -2\% | 3\% | 7\% | 9\% | 11\% | 14\% | 25\% |
| 2008 | INTEL |  | 35 | 4\% | -5\% | -4\% | 1\% | 4\% | 7\% | 12\% | 13\% |
| 2009 | INTEL |  | 25 | 4\% | -4\% | -3\% | 0\% | 4\% | 8\% | 14\% | 16\% |
| 2001 | INTEL |  | 26 | -11\% | -50\% | -23\% | -17\% | -14\% | -8\% | 12\% | 39\% |
| 2002 | INTEL |  | 37 | -8\% | -30\% | -29\% | -14\% | -8\% | -4\% | 10\% | 46\% |
| 2003 | INTEL |  | 54 | 11\% | -25\% | -4\% | 9\% | 11\% | 17\% | 21\% | 27\% |
| 2004 | INTEL |  | 55 | -5\% | -34\% | -13\% | -8\% | -5\% | -2\% | 4\% | 9\% |
| 2005 | INTEL |  | 49 | 8\% | -10\% | -2\% | 3\% | 6\% | 12\% | 24\% | 51\% |
| 2001 | INTEL |  | 32 | 0\% | -12\% | -11\% | -9\% | -3\% | 8\% | 18\% | 46\% |
| 2001 | INTEL |  | 56 | 1\% | -25\% | -17\% | -9\% | -2\% | 9\% | 26\% | 48\% |
| 2002 | INTEL |  | 52 | -3\% | -26\% | -16\% | -9\% | -4\% | 0\% | 13\% | 31\% |
| 2003 | INTEL |  | 32 | 13\% | 0\% | 1\% | 8\% | 10\% | 20\% | 25\% | 31\% |
| 2004 | INTEL |  | 29 | 4\% | -10\% | -9\% | -4\% | 1\% | 9\% | 32\% | 36\% |
| 2005 | INTEL |  | 30 | 10\% | -4\% | -3\% | 3\% | 9\% | 18\% | 26\% | 28\% |
| 2006 | INTEL |  | 31 | 5\% | -7\% | -5\% | 1\% | 2\% | 9\% | 26\% | 28\% |
| 2007 | INTEL |  | 28 | 13\% | 6\% | 6\% | 7\% | 11\% | 19\% | 28\% | 29\% |
| 2008 | INTEL |  | 27 | 1\% | -5\% | -5\% | -1\% | 2\% | 3\% | 8\% | 8\% |
| 2001 | INTEL |  | 56 | -8\% | -40\% | -30\% | -15\% | -10\% | -1\% | 12\% | 68\% |
| 2002 | INTEL |  | 56 | -4\% | -29\% | -21\% | -13\% | -3\% | 3\% | 14\% | 19\% |
| 2003 | INTEL |  | 57 | 13\% | -5\% | -4\% | 8\% | 10\% | 17\% | 26\% | 83\% |
| 2004 | INTEL |  | 56 | -4\% | -30\% | -17\% | -8\% | -4\% | 0\% | 8\% | 10\% |
| 2005 | INTEL |  | 53 | 9\% | -6\% | -5\% | 3\% | 7\% | 14\% | 29\% | 32\% |
| 2006 | INTEL |  | 50 | 4\% | -6\% | -4\% | 0\% | 2\% | 7\% | 11\% | 39\% |
| 2007 | INTEL |  | 54 | 9\% | 2\% | 4\% | 6\% | 9\% | 13\% | 16\% | 25\% |
| 2008 | INTEL |  | 54 | 4\% | -11\% | -8\% | -1\% | 4\% | 8\% | 12\% | 21\% |
| 2009 | INTEL |  | 44 | 5\% | -11\% | -4\% | 1\% | 5\% | 8\% | 18\% | 22\% |
| 2010 | INTEL |  | 45 | 6\% | -3\% | -2\% | 4\% | 4\% | 8\% | 15\% | 17\% |
| 2001 | INTEL |  | 34 | -5\% | -25\% | -21\% | -12\% | -10\% | 0\% | 39\% | 42\% |
| 2002 | INTEL |  | 39 | -8\% | -47\% | -44\% | -14\% | -5\% | 2\% | 11\% | 16\% |
| 2003 | INTEL |  | 37 | 13\% | 0\% | 1\% | 8\% | 13\% | 16\% | 26\% | 27\% |
| 2004 | INTEL |  | 40 | -2\% | -12\% | -12\% | -6\% | -4\% | 0\% | 9\% | 40\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 27 | 9\% | -2\% | 0\% | 5\% | 8\% | 13\% | 17\% | 21\% |
| 2006 | INTEL |  | 32 | 4\% | -5\% | -4\% | -3\% | 3\% | 7\% | 17\% | 40\% |
| 2007 | INTEL |  | 27 | 12\% | 1\% | 5\% | 10\% | 12\% | 16\% | 20\% | 23\% |
| 2008 | INTEL |  | 31 | 4\% | -7\% | -6\% | -1\% | 7\% | 8\% | 14\% | 14\% |
| 2009 | INTEL |  | 28 | 4\% | -5\% | -5\% | 1\% | 3\% | 7\% | 15\% | 17\% |
| 2010 | INTEL |  | 33 | 6\% | 1\% | 2\% | 4\% | 6\% | 8\% | 15\% | 16\% |
| 2001 | INTEL |  | 77 | 6\% | -3\% | 2\% | 4\% | 6\% | 7\% | 10\% | 18\% |
| 2002 | INTEL |  | 73 | 7\% | -18\% | 0\% | 2\% | 7\% | 10\% | 19\% | 23\% |
| 2003 | INTEL |  | 38 | 12\% | 4\% | 4\% | 8\% | 12\% | 16\% | 20\% | 22\% |
| 2005 | INTEL |  | 37 | 16\% | 0\% | 0\% | 10\% | 17\% | 21\% | 28\% | 38\% |
| 2006 | INTEL |  | 34 | 25\% | 5\% | 13\% | 19\% | 26\% | 30\% | 37\% | 41\% |
| 2001 | INTEL |  | 166 | 6\% | -13\% | 3\% | 4\% | 6\% | 7\% | 11\% | 54\% |
| 2002 | INTEL |  | 152 | 3\% | -11\% | 1\% | 2\% | 2\% | 3\% | 9\% | 14\% |
| 2003 | INTEL |  | 161 | 11\% | -3\% | 4\% | 7\% | 10\% | 13\% | 20\% | 30\% |
| 2004 | INTEL |  | 141 | 2\% | -3\% | -2\% | 0\% | 1\% | 3\% | 9\% | 13\% |
| 2005 | INTEL |  | 112 | 12\% | 0\% | 0\% | 8\% | 11\% | 17\% | 24\% | 48\% |
| 2006 | INTEL |  | 81 | 17\% | -3\% | -2\% | 12\% | 16\% | 23\% | 31\% | 47\% |
| 2007 | INTEL |  | 72 | 14\% | 1\% | 5\% | 9\% | 14\% | 20\% | 27\% | 28\% |
| 2008 | INTEL |  | 77 | 0\% | -5\% | -5\% | -3\% | -2\% | -2\% | 12\% | 12\% |
| 2009 | INTEL |  | 75 | 14\% | 4\% | 7\% | 10\% | 12\% | 19\% | 24\% | 26\% |
| 2010 | INTEL |  | 62 | 7\% | -4\% | 2\% | 5\% | 6\% | 8\% | 18\% | 31\% |
| 2001 | INTEL |  | 204 | 15\% | -11\% | 2\% | 5\% | 6\% | 9\% | 72\% | 83\% |
| 2002 | INTEL |  | 211 | 8\% | -17\% | 1\% | 2\% | 2\% | 3\% | 41\% | 47\% |
| 2003 | INTEL |  | 205 | 13\% | -1\% | 5\% | 8\% | 9\% | 12\% | 39\% | 49\% |
| 2004 | INTEL |  | 212 | 4\% | -17\% | -2\% | 0\% | 1\% | 4\% | 20\% | 80\% |
| 2005 | INTEL |  | 222 | 12\% | -6\% | 3\% | 6\% | 9\% | 15\% | 35\% | 48\% |
| 2006 | INTEL |  | 213 | 13\% | -3\% | -2\% | 9\% | 12\% | 17\% | 33\% | 39\% |
| 2007 | INTEL |  | 203 | 16\% | 3\% | 4\% | 10\% | 13\% | 18\% | 40\% | 48\% |
| 2008 | INTEL |  | 194 | -2\% | -9\% | -5\% | -3\% | -3\% | -2\% | 6\% | 12\% |
| 2009 | INTEL |  | 188 | 12\% | 2\% | 6\% | 10\% | 11\% | 12\% | 23\% | 25\% |
| 2010 | INTEL |  | 186 | 7\% | 2\% | 3\% | 5\% | 5\% | 7\% | 17\% | 26\% |
| 2001 | INTEL |  | 187 | -6\% | -17\% | -15\% | -8\% | -6\% | -3\% | 0\% | 10\% |
| 2002 | INTEL |  | 216 | -7\% | -36\% | -30\% | -10\% | -3\% | 0\% | 3\% | 13\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | INTEL |  | 249 | 7\% | -12\% | -7\% | 5\% | 8\% | 10\% | 17\% | 47\% |
| 2004 | INTEL |  | 261 | -3\% | -21\% | -11\% | -4\% | -3\% | -1\% | 4\% | 24\% |
| 2005 | INTEL |  | 287 | 7\% | -5\% | -1\% | 3\% | 6\% | 9\% | 15\% | 32\% |
| 2006 | INTEL |  | 282 | 6\% | -10\% | -3\% | 2\% | 5\% | 8\% | 18\% | 45\% |
| 2007 | INTEL |  | 302 | 10\% | 0\% | 4\% | 7\% | 9\% | 12\% | 20\% | 56\% |
| 2008 | INTEL |  | 319 | -1\% | -12\% | -10\% | -3\% | 0\% | 2\% | 5\% | 18\% |
| 2009 | INTEL |  | 307 | 8\% | -3\% | 2\% | 5\% | 8\% | 10\% | 13\% | 33\% |
| 2010 | INTEL |  | 317 | 5\% | -2\% | 2\% | 4\% | 5\% | 6\% | 10\% | 14\% |
| 2007 | INTEL |  | 29 | 13\% | 2\% | 4\% | 9\% | 11\% | 14\% | 23\% | 60\% |
| 2008 | INTEL |  | 25 | 4\% | -3\% | -3\% | 1\% | 4\% | 8\% | 11\% | 14\% |
| 2001 | INTEL |  | 27 | 4\% | -9\% | -8\% | -6\% | 1\% | 10\% | 21\% | 36\% |
| 2001 | INTEL |  | 81 | 0\% | -15\% | -12\% | -9\% | -5\% | 7\% | 26\% | 40\% |
| 2002 | INTEL |  | 67 | -2\% | -24\% | -20\% | -8\% | -2\% | 5\% | 13\% | 35\% |
| 2003 | INTEL |  | 57 | 14\% | -2\% | -1\% | 9\% | 14\% | 21\% | 27\% | 30\% |
| 2004 | INTEL |  | 51 | 2\% | -10\% | -5\% | -1\% | 1\% | 6\% | 10\% | 12\% |
| 2005 | INTEL |  | 27 | 15\% | 2\% | 3\% | 10\% | 15\% | 22\% | 25\% | 38\% |
| 2001 | INTEL |  | 89 | -3\% | -22\% | -17\% | -12\% | -6\% | 2\% | 19\% | 64\% |
| 2002 | INTEL |  | 70 | -3\% | -27\% | -21\% | -9\% | -4\% | 2\% | 14\% | 37\% |
| 2003 | INTEL |  | 63 | 12\% | -7\% | 1\% | 7\% | 11\% | 16\% | 23\% | 69\% |
| 2004 | INTEL |  | 79 | -4\% | -30\% | -14\% | -9\% | -5\% | -1\% | 7\% | 42\% |
| 2005 | INTEL |  | 68 | 10\% | -9\% | -3\% | 6\% | 10\% | 13\% | 24\% | 28\% |
| 2006 | INTEL |  | 51 | 5\% | -4\% | -2\% | 1\% | 5\% | 9\% | 13\% | 21\% |
| 2007 | INTEL |  | 38 | 11\% | -3\% | 0\% | 6\% | 11\% | 15\% | 23\% | 32\% |
| 2008 | INTEL |  | 35 | 2\% | -10\% | -5\% | 0\% | 1\% | 3\% | 9\% | 14\% |
| 2009 | INTEL |  | 32 | 8\% | -1\% | 0\% | 5\% | 7\% | 11\% | 15\% | 29\% |
| 2010 | INTEL |  | 25 | 7\% | -10\% | -8\% | 4\% | 7\% | 12\% | 18\% | 18\% |
| 2001 | INTEL |  | 59 | -10\% | -43\% | -42\% | -18\% | -12\% | -3\% | 15\% | 48\% |
| 2002 | INTEL |  | 68 | -6\% | -43\% | -32\% | -13\% | -6\% | 3\% | 14\% | 43\% |
| 2003 | INTEL |  | 70 | 13\% | -22\% | -1\% | 6\% | 12\% | 19\% | 25\% | 79\% |
| 2004 | INTEL |  | 83 | -3\% | -27\% | -12\% | -6\% | -4\% | 1\% | 8\% | 20\% |
| 2005 | INTEL |  | 63 | 14\% | -4\% | -1\% | 7\% | 12\% | 17\% | 36\% | 51\% |
| 2006 | INTEL |  | 60 | 6\% | -14\% | -7\% | -1\% | 3\% | 11\% | 31\% | 83\% |
| 2007 | INTEL |  | 54 | 11\% | -8\% | 2\% | 8\% | 10\% | 15\% | 22\% | 32\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 46 | 3\% | -5\% | -3\% | 0\% | 2\% | 6\% | 9\% | 13\% |
| 2009 | INTEL |  | 40 | 7\% | -5\% | -4\% | 3\% | 6\% | 10\% | 16\% | 17\% |
| 2010 | INTEL |  | 43 | 8\% | 1\% | 2\% | 4\% | 6\% | 10\% | 17\% | 21\% |
| 2001 | INTEL |  | 30 | -5\% | -51\% | -44\% | -14\% | -11\% | 0\% | 55\% | 68\% |
| 2002 | INTEL |  | 27 | -10\% | -40\% | -36\% | -15\% | -8\% | -5\% | 8\% | 20\% |
| 2003 | INTEL |  | 27 | 9\% | -22\% | -17\% | 5\% | 13\% | 19\% | 28\% | 32\% |
| 2004 | INTEL |  | 32 | -1\% | -15\% | -12\% | -7\% | -3\% | 2\% | 11\% | 41\% |
| 2005 | INTEL |  | 29 | 12\% | -1\% | 1\% | 9\% | 10\% | 15\% | 26\% | 28\% |
| 2006 | INTEL |  | 28 | 1\% | -6\% | -5\% | -3\% | 0\% | 4\% | 12\% | 19\% |
| 2007 | INTEL |  | 25 | 12\% | -4\% | 5\% | 9\% | 11\% | 17\% | 22\% | 22\% |
| 2005 | INTEL |  | 25 | 13\% | 6\% | 6\% | 10\% | 12\% | 14\% | 19\% | 21\% |
| 2010 | INTEL |  | 27 | 6\% | -4\% | 0\% | 3\% | 5\% | 11\% | 13\% | 13\% |
| 2005 | INTEL |  | 38 | 8\% | 2\% | 3\% | 3\% | 9\% | 12\% | 16\% | 16\% |
| 2004 | INTEL |  | 38 | 5\% | -3\% | -3\% | 1\% | 2\% | 8\% | 24\% | 24\% |
| 2005 | INTEL |  | 125 | 7\% | 0\% | 2\% | 3\% | 4\% | 12\% | 16\% | 17\% |
| 2006 | INTEL |  | 94 | 4\% | -3\% | 0\% | 1\% | 1\% | 6\% | 16\% | 19\% |
| 2007 | INTEL |  | 68 | 10\% | 4\% | 6\% | 7\% | 8\% | 11\% | 21\% | 24\% |
| 2008 | INTEL |  | 61 | -2\% | -5\% | -4\% | -3\% | -2\% | -2\% | 5\% | 7\% |
| 2009 | INTEL |  | 116 | 13\% | 5\% | 8\% | 11\% | 11\% | 14\% | 21\% | 24\% |
| 2010 | INTEL |  | 98 | 10\% | 1\% | 3\% | 7\% | 8\% | 13\% | 18\% | 29\% |
| 2004 | INTEL |  | 66 | 2\% | -14\% | -1\% | 0\% | 1\% | 3\% | 10\% | 11\% |
| 2005 | INTEL |  | 144 | 6\% | 0\% | 3\% | 3\% | 4\% | 8\% | 17\% | 18\% |
| 2006 | INTEL |  | 164 | 4\% | -4\% | 0\% | 0\% | 2\% | 7\% | 16\% | 27\% |
| 2007 | INTEL |  | 125 | 10\% | 3\% | 5\% | 7\% | 9\% | 10\% | 20\% | 42\% |
| 2008 | INTEL |  | 121 | -2\% | -11\% | -5\% | -3\% | -3\% | -2\% | -1\% | 24\% |
| 2009 | INTEL |  | 177 | 11\% | -2\% | 9\% | 10\% | 11\% | 11\% | 14\% | 21\% |
| 2010 | INTEL |  | 188 | 6\% | 1\% | 3\% | 5\% | 6\% | 7\% | 13\% | 16\% |
| 2004 | INTEL |  | 27 | 3\% | -2\% | -1\% | 0\% | 0\% | 3\% | 16\% | 17\% |
| 2005 | INTEL |  | 49 | 7\% | 2\% | 2\% | 3\% | 5\% | 6\% | 37\% | 37\% |
| 2006 | INTEL |  | 50 | 2\% | 0\% | 0\% | 1\% | 2\% | 3\% | 6\% | 16\% |
| 2007 | INTEL |  | 57 | 9\% | 4\% | 5\% | 7\% | 7\% | 9\% | 19\% | 23\% |
| $2008$ | INTEL |  | 59 | -5\% | -62\% | -6\% | -3\% | -3\% | -2\% | -1\% | -1\% |
| 2009 | INTEL |  | 43 | 11\% | 6\% | 9\% | 10\% | 11\% | 11\% | 14\% | 15\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | INTEL |  | 49 | 7\% | 3\% | 3\% | 5\% | 7\% | 9\% | 13\% | 13\% |
| 2001 | INTEL |  | 78 | 0\% | -24\% | -11\% | -8\% | -2\% | 8\% | 13\% | 68\% |
| 2002 | INTEL |  | 60 | -3\% | -22\% | -15\% | -7\% | -3\% | 2\% | 9\% | 18\% |
| 2003 | INTEL |  | 45 | 21\% | -1\% | 1\% | 15\% | 23\% | 28\% | 33\% | 34\% |
| 2004 | INTEL |  | 53 | 0\% | -12\% | -9\% | -7\% | -1\% | 6\% | 14\% | 20\% |
| 2005 | INTEL |  | 84 | 11\% | -8\% | -1\% | 6\% | 12\% | 17\% | 23\% | 27\% |
| 2006 | INTEL |  | 62 | 5\% | -13\% | -6\% | -2\% | 3\% | 14\% | 18\% | 25\% |
| 2007 | INTEL |  | 39 | 13\% | 3\% | 3\% | 7\% | 11\% | 20\% | 25\% | 26\% |
| 2008 | INTEL |  | 41 | 2\% | -6\% | -5\% | -1\% | 3\% | 6\% | 10\% | 11\% |
| 2009 | INTEL |  | 27 | 12\% | -1\% | 4\% | 6\% | 11\% | 18\% | 21\% | 24\% |
| 2001 | INTEL |  | 148 | -2\% | -18\% | -16\% | -11\% | -6\% | 5\% | 19\% | 46\% |
| 2002 | INTEL |  | 147 | -3\% | -28\% | -16\% | -10\% | -4\% | 1\% | 11\% | 22\% |
| 2003 | INTEL |  | 147 | 23\% | -3\% | 8\% | 18\% | 24\% | 30\% | 39\% | 45\% |
| 2004 | INTEL |  | 129 | 1\% | -12\% | -8\% | -2\% | 0\% | 5\% | 11\% | 32\% |
| 2005 | INTEL |  | 204 | 9\% | -5\% | -2\% | 3\% | 7\% | 16\% | 24\% | 34\% |
| 2006 | INTEL |  | 176 | 7\% | -9\% | -5\% | 1\% | 4\% | 14\% | 22\% | 31\% |
| 2007 | INTEL |  | 100 | 11\% | -9\% | 3\% | 6\% | 9\% | 15\% | 24\% | 32\% |
| 2008 | INTEL |  | 106 | 0\% | -10\% | -8\% | -3\% | 0\% | 3\% | 9\% | 13\% |
| 2009 | INTEL |  | 93 | 11\% | -6\% | 2\% | 6\% | 10\% | 15\% | 26\% | 36\% |
| 2010 | INTEL |  | 75 | 7\% | -3\% | 0\% | 4\% | 5\% | 9\% | 21\% | 22\% |
| 2001 | INTEL |  | 60 | -10\% | -24\% | -21\% | -14\% | -11\% | -6\% | 5\% | 9\% |
| 2002 | INTEL |  | 87 | -10\% | -28\% | -21\% | -15\% | -10\% | -4\% | 2\% | 4\% |
| 2003 | INTEL |  | 133 | 22\% | -1\% | 5\% | 16\% | 22\% | 27\% | 39\% | 46\% |
| 2004 | INTEL |  | 154 | -3\% | -21\% | -13\% | -6\% | -4\% | -1\% | 7\% | 40\% |
| 2005 | INTEL |  | 216 | 8\% | -7\% | -3\% | 3\% | 7\% | 11\% | 22\% | 34\% |
| 2006 | INTEL |  | 192 | 4\% | -9\% | -3\% | 0\% | 2\% | 7\% | 15\% | 29\% |
| 2007 | INTEL |  | 178 | 8\% | -14\% | -1\% | 6\% | 8\% | 12\% | 17\% | 26\% |
| 2008 | INTEL |  | 160 | 4\% | -12\% | -4\% | 0\% | 4\% | 7\% | 12\% | 30\% |
| 2009 | INTEL |  | 133 | 5\% | -10\% | -5\% | 1\% | 4\% | 8\% | 16\% | 26\% |
| 2010 | INTEL |  | 126 | 6\% | -7\% | -2\% | 3\% | 5\% | 8\% | 16\% | 19\% |
| 2005 | INTEL |  | 26 | 10\% | 1\% | 1\% | 6\% | 9\% | 16\% | 26\% | 26\% |
| 2006 | INTEL |  | 44 | 3\% | -19\% | -12\% | -1\% | 4\% | 8\% | 13\% | 15\% |
| 2007 | INTEL |  | 52 | 10\% | 2\% | 4\% | 7\% | 9\% | 13\% | 18\% | 19\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 59 | 4\% | -8\% | -5\% | 0\% | 4\% | 7\% | 11\% | 29\% |
| 2009 | INTEL |  | 53 | 5\% | -3\% | -1\% | 1\% | 4\% | 7\% | 13\% | 39\% |
| 2010 | INTEL |  | 56 | 6\% | -1\% | 1\% | 3\% | 4\% | 8\% | 13\% | 15\% |
| 2003 | INTEL |  | 26 | 11\% | -14\% | -11\% | 5\% | 12\% | 17\% | 27\% | 68\% |
| 2001 | INTEL |  | 34 | -6\% | -24\% | -20\% | -14\% | -10\% | 2\% | 10\% | 58\% |
| 2003 | INTEL |  | 28 | 10\% | -16\% | -10\% | 6\% | 8\% | 16\% | 35\% | 35\% |
| 2004 | INTEL |  | 26 | -5\% | -17\% | -11\% | -8\% | -4\% | -2\% | 4\% | 8\% |
| 2001 | INTEL |  | 42 | 2\% | -15\% | -12\% | -7\% | -1\% | 8\% | 19\% | 24\% |
| 2002 | INTEL |  | 35 | 1\% | -20\% | -11\% | -7\% | 0\% | 8\% | 17\% | 26\% |
| 2001 | INTEL |  | 155 | -1\% | -19\% | -14\% | -10\% | -6\% | 7\% | 26\% | 33\% |
| 2002 | INTEL |  | 128 | -1\% | -16\% | -14\% | -7\% | -3\% | 2\% | 16\% | 26\% |
| 2003 | INTEL |  | 92 | 13\% | -8\% | -1\% | 8\% | 12\% | 19\% | 26\% | 36\% |
| 2004 | INTEL |  | 74 | 2\% | -9\% | -8\% | -3\% | 1\% | 6\% | 13\% | 15\% |
| 2005 | INTEL |  | 69 | 13\% | -6\% | -4\% | 8\% | 12\% | 20\% | 26\% | 32\% |
| 2006 | INTEL |  | 56 | 9\% | -5\% | -3\% | 1\% | 6\% | 15\% | 29\% | 33\% |
| 2007 | INTEL |  | 47 | 14\% | -2\% | 6\% | 8\% | 12\% | 20\% | 26\% | 29\% |
| 2008 | INTEL |  | 42 | 2\% | -10\% | -7\% | -2\% | 1\% | 3\% | 22\% | 24\% |
| 2009 | INTEL |  | 41 | 14\% | -1\% | 3\% | 9\% | 11\% | 19\% | 27\% | 29\% |
| 2010 | INTEL |  | 41 | 12\% | 1\% | 2\% | 4\% | 9\% | 18\% | 29\% | 33\% |
| 2001 | INTEL |  | 192 | -10\% | -39\% | -24\% | -19\% | -13\% | -5\% | 9\% | 50\% |
| 2002 | INTEL |  | 166 | -8\% | -36\% | -19\% | -15\% | -8\% | -2\% | 7\% | 16\% |
| 2003 | INTEL |  | 118 | 12\% | -9\% | -3\% | 6\% | 11\% | 17\% | 27\% | 63\% |
| 2004 | INTEL |  | 84 | -2\% | -17\% | -13\% | -6\% | -2\% | 0\% | 9\% | 30\% |
| 2005 | INTEL |  | 77 | 10\% | -2\% | 1\% | 6\% | 9\% | 14\% | 26\% | 31\% |
| 2006 | INTEL |  | 75 | 3\% | -11\% | -9\% | -1\% | 2\% | 7\% | 19\% | 21\% |
| 2007 | INTEL |  | 67 | 10\% | -11\% | 2\% | 6\% | 9\% | 14\% | 23\% | 44\% |
| 2008 | INTEL |  | 68 | 3\% | -11\% | -4\% | -1\% | 3\% | 7\% | 13\% | 25\% |
| 2009 | INTEL |  | 62 | 6\% | -3\% | -1\% | 3\% | 6\% | 8\% | 15\% | 22\% |
| 2010 | INTEL |  | 62 | 8\% | -3\% | 1\% | 4\% | 5\% | 11\% | 21\% | 31\% |
| 2001 | INTEL |  | 127 | -8\% | -45\% | -25\% | -15\% | -11\% | 0\% | 16\% | 40\% |
| 2002 | INTEL |  | 123 | -11\% | -45\% | -30\% | -18\% | -9\% | -4\% | 5\% | 11\% |
| 2003 | INTEL |  | 103 | 11\% | -18\% | -5\% | 7\% | 10\% | 16\% | 24\% | 42\% |
| 2004 | INTEL |  | 96 | -5\% | -28\% | -13\% | -9\% | -4\% | -1\% | 8\% | 12\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 88 | 12\% | -3\% | 3\% | 7\% | 9\% | 18\% | 27\% | 38\% |
| 2006 | INTEL |  | 81 | 4\% | -14\% | -7\% | -1\% | 4\% | 9\% | 17\% | 33\% |
| 2007 | INTEL |  | 66 | 14\% | 2\% | 4\% | 9\% | 12\% | 17\% | 29\% | 34\% |
| 2008 | INTEL |  | 65 | 5\% | -5\% | -4\% | 0\% | 3\% | 7\% | 25\% | 27\% |
| 2009 | INTEL |  | 63 | 7\% | -3\% | -2\% | 2\% | 6\% | 11\% | 20\% | 35\% |
| 2010 | INTEL |  | 63 | 9\% | -3\% | 2\% | 5\% | 6\% | 11\% | 20\% | 26\% |
| 2001 | INTEL |  | 110 | -11\% | -42\% | -28\% | -18\% | -13\% | -6\% | 12\% | 39\% |
| 2002 | INTEL |  | 101 | -12\% | -49\% | -42\% | -17\% | -10\% | -5\% | 5\% | 31\% |
| 2003 | INTEL |  | 87 | 12\% | -20\% | -8\% | 1\% | 12\% | 21\% | 33\% | 78\% |
| 2004 | INTEL |  | 65 | -4\% | -37\% | -15\% | -8\% | -4\% | 0\% | 8\% | 16\% |
| 2005 | INTEL |  | 48 | 11\% | -3\% | -2\% | 6\% | 10\% | 14\% | 19\% | 63\% |
| 2006 | INTEL |  | 49 | 2\% | -16\% | -9\% | -4\% | 1\% | 7\% | 13\% | 28\% |
| 2007 | INTEL |  | 27 | 15\% | -6\% | 5\% | 12\% | 15\% | 17\% | 22\% | 31\% |
| 2008 | INTEL |  | 30 | 9\% | -3\% | -1\% | 4\% | 8\% | 12\% | 23\% | 32\% |
| 2009 | INTEL |  | 26 | 5\% | -8\% | -5\% | 2\% | 5\% | 9\% | 12\% | 14\% |
| 2010 | INTEL |  | 30 | 9\% | -2\% | 1\% | 5\% | 7\% | 10\% | 28\% | 37\% |
| 2001 | INTEL |  | 30 | -1\% | -18\% | -17\% | -14\% | -2\% | 3\% | 28\% | 50\% |
| 2002 | INTEL |  | 27 | -16\% | -62\% | -40\% | -33\% | -21\% | -10\% | 22\% | 83\% |
| 2001 | INTEL |  | 27 | 0\% | -17\% | -17\% | -8\% | -3\% | 6\% | 12\% | 27\% |
| 2001 | INTEL |  | 115 | -3\% | -23\% | -14\% | -9\% | -6\% | 1\% | 17\% | 44\% |
| 2002 | INTEL |  | 91 | -3\% | -19\% | -17\% | -8\% | -4\% | 0\% | 14\% | 40\% |
| 2003 | INTEL |  | 58 | 10\% | -8\% | -5\% | 4\% | 9\% | 14\% | 25\% | 26\% |
| 2004 | INTEL |  | 43 | 0\% | -8\% | -8\% | -5\% | -1\% | 4\% | 8\% | 8\% |
| 2005 | INTEL |  | 35 | 8\% | 0\% | 1\% | 3\% | 5\% | 12\% | 21\% | 25\% |
| 2006 | INTEL |  | 35 | 1\% | -13\% | -6\% | 0\% | 1\% | 4\% | 8\% | 9\% |
| 2007 | INTEL |  | 28 | 12\% | 3\% | 3\% | 6\% | 10\% | 15\% | 25\% | 33\% |
| 2008 | INTEL |  | 29 | 0\% | -8\% | -7\% | -3\% | -1\% | 3\% | 8\% | 9\% |
| $2009$ | INTEL |  | 28 | 12\% | -1\% | 5\% | 7\% | 9\% | 14\% | 24\% | 32\% |
| 2010 | INTEL |  | 26 | 6\% | -2\% | -1\% | 4\% | 4\% | 6\% | 21\% | 21\% |
| 2001 | INTEL |  | 83 | -8\% | -21\% | -19\% | -15\% | -12\% | -2\% | 8\% | 18\% |
| 2002 | INTEL |  | 70 | -4\% | -26\% | -22\% | -11\% | -4\% | 3\% | 14\% | 19\% |
| 2003 | INTEL |  | 54 | 10\% | -12\% | -1\% | 6\% | 10\% | 16\% | 22\% | 24\% |
| 2004 | INTEL |  | 61 | -4\% | -21\% | -12\% | -7\% | -5\% | 0\% | 5\% | 12\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 57 | 7\% | -7\% | -2\% | 3\% | 6\% | 11\% | 16\% | 18\% |
| 2006 | INTEL |  | 64 | 3\% | -10\% | -9\% | 0\% | 2\% | 8\% | 15\% | 21\% |
| 2007 | INTEL |  | 49 | 9\% | -4\% | 4\% | 7\% | 8\% | 12\% | 20\% | 26\% |
| 2008 | INTEL |  | 42 | 2\% | -8\% | -5\% | -1\% | 1\% | 5\% | 11\% | 12\% |
| 2009 | INTEL |  | 40 | 7\% | -12\% | -4\% | 2\% | 7\% | 11\% | 17\% | 21\% |
| 2010 | INTEL |  | 43 | 6\% | -5\% | 0\% | 3\% | 5\% | 9\% | 16\% | 28\% |
| 2001 | INTEL |  | 67 | -7\% | -45\% | -31\% | -16\% | -12\% | 2\% | 26\% | 35\% |
| 2002 | INTEL |  | 63 | -9\% | -48\% | -35\% | -17\% | -6\% | -1\% | 9\% | 16\% |
| 2003 | INTEL |  | 60 | 12\% | -6\% | -5\% | 7\% | 11\% | 18\% | 26\% | 31\% |
| 2004 | INTEL |  | 56 | -3\% | -20\% | -11\% | -7\% | -4\% | -1\% | 8\% | 9\% |
| 2005 | INTEL |  | 46 | 6\% | -7\% | -5\% | 4\% | 5\% | 10\% | 17\% | 20\% |
| 2006 | INTEL |  | 43 | 1\% | -9\% | -8\% | -4\% | -1\% | 6\% | 14\% | 15\% |
| 2007 | INTEL |  | 46 | 10\% | -1\% | 1\% | 8\% | 10\% | 13\% | 19\% | 21\% |
| 2008 | INTEL |  | 47 | 7\% | -4\% | -1\% | 3\% | 6\% | 10\% | 18\% | 20\% |
| 2009 | INTEL |  | 43 | 4\% | -6\% | -4\% | 1\% | 3\% | 6\% | 14\% | 17\% |
| 2010 | INTEL |  | 41 | 6\% | -2\% | -1\% | 4\% | 4\% | 8\% | 15\% | 18\% |
| 2001 | INTEL |  | 29 | -10\% | -40\% | -19\% | -15\% | -13\% | -4\% | 6\% | 10\% |
| 2002 | INTEL |  | 28 | -10\% | -32\% | -29\% | -15\% | -8\% | -5\% | 4\% | 21\% |
| 2003 | INTEL |  | 28 | 9\% | -23\% | -7\% | 7\% | 10\% | 13\% | 28\% | 30\% |
| 2004 | INTEL |  | 25 | -6\% | -16\% | -14\% | -11\% | -6\% | -3\% | 2\% | 11\% |
| 2010 | INTEL |  | 27 | 5\% | -5\% | 0\% | 2\% | 4\% | 7\% | 11\% | 11\% |
| 2002 | INTEL |  | 28 | 5\% | -11\% | -10\% | -1\% | 5\% | 13\% | 15\% | 16\% |
| 2003 | INTEL |  | 35 | 13\% | -5\% | -3\% | 7\% | 14\% | 19\% | 25\% | 31\% |
| 2004 | INTEL |  | 36 | 2\% | -8\% | -6\% | -3\% | -1\% | 5\% | 29\% | 30\% |
| 2005 | INTEL |  | 63 | 14\% | -3\% | 3\% | 8\% | 16\% | 20\% | 27\% | 33\% |
| 2006 | INTEL |  | 37 | 8\% | -7\% | -3\% | 2\% | 6\% | 10\% | 28\% | 39\% |
| 2007 | INTEL |  | 30 | 10\% | 2\% | 4\% | 6\% | 8\% | 11\% | 21\% | 26\% |
| 2008 | INTEL |  | 29 | 1\% | -4\% | -3\% | -1\% | 1\% | 4\% | 9\% | 15\% |
| 2009 | INTEL |  | 28 | 13\% | 2\% | 6\% | 9\% | 10\% | 15\% | 30\% | 36\% |
| 2001 | INTEL |  | 34 | -4\% | -20\% | -16\% | -12\% | -8\% | 0\% | 17\% | 41\% |
| 2002 | INTEL |  | 39 | -1\% | -18\% | -16\% | -11\% | -4\% | 2\% | 54\% | 59\% |
| 2003 | INTEL |  | 54 | 11\% | -6\% | -3\% | 7\% | 10\% | 17\% | 24\% | 33\% |
| 2004 | INTEL |  | 59 | -3\% | -23\% | -15\% | -5\% | -4\% | 0\% | 6\% | 15\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 53 | 8\% | -4\% | 0\% | 2\% | 6\% | 12\% | 30\% | 32\% |
| 2006 | INTEL |  | 40 | 9\% | -9\% | 0\% | 4\% | 8\% | 11\% | 22\% | 25\% |
| 2007 | INTEL |  | 31 | 8\% | -2\% | -1\% | 3\% | 9\% | 12\% | 16\% | 17\% |
| 2008 | INTEL |  | 27 | 5\% | -7\% | -4\% | 1\% | 5\% | 11\% | 14\% | 20\% |
| 2009 | INTEL |  | 27 | 5\% | -6\% | -5\% | 0\% | 4\% | 8\% | 15\% | 16\% |
| 2010 | INTEL |  | 30 | 7\% | 0\% | 0\% | 4\% | 4\% | 10\% | 16\% | 18\% |
| 2001 | INTEL |  | 47 | -11\% | -43\% | -39\% | -16\% | -12\% | -5\% | 6\% | 36\% |
| 2002 | INTEL |  | 62 | -11\% | -39\% | -38\% | -16\% | -8\% | -4\% | 8\% | 21\% |
| 2003 | INTEL |  | 98 | 15\% | -20\% | -15\% | 4\% | 12\% | 21\% | 79\% | 83\% |
| 2004 | INTEL |  | 123 | -4\% | -45\% | -27\% | -12\% | -4\% | 1\% | 31\% | 46\% |
| 2005 | INTEL |  | 152 | 10\% | -6\% | -2\% | 5\% | 8\% | 14\% | 31\% | 39\% |
| 2006 | INTEL |  | 161 | 7\% | -13\% | -4\% | 2\% | 7\% | 11\% | 18\% | 20\% |
| 2007 | INTEL |  | 139 | 11\% | -1\% | 4\% | 7\% | 10\% | 15\% | 22\% | 28\% |
| 2008 | INTEL |  | 121 | 4\% | -11\% | -5\% | 0\% | 4\% | 7\% | 16\% | 25\% |
| 2009 | INTEL |  | 124 | 10\% | -4\% | 0\% | 6\% | 10\% | 14\% | 19\% | 27\% |
| 2010 | INTEL |  | 137 | 9\% | -4\% | 3\% | 5\% | 9\% | 13\% | 17\% | 28\% |
| 2001 | INTEL |  | 46 | -7\% | -50\% | -45\% | -15\% | -11\% | 5\% | 18\% | 45\% |
| 2002 | INTEL |  | 36 | -6\% | -39\% | -29\% | -16\% | -8\% | -2\% | 34\% | 59\% |
| 2003 | INTEL |  | 46 | 11\% | -26\% | -21\% | 8\% | 12\% | 18\% | 31\% | 33\% |
| 2004 | INTEL |  | 56 | -6\% | -17\% | -14\% | -11\% | -6\% | -3\% | 4\% | 5\% |
| 2005 | INTEL |  | 53 | 11\% | -4\% | 2\% | 5\% | 9\% | 12\% | 38\% | 45\% |
| 2006 | INTEL |  | 44 | 4\% | -14\% | -8\% | -1\% | 2\% | 7\% | 16\% | 44\% |
| 2007 | INTEL |  | 46 | 13\% | -17\% | 5\% | 9\% | 11\% | 16\% | 44\% | 49\% |
| 2008 | INTEL |  | 45 | 5\% | -22\% | -6\% | 1\% | 5\% | 9\% | 20\% | 24\% |
| 2009 | INTEL |  | 45 | 5\% | -12\% | -5\% | 2\% | 7\% | 9\% | 16\% | 16\% |
| 2010 | INTEL |  | 61 | 7\% | -2\% | 0\% | 4\% | 6\% | 11\% | 16\% | 20\% |
| 2008 | INTEL |  | 26 | 5\% | -9\% | -3\% | 1\% | 3\% | 7\% | 22\% | 25\% |
| 2009 | INTEL |  | 29 | 13\% | -1\% | 4\% | 10\% | 12\% | 15\% | 22\% | 39\% |
| 2010 | INTEL |  | 35 | 11\% | -2\% | 1\% | 5\% | 7\% | 19\% | 28\% | 31\% |
| 2005 | INTEL |  | 39 | 8\% | -9\% | -4\% | 5\% | 7\% | 11\% | 21\% | 25\% |
| 2006 | INTEL |  | 34 | 5\% | -9\% | -9\% | 1\% | 2\% | 9\% | 19\% | 20\% |
| 2007 | INTEL |  | 32 | 11\% | 0\% | 1\% | 6\% | 8\% | 14\% | 28\% | 34\% |
| 2008 | INTEL |  | 29 | 1\% | -12\% | -10\% | -1\% | 0\% | 5\% | 18\% | 26\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 34 | 8\% | -1\% | 0\% | 4\% | 8\% | 10\% | 18\% | 22\% |
| 2002 | INTEL |  | 26 | -9\% | -36\% | -20\% | -15\% | -7\% | -2\% | 3\% | 4\% |
| 2003 | INTEL |  | 29 | 7\% | -16\% | -14\% | 5\% | 8\% | 10\% | 18\% | 34\% |
| 2004 | INTEL |  | 26 | -4\% | -18\% | -12\% | -8\% | -4\% | 1\% | 6\% | 8\% |
| 2005 | INTEL |  | 55 | 11\% | -6\% | -3\% | 4\% | 9\% | 19\% | 25\% | 32\% |
| 2006 | INTEL |  | 43 | 5\% | -4\% | -3\% | 0\% | 2\% | 9\% | 17\% | 18\% |
| 2007 | INTEL |  | 39 | 12\% | 2\% | 3\% | 8\% | 11\% | 15\% | 25\% | 25\% |
| 2008 | INTEL |  | 32 | 5\% | -6\% | -4\% | 1\% | 5\% | 8\% | 14\% | 26\% |
| 2009 | INTEL |  | 30 | 6\% | -4\% | -2\% | 4\% | 6\% | 8\% | 13\% | 17\% |
| 2010 | INTEL |  | 30 | 10\% | 1\% | 3\% | 4\% | 8\% | 15\% | 26\% | 26\% |
| 2005 | INTEL |  | 25 | 9\% | -3\% | -3\% | 5\% | 8\% | 14\% | 25\% | 25\% |
| 2006 | INTEL |  | 26 | 2\% | -14\% | -5\% | -4\% | 3\% | 8\% | 11\% | 14\% |
| 2006 | INTEL |  | 25 | -4\% | -28\% | -19\% | -7\% | -4\% | 1\% | 3\% | 12\% |
| 2007 | INTEL |  | 51 | 14\% | -18\% | 5\% | 9\% | 14\% | 16\% | 25\% | 56\% |
| 2008 | INTEL |  | 62 | 7\% | -26\% | -18\% | 4\% | 8\% | 12\% | 21\% | 40\% |
| 2009 | INTEL |  | 50 | 5\% | -9\% | -8\% | -2\% | 4\% | 9\% | 18\% | 47\% |
| 2010 | INTEL |  | 60 | 11\% | -2\% | 1\% | 8\% | 10\% | 13\% | 23\% | 27\% |
| 2001 | INTEL |  | 69 | -1\% | -60\% | -32\% | -18\% | -13\% | 5\% | 76\% | 104\% |
| 2002 | INTEL |  | 219 | -15\% | -65\% | -53\% | -27\% | -16\% | -7\% | 35\% | 88\% |
| 2003 | INTEL |  | 360 | 23\% | -43\% | -31\% | 12\% | 19\% | 27\% | 119\% | 181\% |
| 2004 | INTEL |  | 427 | -6\% | -55\% | -46\% | -10\% | -4\% | 2\% | 18\% | 91\% |
| 2005 | INTEL |  | 485 | 21\% | -6\% | 3\% | 10\% | 14\% | 22\% | 70\% | 186\% |
| 2006 | INTEL |  | 547 | 1\% | -38\% | -29\% | -8\% | -3\% | 5\% | 52\% | 92\% |
| 2007 | INTEL |  | 583 | 20\% | -25\% | -18\% | 13\% | 17\% | 24\% | 64\% | 116\% |
| 2008 | INTEL |  | 591 | 10\% | -37\% | -18\% | 3\% | 11\% | 18\% | 29\% | 60\% |
| 2009 | INTEL |  | 583 | 0\% | -24\% | -14\% | -5\% | 0\% | 6\% | 14\% | 43\% |
| 2010 | INTEL |  | 582 | 14\% | -4\% | 6\% | 11\% | 13\% | 17\% | 25\% | 69\% |
| 2001 | INTEL |  | 37 | -12\% | -59\% | -33\% | -23\% | -18\% | -2\% | 15\% | 76\% |
| 2002 | INTEL |  | 51 | -7\% | -66\% | -49\% | -23\% | -12\% | -2\% | 62\% | 79\% |
| 2004 | INTEL |  | 99 | -6\% | -59\% | -51\% | -9\% | -3\% | 2\% | 25\% | 37\% |
| 2005 | INTEL |  | 115 | 31\% | -4\% | 8\% | 14\% | 18\% | 37\% | 92\% | 147\% |
| 2006 | INTEL |  | 127 | 4\% | -37\% | -33\% | -8\% | 0\% | 9\% | 65\% | 91\% |
| 2007 | INTEL |  | 145 | 22\% | -24\% | -16\% | 17\% | 22\% | 31\% | 53\% | 101\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 168 | 18\% | -29\% | -13\% | 6\% | 18\% | 29\% | 49\% | 68\% |
| 2009 | INTEL |  | 160 | -5\% | -33\% | -25\% | -13\% | -7\% | 1\% | 18\% | 36\% |
| 2010 | INTEL |  | 178 | 13\% | -6\% | 0\% | 9\% | 11\% | 15\% | 27\% | 68\% |
| 2001 | INTEL |  | 400 | -1\% | -26\% | -12\% | -9\% | -3\% | 5\% | 13\% | 51\% |
| 2002 | INTEL |  | 316 | -2\% | -25\% | -18\% | -7\% | -3\% | 4\% | 13\% | 39\% |
| 2003 | INTEL |  | 206 | 11\% | -8\% | -2\% | 6\% | 11\% | 17\% | 25\% | 42\% |
| 2004 | INTEL |  | 172 | 2\% | -19\% | -9\% | -2\% | 1\% | 6\% | 13\% | 28\% |
| 2005 | INTEL |  | 164 | 12\% | -4\% | 0\% | 6\% | 12\% | 17\% | 24\% | 42\% |
| 2006 | INTEL |  | 161 | 11\% | -7\% | -3\% | 4\% | 12\% | 17\% | 23\% | 39\% |
| 2007 | INTEL |  | 114 | 14\% | -3\% | 1\% | 7\% | 16\% | 21\% | 27\% | 33\% |
| 2008 | INTEL |  | 114 | 2\% | -9\% | -6\% | -2\% | 1\% | 6\% | 10\% | 18\% |
| 2009 | INTEL |  | 129 | 16\% | 2\% | 5\% | 10\% | 16\% | 22\% | 29\% | 30\% |
| 2010 | INTEL |  | 98 | 16\% | 0\% | 3\% | 6\% | 18\% | 21\% | 31\% | 38\% |
| 2001 | INTEL |  | 515 | 0\% | -27\% | -14\% | -9\% | -3\% | 6\% | 25\% | 74\% |
| 2002 | INTEL |  | 548 | -4\% | -29\% | -16\% | -9\% | -5\% | 0\% | 12\% | 33\% |
| 2003 | INTEL |  | 554 | 11\% | -9\% | -2\% | 6\% | 10\% | 15\% | 23\% | 46\% |
| 2004 | INTEL |  | 577 | -1\% | -19\% | -10\% | -5\% | -3\% | 3\% | 11\% | 33\% |
| 2005 | INTEL |  | 450 | 13\% | -6\% | 0\% | 6\% | 12\% | 19\% | 26\% | 46\% |
| 2006 | INTEL |  | 355 | 7\% | -11\% | -5\% | 1\% | 5\% | 13\% | 21\% | 29\% |
| 2007 | INTEL |  | 314 | 11\% | -5\% | 0\% | 6\% | 9\% | 14\% | 24\% | 34\% |
| 2008 | INTEL |  | 333 | 1\% | -10\% | -5\% | -2\% | 0\% | 3\% | 8\% | 24\% |
| 2009 | INTEL |  | 342 | 13\% | -4\% | 2\% | 7\% | 10\% | 19\% | 26\% | 34\% |
| 2010 | INTEL |  | 332 | 11\% | -3\% | 2\% | 4\% | 6\% | 19\% | 28\% | 53\% |
| 2001 | INTEL |  | 397 | -4\% | -27\% | -21\% | -12\% | -7\% | 2\% | 16\% | 61\% |
| 2002 | INTEL |  | 402 | -7\% | -40\% | -23\% | -13\% | -7\% | -2\% | 8\% | 64\% |
| 2003 | INTEL |  | 392 | 11\% | -22\% | -3\% | 7\% | 10\% | 16\% | 23\% | 63\% |
| 2004 | INTEL |  | 407 | -2\% | -29\% | -14\% | -7\% | -4\% | 0\% | 9\% | 49\% |
| 2005 | INTEL |  | 312 | 13\% | -7\% | 0\% | 7\% | 12\% | 18\% | 30\% | 39\% |
| 2006 | INTEL |  | 383 | 6\% | -12\% | -4\% | 1\% | 4\% | 9\% | 19\% | 33\% |
| 2007 | INTEL |  | 347 | 10\% | -7\% | 2\% | 6\% | 9\% | 14\% | 20\% | 31\% |
| 2008 | INTEL |  | 305 | 4\% | -16\% | -5\% | 0\% | 3\% | 7\% | 13\% | 32\% |
| 2009 | INTEL |  | 322 | 7\% | -8\% | -3\% | 2\% | 7\% | 10\% | 19\% | 43\% |
| 2010 | INTEL |  | 328 | 8\% | -8\% | 0\% | 4\% | 6\% | 11\% | 20\% | 43\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | INTEL |  | 652 | -9\% | -52\% | -26\% | -18\% | -11\% | -2\% | 24\% | 58\% |
| 2002 | INTEL |  | 726 | -12\% | -50\% | -37\% | -21\% | -11\% | -3\% | 9\% | 76\% |
| 2003 | INTEL |  | 722 | 14\% | -28\% | -14\% | 6\% | 11\% | 19\% | 42\% | 103\% |
| 2004 | INTEL |  | 599 | -3\% | -36\% | -22\% | -11\% | -5\% | 1\% | 42\% | 46\% |
| 2005 | INTEL |  | 301 | 13\% | -8\% | 0\% | 7\% | 11\% | 18\% | 35\% | 60\% |
| 2006 | INTEL |  | 319 | 6\% | -18\% | -5\% | 1\% | 6\% | 11\% | 17\% | 40\% |
| 2007 | INTEL |  | 304 | 12\% | 0\% | 3\% | 8\% | 11\% | 15\% | 23\% | 53\% |
| 2008 | INTEL |  | 332 | 5\% | -12\% | -5\% | 0\% | 4\% | 8\% | 15\% | 35\% |
| 2009 | INTEL |  | 329 | 7\% | -10\% | -2\% | 2\% | 7\% | 11\% | 18\% | 42\% |
| 2010 | INTEL |  | 388 | 9\% | -6\% | 0\% | 4\% | 7\% | 13\% | 24\% | 45\% |
| 2001 | INTEL |  | 255 | -6\% | -54\% | -32\% | -15\% | -11\% | 1\% | 44\% | 77\% |
| 2002 | INTEL |  | 291 | -10\% | -47\% | -42\% | -16\% | -10\% | -4\% | 28\% | 71\% |
| 2003 | INTEL |  | 277 | 13\% | -31\% | -10\% | 8\% | 13\% | 21\% | 32\% | 114\% |
| 2004 | INTEL |  | 211 | -3\% | -49\% | -15\% | -8\% | -5\% | -1\% | 13\% | 56\% |
| 2005 | INTEL |  | 133 | 14\% | -9\% | -1\% | 8\% | 12\% | 17\% | 40\% | 56\% |
| 2006 | INTEL |  | 139 | 1\% | -24\% | -14\% | -4\% | 1\% | 5\% | 13\% | 39\% |
| 2007 | INTEL |  | 103 | 12\% | -13\% | 1\% | 9\% | 11\% | 17\% | 23\% | 28\% |
| 2008 | INTEL |  | 111 | 4\% | -16\% | -9\% | 0\% | 4\% | 9\% | 17\% | 37\% |
| 2009 | INTEL |  | 106 | 5\% | -8\% | -6\% | 0\% | 5\% | 9\% | 13\% | 25\% |
| 2010 | INTEL |  | 110 | 7\% | -8\% | -2\% | 3\% | 5\% | 9\% | 17\% | 39\% |
| 2001 | INTEL |  | 107 | -3\% | -41\% | -32\% | -16\% | -10\% | 5\% | 58\% | 85\% |
| 2002 | INTEL |  | 105 | -11\% | -51\% | -45\% | -20\% | -12\% | -5\% | 27\% | 78\% |
| 2003 | INTEL |  | 97 | 18\% | -24\% | -14\% | 10\% | 15\% | 26\% | 35\% | 145\% |
| 2004 | INTEL |  | 83 | -4\% | -32\% | -18\% | -8\% | -5\% | 1\% | 11\% | 68\% |
| 2005 | INTEL |  | 45 | 13\% | -12\% | -4\% | 7\% | 10\% | 15\% | 45\% | 63\% |
| 2006 | INTEL |  | 35 | 0\% | -25\% | -24\% | -5\% | -2\% | 6\% | 15\% | 43\% |
| 2007 | INTEL |  | 27 | 13\% | -20\% | -10\% | 11\% | 15\% | 18\% | 22\% | 23\% |
| 2008 | INTEL |  | 39 | 10\% | -12\% | -12\% | 2\% | 8\% | 14\% | 45\% | 48\% |
| 2009 | INTEL |  | 40 | 3\% | -22\% | -10\% | -1\% | 2\% | 10\% | 25\% | 25\% |
| 2010 | INTEL |  | 31 | 9\% | -1\% | 0\% | 5\% | 8\% | 10\% | 16\% | 53\% |
| 2005 | INTEL |  | 34 | 14\% | -1\% | 1\% | 8\% | 16\% | 20\% | 26\% | 31\% |
| 2006 | INTEL |  | 47 | 13\% | -3\% | -2\% | 7\% | 13\% | 18\% | 26\% | 32\% |
| 2007 | INTEL |  | 38 | 13\% | -2\% | 1\% | 7\% | 13\% | 21\% | 25\% | 26\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 25 | -1\% | -8\% | -6\% | -4\% | -2\% | 0\% | 4\% | 6\% |
| 2009 | INTEL |  | 25 | 13\% | 3\% | 6\% | 9\% | 12\% | 19\% | 23\% | 24\% |
| 2005 | INTEL |  | 122 | 11\% | -9\% | 1\% | 6\% | 10\% | 16\% | 25\% | 29\% |
| 2006 | INTEL |  | 142 | 7\% | -9\% | -5\% | 1\% | 6\% | 12\% | 21\% | 35\% |
| 2007 | INTEL |  | 144 | 11\% | -1\% | 3\% | 6\% | 9\% | 14\% | 25\% | 29\% |
| 2008 | INTEL |  | 140 | 1\% | -8\% | -5\% | -1\% | 2\% | 4\% | 8\% | 14\% |
| 2009 | INTEL |  | 130 | 13\% | -1\% | 2\% | 7\% | 12\% | 18\% | 27\% | 42\% |
| 2010 | INTEL |  | 96 | 12\% | -1\% | 2\% | 5\% | 9\% | 18\% | 25\% | 30\% |
| 2005 | INTEL |  | 128 | 10\% | -9\% | -4\% | 6\% | 10\% | 15\% | 23\% | 31\% |
| 2006 | INTEL |  | 157 | 5\% | -9\% | -4\% | 1\% | 4\% | 9\% | 17\% | 31\% |
| 2007 | INTEL |  | 175 | 9\% | -15\% | -1\% | 5\% | 8\% | 12\% | 22\% | 45\% |
| 2008 | INTEL |  | 153 | 4\% | -10\% | -4\% | 0\% | 4\% | 7\% | 14\% | 22\% |
| 2009 | INTEL |  | 155 | 7\% | -7\% | -4\% | 2\% | 6\% | 12\% | 19\% | 32\% |
| 2010 | INTEL |  | 161 | 7\% | -11\% | 0\% | 4\% | 6\% | 11\% | 19\% | 24\% |
| 2004 | INTEL |  | 151 | -5\% | -48\% | -29\% | -15\% | -4\% | 0\% | 36\% | 46\% |
| 2005 | INTEL |  | 560 | 12\% | -16\% | -4\% | 5\% | 10\% | 17\% | 35\% | 64\% |
| 2006 | INTEL |  | 640 | 6\% | -14\% | -5\% | 1\% | 6\% | 10\% | 18\% | 60\% |
| 2007 | INTEL |  | 651 | 14\% | -5\% | 4\% | 9\% | 12\% | 17\% | 34\% | 60\% |
| 2008 | INTEL |  | 427 | 5\% | -13\% | -6\% | 0\% | 4\% | 8\% | 17\% | 55\% |
| 2009 | INTEL |  | 537 | 13\% | -10\% | 0\% | 7\% | 13\% | 19\% | 23\% | 31\% |
| 2010 | INTEL |  | 513 | 10\% | -6\% | 2\% | 5\% | 8\% | 14\% | 25\% | 39\% |
| 2004 | INTEL |  | 79 | -3\% | -39\% | -17\% | -8\% | -5\% | 2\% | 8\% | 51\% |
| 2005 | INTEL |  | 176 | 14\% | -9\% | 1\% | 7\% | 11\% | 17\% | 43\% | 68\% |
| 2006 | INTEL |  | 260 | 2\% | -26\% | -14\% | -3\% | 0\% | 5\% | 19\% | 54\% |
| 2007 | INTEL |  | 291 | 14\% | -26\% | 1\% | 10\% | 13\% | 17\% | 31\% | 64\% |
| 2008 | INTEL |  | 175 | 5\% | -57\% | -8\% | 1\% | 5\% | 10\% | 18\% | 53\% |
| 2009 | INTEL |  | 166 | 5\% | -8\% | -4\% | 0\% | 4\% | 8\% | 17\% | 29\% |
| 2010 | INTEL |  | 181 | 6\% | -8\% | -1\% | 4\% | 5\% | 8\% | 15\% | 34\% |
| 2005 | INTEL |  | 49 | 13\% | -5\% | 2\% | 7\% | 9\% | 17\% | 32\% | 83\% |
| 2006 | INTEL |  | 73 | 0\% | -29\% | -27\% | -8\% | -1\% | 5\% | 28\% | 78\% |
| 2007 | INTEL |  | 79 | 17\% | -33\% | -16\% | 13\% | 16\% | 19\% | 37\% | 83\% |
| 2008 | INTEL |  | 40 | 8\% | -17\% | -12\% | 3\% | 8\% | 14\% | 24\% | 28\% |
| 2009 | INTEL |  | 37 | 3\% | -23\% | -13\% | -4\% | 1\% | 8\% | 30\% | 43\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | INTEL |  | 35 | 12\% | 3\% | 5\% | 7\% | 10\% | 16\% | 24\% | 24\% |
| 2001 | INTEL |  | 53 | 1\% | -20\% | -11\% | -6\% | -1\% | 7\% | 13\% | 27\% |
| 2002 | INTEL |  | 69 | -2\% | -24\% | -17\% | -9\% | -3\% | 5\% | 13\% | 18\% |
| 2003 | INTEL |  | 62 | 14\% | -8\% | -5\% | 6\% | 14\% | 21\% | 39\% | 49\% |
| 2004 | INTEL |  | 75 | 3\% | -17\% | -10\% | -2\% | 1\% | 8\% | 25\% | 29\% |
| 2005 | INTEL |  | 109 | 12\% | -3\% | 3\% | 8\% | 11\% | 14\% | 26\% | 34\% |
| 2006 | INTEL |  | 93 | 12\% | -6\% | -1\% | 5\% | 12\% | 20\% | 26\% | 33\% |
| 2007 | INTEL |  | 66 | 15\% | -1\% | 1\% | 8\% | 12\% | 22\% | 28\% | 31\% |
| 2008 | INTEL |  | 48 | 1\% | -7\% | -5\% | -2\% | 1\% | 3\% | 10\% | 14\% |
| 2009 | INTEL |  | 48 | 15\% | 4\% | 4\% | 10\% | 14\% | 20\% | 26\% | 28\% |
| 2010 | INTEL |  | 45 | 16\% | -1\% | 3\% | 7\% | 15\% | 25\% | 30\% | 31\% |
| 2001 | INTEL |  | 80 | 2\% | -16\% | -14\% | -8\% | -2\% | 9\% | 28\% | 40\% |
| 2002 | INTEL |  | 134 | -3\% | -29\% | -21\% | -9\% | -3\% | 3\% | 13\% | 25\% |
| 2003 | INTEL |  | 159 | 13\% | -12\% | -2\% | 7\% | 11\% | 19\% | 26\% | 54\% |
| 2004 | INTEL |  | 173 | 5\% | -23\% | -8\% | -2\% | 3\% | 8\% | 25\% | 38\% |
| 2005 | INTEL |  | 270 | 10\% | -9\% | 0\% | 4\% | 8\% | 15\% | 24\% | 31\% |
| 2006 | INTEL |  | 265 | 7\% | -9\% | -6\% | 1\% | 6\% | 12\% | 23\% | 32\% |
| 2007 | INTEL |  | 245 | 13\% | -1\% | 2\% | 7\% | 11\% | 19\% | 27\% | 34\% |
| 2008 | INTEL |  | 194 | 1\% | -9\% | -5\% | -2\% | 1\% | 3\% | 8\% | 25\% |
| 2009 | INTEL |  | 211 | 13\% | -10\% | 2\% | 8\% | 11\% | 18\% | 24\% | 38\% |
| 2010 | INTEL |  | 185 | 12\% | -6\% | 2\% | 5\% | 9\% | 18\% | 29\% | 45\% |
| 2001 | INTEL |  | 77 | -3\% | -38\% | -19\% | -11\% | -5\% | 3\% | 17\% | 44\% |
| 2002 | INTEL |  | 123 | -5\% | -35\% | -22\% | -9\% | -5\% | 1\% | 10\% | 21\% |
| 2003 | INTEL |  | 163 | 11\% | -12\% | -4\% | 6\% | 10\% | 17\% | 25\% | 31\% |
| 2004 | INTEL |  | 174 | 0\% | -20\% | -11\% | -4\% | -1\% | 4\% | 12\% | 46\% |
| 2005 | INTEL |  | 222 | 7\% | -9\% | -5\% | 3\% | 7\% | 12\% | 20\% | 33\% |
| 2006 | INTEL |  | 215 | 4\% | -12\% | -7\% | 0\% | 4\% | 8\% | 14\% | 25\% |
| 2007 | INTEL |  | 214 | 11\% | -11\% | 0\% | 7\% | 11\% | 15\% | 24\% | 42\% |
| 2008 | INTEL |  | 220 | 4\% | -8\% | -4\% | 1\% | 4\% | 6\% | 13\% | 27\% |
| 2009 | INTEL |  | 217 | 7\% | -8\% | -3\% | 3\% | 7\% | 11\% | 16\% | 33\% |
| 2010 | INTEL |  | 232 | 7\% | -9\% | -2\% | 4\% | 5\% | 9\% | 16\% | 50\% |
| 2001 | INTEL |  | 62 | -6\% | -50\% | -24\% | -13\% | -6\% | 1\% | 15\% | 46\% |
| 2002 | INTEL |  | 97 | -8\% | -54\% | -36\% | -13\% | -6\% | 0\% | 8\% | 27\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | INTEL |  | 143 | 13\% | -18\% | -5\% | 8\% | 12\% | 18\% | 27\% | 39\% |
| 2004 | INTEL |  | 174 | 1\% | -21\% | -12\% | -4\% | 0\% | 3\% | 14\% | 48\% |
| 2005 | INTEL |  | 246 | 9\% | -11\% | -2\% | 5\% | 8\% | 13\% | 21\% | 71\% |
| 2006 | INTEL |  | 242 | 3\% | -11\% | -6\% | -2\% | 3\% | 7\% | 13\% | 41\% |
| 2007 | INTEL |  | 227 | 16\% | 0\% | 7\% | 11\% | 14\% | 19\% | 29\% | 64\% |
| 2008 | INTEL |  | 205 | 5\% | -11\% | -4\% | 1\% | 5\% | 8\% | 14\% | 26\% |
| 2009 | INTEL |  | 202 | 7\% | -11\% | -2\% | 2\% | 6\% | 9\% | 21\% | 40\% |
| 2010 | INTEL |  | 211 | 8\% | -4\% | 1\% | 4\% | 6\% | 10\% | 17\% | 45\% |
| 2001 | INTEL |  | 42 | -5\% | -44\% | -25\% | -13\% | -10\% | 2\% | 24\% | 56\% |
| 2002 | INTEL |  | 79 | -12\% | -46\% | -43\% | -16\% | -11\% | -6\% | 3\% | 49\% |
| 2003 | INTEL |  | 106 | 14\% | -23\% | -5\% | 8\% | 12\% | 21\% | 31\% | 37\% |
| 2004 | INTEL |  | 102 | -4\% | -18\% | -15\% | -8\% | -4\% | -1\% | 12\% | 15\% |
| 2005 | INTEL |  | 126 | 11\% | -8\% | -3\% | 6\% | 9\% | 14\% | 25\% | 68\% |
| 2006 | INTEL |  | 133 | 0\% | -20\% | -12\% | -4\% | -1\% | 3\% | 13\% | 46\% |
| 2007 | INTEL |  | 142 | 15\% | -23\% | 1\% | 11\% | 14\% | 18\% | 29\% | 70\% |
| 2008 | INTEL |  | 150 | 6\% | -16\% | -6\% | 2\% | 7\% | 10\% | 16\% | 36\% |
| 2009 | INTEL |  | 142 | 5\% | -11\% | -4\% | 0\% | 4\% | 9\% | 16\% | 41\% |
| 2010 | INTEL |  | 153 | 7\% | -6\% | 1\% | 3\% | 5\% | 10\% | 18\% | 43\% |
| 2002 | INTEL |  | 34 | -7\% | -53\% | -51\% | -18\% | -11\% | 1\% | 56\% | 58\% |
| 2003 | INTEL |  | 36 | 24\% | -31\% | -26\% | 11\% | 18\% | 27\% | 155\% | 194\% |
| 2004 | INTEL |  | 51 | -5\% | -42\% | -18\% | -11\% | -5\% | 1\% | 9\% | 19\% |
| 2005 | INTEL |  | 41 | 14\% | -1\% | 1\% | 6\% | 9\% | 15\% | 58\% | 82\% |
| 2006 | INTEL |  | 49 | -1\% | -23\% | -16\% | -5\% | -2\% | 2\% | 12\% | 40\% |
| 2007 | INTEL |  | 49 | 15\% | -16\% | -2\% | 13\% | 16\% | 20\% | 29\% | 33\% |
| 2008 | INTEL |  | 50 | 8\% | -25\% | -6\% | 4\% | 9\% | 14\% | 20\% | 26\% |
| 2009 | INTEL |  | 49 | 2\% | -9\% | -7\% | -2\% | 1\% | 4\% | 15\% | 26\% |
| 2010 | INTEL |  | 58 | 11\% | -21\% | 0\% | 8\% | 10\% | 14\% | 19\% | 88\% |
| 2001 | INTEL |  | 41 | 0\% | -14\% | -13\% | -9\% | -2\% | 4\% | 35\% | 46\% |
| 2001 | INTEL |  | 83 | 1\% | -14\% | -13\% | -9\% | -2\% | 8\% | 25\% | 48\% |
| 2002 | INTEL |  | 52 | -3\% | -19\% | -16\% | -9\% | -4\% | 2\% | 14\% | 20\% |
| 2003 | INTEL |  | 42 | 12\% | -2\% | -1\% | 5\% | 11\% | 18\% | 32\% | 34\% |
| $2004$ | INTEL |  | 39 | 2\% | -7\% | -5\% | -2\% | 1\% | 3\% | 15\% | 23\% |
| 2005 | INTEL |  | 36 | 8\% | -1\% | 0\% | 3\% | 6\% | 11\% | 25\% | 25\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | INTEL |  | 34 | 3\% | -9\% | -1\% | 1\% | 2\% | 6\% | 9\% | 10\% |
| 2001 | INTEL |  | 89 | -7\% | -23\% | -20\% | -14\% | -11\% | -1\% | 9\% | 49\% |
| 2002 | INTEL |  | 67 | -6\% | -24\% | -18\% | -11\% | -5\% | -2\% | 5\% | 17\% |
| 2003 | INTEL |  | 53 | 8\% | -13\% | -10\% | 5\% | 9\% | 15\% | 19\% | 21\% |
| 2004 | INTEL |  | 44 | -3\% | -19\% | -10\% | -7\% | -4\% | 2\% | 8\% | 9\% |
| 2005 | INTEL |  | 35 | 6\% | -2\% | -1\% | 1\% | 3\% | 11\% | 19\% | 33\% |
| 2006 | INTEL |  | 32 | 4\% | -7\% | -7\% | -1\% | 3\% | 8\% | 16\% | 20\% |
| 2001 | INTEL |  | 87 | -7\% | -51\% | -23\% | -13\% | -8\% | -2\% | 10\% | 45\% |
| 2002 | INTEL |  | 64 | -9\% | -37\% | -29\% | -16\% | -10\% | -3\% | 7\% | 58\% |
| 2003 | INTEL |  | 38 | 17\% | -18\% | -11\% | 8\% | 12\% | 21\% | 96\% | 109\% |
| 2004 | INTEL |  | 32 | -1\% | -34\% | -11\% | -3\% | -1\% | 4\% | 10\% | 13\% |
| 2005 | INTEL |  | 26 | 8\% | -8\% | -8\% | 3\% | 9\% | 12\% | 19\% | 22\% |
| 2001 | INTEL |  | 48 | -8\% | -54\% | -21\% | -15\% | -9\% | -2\% | 7\% | 57\% |
| 2002 | INTEL |  | 38 | -8\% | -26\% | -23\% | -14\% | -9\% | -4\% | 4\% | 38\% |
| 2003 | INTEL |  | 32 | 16\% | -23\% | -18\% | 8\% | 15\% | 22\% | 37\% | 89\% |
| 2003 | INTEL |  | 25 | 34\% | -34\% | -33\% | 13\% | 19\% | 30\% | 169\% | 175\% |
| 2005 | INTEL |  | 29 | 23\% | 8\% | 8\% | 10\% | 13\% | 28\% | 66\% | 66\% |
| 2008 | INTEL |  | 26 | 14\% | -25\% | -19\% | 6\% | 15\% | 24\% | 31\% | 51\% |
| 2009 | INTEL |  | 26 | -2\% | -17\% | -14\% | -9\% | -1\% | 2\% | 14\% | 19\% |
| 2001 | INTEL |  | 53 | -1\% | -43\% | -24\% | -13\% | -8\% | 7\% | 56\% | 71\% |
| 2002 | INTEL |  | 48 | -7\% | -49\% | -45\% | -20\% | -14\% | -2\% | 57\% | 96\% |
| 2003 | INTEL |  | 38 | 18\% | -30\% | -27\% | 3\% | 15\% | 21\% | 161\% | 161\% |
| 2004 | INTEL |  | 41 | -6\% | -39\% | -17\% | -12\% | -5\% | 1\% | 11\% | 12\% |
| 2005 | INTEL |  | 54 | 23\% | 0\% | 2\% | 8\% | 14\% | 20\% | 85\% | 88\% |
| 2006 | INTEL |  | 27 | 2\% | -24\% | -24\% | -4\% | 1\% | 2\% | 47\% | 47\% |
| 2008 | INTEL |  | 25 | 12\% | -2\% | 0\% | 7\% | 9\% | 16\% | 23\% | 32\% |
| 2002 | INTEL |  | 27 | -6\% | -57\% | -53\% | -26\% | -13\% | -4\% | 72\% | 87\% |
| 2003 | INTEL |  | 56 | 38\% | -45\% | -44\% | 13\% | 19\% | 27\% | 149\% | 206\% |
| 2004 | INTEL |  | 55 | -11\% | -58\% | -51\% | -12\% | -6\% | -1\% | 7\% | 9\% |
| 2005 | INTEL |  | 75 | 17\% | 0\% | 5\% | 9\% | 12\% | 16\% | 61\% | 66\% |
| 2006 | INTEL |  | 74 | 0\% | -40\% | -19\% | -8\% | -4\% | 1\% | 43\% | 68\% |
| 2007 | INTEL |  | 101 | 19\% | -25\% | -17\% | 12\% | 17\% | 26\% | 73\% | 92\% |
| 2008 | INTEL |  | 88 | 9\% | -25\% | -17\% | 3\% | 10\% | 17\% | 26\% | 53\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 84 | -1\% | -26\% | -13\% | -5\% | 0\% | 6\% | 12\% | 23\% |
| 2010 | INTEL |  | 82 | 12\% | -3\% | 5\% | 10\% | 11\% | 15\% | 21\% | 32\% |
| 2005 | INTEL |  | 46 | 14\% | -3\% | 0\% | 7\% | 14\% | 21\% | 25\% | 28\% |
| 2006 | INTEL |  | 61 | 9\% | -3\% | 0\% | 3\% | 6\% | 14\% | 23\% | 28\% |
| 2007 | INTEL |  | 53 | 14\% | 3\% | 5\% | 7\% | 11\% | 19\% | 27\% | 30\% |
| 2008 | INTEL |  | 46 | 0\% | -5\% | -4\% | -2\% | 0\% | 2\% | 8\% | 13\% |
| 2009 | INTEL |  | 47 | 14\% | -4\% | 1\% | 8\% | 13\% | 19\% | 31\% | 37\% |
| 2010 | INTEL |  | 36 | 10\% | 2\% | 3\% | 5\% | 9\% | 14\% | 22\% | 25\% |
| 2004 | INTEL |  | 50 | -3\% | -18\% | -14\% | -6\% | -4\% | -1\% | 11\% | 18\% |
| 2005 | INTEL |  | 140 | 11\% | -2\% | 1\% | 7\% | 10\% | 15\% | 28\% | 35\% |
| 2006 | INTEL |  | 194 | 7\% | -9\% | -3\% | 2\% | 5\% | 12\% | 20\% | 42\% |
| 2007 | INTEL |  | 190 | 11\% | -3\% | 3\% | 6\% | 11\% | 15\% | 21\% | 31\% |
| 2008 | INTEL |  | 154 | 4\% | -12\% | -7\% | 0\% | 4\% | 8\% | 14\% | 29\% |
| 2009 | INTEL |  | 143 | 7\% | -7\% | -2\% | 3\% | 6\% | 11\% | 18\% | 23\% |
| 2010 | INTEL |  | 133 | 7\% | -5\% | 0\% | 4\% | 5\% | 9\% | 19\% | 35\% |
| 2001 | INTEL |  | 80 | -8\% | -54\% | -25\% | -16\% | -11\% | -3\% | 21\% | 61\% |
| 2002 | INTEL |  | 178 | -11\% | -45\% | -33\% | -17\% | -10\% | -4\% | 6\% | 10\% |
| 2003 | INTEL |  | 196 | 12\% | -16\% | -5\% | 7\% | 11\% | 18\% | 26\% | 89\% |
| 2004 | INTEL |  | 202 | -1\% | -17\% | -12\% | -6\% | -3\% | 1\% | 13\% | 48\% |
| 2005 | INTEL |  | 328 | 12\% | -9\% | 1\% | 7\% | 11\% | 16\% | 27\% | 57\% |
| 2006 | INTEL |  | 395 | 3\% | -14\% | -7\% | -2\% | 2\% | 7\% | 17\% | 24\% |
| 2007 | INTEL |  | 406 | 12\% | -5\% | 3\% | 8\% | 11\% | 16\% | 24\% | 60\% |
| 2008 | INTEL |  | 354 | 5\% | -12\% | -4\% | 0\% | 4\% | 7\% | 15\% | 29\% |
| 2009 | INTEL |  | 342 | 6\% | -9\% | -3\% | 2\% | 6\% | 10\% | 17\% | 30\% |
| 2010 | INTEL |  | 318 | 6\% | -4\% | 0\% | 4\% | 5\% | 9\% | 16\% | 28\% |
| 2001 | INTEL |  | 57 | -13\% | -44\% | -43\% | -18\% | -14\% | -6\% | 10\% | 41\% |
| 2002 | INTEL |  | 169 | -9\% | -44\% | -27\% | -16\% | -9\% | -4\% | 5\% | 48\% |
| 2003 | INTEL |  | 229 | 14\% | -28\% | -6\% | 8\% | 13\% | 20\% | 32\% | 114\% |
| 2004 | INTEL |  | 237 | -4\% | -39\% | -15\% | -8\% | -5\% | 0\% | 9\% | 78\% |
| 2005 | INTEL |  | 341 | 13\% | -7\% | 1\% | 8\% | 11\% | 16\% | 27\% | 65\% |
| 2006 | INTEL |  | 418 | 2\% | -26\% | -10\% | -3\% | 0\% | 6\% | 15\% | 56\% |
| 2007 | INTEL |  | 482 | 12\% | -18\% | 2\% | 9\% | 11\% | 15\% | 24\% | 53\% |
| 2008 | INTEL |  | 468 | 6\% | -17\% | -5\% | 2\% | 6\% | 10\% | 18\% | 38\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTEL |  | 441 | 4\% | -30\% | -6\% | 0\% | 4\% | 8\% | 15\% | 28\% |
| 2010 | INTEL |  | 441 | 7\% | -73\% | 0\% | 4\% | 5\% | 9\% | 18\% | 57\% |
| 2001 | INTEL |  | 34 | -10\% | -46\% | -43\% | -18\% | -8\% | 1\% | 23\% | 48\% |
| 2002 | INTEL |  | 68 | -7\% | -47\% | -42\% | -16\% | -9\% | -5\% | 61\% | 85\% |
| 2003 | INTEL |  | 119 | 21\% | -31\% | -18\% | 10\% | 17\% | 29\% | 95\% | 150\% |
| 2004 | INTEL |  | 141 | -5\% | -46\% | -19\% | -10\% | -5\% | 0\% | 12\% | 25\% |
| 2005 | INTEL |  | 207 | 13\% | -34\% | 3\% | 8\% | 11\% | 16\% | 33\% | 61\% |
| 2006 | INTEL |  | 248 | 0\% | -33\% | -19\% | -7\% | -2\% | 4\% | 26\% | 82\% |
| 2007 | INTEL |  | 309 | 15\% | -27\% | 0\% | 10\% | 15\% | 19\% | 36\% | 67\% |
| 2008 | INTEL |  | 309 | 8\% | -44\% | -11\% | 3\% | 8\% | 15\% | 25\% | 49\% |
| 2009 | INTEL |  | 287 | 2\% | -20\% | -11\% | -4\% | 1\% | 6\% | 16\% | 27\% |
| 2010 | INTEL |  | 307 | 11\% | -12\% | 0\% | 7\% | 9\% | 14\% | 27\% | 57\% |
| 2001 | INTEL |  | 31 | 3\% | -15\% | -12\% | -5\% | -1\% | 9\% | 23\% | 42\% |
| 2001 | INTEL |  | 83 | 3\% | -15\% | -11\% | -7\% | -1\% | 8\% | 25\% | 89\% |
| 2002 | INTEL |  | 73 | -5\% | -24\% | -20\% | -8\% | -3\% | 0\% | 7\% | 12\% |
| 2003 | INTEL |  | 54 | 10\% | -8\% | -3\% | 5\% | 9\% | 12\% | 28\% | 54\% |
| 2004 | INTEL |  | 36 | -1\% | -8\% | -7\% | -3\% | -2\% | 2\% | 8\% | 10\% |
| 2001 | INTEL |  | 90 | -9\% | -22\% | -19\% | -14\% | -11\% | -3\% | 6\% | 10\% |
| 2002 | INTEL |  | 94 | -6\% | -33\% | -20\% | -12\% | -5\% | 1\% | 9\% | 16\% |
| 2003 | INTEL |  | 80 | 12\% | -13\% | -5\% | 7\% | 9\% | 17\% | 23\% | 62\% |
| 2004 | INTEL |  | 74 | -4\% | -36\% | -14\% | -10\% | -5\% | -1\% | 7\% | 48\% |
| 2001 | INTEL |  | 145 | -9\% | -54\% | -25\% | -16\% | -11\% | -4\% | 10\% | 41\% |
| 2002 | INTEL |  | 135 | -6\% | -41\% | -28\% | -14\% | -5\% | 1\% | 9\% | 53\% |
| 2003 | INTEL |  | 115 | 15\% | -21\% | 2\% | 9\% | 12\% | 20\% | 29\% | 108\% |
| 2004 | INTEL |  | 130 | -4\% | -33\% | -16\% | -10\% | -4\% | 2\% | 10\% | 47\% |
| 2005 | INTEL |  | 34 | 12\% | -2\% | 1\% | 5\% | 9\% | 15\% | 35\% | 38\% |
| 2006 | INTEL |  | 39 | 4\% | -6\% | -3\% | -1\% | 4\% | 6\% | 14\% | 20\% |
| 2007 | INTEL |  | 28 | 11\% | -1\% | 3\% | 6\% | 11\% | 14\% | 20\% | 29\% |
| 2008 | INTEL |  | 27 | 5\% | -15\% | -14\% | 1\% | 5\% | 9\% | 14\% | 36\% |
| 2010 | INTEL |  | 28 | 9\% | -2\% | 0\% | 4\% | 6\% | 8\% | 25\% | 43\% |
| 2001 | INTEL |  | 88 | -12\% | -54\% | -28\% | -19\% | -13\% | -5\% | 7\% | 60\% |
| 2002 | INTEL |  | 80 | -10\% | -44\% | -32\% | -17\% | -9\% | -4\% | 5\% | 63\% |
| 2003 | INTEL |  | 86 | 13\% | -34\% | -8\% | 9\% | 13\% | 21\% | 27\% | 40\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | INTEL |  | 86 | -5\% | -40\% | -15\% | -9\% | -5\% | -2\% | 8\% | 12\% |
| 2002 | INTEL |  | 26 | -10\% | -47\% | -44\% | -21\% | -12\% | -1\% | 15\% | 44\% |
| 2006 | INTEL |  | 30 | 7\% | -8\% | -6\% | 2\% | 7\% | 12\% | 21\% | 28\% |
| 2007 | INTEL |  | 33 | 12\% | 3\% | 4\% | 7\% | 10\% | 19\% | 21\% | 22\% |
| 2010 | INTEL |  | 26 | 14\% | -1\% | -1\% | 5\% | 11\% | 23\% | 34\% | 36\% |
| 2006 | INTEL |  | 43 | 7\% | -8\% | -2\% | 1\% | 7\% | 11\% | 19\% | 31\% |
| 2007 | INTEL |  | 36 | 10\% | -2\% | -1\% | 5\% | 9\% | 14\% | 21\% | 26\% |
| 2008 | INTEL |  | 34 | 4\% | -10\% | -5\% | 1\% | 3\% | 8\% | 14\% | 14\% |
| 2009 | INTEL |  | 38 | 6\% | -6\% | -5\% | 2\% | 7\% | 11\% | 20\% | 21\% |
| 2010 | INTEL |  | 25 | 7\% | -2\% | 0\% | 3\% | 4\% | 13\% | 18\% | 21\% |
| 2006 | INTEL |  | 96 | 4\% | -9\% | -4\% | -1\% | 5\% | 8\% | 17\% | 32\% |
| 2007 | INTEL |  | 77 | 10\% | -13\% | 4\% | 7\% | 10\% | 14\% | 20\% | 24\% |
| 2008 | INTEL |  | 67 | 3\% | -7\% | -4\% | 0\% | 3\% | 7\% | 11\% | 14\% |
| 2009 | INTEL |  | 74 | 8\% | -5\% | -3\% | 4\% | 9\% | 12\% | 19\% | 22\% |
| 2010 | INTEL |  | 75 | 8\% | -3\% | 0\% | 4\% | 6\% | 11\% | 20\% | 23\% |
| 2006 | INTEL |  | 63 | 0\% | -19\% | -13\% | -5\% | -1\% | 1\% | 16\% | 57\% |
| 2007 | INTEL |  | 74 | 13\% | -26\% | 1\% | 9\% | 12\% | 17\% | 28\% | 73\% |
| 2008 | INTEL |  | 64 | 4\% | -20\% | -13\% | -1\% | 4\% | 11\% | 16\% | 36\% |
| 2009 | INTEL |  | 69 | 5\% | -10\% | -6\% | 0\% | 6\% | 9\% | 14\% | 25\% |
| 2010 | INTEL |  | 62 | 5\% | -6\% | -1\% | 4\% | 5\% | 7\% | 12\% | 22\% |
| 2002 | INTEL |  | 33 | -11\% | -39\% | -39\% | -24\% | -13\% | -7\% | 46\% | 69\% |
| 2003 | INTEL |  | 76 | 12\% | -18\% | -15\% | -9\% | 13\% | 20\% | 88\% | 99\% |
| 2004 | INTEL |  | 89 | 0\% | -33\% | -25\% | -9\% | -1\% | 5\% | 30\% | 54\% |
| 2005 | INTEL |  | 102 | 18\% | -12\% | 2\% | 10\% | 16\% | 25\% | 44\% | 72\% |
| 2006 | INTEL |  | 105 | 16\% | -5\% | 0\% | 9\% | 16\% | 21\% | 33\% | 56\% |
| 2007 | INTEL |  | 98 | 18\% | 2\% | 6\% | 11\% | 17\% | 22\% | 36\% | 66\% |
| 2008 | INTEL |  | 85 | 6\% | -10\% | -4\% | 0\% | 5\% | 9\% | 23\% | 26\% |
| 2009 | INTEL |  | 88 | 13\% | -1\% | 1\% | 9\% | 13\% | 17\% | 23\% | 55\% |
| 2010 | INTEL |  | 92 | 16\% | -5\% | 2\% | 9\% | 15\% | 21\% | 31\% | 46\% |
| 2002 | INTEL |  | 30 | -10\% | -46\% | -43\% | -20\% | -12\% | -3\% | 58\% | 62\% |
| 2003 | INTEL |  | 78 | 17\% | -33\% | -18\% | 4\% | 17\% | 25\% | 44\% | 136\% |
| 2004 | INTEL |  | 84 | -1\% | -29\% | -16\% | -7\% | -3\% | 2\% | 31\% | 51\% |
| 2005 | INTEL |  | 90 | 21\% | -15\% | 5\% | 10\% | 15\% | 26\% | 46\% | 95\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | INTEL |  | 93 | 11\% | -17\% | -8\% | 5\% | 9\% | 16\% | 30\% | 54\% |
| 2007 | INTEL |  | 96 | 19\% | -12\% | 6\% | 11\% | 15\% | 23\% | 50\% | 72\% |
| 2008 | INTEL |  | 103 | 3\% | -21\% | -15\% | 0\% | 4\% | 8\% | 14\% | 33\% |
| 2009 | INTEL |  | 96 | 8\% | -8\% | 0\% | 4\% | 9\% | 12\% | 19\% | 32\% |
| 2010 | INTEL |  | 122 | 9\% | -2\% | 2\% | 5\% | 8\% | 12\% | 22\% | 47\% |
| 2002 | INTEL |  | 38 | -17\% | -55\% | -51\% | -31\% | -18\% | -6\% | 25\% | 29\% |
| 2003 | INTEL |  | 72 | 27\% | -24\% | -18\% | 12\% | 18\% | 31\% | 137\% | 179\% |
| 2004 | INTEL |  | 89 | -4\% | -38\% | -24\% | -10\% | -5\% | 0\% | 12\% | 79\% |
| 2005 | INTEL |  | 102 | 17\% | -10\% | 2\% | 7\% | 12\% | 21\% | 51\% | 94\% |
| 2006 | INTEL |  | 113 | 6\% | -28\% | -11\% | -1\% | 4\% | 10\% | 34\% | 60\% |
| 2007 | INTEL |  | 115 | 17\% | -17\% | -9\% | 13\% | 18\% | 22\% | 35\% | 67\% |
| 2008 | INTEL |  | 107 | 6\% | -17\% | -12\% | 2\% | 7\% | 14\% | 19\% | 27\% |
| 2009 | INTEL |  | 103 | 3\% | -42\% | -7\% | -2\% | 3\% | 8\% | 14\% | 50\% |
| 2010 | INTEL |  | 106 | 12\% | -55\% | 5\% | 8\% | 11\% | 15\% | 25\% | 54\% |
| 2001 | INTEL |  | 73 | -4\% | -19\% | -11\% | -8\% | -5\% | 2\% | 6\% | 9\% |
| 2002 | INTEL |  | 30 | -6\% | -13\% | -13\% | -10\% | -8\% | -2\% | 6\% | 8\% |
| 2007 | INTEL |  | 25 | 18\% | 6\% | 10\% | 11\% | 17\% | 24\% | 28\% | 31\% |
| 2001 | INTEL |  | 32 | -6\% | -23\% | -15\% | -11\% | -9\% | -5\% | 14\% | 16\% |
| 2001 | INTEL |  | 40 | -2\% | -12\% | -12\% | -9\% | -7\% | 4\% | 16\% | 25\% |
| 2002 | INTEL |  | 34 | -1\% | -19\% | -15\% | -5\% | -1\% | 3\% | 14\% | 14\% |
| 2003 | INTEL |  | 29 | 12\% | -3\% | 0\% | 6\% | 10\% | 16\% | 27\% | 43\% |
| 2004 | INTEL |  | 27 | -1\% | -13\% | -13\% | -8\% | 0\% | 5\% | 8\% | 10\% |
| 2001 | INTEL |  | 58 | -8\% | -28\% | -21\% | -15\% | -12\% | -2\% | 6\% | 52\% |
| 2002 | INTEL |  | 49 | -9\% | -23\% | -21\% | -13\% | -10\% | -4\% | 3\% | 6\% |
| 2003 | INTEL |  | 43 | 9\% | -7\% | -6\% | 4\% | 9\% | 15\% | 24\% | 25\% |
| 2004 | INTEL |  | 38 | -1\% | -11\% | -10\% | -5\% | -1\% | 3\% | 8\% | 10\% |
| 2005 | INTEL |  | 39 | 7\% | -8\% | -6\% | 3\% | 5\% | 10\% | 22\% | 23\% |
| $2006$ | INTEL |  | 41 | 6\% | -4\% | -4\% | 1\% | 7\% | 11\% | 16\% | 17\% |
| 2007 | INTEL |  | 33 | 12\% | -6\% | -1\% | 6\% | 14\% | 17\% | 22\% | 27\% |
| 2001 | INTEL |  | 48 | -12\% | -52\% | -29\% | -16\% | -13\% | -10\% | 7\% | 11\% |
| 2002 | INTEL |  | 44 | -9\% | -29\% | -24\% | -12\% | -7\% | -4\% | 2\% | 3\% |
| 2003 | INTEL |  | 43 | 13\% | -5\% | -4\% | 8\% | 13\% | 17\% | 25\% | 27\% |
| 2004 | INTEL |  | 42 | -4\% | -15\% | -13\% | -8\% | -5\% | 0\% | 9\% | 10\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 41 | 7\% | -5\% | 0\% | 4\% | 7\% | 10\% | 15\% | 18\% |
| 2006 | INTEL |  | 34 | $3 \%$ | -6\% | -5\% | -2\% | 2\% | 8\% | 17\% | 18\% |
| 2007 | INTEL |  | 31 | 13\% | 4\% | 5\% | 9\% | 12\% | 18\% | 24\% | 31\% |
| 2008 | INTEL |  | 36 | 4\% | -2\% | -1\% | 0\% | 2\% | 10\% | 14\% | 15\% |
| 2009 | INTEL |  | 26 | 5\% | -3\% | -3\% | 2\% | 6\% | 9\% | 12\% | 15\% |
| 2010 | INTEL |  | 27 | 7\% | -1\% | 2\% | 4\% | 5\% | 8\% | 15\% | 15\% |
| 2001 | INTEL |  | 40 | -1\% | -58\% | -35\% | -17\% | -9\% | -3\% | 86\% | 100\% |
| 2001 | INTEL |  | 360 | 1\% | -20\% | -11\% | -7\% | 0\% | 7\% | 18\% | 68\% |
| 2002 | INTEL |  | 273 | -2\% | -27\% | -18\% | -8\% | -3\% | 3\% | 14\% | 54\% |
| 2003 | INTEL |  | 203 | 16\% | -15\% | 0\% | 10\% | 15\% | 20\% | 42\% | 58\% |
| 2004 | INTEL |  | 125 | 3\% | -17\% | -10\% | -3\% | 1\% | 7\% | 26\% | 28\% |
| 2005 | INTEL |  | 165 | 14\% | -3\% | 3\% | 8\% | 12\% | 20\% | 28\% | 36\% |
| 2006 | INTEL |  | 128 | 13\% | -5\% | -1\% | 6\% | 13\% | 21\% | 31\% | 35\% |
| 2007 | INTEL |  | 103 | 15\% | -4\% | 1\% | 8\% | 15\% | 22\% | 27\% | 40\% |
| 2008 | INTEL |  | 84 | 3\% | -8\% | -4\% | -1\% | 2\% | 6\% | 15\% | 22\% |
| 2009 | INTEL |  | 82 | 15\% | 4\% | 6\% | 10\% | 15\% | 20\% | 24\% | 33\% |
| 2010 | INTEL |  | 92 | 19\% | -1\% | 3\% | 9\% | 20\% | 27\% | 35\% | 64\% |
| 2001 | INTEL |  | 784 | 0\% | -27\% | -13\% | -9\% | -4\% | 8\% | 27\% | 137\% |
| 2002 | INTEL |  | 667 | -1\% | -28\% | -13\% | -7\% | -2\% | 3\% | 12\% | 34\% |
| 2003 | INTEL |  | 583 | 13\% | -7\% | 1\% | 8\% | 12\% | 19\% | 27\% | 63\% |
| 2004 | INTEL |  | 494 | 3\% | -21\% | -8\% | -3\% | 0\% | 7\% | 18\% | 43\% |
| 2005 | INTEL |  | 510 | 13\% | -4\% | 1\% | 8\% | 12\% | 18\% | 27\% | 34\% |
| 2006 | INTEL |  | 407 | 12\% | -6\% | 1\% | 6\% | 10\% | 17\% | 28\% | 46\% |
| 2007 | INTEL |  | 375 | 12\% | -9\% | 2\% | 7\% | 10\% | 18\% | 26\% | 35\% |
| 2008 | INTEL |  | 349 | 2\% | -11\% | -5\% | -2\% | 1\% | 5\% | 13\% | 26\% |
| 2009 | INTEL |  | 386 | 14\% | -3\% | 4\% | 9\% | 13\% | 18\% | 27\% | 41\% |
| 2010 | INTEL |  | 379 | 14\% | -2\% | 2\% | 6\% | 13\% | 21\% | 30\% | 50\% |
| 2001 | INTEL |  | 845 | -7\% | -43\% | -21\% | -14\% | -10\% | 0\% | 12\% | 68\% |
| 2002 | INTEL |  | 774 | -5\% | -34\% | -20\% | -11\% | -4\% | 0\% | 9\% | 63\% |
| 2003 | INTEL |  | 753 | 11\% | -23\% | -4\% | 7\% | 10\% | 16\% | 24\% | 82\% |
| 2004 | INTEL |  | 742 | -3\% | -22\% | -11\% | -6\% | -4\% | -1\% | 7\% | 51\% |
| 2005 | INTEL |  | 741 | 10\% | -23\% | 0\% | 5\% | 9\% | 14\% | 24\% | 43\% |
| 2006 | INTEL |  | 602 | 9\% | -12\% | -3\% | 5\% | 8\% | 14\% | 22\% | 33\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | INTEL |  | 586 | 10\% | -7\% | 1\% | 7\% | 9\% | 13\% | 22\% | 38\% |
| 2008 | INTEL |  | 566 | 3\% | -13\% | -5\% | -1\% | 3\% | 6\% | 15\% | 34\% |
| 2009 | INTEL |  | 574 | 8\% | -13\% | -1\% | 4\% | 8\% | 12\% | 19\% | 36\% |
| 2010 | INTEL |  | 590 | 10\% | -8\% | 0\% | 4\% | 8\% | 13\% | 29\% | 46\% |
| 2001 | INTEL |  | 881 | -6\% | -53\% | -23\% | -14\% | -10\% | 0\% | 20\% | 99\% |
| 2002 | INTEL |  | 850 | -8\% | -45\% | -33\% | -14\% | -7\% | -2\% | 9\% | 86\% |
| 2003 | INTEL |  | 804 | 12\% | -24\% | -5\% | 7\% | 11\% | 17\% | 26\% | 99\% |
| 2004 | INTEL |  | 807 | -3\% | -34\% | -13\% | -6\% | -4\% | 0\% | 8\% | 53\% |
| 2005 | INTEL |  | 872 | 10\% | -19\% | -1\% | 5\% | 9\% | 14\% | 25\% | 61\% |
| 2006 | INTEL |  | 800 | 7\% | -14\% | -4\% | 3\% | 7\% | 12\% | 18\% | 43\% |
| 2007 | INTEL |  | 817 | 12\% | -14\% | 4\% | 8\% | 11\% | 16\% | 24\% | 54\% |
| 2008 | INTEL |  | 808 | 4\% | -16\% | -5\% | -1\% | 3\% | 7\% | 14\% | 29\% |
| 2009 | INTEL |  | 806 | 8\% | -11\% | -1\% | 4\% | 8\% | 11\% | 19\% | 40\% |
| 2010 | INTEL |  | 874 | 9\% | -4\% | 1\% | 4\% | 8\% | 13\% | 22\% | 40\% |
| 2001 | INTEL |  | 592 | -8\% | -55\% | -27\% | -16\% | -12\% | -3\% | 23\% | 79\% |
| 2002 | INTEL |  | 580 | -10\% | -52\% | -36\% | -18\% | -10\% | -4\% | 9\% | 66\% |
| 2003 | INTEL |  | 549 | 14\% | -36\% | -7\% | 8\% | 13\% | 20\% | 32\% | 148\% |
| 2004 | INTEL |  | 584 | -4\% | -43\% | -16\% | -10\% | -5\% | 0\% | 9\% | 87\% |
| 2005 | INTEL |  | 635 | 13\% | -14\% | -1\% | 7\% | 10\% | 16\% | 42\% | 79\% |
| 2006 | INTEL |  | 582 | 4\% | -16\% | -9\% | -1\% | 2\% | 8\% | 18\% | 66\% |
| 2007 | INTEL |  | 613 | 13\% | -22\% | 3\% | 9\% | 12\% | 16\% | 28\% | 82\% |
| 2008 | INTEL |  | 612 | 5\% | -22\% | -6\% | 1\% | 5\% | 9\% | 15\% | 35\% |
| 2009 | INTEL |  | 590 | 6\% | -10\% | -3\% | 2\% | 5\% | 9\% | 19\% | 49\% |
| 2010 | INTEL |  | 643 | 8\% | -8\% | 0\% | 4\% | 7\% | 11\% | 19\% | 48\% |
| 2001 | INTEL |  | 219 | -8\% | -53\% | -35\% | -16\% | -10\% | -2\% | 16\% | 88\% |
| 2002 | INTEL |  | 223 | -12\% | -61\% | -42\% | -21\% | -12\% | -5\% | 14\% | 56\% |
| 2003 | INTEL |  | 222 | 18\% | -48\% | -17\% | 11\% | 17\% | 25\% | 39\% | 161\% |
| 2004 | INTEL |  | 225 | -5\% | -36\% | -16\% | -8\% | -5\% | -1\% | 9\% | 65\% |
| 2005 | INTEL |  | 239 | 13\% | -10\% | -1\% | 6\% | 10\% | 16\% | 53\% | 77\% |
| 2006 | INTEL |  | 275 | 3\% | -30\% | -23\% | -3\% | 2\% | 8\% | 26\% | 85\% |
| 2007 | INTEL |  | 280 | 15\% | -22\% | 5\% | 11\% | 14\% | 18\% | 28\% | 60\% |
| 2008 | INTEL |  | 306 | 7\% | -26\% | -8\% | 2\% | 8\% | 13\% | 22\% | 45\% |
| 2009 | INTEL |  | 312 | 3\% | -18\% | -10\% | -1\% | 2\% | 7\% | 16\% | 62\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | INTEL |  | 356 | 13\% | -1\% | 4\% | 8\% | 11\% | 15\% | 29\% | 56\% |
| 2004 | INTEL |  | 25 | 5\% | -14\% | -6\% | -1\% | 3\% | 10\% | 12\% | 37\% |
| 2005 | INTEL |  | 29 | 11\% | 0\% | 1\% | 8\% | 11\% | 15\% | 20\% | 25\% |
| 2006 | INTEL |  | 28 | 8\% | -6\% | -3\% | 1\% | 7\% | 13\% | 23\% | 26\% |
| 2007 | INTEL |  | 28 | 14\% | 4\% | 5\% | 8\% | 11\% | 22\% | 26\% | 26\% |
| 2008 | INTEL |  | 27 | 1\% | -9\% | -8\% | -2\% | 1\% | 3\% | 6\% | 18\% |
| 2009 | INTEL |  | 28 | 12\% | 2\% | 2\% | 6\% | 11\% | 18\% | 25\% | 29\% |
| 2005 | INTEL |  | 29 | 10\% | -1\% | 3\% | 7\% | 8\% | 14\% | 21\% | 24\% |
| 2006 | INTEL |  | 25 | 2\% | -8\% | -5\% | 0\% | 1\% | 7\% | 10\% | 15\% |
| 2007 | INTEL |  | 29 | 12\% | -2\% | 1\% | 7\% | 12\% | 16\% | 25\% | 27\% |
| 2008 | INTEL |  | 28 | 4\% | -2\% | -1\% | 1\% | 3\% | 6\% | 10\% | 16\% |
| 2009 | INTEL |  | 28 | 6\% | -3\% | -2\% | 3\% | 6\% | 9\% | 14\% | 21\% |
| 2010 | INTEL |  | 29 | 7\% | 0\% | 0\% | 4\% | 5\% | 11\% | 18\% | 18\% |
| 2006 | INTEL |  | 32 | 6\% | -21\% | -8\% | -3\% | 3\% | 9\% | 39\% | 53\% |
| 2007 | INTEL |  | 31 | 13\% | -9\% | 8\% | 9\% | 11\% | 16\% | 23\% | 43\% |
| 2008 | INTEL |  | 35 | 3\% | -13\% | -6\% | -2\% | 1\% | 6\% | 17\% | 37\% |
| 2009 | INTEL |  | 34 | 7\% | -9\% | -6\% | 1\% | 9\% | 12\% | 23\% | 23\% |
| 2010 | INTEL |  | 43 | 9\% | -2\% | 1\% | 4\% | 6\% | 11\% | 21\% | 22\% |
| 2006 | INTEL |  | 34 | -2\% | -25\% | -23\% | -8\% | -2\% | 1\% | 23\% | 36\% |
| 2007 | INTEL |  | 44 | 17\% | 2\% | 6\% | 10\% | 14\% | 18\% | 53\% | 62\% |
| 2008 | INTEL |  | 54 | 8\% | -20\% | -10\% | 4\% | 8\% | 15\% | 22\% | 36\% |
| 2009 | INTEL |  | 58 | 2\% | -10\% | -10\% | -4\% | 0\% | 7\% | 20\% | 25\% |
| 2010 | INTEL |  | 68 | 15\% | 4\% | 5\% | 8\% | 11\% | 17\% | 43\% | 58\% |
| 2001 | INTEL |  | 26 | -3\% | -16\% | -15\% | -11\% | -5\% | 4\% | 15\% | 29\% |
| 2005 | INTEL |  | 26 | 8\% | -5\% | -1\% | 3\% | 7\% | 10\% | 25\% | 27\% |
| 2002 | INTEL |  | 50 | -1\% | -21\% | -16\% | -8\% | 1\% | 5\% | 12\% | 12\% |
| 2004 | INTEL |  | 26 | 2\% | -11\% | -9\% | -2\% | 1\% | 6\% | 15\% | 19\% |
| 2005 | INTEL |  | 31 | 5\% | -8\% | -6\% | -1\% | 4\% | 12\% | 22\% | 23\% |
| 2007 | INTEL |  | 31 | 16\% | 1\% | 4\% | 8\% | 13\% | 23\% | 34\% | 36\% |
| 2002 | INTEL |  | 93 | -3\% | -26\% | -14\% | -9\% | -3\% | 0\% | 13\% | 16\% |
| 2003 | INTEL |  | 87 | 11\% | -4\% | -1\% | 7\% | 10\% | 15\% | 22\% | 29\% |
| 2004 | INTEL |  | 80 | 0\% | -12\% | -9\% | -4\% | -2\% | 4\% | 7\% | 29\% |
| 2005 | INTEL |  | 88 | 8\% | -5\% | -1\% | 3\% | 6\% | 13\% | 20\% | 29\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | INTEL |  | 61 | 9\% | -10\% | -4\% | 2\% | 6\% | 15\% | 30\% | 35\% |
| 2007 | INTEL |  | 98 | 17\% | 0\% | 3\% | 10\% | 16\% | 24\% | 35\% | 37\% |
| 2008 | INTEL |  | 84 | 1\% | -9\% | -4\% | -2\% | 1\% | 3\% | 8\% | 12\% |
| 2009 | INTEL |  | 81 | 10\% | -3\% | 3\% | 6\% | 9\% | 14\% | 22\% | 26\% |
| 2010 | INTEL |  | 68 | 10\% | -2\% | 3\% | 5\% | 8\% | 18\% | 22\% | 27\% |
| 2002 | INTEL |  | 95 | -8\% | -37\% | -24\% | -13\% | -7\% | -2\% | 7\% | 13\% |
| 2003 | INTEL |  | 108 | 10\% | -16\% | -5\% | 6\% | 9\% | 14\% | 22\% | 30\% |
| 2004 | INTEL |  | 109 | -3\% | -22\% | -13\% | -7\% | -5\% | 1\% | 8\% | 13\% |
| 2005 | INTEL |  | 136 | 8\% | -6\% | -1\% | 3\% | 7\% | 11\% | 19\% | 31\% |
| 2006 | INTEL |  | 110 | 9\% | -9\% | -6\% | 1\% | 5\% | 15\% | 31\% | 34\% |
| 2007 | INTEL |  | 178 | 15\% | -5\% | 4\% | 10\% | 14\% | 19\% | 27\% | 35\% |
| 2008 | INTEL |  | 162 | 4\% | -15\% | -2\% | 1\% | 4\% | 7\% | 14\% | 32\% |
| 2009 | INTEL |  | 172 | 6\% | -6\% | -2\% | 2\% | 5\% | 9\% | 17\% | 32\% |
| 2010 | INTEL |  | 162 | 6\% | -5\% | 0\% | 4\% | 4\% | 7\% | 18\% | 32\% |
| 2002 | INTEL |  | 74 | -8\% | -40\% | -25\% | -15\% | -7\% | 1\% | 8\% | 14\% |
| 2003 | INTEL |  | 83 | 12\% | -8\% | -3\% | 7\% | 11\% | 18\% | 28\% | 45\% |
| 2004 | INTEL |  | 86 | -4\% | -20\% | -11\% | -7\% | -5\% | -1\% | 5\% | 34\% |
| 2005 | INTEL |  | 94 | 7\% | -6\% | -2\% | 3\% | 6\% | 11\% | 16\% | 32\% |
| 2006 | INTEL |  | 92 | 8\% | -11\% | -7\% | -1\% | 6\% | 16\% | 23\% | 41\% |
| 2007 | INTEL |  | 196 | 14\% | -5\% | 4\% | 10\% | 14\% | 18\% | 25\% | 35\% |
| 2008 | INTEL |  | 198 | 5\% | -8\% | -3\% | 1\% | 5\% | 9\% | 13\% | 24\% |
| 2009 | INTEL |  | 219 | 5\% | -8\% | -3\% | 2\% | 5\% | 9\% | 18\% | 26\% |
| 2010 | INTEL |  | 236 | 6\% | -6\% | -1\% | 4\% | 6\% | 8\% | 15\% | 21\% |
| 2007 | INTEL |  | 51 | 13\% | 0\% | 1\% | 9\% | 14\% | 16\% | 21\% | 28\% |
| 2008 | INTEL |  | 63 | 7\% | -6\% | -4\% | 1\% | 7\% | 10\% | 16\% | 21\% |
| 2009 | INTEL |  | 60 | 5\% | -6\% | -5\% | 0\% | 3\% | 13\% | 20\% | 22\% |
| 2010 | INTEL |  | 72 | 5\% | -8\% | -2\% | 4\% | 5\% | 7\% | 13\% | 16\% |
| 2001 | INTEL |  | 59 | 0\% | -17\% | -12\% | -9\% | -2\% | 7\% | 16\% | 18\% |
| 2002 | INTEL |  | 40 | 1\% | -14\% | -13\% | -6\% | 1\% | 6\% | 22\% | 25\% |
| 2001 | INTEL |  | 72 | 0\% | -15\% | -14\% | -8\% | -4\% | 5\% | 30\% | 54\% |
| 2002 | INTEL |  | 86 | -2\% | -20\% | -16\% | -8\% | -4\% | 3\% | 18\% | 21\% |
| 2003 | INTEL |  | 41 | 15\% | 3\% | 4\% | 8\% | 14\% | 20\% | 31\% | 35\% |
| 2004 | INTEL |  | 40 | 2\% | -13\% | -11\% | -5\% | 1\% | 4\% | 33\% | 33\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 34 | 15\% | 1\% | 3\% | 8\% | 14\% | 21\% | 29\% | 35\% |
| 2006 | INTEL |  | 28 | 10\% | -5\% | 1\% | 2\% | 8\% | 17\% | 26\% | 26\% |
| 2007 | INTEL |  | 33 | 12\% | 3\% | 3\% | 7\% | 9\% | 17\% | 29\% | 29\% |
| 2008 | INTEL |  | 45 | 3\% | -7\% | -4\% | -1\% | 3\% | 6\% | 13\% | 24\% |
| 2009 | INTEL |  | 51 | 12\% | 1\% | 3\% | 6\% | 12\% | 18\% | 23\% | 27\% |
| 2010 | INTEL |  | 64 | 14\% | 3\% | 3\% | 5\% | 10\% | 22\% | 32\% | 37\% |
| 2001 | INTEL |  | 98 | -9\% | -32\% | -22\% | -17\% | -11\% | -3\% | 12\% | 32\% |
| 2002 | INTEL |  | 109 | -7\% | -33\% | -25\% | -13\% | -6\% | 0\% | 8\% | 16\% |
| 2003 | INTEL |  | 67 | 10\% | -10\% | -4\% | 5\% | 9\% | 13\% | 24\% | 32\% |
| 2004 | INTEL |  | 59 | -3\% | -36\% | -12\% | -6\% | -4\% | 0\% | 9\% | 28\% |
| 2005 | INTEL |  | 49 | 10\% | -4\% | 0\% | 6\% | 7\% | 13\% | 21\% | 41\% |
| 2006 | INTEL |  | 51 | 7\% | -11\% | -2\% | 2\% | 8\% | 13\% | 19\% | 22\% |
| 2007 | INTEL |  | 66 | 11\% | -13\% | 0\% | 6\% | 9\% | 15\% | 23\% | 33\% |
| 2008 | INTEL |  | 60 | 3\% | -9\% | -4\% | -1\% | 2\% | 7\% | 12\% | 24\% |
| 2009 | INTEL |  | 61 | 8\% | -7\% | -2\% | 3\% | 7\% | 11\% | 24\% | 28\% |
| 2010 | INTEL |  | 67 | 7\% | -4\% | -1\% | 3\% | 5\% | 11\% | 20\% | 32\% |
| 2001 | INTEL |  | 129 | -13\% | -40\% | -27\% | -22\% | -14\% | -7\% | 6\% | 36\% |
| 2002 | INTEL |  | 124 | -10\% | -42\% | -37\% | -16\% | -11\% | -2\% | 6\% | 57\% |
| 2003 | INTEL |  | 75 | 14\% | -18\% | -4\% | 7\% | 11\% | 17\% | 27\% | 96\% |
| 2004 | INTEL |  | 95 | -4\% | -31\% | -15\% | -9\% | -5\% | -1\% | 8\% | 44\% |
| 2005 | INTEL |  | 79 | 11\% | -5\% | -1\% | 6\% | 9\% | 16\% | 24\% | 43\% |
| 2006 | INTEL |  | 72 | 5\% | -11\% | -3\% | 0\% | 4\% | 10\% | 23\% | 25\% |
| 2007 | INTEL |  | 58 | 12\% | -32\% | 0\% | 9\% | 11\% | 15\% | 26\% | 42\% |
| 2008 | INTEL |  | 68 | 7\% | -10\% | -6\% | 2\% | 6\% | 9\% | 26\% | 28\% |
| 2009 | INTEL |  | 74 | 10\% | -4\% | -1\% | 4\% | 9\% | 16\% | 22\% | 37\% |
| 2010 | INTEL |  | 75 | 10\% | -3\% | 1\% | 4\% | 8\% | 13\% | 27\% | 39\% |
| 2001 | INTEL |  | 92 | -10\% | -50\% | -27\% | -18\% | -13\% | -4\% | 14\% | 47\% |
| 2002 | INTEL |  | 87 | -11\% | -47\% | -41\% | -17\% | -11\% | -4\% | 6\% | 38\% |
| 2003 | INTEL |  | 61 | 14\% | -18\% | -2\% | 8\% | 13\% | 16\% | 36\% | 69\% |
| 2004 | INTEL |  | 69 | -5\% | -38\% | -16\% | -10\% | -6\% | 0\% | 8\% | 20\% |
| 2005 | INTEL |  | 77 | 11\% | -5\% | -2\% | 6\% | 9\% | 15\% | 35\% | 49\% |
| 2006 | INTEL |  | 64 | 2\% | -9\% | -6\% | -4\% | -1\% | 4\% | 17\% | 33\% |
| 2007 | INTEL |  | 70 | 17\% | -17\% | 5\% | 11\% | 16\% | 20\% | 45\% | 79\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 73 | 5\% | -16\% | -4\% | 1\% | 5\% | 9\% | 15\% | 20\% |
| 2009 | INTEL |  | 70 | 6\% | -9\% | -5\% | 0\% | 6\% | 11\% | 17\% | 19\% |
| 2010 | INTEL |  | 79 | 8\% | -6\% | 0\% | 4\% | 6\% | 12\% | 19\% | 35\% |
| 2001 | INTEL |  | 42 | -8\% | -28\% | -25\% | -17\% | -14\% | -2\% | 43\% | 44\% |
| 2002 | INTEL |  | 45 | -15\% | -46\% | -43\% | -22\% | -14\% | -6\% | 8\% | 35\% |
| 2003 | INTEL |  | 51 | 15\% | -25\% | -17\% | 11\% | 16\% | 19\% | 30\% | 147\% |
| 2004 | INTEL |  | 50 | -3\% | -36\% | -15\% | -8\% | -5\% | -1\% | 13\% | 60\% |
| 2005 | INTEL |  | 55 | 11\% | -7\% | -6\% | 3\% | 8\% | 13\% | 62\% | 71\% |
| 2006 | INTEL |  | 51 | 4\% | -17\% | -10\% | -5\% | -1\% | 8\% | 28\% | 82\% |
| 2007 | INTEL |  | 38 | 16\% | 3\% | 6\% | 10\% | 14\% | 21\% | 32\% | 50\% |
| 2008 | INTEL |  | 47 | 6\% | -25\% | -13\% | 2\% | 7\% | 10\% | 20\% | 25\% |
| 2009 | INTEL |  | 53 | 5\% | -14\% | -7\% | -1\% | 4\% | 9\% | 28\% | 45\% |
| 2010 | INTEL |  | 56 | 13\% | -1\% | 3\% | 9\% | 12\% | 15\% | 28\% | 34\% |
| 2001 | INTEL |  | 54 | 2\% | -19\% | -15\% | -7\% | 1\% | 11\% | 20\% | 26\% |
| 2002 | INTEL |  | 41 | -1\% | -25\% | -19\% | -6\% | -3\% | 5\% | 23\% | 53\% |
| 2003 | INTEL |  | 25 | 12\% | -4\% | -3\% | 2\% | 12\% | 20\% | 25\% | 27\% |
| 2004 | INTEL |  | 29 | 0\% | -21\% | -15\% | -8\% | -1\% | 6\% | 20\% | 22\% |
| 2005 | INTEL |  | 38 | 12\% | -7\% | -3\% | 5\% | 9\% | 20\% | 27\% | 29\% |
| 2006 | INTEL |  | 36 | 10\% | -5\% | -4\% | 6\% | 10\% | 14\% | 17\% | 27\% |
| 2007 | INTEL |  | 25 | 17\% | -3\% | 7\% | 15\% | 19\% | 21\% | 23\% | 25\% |
| 2001 | INTEL |  | 147 | -2\% | -25\% | -15\% | -10\% | -7\% | 2\% | 30\% | 66\% |
| 2002 | INTEL |  | 144 | -3\% | -23\% | -17\% | -7\% | -2\% | 0\% | 14\% | 25\% |
| 2003 | INTEL |  | 100 | 11\% | -9\% | -3\% | 6\% | 9\% | 16\% | 24\% | 32\% |
| 2004 | INTEL |  | 83 | 0\% | -12\% | -10\% | -5\% | 0\% | 5\% | 13\% | 21\% |
| 2005 | INTEL |  | 74 | 9\% | -11\% | -3\% | 2\% | 6\% | 16\% | 28\% | 32\% |
| 2006 | INTEL |  | 91 | 7\% | -12\% | -6\% | 0\% | 4\% | 12\% | 23\% | 31\% |
| 2007 | INTEL |  | 69 | 12\% | -2\% | 3\% | 7\% | 11\% | 17\% | 23\% | 26\% |
| 2008 | INTEL |  | 72 | 1\% | -9\% | -8\% | -3\% | 1\% | 4\% | 10\% | 21\% |
| 2009 | INTEL |  | 80 | 12\% | -8\% | 1\% | 7\% | 10\% | 18\% | 27\% | 30\% |
| 2010 | INTEL |  | 58 | 9\% | -2\% | 1\% | 4\% | 5\% | 12\% | 26\% | 32\% |
| 2001 | INTEL |  | 153 | -9\% | -31\% | -18\% | -15\% | -12\% | -5\% | 5\% | 39\% |
| 2002 | INTEL |  | 149 | -7\% | -33\% | -22\% | -13\% | -6\% | -2\% | 5\% | 16\% |
| 2003 | INTEL |  | 131 | 10\% | -7\% | -4\% | 6\% | 9\% | 15\% | 24\% | 31\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | INTEL |  | 126 | -4\% | -15\% | -13\% | -7\% | -5\% | -1\% | 7\% | 39\% |
| 2005 | INTEL |  | 136 | 7\% | -7\% | -5\% | 3\% | 7\% | 12\% | 19\% | 32\% |
| 2006 | INTEL |  | 207 | 5\% | -13\% | -7\% | 0\% | 3\% | 10\% | 23\% | 32\% |
| 2007 | INTEL |  | 168 | 9\% | -6\% | -1\% | 6\% | 8\% | 13\% | 21\% | 29\% |
| 2008 | INTEL |  | 153 | 4\% | -15\% | -7\% | -1\% | 4\% | 8\% | 13\% | 17\% |
| 2009 | INTEL |  | 157 | 6\% | -9\% | -4\% | 1\% | 6\% | 11\% | 19\% | 26\% |
| 2010 | INTEL |  | 149 | 6\% | -5\% | -3\% | 2\% | 4\% | 8\% | 16\% | 20\% |
| 2001 | INTEL |  | 84 | -12\% | -50\% | -25\% | -15\% | -12\% | -10\% | 4\% | 7\% |
| 2002 | INTEL |  | 90 | -8\% | -35\% | -27\% | -14\% | -8\% | -3\% | 10\% | 25\% |
| 2003 | INTEL |  | 95 | 12\% | -30\% | -5\% | 7\% | 11\% | 18\% | 27\% | 36\% |
| 2004 | INTEL |  | 95 | -4\% | -24\% | -11\% | -8\% | -4\% | -2\% | 6\% | 40\% |
| 2005 | INTEL |  | 100 | 5\% | -8\% | -5\% | 3\% | 4\% | 7\% | 15\% | 26\% |
| 2006 | INTEL |  | 167 | 3\% | -13\% | -5\% | -2\% | 2\% | 6\% | 18\% | 38\% |
| 2007 | INTEL |  | 170 | 10\% | -4\% | 2\% | 7\% | 10\% | 13\% | 19\% | 24\% |
| 2008 | INTEL |  | 171 | 5\% | -8\% | -3\% | 1\% | 5\% | 10\% | 14\% | 21\% |
| 2009 | INTEL |  | 169 | 4\% | -18\% | -5\% | 1\% | 4\% | 8\% | 13\% | 19\% |
| 2010 | INTEL |  | 184 | 6\% | -5\% | -1\% | 4\% | 5\% | 8\% | 14\% | 18\% |
| 2001 | INTEL |  | 27 | -14\% | -52\% | -42\% | -18\% | -12\% | -9\% | -1\% | 18\% |
| 2004 | INTEL |  | 26 | -5\% | -30\% | -12\% | -6\% | -5\% | -2\% | 1\% | 11\% |
| 2005 | INTEL |  | 29 | 8\% | -2\% | 2\% | 5\% | 6\% | 12\% | 15\% | 16\% |
| 2006 | INTEL |  | 57 | 0\% | -18\% | -8\% | -4\% | -2\% | 2\% | 10\% | 61\% |
| 2007 | INTEL |  | 67 | 11\% | -15\% | -1\% | 8\% | 11\% | 15\% | 19\% | 48\% |
| 2008 | INTEL |  | 65 | 7\% | -17\% | -6\% | 4\% | 7\% | 12\% | 18\% | 39\% |
| 2009 | INTEL |  | 65 | 4\% | -12\% | -6\% | 0\% | 3\% | 7\% | 15\% | 29\% |
| 2010 | INTEL |  | 66 | 6\% | -5\% | 0\% | 4\% | 5\% | 9\% | 15\% | 18\% |
| 2005 | INTEL |  | 26 | 17\% | 4\% | 6\% | 7\% | 14\% | 27\% | 33\% | 34\% |
| 2007 | INTEL |  | 34 | 13\% | 0\% | 2\% | 7\% | 10\% | 20\% | 29\% | 39\% |
| 2008 | INTEL |  | 36 | 2\% | -12\% | -11\% | -2\% | 0\% | 4\% | 19\% | 23\% |
| 2009 | INTEL |  | 42 | 13\% | -1\% | 4\% | 8\% | 11\% | 18\% | 23\% | 29\% |
| 2010 | INTEL |  | 39 | 14\% | -2\% | -2\% | 5\% | 12\% | 19\% | 41\% | 49\% |
| 2005 | INTEL |  | 34 | 12\% | -3\% | 0\% | 5\% | 11\% | 18\% | 26\% | 31\% |
| 2006 | INTEL |  | 29 | 7\% | -4\% | -4\% | 2\% | 8\% | 13\% | 17\% | 23\% |
| 2007 | INTEL |  | 37 | 8\% | -4\% | -1\% | 5\% | 7\% | 12\% | 21\% | 23\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2008 | INTEL |  | 42 | 3\% | -9\% | -4\% | 0\% | 3\% | 6\% | 9\% | 12\% |
| 2009 | INTEL |  | 41 | 7\% | -2\% | 0\% | 3\% | 8\% | 12\% | 16\% | 17\% |
| 2010 | INTEL |  | 49 | 9\% | -4\% | 1\% | 4\% | 7\% | 11\% | 30\% | 36\% |
| 2005 | INTEL |  | 25 | 15\% | 1\% | 1\% | 7\% | 10\% | 21\% | 42\% | 44\% |
| 2007 | INTEL |  | 32 | 15\% | 5\% | 5\% | 9\% | 13\% | 19\% | 30\% | 65\% |
| 2008 | INTEL |  | 40 | 6\% | -4\% | -3\% | 1\% | 4\% | 7\% | 30\% | 34\% |
| 2009 | INTEL |  | 39 | 9\% | -4\% | -2\% | 4\% | 8\% | 11\% | 22\% | 22\% |
| 2010 | INTEL |  | 44 | 7\% | -13\% | -2\% | 4\% | 6\% | 9\% | 21\% | 24\% |
| 2008 | INTEL |  | 26 | 9\% | -13\% | -13\% | 2\% | 7\% | 15\% | 31\% | 32\% |
| 2009 | INTEL |  | 28 | 9\% | -13\% | -9\% | 3\% | 9\% | 12\% | 35\% | 37\% |
| 2010 | INTEL |  | 29 | 9\% | -4\% | -4\% | 5\% | 7\% | 12\% | 28\% | 30\% |
| 2001 | INTEL |  | 57 | 3\% | -25\% | -15\% | -5\% | 5\% | 9\% | 20\% | 21\% |
| 2002 | INTEL |  | 39 | 1\% | -20\% | -17\% | -4\% | 1\% | 5\% | 16\% | 20\% |
| 2001 | INTEL |  | 149 | 3\% | -15\% | -12\% | -8\% | -2\% | 8\% | 29\% | 59\% |
| 2002 | INTEL |  | 133 | -1\% | -22\% | -15\% | -6\% | -2\% | 5\% | 20\% | 27\% |
| 2003 | INTEL |  | 111 | 12\% | -6\% | 0\% | 7\% | 9\% | 17\% | 25\% | 28\% |
| 2004 | INTEL |  | 99 | 1\% | -24\% | -9\% | -3\% | -1\% | 6\% | 14\% | 27\% |
| 2005 | INTEL |  | 90 | 10\% | -3\% | -1\% | 3\% | 8\% | 16\% | 24\% | 35\% |
| 2006 | INTEL |  | 71 | 9\% | -9\% | -6\% | 2\% | 10\% | 17\% | 23\% | 25\% |
| 2007 | INTEL |  | 45 | 15\% | -3\% | 1\% | 9\% | 15\% | 22\% | 30\% | 32\% |
| 2008 | INTEL |  | 37 | 2\% | -10\% | -7\% | -1\% | 1\% | 5\% | 13\% | 21\% |
| 2009 | INTEL |  | 38 | 15\% | 0\% | 1\% | 8\% | 14\% | 21\% | 27\% | 35\% |
| 2010 | INTEL |  | 28 | 9\% | 1\% | 2\% | 4\% | 6\% | 10\% | 27\% | 27\% |
| 2001 | INTEL |  | 207 | -6\% | -39\% | -19\% | -12\% | -9\% | -1\% | 11\% | 59\% |
| 2002 | INTEL |  | 174 | -5\% | -30\% | -22\% | -11\% | -4\% | 1\% | 9\% | 20\% |
| 2003 | INTEL |  | 178 | 11\% | -10\% | -5\% | 6\% | 10\% | 16\% | 26\% | 77\% |
| 2004 | INTEL |  | 182 | -3\% | -23\% | -12\% | -6\% | -4\% | 0\% | 7\% | 31\% |
| 2005 | INTEL |  | 204 | 10\% | -14\% | 0\% | 5\% | 9\% | 14\% | 24\% | 32\% |
| 2006 | INTEL |  | 165 | 4\% | -10\% | -5\% | 0\% | 2\% | 8\% | 15\% | 23\% |
| 2007 | INTEL |  | 141 | 11\% | -19\% | 3\% | 6\% | 10\% | 17\% | 25\% | 31\% |
| 2008 | INTEL |  | 118 | 3\% | -22\% | -7\% | -1\% | 3\% | 8\% | 14\% | 30\% |
| 2009 | INTEL |  | 126 | 7\% | -7\% | -2\% | 3\% | 8\% | 11\% | 18\% | 27\% |
| 2010 | INTEL |  | 108 | 9\% | -4\% | -2\% | 4\% | 6\% | 13\% | 20\% | 41\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | INTEL |  | 181 | -5\% | -41\% | -21\% | -14\% | -10\% | 0\% | 28\% | 61\% |
| 2002 | INTEL |  | 206 | -8\% | -41\% | -31\% | -15\% | -7\% | -3\% | 10\% | 42\% |
| 2003 | INTEL |  | 204 | 14\% | -26\% | -5\% | 8\% | 13\% | 19\% | 27\% | 113\% |
| 2004 | INTEL |  | 206 | -3\% | -29\% | -13\% | -6\% | -3\% | 1\% | 7\% | 47\% |
| 2005 | INTEL |  | 227 | 10\% | -7\% | 1\% | 6\% | 9\% | 13\% | 22\% | 59\% |
| 2006 | INTEL |  | 219 | 3\% | -12\% | -7\% | -2\% | 2\% | 7\% | 14\% | 63\% |
| 2007 | INTEL |  | 202 | 14\% | -3\% | 3\% | 10\% | 13\% | 17\% | 23\% | 57\% |
| 2008 | INTEL |  | 192 | 4\% | -13\% | -5\% | 0\% | 4\% | 7\% | 12\% | 26\% |
| 2009 | INTEL |  | 175 | 7\% | -6\% | -2\% | 3\% | 6\% | 10\% | 16\% | 20\% |
| 2010 | INTEL |  | 161 | 7\% | -3\% | 1\% | 4\% | 5\% | 9\% | 17\% | 29\% |
| 2001 | INTEL |  | 102 | -7\% | -41\% | -27\% | -15\% | -12\% | -3\% | 33\% | 57\% |
| 2002 | INTEL |  | 121 | -12\% | -48\% | -38\% | -22\% | -10\% | -4\% | 9\% | 47\% |
| 2003 | INTEL |  | 128 | 12\% | -28\% | -4\% | 8\% | 12\% | 18\% | 32\% | 41\% |
| 2004 | INTEL |  | 140 | -5\% | -40\% | -20\% | -8\% | -5\% | 1\% | 10\% | 15\% |
| 2005 | INTEL |  | 126 | 10\% | -25\% | -6\% | 6\% | 9\% | 13\% | 24\% | 75\% |
| 2006 | INTEL |  | 125 | 0\% | -13\% | -9\% | -3\% | -2\% | 3\% | 11\% | 32\% |
| 2007 | INTEL |  | 125 | 15\% | -17\% | 7\% | 10\% | 13\% | 17\% | 27\% | 76\% |
| 2008 | INTEL |  | 131 | 6\% | -18\% | -8\% | 1\% | 6\% | 11\% | 19\% | 30\% |
| 2009 | INTEL |  | 141 | 5\% | -32\% | -6\% | 1\% | 5\% | 9\% | 19\% | 24\% |
| 2010 | INTEL |  | 136 | 7\% | -4\% | 1\% | 4\% | 5\% | 9\% | 18\% | 25\% |
| 2002 | INTEL |  | 31 | -12\% | -39\% | -39\% | -21\% | -12\% | -7\% | 10\% | 40\% |
| 2003 | INTEL |  | 37 | 11\% | -17\% | -16\% | 4\% | 15\% | 19\% | 28\% | 35\% |
| 2004 | INTEL |  | 42 | -7\% | -32\% | -27\% | -9\% | -6\% | -2\% | 0\% | 16\% |
| 2005 | INTEL |  | 46 | 16\% | 0\% | 1\% | 8\% | 10\% | 19\% | 57\% | 67\% |
| 2006 | INTEL |  | 47 | -2\% | -39\% | -22\% | -7\% | -3\% | 4\% | 13\% | 41\% |
| 2007 | INTEL |  | 43 | 18\% | 2\% | 4\% | 12\% | 14\% | 20\% | 62\% | 65\% |
| 2008 | INTEL |  | 45 | 5\% | -30\% | -17\% | 2\% | 7\% | 11\% | 19\% | 30\% |
| 2009 | INTEL |  | 40 | 2\% | -16\% | -9\% | -1\% | 2\% | 6\% | 16\% | 22\% |
| 2010 | INTEL |  | 42 | 9\% | -44\% | 1\% | 8\% | 9\% | 13\% | 19\% | 24\% |
| 2001 | INTEL |  | 29 | -2\% | -15\% | -14\% | -12\% | -10\% | -3\% | 44\% | 51\% |
| 2002 | INTEL |  | 36 | -14\% | -42\% | -38\% | -19\% | -15\% | -6\% | -1\% | 5\% |
| 2003 | INTEL |  | 50 | 14\% | -6\% | -5\% | 8\% | 13\% | 18\% | 30\% | 67\% |
| 2004 | INTEL |  | 54 | -5\% | -41\% | -24\% | -10\% | -5\% | 1\% | 10\% | 12\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 53 | 9\% | -1\% | 0\% | 6\% | 9\% | 12\% | 20\% | 22\% |
| 2006 | INTEL |  | 38 | 4\% | -17\% | -13\% | -2\% | 3\% | 11\% | 19\% | 25\% |
| 2007 | INTEL |  | 32 | 16\% | -9\% | -1\% | 11\% | 13\% | 18\% | 37\% | 76\% |
| 2008 | INTEL |  | 32 | 6\% | -5\% | -3\% | 1\% | 5\% | 9\% | 17\% | 18\% |
| 2009 | INTEL |  | 27 | 4\% | -6\% | -6\% | 0\% | 4\% | 9\% | 13\% | 19\% |
| 2010 | INTEL |  | 31 | 6\% | -2\% | 0\% | 4\% | 5\% | 7\% | 20\% | 22\% |
| 2001 | INTEL |  | 32 | 1\% | -25\% | -18\% | -13\% | -7\% | 3\% | 51\% | 61\% |
| 2002 | INTEL |  | 35 | -9\% | -44\% | -42\% | -22\% | -7\% | -2\% | 40\% | 43\% |
| 2003 | INTEL |  | 33 | 6\% | -43\% | -32\% | -6\% | 12\% | 17\% | 31\% | 31\% |
| 2004 | INTEL |  | 34 | -5\% | -17\% | -15\% | -12\% | -6\% | -4\% | 14\% | 14\% |
| 2005 | INTEL |  | 35 | 18\% | 2\% | 9\% | 11\% | 15\% | 19\% | 54\% | 68\% |
| 2006 | INTEL |  | 28 | 2\% | -27\% | -27\% | -7\% | -2\% | 4\% | 32\% | 89\% |
| 2008 | INTEL |  | 28 | 7\% | -12\% | -9\% | 2\% | 8\% | 12\% | 22\% | 26\% |
| 2009 | INTEL |  | 27 | 0\% | -13\% | -7\% | -2\% | -1\% | 3\% | 13\% | 14\% |
| 2010 | INTEL |  | 25 | 10\% | 3\% | 4\% | 7\% | 9\% | 12\% | 15\% | 35\% |
| 2001 | INTEL |  | 26 | -8\% | -22\% | -21\% | -13\% | -7\% | -2\% | 4\% | 5\% |
| 2010 | INTEL |  | 30 | 6\% | -5\% | 0\% | 4\% | 5\% | 9\% | 14\% | 20\% |
| 2001 | INTEL |  | 30 | 2\% | -12\% | -12\% | -8\% | -2\% | 12\% | 18\% | 18\% |
| 2001 | INTEL |  | 52 | 0\% | -15\% | -13\% | -9\% | -6\% | 11\% | 33\% | 50\% |
| 2002 | INTEL |  | 36 | -2\% | -19\% | -10\% | -6\% | -2\% | 1\% | 12\% | 14\% |
| 2003 | INTEL |  | 26 | 13\% | -1\% | -1\% | 7\% | 11\% | 20\% | 27\% | 29\% |
| 2001 | INTEL |  | 47 | -13\% | -24\% | -23\% | -19\% | -15\% | -11\% | 19\% | 23\% |
| 2002 | INTEL |  | 44 | -9\% | -29\% | -29\% | -13\% | -10\% | -3\% | 6\% | 7\% |
| 2003 | INTEL |  | 44 | 8\% | -13\% | -12\% | 2\% | 9\% | 12\% | 27\% | 28\% |
| 2004 | INTEL |  | 43 | -3\% | -28\% | -24\% | -11\% | -5\% | -1\% | 30\% | 44\% |
| 2005 | INTEL |  | 44 | 7\% | -11\% | -9\% | 3\% | 5\% | 9\% | 35\% | 36\% |
| 2006 | INTEL |  | 39 | 4\% | -10\% | -7\% | 0\% | 1\% | 10\% | 20\% | 21\% |
| 2007 | INTEL |  | 31 | 11\% | -1\% | 4\% | 7\% | 10\% | 15\% | 23\% | 29\% |
| 2008 | INTEL |  | 26 | 4\% | -4\% | -4\% | 1\% | 4\% | 7\% | 13\% | 19\% |
| 2001 | INTEL |  | 46 | -12\% | -31\% | -24\% | -19\% | -13\% | -10\% | 11\% | 18\% |
| 2002 | INTEL |  | 41 | -8\% | -26\% | -26\% | -15\% | -6\% | -2\% | 7\% | 9\% |
| 2003 | INTEL |  | 31 | 8\% | -9\% | -6\% | 0\% | 9\% | 13\% | 22\% | 31\% |
| 2004 | INTEL |  | 26 | -3\% | -15\% | -12\% | -7\% | -4\% | 0\% | 8\% | 14\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 38 | 7\% | -1\% | -1\% | 4\% | 5\% | 10\% | 15\% | 19\% |
| 2006 | INTEL |  | 28 | 2\% | -14\% | -9\% | -3\% | 0\% | 7\% | 14\% | 23\% |
| 2007 | INTEL |  | 30 | 11\% | 3\% | 5\% | 7\% | 10\% | 14\% | 22\% | 26\% |
| 2008 | INTEL |  | 26 | 11\% | -1\% | 0\% | 7\% | 10\% | 16\% | 22\% | 22\% |
| 2001 | INTEL |  | 48 | 4\% | -18\% | -11\% | -8\% | 2\% | 11\% | 43\% | 55\% |
| 2002 | INTEL |  | 26 | 4\% | -23\% | -13\% | -2\% | 2\% | 10\% | 33\% | 34\% |
| 2003 | INTEL |  | 37 | 20\% | -3\% | -1\% | 9\% | 17\% | 28\% | 53\% | 64\% |
| 2004 | INTEL |  | 38 | -2\% | -15\% | -15\% | -7\% | -2\% | 2\% | 13\% | 26\% |
| 2001 | INTEL |  | 101 | 1\% | -20\% | -14\% | -10\% | -4\% | 10\% | 31\% | 81\% |
| 2002 | INTEL |  | 57 | -1\% | -23\% | -19\% | -8\% | -2\% | 5\% | 14\% | 21\% |
| 2003 | INTEL |  | 66 | 13\% | -13\% | -2\% | 8\% | 11\% | 18\% | 31\% | 68\% |
| 2004 | INTEL |  | 77 | -1\% | -17\% | -15\% | -7\% | -3\% | 2\% | 16\% | 38\% |
| 2005 | INTEL |  | 54 | 8\% | -4\% | -3\% | 3\% | 7\% | 13\% | 24\% | 26\% |
| 2006 | INTEL |  | 34 | 5\% | -6\% | -5\% | 0\% | 2\% | 9\% | 18\% | 38\% |
| 2007 | INTEL |  | 28 | 12\% | 1\% | 2\% | 7\% | 11\% | 16\% | 25\% | 27\% |
| 2001 | INTEL |  | 118 | -8\% | -22\% | -20\% | -15\% | -11\% | -3\% | 8\% | 32\% |
| 2002 | INTEL |  | 104 | -6\% | -35\% | -24\% | -12\% | -5\% | 1\% | 14\% | 20\% |
| 2003 | INTEL |  | 106 | 13\% | -13\% | 1\% | 7\% | 10\% | 18\% | 30\% | 88\% |
| 2004 | INTEL |  | 99 | -3\% | -26\% | -13\% | -8\% | -4\% | -1\% | 7\% | 40\% |
| 2005 | INTEL |  | 53 | 8\% | -7\% | -1\% | 3\% | 8\% | 12\% | 20\% | 29\% |
| 2006 | INTEL |  | 36 | 3\% | -13\% | -10\% | -1\% | 1\% | 5\% | 16\% | 20\% |
| 2007 | INTEL |  | 29 | 9\% | 2\% | 2\% | 4\% | 8\% | 12\% | 19\% | 22\% |
| 2010 | INTEL |  | 26 | 6\% | -4\% | -3\% | 3\% | 4\% | 8\% | 19\% | 24\% |
| 2001 | INTEL |  | 95 | -8\% | -39\% | -24\% | -15\% | -11\% | -4\% | 12\% | 86\% |
| 2002 | INTEL |  | 85 | -8\% | -36\% | -23\% | -15\% | -7\% | -3\% | 10\% | 42\% |
| 2003 | INTEL |  | 87 | 10\% | -18\% | -6\% | 7\% | 11\% | 16\% | 24\% | 27\% |
| 2004 | INTEL |  | 112 | -3\% | -36\% | -15\% | -7\% | -4\% | 0\% | 10\% | 45\% |
| 2005 | INTEL |  | 45 | 10\% | -10\% | -6\% | 4\% | 10\% | 12\% | 33\% | 42\% |
| 2006 | INTEL |  | 32 | 6\% | -8\% | -7\% | 1\% | 5\% | 8\% | 19\% | 59\% |
| 2001 | INTEL |  | 37 | -10\% | -41\% | -39\% | -15\% | -12\% | -2\% | 10\% | 18\% |
| 2002 | INTEL |  | 37 | -9\% | -30\% | -30\% | -18\% | -9\% | -3\% | 4\% | 54\% |
| 2003 | INTEL |  | 45 | 16\% | -25\% | -12\% | 7\% | 13\% | 20\% | 92\% | 97\% |
| 2004 | INTEL |  | 45 | -5\% | -30\% | -20\% | -10\% | -4\% | -1\% | 11\% | 24\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | INTEL |  | 25 | 8\% | -6\% | -1\% | 3\% | 6\% | 13\% | 23\% | 27\% |
| 2007 | INTEL |  | 26 | 11\% | -1\% | 0\% | 6\% | 10\% | 18\% | 21\% | 24\% |
| 2008 | INTEL |  | 29 | 5\% | -4\% | -1\% | 0\% | 4\% | 6\% | 23\% | 26\% |
| 2009 | INTEL |  | 27 | 12\% | 1\% | 5\% | 6\% | 10\% | 18\% | 25\% | 26\% |
| 2010 | INTEL |  | 28 | 13\% | -3\% | 2\% | 4\% | 8\% | 23\% | 32\% | 34\% |
| 2005 | INTEL |  | 32 | 8\% | 0\% | 1\% | 3\% | 5\% | 11\% | 16\% | 34\% |
| 2006 | INTEL |  | 37 | 6\% | -12\% | -5\% | 1\% | 4\% | 9\% | 19\% | 20\% |
| 2007 | INTEL |  | 39 | 9\% | -2\% | -1\% | 6\% | 8\% | 13\% | 17\% | 28\% |
| 2008 | INTEL |  | 34 | 3\% | -11\% | -8\% | -1\% | 4\% | 7\% | 12\% | 13\% |
| 2009 | INTEL |  | 32 | 6\% | -6\% | -5\% | 2\% | 7\% | 10\% | 14\% | 15\% |
| 2010 | INTEL |  | 36 | 9\% | -5\% | 1\% | 4\% | 7\% | 12\% | 25\% | 35\% |
| 2005 | INTEL |  | 43 | 8\% | -5\% | -5\% | 2\% | 6\% | 12\% | 33\% | 33\% |
| 2006 | INTEL |  | 52 | 5\% | -7\% | -4\% | 1\% | 6\% | 9\% | 15\% | 21\% |
| 2007 | INTEL |  | 79 | 12\% | 2\% | 4\% | 9\% | 10\% | 14\% | 23\% | 42\% |
| 2008 | INTEL |  | 93 | 6\% | -6\% | -4\% | 1\% | 5\% | 9\% | 22\% | 34\% |
| 2009 | INTEL |  | 95 | 10\% | -3\% | -1\% | 5\% | 8\% | 13\% | 22\% | 31\% |
| 2010 | INTEL |  | 103 | 8\% | -3\% | 0\% | 4\% | 6\% | 11\% | 19\% | 38\% |
| 2006 | INTEL |  | 28 | 4\% | -15\% | -12\% | -2\% | 2\% | 9\% | 21\% | 46\% |
| 2007 | INTEL |  | 34 | 14\% | -15\% | 2\% | 10\% | 13\% | 15\% | 27\% | 63\% |
| 2008 | INTEL |  | 42 | 6\% | -6\% | -3\% | 1\% | 4\% | 10\% | 17\% | 31\% |
| 2009 | INTEL |  | 43 | 6\% | -7\% | -4\% | 3\% | 4\% | 10\% | 17\% | 20\% |
| 2010 | INTEL |  | 51 | 7\% | -3\% | 1\% | 4\% | 6\% | 11\% | 15\% | 20\% |
| 2010 | INTEL |  | 28 | 10\% | -2\% | 0\% | 8\% | 9\% | 12\% | 19\% | 25\% |
| 2001 | INTEL |  | 43 | 0\% | -16\% | -15\% | -11\% | -3\% | 8\% | 29\% | 39\% |
| 2001 | INTEL |  | 26 | -7\% | -18\% | -18\% | -12\% | -7\% | -3\% | 4\% | 9\% |
| 2001 | INTEL |  | 26 | -2\% | -16\% | -15\% | -10\% | -6\% | 1\% | 27\% | 36\% |
| 2005 | INTEL |  | 39 | 12\% | 0\% | 1\% | 4\% | 10\% | 19\% | 28\% | 34\% |
| 2006 | INTEL |  | 41 | 7\% | -12\% | -8\% | 0\% | 7\% | 14\% | 21\% | 24\% |
| 2007 | INTEL |  | 30 | 12\% | 1\% | 1\% | 7\% | 10\% | 17\% | 26\% | 30\% |
| 2008 | INTEL |  | 26 | -1\% | -10\% | -7\% | -4\% | -1\% | 0\% | 8\% | 10\% |
| 2004 | INTEL |  | 30 | -4\% | -16\% | -15\% | -7\% | -4\% | -1\% | 5\% | 11\% |
| 2005 | INTEL |  | 51 | 8\% | 0\% | 0\% | 4\% | 8\% | 12\% | 17\% | 20\% |
| 2006 | INTEL |  | 47 | 5\% | -5\% | -1\% | 1\% | 6\% | 9\% | 14\% | 19\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th <br> Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | INTEL |  | 44 | 9\% | -6\% | -4\% | 6\% | 8\% | 14\% | 23\% | 25\% |
| 2008 | INTEL |  | 29 | 5\% | -6\% | -4\% | 1\% | 4\% | 9\% | 15\% | 29\% |
| 2009 | INTEL |  | 32 | 5\% | -2\% | -2\% | 1\% | 4\% | 8\% | 14\% | 23\% |
| 2010 | INTEL |  | 29 | 5\% | -2\% | 0\% | 4\% | 4\% | 8\% | 15\% | 17\% |
| 2004 | INTEL |  | 42 | -2\% | -32\% | -28\% | -10\% | -2\% | 0\% | 47\% | 47\% |
| 2005 | INTEL |  | 55 | 13\% | 2\% | 3\% | 7\% | 11\% | 17\% | 31\% | 57\% |
| 2006 | INTEL |  | 69 | 6\% | -10\% | -5\% | 1\% | 5\% | 10\% | 15\% | 34\% |
| 2007 | INTEL |  | 65 | 12\% | 3\% | 5\% | 9\% | 12\% | 14\% | 21\% | 25\% |
| 2008 | INTEL |  | 59 | 5\% | -3\% | -3\% | 1\% | 5\% | 8\% | 14\% | 17\% |
| 2009 | INTEL |  | 62 | 7\% | -7\% | -2\% | 3\% | 5\% | 11\% | 18\% | 28\% |
| 2010 | INTEL |  | 49 | 10\% | -4\% | -2\% | 4\% | 7\% | 12\% | 32\% | 39\% |
| 2005 | INTEL |  | 32 | 20\% | 5\% | 5\% | 12\% | 16\% | 22\% | 53\% | 92\% |
| 2006 | INTEL |  | 37 | 1\% | -13\% | -12\% | -3\% | 2\% | 6\% | 11\% | 13\% |
| 2007 | INTEL |  | 35 | 14\% | 0\% | 2\% | 9\% | 12\% | 19\% | 27\% | 47\% |
| 2008 | INTEL |  | 39 | 5\% | -21\% | -4\% | 2\% | 6\% | 9\% | 14\% | 18\% |
| 2009 | INTEL |  | 38 | 5\% | -7\% | -3\% | 1\% | 3\% | 7\% | 19\% | 24\% |
| 2010 | INTEL |  | 39 | 6\% | -6\% | -4\% | 3\% | 7\% | 9\% | 13\% | 16\% |
| 2004 | INTUIT |  | 31 | 6\% | -14\% | -11\% | -6\% | 2\% | 10\% | 39\% | 63\% |
| 2005 | INTUIT |  | 47 | 18\% | -7\% | -1\% | 11\% | 15\% | 23\% | 41\% | 56\% |
| 2006 | INTUIT |  | 49 | 3\% | -19\% | -13\% | -4\% | 3\% | 8\% | 17\% | 32\% |
| 2007 | INTUIT |  | 58 | 9\% | -30\% | -21\% | -1\% | 9\% | 12\% | 39\% | 83\% |
| 2008 | INTUIT |  | 71 | -2\% | -23\% | -17\% | -9\% | -4\% | 4\% | 20\% | 56\% |
| 2009 | INTUIT |  | 71 | 19\% | -25\% | -8\% | 7\% | 17\% | 34\% | 43\% | 61\% |
| 2010 | INTUIT |  | 72 | 0\% | -28\% | -24\% | -8\% | 0\% | 6\% | 26\% | 39\% |
| 2008 | INTUIT |  | 28 | 4\% | -14\% | -12\% | -4\% | 1\% | 14\% | 21\% | 22\% |
| 2007 | INTUIT |  | 30 | 9\% | -3\% | -3\% | 4\% | 7\% | 13\% | 25\% | 33\% |
| 2008 | Intuit |  | 34 | 2\% | -7\% | -7\% | -3\% | 0\% | 3\% | 19\% | 25\% |
| 2009 | INTUIT |  | 31 | 13\% | -6\% | -5\% | 6\% | 11\% | 20\% | 30\% | 38\% |
| 2010 | INTUIT |  | 32 | 3\% | -14\% | -9\% | -1\% | 1\% | 8\% | 22\% | 26\% |
| 2002 | INTUIT |  | 26 | 31\% | -40\% | -24\% | 3\% | 30\% | 49\% | 80\% | 160\% |
| 2003 | InTUIT |  | 26 | 7\% | -51\% | -51\% | -17\% | 4\% | 21\% | 130\% | 130\% |
| 2004 | INTUIT |  | 27 | 3\% | -29\% | -26\% | -13\% | -7\% | 4\% | 71\% | 85\% |
| 2005 | INTUIT |  | 30 | 20\% | -32\% | -30\% | 8\% | 19\% | 31\% | 90\% | 139\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | INTUIT |  | 34 | 13\% | -14\% | -10\% | 4\% | 10\% | 23\% | 39\% | 44\% |
| 2005 | INTUIT |  | 28 | 22\% | -3\% | -3\% | 10\% | 21\% | 30\% | 75\% | 75\% |
| 2006 | INTUIT |  | 26 | 13\% | -23\% | -23\% | 4\% | 8\% | 21\% | 62\% | 62\% |
| 2007 | INTUIT |  | 31 | 17\% | -16\% | -13\% | 3\% | 15\% | 27\% | 38\% | 70\% |
| 2008 | INTUIT |  | 31 | -1\% | -17\% | -15\% | -11\% | -7\% | 4\% | 36\% | 55\% |
| 2009 | INTUIT |  | 34 | 23\% | -20\% | -7\% | 1\% | 24\% | 39\% | 52\% | 68\% |
| 2010 | INTUIT |  | 32 | 18\% | -19\% | -19\% | -4\% | 11\% | 39\% | 57\% | 121\% |
| 2007 | INTUIT |  | 42 | 9\% | -13\% | -11\% | -1\% | 7\% | 13\% | 46\% | 77\% |
| 2008 | INTUIT |  | 38 | -4\% | -21\% | -21\% | -12\% | -6\% | 4\% | 13\% | 19\% |
| 2009 | INTUIT |  | 47 | 11\% | -14\% | -9\% | 2\% | 8\% | 18\% | 44\% | 56\% |
| 2010 | INTUIT |  | 46 | 9\% | -15\% | -12\% | -1\% | 3\% | 17\% | 33\% | 51\% |
| 2006 | INTUIT |  | 53 | 11\% | -14\% | -13\% | 4\% | 12\% | 23\% | 30\% | 30\% |
| 2007 | INTUIT |  | 27 | 10\% | -27\% | -9\% | 1\% | 9\% | 18\% | 43\% | 44\% |
| 2006 | INTUIT |  | 26 | 11\% | -17\% | -11\% | 3\% | 8\% | 23\% | 34\% | 50\% |
| 2001 | INTUIT |  | 47 | -32\% | -67\% | -57\% | -44\% | -36\% | -27\% | -13\% | 157\% |
| 2002 | INTUIT |  | 27 | 21\% | -11\% | -5\% | 16\% | 24\% | 31\% | 35\% | 54\% |
| 2003 | Intuit |  | 38 | 8\% | -23\% | -15\% | -8\% | 5\% | 14\% | 44\% | 56\% |
| 2004 | INTUIT |  | 40 | -3\% | -22\% | -18\% | -11\% | -3\% | 4\% | 12\% | 24\% |
| 2005 | INTUIT |  | 25 | 20\% | -7\% | -7\% | 14\% | 19\% | 27\% | 45\% | 45\% |
| 2001 | INTUIT |  | 39 | -29\% | -57\% | -49\% | -41\% | -35\% | -25\% | 17\% | 77\% |
| 2002 | INTUIT |  | 45 | 12\% | -32\% | -24\% | 1\% | 16\% | 28\% | 37\% | 40\% |
| 2003 | INTUIT |  | 44 | 13\% | -26\% | -16\% | 1\% | 12\% | 24\% | 38\% | 45\% |
| 2004 | INTUIT |  | 31 | 4\% | -16\% | -16\% | -3\% | 2\% | 7\% | 30\% | 30\% |
| 2005 | INTUIT |  | 30 | 21\% | 0\% | 0\% | 11\% | 20\% | 27\% | 40\% | 40\% |
| 2006 | INTUIT |  | 37 | 11\% | -11\% | -10\% | 5\% | 12\% | 19\% | 30\% | 32\% |
| 2007 | INTUIT |  | 57 | 17\% | -7\% | -2\% | 4\% | 16\% | 25\% | 44\% | 65\% |
| 2008 | INTUIT |  | 56 | 1\% | -19\% | -15\% | -6\% | 0\% | 6\% | 18\% | 28\% |
| 2009 | INTUIT |  | 52 | 17\% | -13\% | -7\% | 7\% | 16\% | 27\% | 49\% | 63\% |
| 2010 | INTUIT |  | 54 | 6\% | -16\% | -11\% | -4\% | 3\% | 11\% | 32\% | 70\% |
| 2003 | INTUIT |  | 187 | 8\% | -24\% | -9\% | 1\% | 6\% | 13\% | 31\% | 60\% |
| 2004 | INTUIT |  | 184 | 10\% | -18\% | -7\% | 3\% | 8\% | 17\% | 29\% | 45\% |
| 2005 | INTUIT |  | 173 | 16\% | -14\% | -3\% | 8\% | 13\% | 23\% | 37\% | 67\% |
| 2006 | INTUIT |  | 152 | 7\% | -12\% | -8\% | -3\% | 6\% | 15\% | 26\% | 48\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | INTUIT |  | 198 | 17\% | -13\% | -3\% | 6\% | 13\% | 27\% | 47\% | 111\% |
| 2008 | INTUIT |  | 170 | 6\% | -24\% | -10\% | -1\% | 5\% | 14\% | 26\% | 44\% |
| 2001 | INTUIT |  | 100 | -22\% | -59\% | -51\% | -39\% | -26\% | -6\% | 17\% | 56\% |
| 2002 | INTUIT |  | 140 | 8\% | -44\% | -24\% | -3\% | 6\% | 21\% | 35\% | 47\% |
| 2003 | INTUIT |  | 38 | 5\% | -14\% | -14\% | -3\% | 5\% | 16\% | 23\% | 23\% |
| 2009 | INTUIT |  | 172 | 17\% | -25\% | -6\% | 5\% | 13\% | 25\% | 54\% | 65\% |
| 2010 | INTUIT |  | 162 | 5\% | -26\% | -13\% | -6\% | 2\% | 15\% | 35\% | 50\% |
| 2001 | INTUIT |  | 122 | -31\% | -62\% | -55\% | -45\% | -36\% | -24\% | 7\% | 127\% |
| 2002 | INTUIT |  | 170 | 8\% | -49\% | -26\% | 0\% | 6\% | 21\% | 40\% | 51\% |
| 2003 | INTUIT |  | 49 | 7\% | -26\% | -13\% | -5\% | 6\% | 13\% | 42\% | 46\% |
| 2001 | INTUIT |  | 91 | -35\% | -65\% | -57\% | -46\% | -37\% | -27\% | 6\% | 15\% |
| 2002 | Intuit |  | 116 | 14\% | -42\% | -25\% | -1\% | 11\% | 30\% | 55\% | 130\% |
| 2003 | INTUIT |  | 32 | 2\% | -18\% | -16\% | -10\% | -1\% | 10\% | 30\% | 40\% |
| 2003 | INTUIT |  | 61 | 7\% | -19\% | -8\% | 0\% | 5\% | 16\% | 32\% | 38\% |
| 2004 | INTUIT |  | 66 | 4\% | -10\% | -8\% | 0\% | 3\% | 7\% | 18\% | 27\% |
| 2005 | INTUIT |  | 68 | 14\% | -4\% | -2\% | 9\% | 14\% | 17\% | 37\% | 42\% |
| 2006 | INTUIT |  | 74 | 10\% | -14\% | -7\% | 1\% | 8\% | 20\% | 35\% | 39\% |
| 2007 | INTUIT |  | 54 | 11\% | -16\% | -8\% | 0\% | 9\% | 18\% | 36\% | 43\% |
| 2008 | INTUIT |  | 54 | 9\% | -11\% | -10\% | 2\% | 7\% | 19\% | 32\% | 32\% |
| 2001 | INTUIT |  | 36 | -19\% | -56\% | -52\% | -38\% | -27\% | -9\% | 13\% | 104\% |
| 2002 | INTUIT |  | 51 | 5\% | -25\% | -24\% | -10\% | 0\% | 17\% | 45\% | 59\% |
| 2010 | INTUIT |  | 29 | 4\% | -11\% | -6\% | -4\% | 1\% | 10\% | 25\% | 25\% |
| 2002 | INTUIT |  | 38 | 18\% | -36\% | -28\% | 3\% | 15\% | 33\% | 84\% | 112\% |
| 2003 | INTUIT |  | 44 | 6\% | -39\% | -25\% | -4\% | 4\% | 15\% | 55\% | 67\% |
| 2004 | INTUIT |  | 38 | 1\% | -23\% | -20\% | -6\% | 0\% | 10\% | 23\% | 30\% |
| 2005 | INTUIT |  | 36 | 17\% | -9\% | -1\% | 7\% | 18\% | 25\% | 44\% | 44\% |
| 2002 | INTUIT |  | 33 | 10\% | -31\% | -26\% | -12\% | 14\% | 24\% | 41\% | 70\% |
| 2003 | INTUIT |  | 42 | 17\% | -8\% | -6\% | 0\% | 10\% | 23\% | 67\% | 142\% |
| 2004 | INTUIT |  | 48 | 8\% | -11\% | -8\% | -3\% | 4\% | 16\% | 35\% | 47\% |
| 2005 | INTUIT |  | 53 | 16\% | -10\% | -3\% | 11\% | 17\% | 21\% | 35\% | 36\% |
| 2006 | INTUIT |  | 52 | 15\% | -6\% | -4\% | 6\% | 13\% | 24\% | 37\% | 47\% |
| 2007 | INTUIT |  | 59 | 15\% | -20\% | -13\% | 3\% | 14\% | 22\% | 58\% | 65\% |
| 2008 | INTUIT |  | 68 | 0\% | -23\% | -15\% | -8\% | -3\% | 5\% | 21\% | 47\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | INTUIT |  | 67 | 23\% | -16\% | -6\% | 7\% | 21\% | 36\% | 51\% | 89\% |
| 2010 | INTUIT |  | 71 | 5\% | -24\% | -19\% | -7\% | -2\% | 17\% | 41\% | 70\% |
| 2008 | INTUIT |  | 30 | 2\% | -12\% | -12\% | -6\% | -2\% | 4\% | 24\% | 40\% |
| 2003 | INTUIT |  | 186 | 9\% | -22\% | -15\% | 0\% | 6\% | 17\% | 38\% | 74\% |
| 2004 | INTUIT |  | 272 | 2\% | -23\% | -13\% | -5\% | 1\% | 6\% | 20\% | 40\% |
| 2005 | INTUIT |  | 307 | 14\% | -11\% | 0\% | 7\% | 12\% | 19\% | 34\% | 53\% |
| 2006 | INTUIT |  | 384 | 10\% | -23\% | -8\% | 2\% | 9\% | 17\% | 31\% | 46\% |
| 2007 | INTUIT |  | 444 | 12\% | -23\% | -7\% | 2\% | 9\% | 19\% | 45\% | 80\% |
| 2008 | INTUIT |  | 449 | 0\% | -27\% | -12\% | -6\% | -2\% | 4\% | 15\% | 70\% |
| 2009 | INTUIT |  | 294 | 13\% | -13\% | -6\% | 5\% | 11\% | 20\% | 39\% | 85\% |
| 2010 | INTUIT |  | 293 | 2\% | -35\% | -17\% | -8\% | -1\% | 8\% | 35\% | 66\% |
| 2004 | INTUIT |  | 37 | 3\% | -17\% | -14\% | -2\% | 3\% | 9\% | 22\% | 26\% |
| 2005 | INTUIT |  | 65 | 14\% | -10\% | 0\% | 6\% | 13\% | 20\% | 32\% | 44\% |
| 2006 | INTUIT |  | 83 | 8\% | -28\% | -13\% | 2\% | 7\% | 16\% | 35\% | 49\% |
| 2007 | INTUIT |  | 101 | 11\% | -18\% | -7\% | 2\% | 10\% | 20\% | 37\% | 46\% |
| 2008 | INTUIT |  | 97 | -1\% | -18\% | -13\% | -6\% | -3\% | 1\% | 14\% | 31\% |
| 2006 | INTUIT |  | 34 | 12\% | -8\% | -1\% | 6\% | 10\% | 17\% | 34\% | 35\% |
| 2007 | INTUIT |  | 55 | 6\% | -13\% | -6\% | -1\% | 4\% | 11\% | 22\% | 28\% |
| 2008 | INTUIT |  | 71 | 3\% | -10\% | -8\% | -2\% | 1\% | 6\% | 20\% | 28\% |
| 2009 | INTUIT |  | 59 | 16\% | -7\% | -4\% | 9\% | 11\% | 21\% | 48\% | 68\% |
| 2010 | INTUIT |  | 57 | 1\% | -59\% | -10\% | -2\% | 0\% | 4\% | 26\% | 35\% |
| 2004 | INTUIT |  | 39 | 3\% | -11\% | -10\% | -3\% | 3\% | 9\% | 17\% | 25\% |
| 2005 | INTUIT |  | 39 | 11\% | -8\% | 0\% | 6\% | 9\% | 16\% | 25\% | 33\% |
| 2006 | InTUIT |  | 39 | 9\% | -5\% | -2\% | 4\% | 7\% | 14\% | 25\% | 26\% |
| 2007 | INTUIT |  | 41 | 2\% | -12\% | -12\% | -1\% | 1\% | 6\% | 12\% | 15\% |
| 2008 | INTUIT |  | 34 | 1\% | -8\% | -8\% | -5\% | 1\% | 7\% | 11\% | 11\% |
| 2003 | INTUIT |  | 89 | 6\% | -33\% | -20\% | 0\% | 4\% | 13\% | 36\% | 48\% |
| 2004 | INTUIT |  | 104 | 2\% | -18\% | -15\% | -6\% | -1\% | 7\% | 32\% | 47\% |
| 2005 | INTUIT |  | 134 | 15\% | -23\% | -4\% | 7\% | 14\% | 22\% | 36\% | 83\% |
| 2006 | INTUIT |  | 164 | 8\% | -51\% | -10\% | 2\% | 7\% | 17\% | 28\% | 59\% |
| 2007 | INTUIT |  | 189 | 12\% | -27\% | -11\% | 1\% | 10\% | 20\% | 44\% | 98\% |
| 2008 | INTUIT |  | 222 | -2\% | -23\% | -17\% | -8\% | -3\% | 2\% | 14\% | 25\% |
| 2009 | INTUIT |  | 213 | 15\% | -18\% | -8\% | 5\% | 13\% | 24\% | 44\% | 129\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | INTUIT |  | 222 | 1\% | -31\% | -19\% | -10\% | -1\% | 7\% | 28\% | 53\% |
| 2008 | INTUIT |  | 27 | 1\% | -15\% | -13\% | -6\% | 1\% | 3\% | 6\% | 68\% |
| 2009 | INTUIT |  | 25 | 15\% | -15\% | -9\% | 0\% | 15\% | 31\% | 36\% | 55\% |
| 2010 | INTUIT |  | 30 | 3\% | -31\% | -21\% | -5\% | 1\% | 9\% | 23\% | 102\% |
| 2007 | INTUIT |  | 41 | 3\% | -21\% | -17\% | -8\% | 1\% | 13\% | 30\% | 33\% |
| 2008 | INTUIT |  | 43 | 1\% | -13\% | -11\% | -5\% | -1\% | 5\% | 21\% | 31\% |
| 2009 | INTUIT |  | 38 | 23\% | -8\% | 6\% | 11\% | 17\% | 29\% | 54\% | 63\% |
| 2010 | INTUIT |  | 37 | -2\% | -29\% | -19\% | -6\% | -2\% | 2\% | 21\% | 37\% |
| 2006 | INTUIT |  | 36 | 11\% | -2\% | -1\% | 6\% | 10\% | 16\% | 26\% | 27\% |
| 2007 | INTUIT |  | 25 | 10\% | -8\% | 0\% | 4\% | 9\% | 15\% | 22\% | 36\% |
| 2008 | Intuit |  | 28 | 4\% | -9\% | -6\% | -1\% | 2\% | 6\% | 19\% | 35\% |
| 2009 | InTUIT |  | 27 | 10\% | -5\% | -2\% | 5\% | 8\% | 13\% | 32\% | 33\% |
| 2010 | INTUIT |  | 25 | 5\% | -4\% | -4\% | 2\% | 4\% | 9\% | 14\% | 17\% |
| 2001 | INTUIT |  | 41 | -22\% | -51\% | -50\% | -39\% | -22\% | -5\% | 14\% | 17\% |
| 2002 | INTUIT |  | 40 | 12\% | -9\% | -4\% | 3\% | 6\% | 18\% | 41\% | 59\% |
| 2003 | INTUIT |  | 46 | 3\% | -12\% | -12\% | -5\% | 4\% | 8\% | 14\% | 14\% |
| 2001 | INTUIT |  | 32 | -30\% | -45\% | -44\% | -39\% | -35\% | -31\% | 6\% | 14\% |
| 2002 | INTUIT |  | 29 | 9\% | -30\% | -13\% | 1\% | 9\% | 21\% | 29\% | 37\% |
| 2003 | INTUIT |  | 27 | 7\% | -18\% | -18\% | 0\% | 8\% | 17\% | 20\% | 20\% |
| 2002 | INTUIT |  | 36 | 15\% | -22\% | -12\% | 0\% | 4\% | 31\% | 65\% | 75\% |
| 2003 | INTUIT |  | 32 | 15\% | 1\% | 1\% | 3\% | 17\% | 23\% | 31\% | 31\% |
| 2002 | INTUIT |  | 27 | 8\% | -16\% | -10\% | 0\% | 12\% | 15\% | 21\% | 22\% |
| 2003 | INTUIT |  | 25 | 5\% | -14\% | -14\% | 2\% | 7\% | 10\% | 18\% | 18\% |
| 2001 | PIXAR | ANIMATOR | 47 | 12\% | -1\% | 1\% | 8\% | 11\% | 15\% | 19\% | 41\% |
| 2002 | PIXAR | ANIMATOR | 54 | 24\% | -66\% | -62\% | 12\% | 14\% | 15\% | 22\% | 595\% |
| 2003 | PIXAR | ANIMATOR | 60 | -15\% | -85\% | -82\% | -18\% | -15\% | -11\% | 1\% | 200\% |
| 2004 | PIXAR | ANIMATOR | 60 | 22\% | -77\% | -72\% | 15\% | 36\% | 57\% | 82\% | 96\% |
| 2005 | PIXAR | ANIMATOR | 61 | 26\% | -64\% | -14\% | 10\% | 20\% | 36\% | 120\% | 132\% |
| 2006 | PIXAR | ANIMATOR | 84 | 4\% | -25\% | -18\% | -9\% | 0\% | 13\% | 51\% | 84\% |
| 2007 | PIXAR | ANIMATOR | 68 | 3\% | -15\% | -12\% | -7\% | -2\% | 7\% | 33\% | 67\% |
| 2008 | PIXAR | ANIMATOR | 87 | -7\% | -26\% | -24\% | -12\% | -5\% | -1\% | 5\% | 18\% |
| 2009 | PIXAR | ANIMATOR | 85 | 11\% | -4\% | 3\% | 7\% | 10\% | 14\% | 23\% | 28\% |
| 2010 | PIXAR | ANIMATOR | 85 | 12\% | -8\% | 3\% | 7\% | 11\% | 16\% | 27\% | 37\% |

## Appendix B

## Distribution of Yearly Change in Total Compensation (Job Titles in Leamer Supplemental Report Regressions)

| Year | Employer | Job Title | Headcount | Average | Minimum | 5th Percentile | 25th <br> Percentile | Median | 75th <br> Percentile | 95th Percentile | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | PIXAR | ARTIST_STORY | 25 | -1\% | -19\% | -17\% | -14\% | -10\% | 11\% | 18\% | 45\% |
| 2007 | PIXAR | ARTIST_STORY | 30 | 3\% | -16\% | -12\% | -6\% | -4\% | 1\% | 24\% | 121\% |
| 2008 | PIXAR | ARTIST_STORY | 28 | -3\% | -20\% | -17\% | -13\% | -10\% | -1\% | 30\% | 41\% |
| 2009 | PIXAR | ARTIST_STORY | 31 | 14\% | 6\% | 6\% | 10\% | 11\% | 15\% | 32\% | 44\% |
| 2010 | PIXAR | ARTIST_STORY | 25 | 11\% | -1\% | 0\% | 7\% | 9\% | 16\% | 23\% | 27\% |
| 2001 | PIXAR | ENGINEER_SOFTWARE | 40 | 1\% | -55\% | -53\% | -37\% | 12\% | 15\% | 21\% | 133\% |
| 2002 | PIXAR | ENGINEER_SOFTWARE | 53 | 14\% | -62\% | -59\% | -43\% | 14\% | 15\% | 23\% | 563\% |
| 2003 | PIXAR | ENGINEER_SOFTWARE | 60 | -24\% | -86\% | -80\% | -17\% | -15\% | -11\% | -3\% | 3\% |
| 2004 | PIXAR | ENGINEER_SOFTWARE | 41 | 43\% | -63\% | 13\% | 19\% | 40\% | 62\% | 94\% | 146\% |
| 2005 | PIXAR | ENGINEER_SOFTWARE | 30 | 30\% | 0\% | 1\% | 8\% | 24\% | 37\% | 96\% | 113\% |
| 2006 | PIXAR | ENGINEER_SOFTWARE | 37 | 5\% | -23\% | -17\% | -15\% | -5\% | 15\% | 65\% | 96\% |
| 2007 | PIXAR | ENGINEER_SOFTWARE | 38 | -4\% | -22\% | -18\% | -10\% | -7\% | -2\% | 27\% | 38\% |
| 2008 | PIXAR | ENGINEER_SOFTWARE | 41 | -9\% | -24\% | -22\% | -15\% | -12\% | -5\% | 6\% | 29\% |
| 2009 | PIXAR | ENGINEER_SOFTWARE | 45 | 11\% | -11\% | 2\% | 9\% | 11\% | 12\% | 25\% | 30\% |
| 2010 | PIXAR | ENGINEER_SOFTWARE | 61 | 10\% | 0\% | 1\% | 5\% | 9\% | 11\% | 25\% | 42\% |
| 2001 | PIXAR | TECHNICAL_DIRECTOR | 120 | 0\% | -61\% | -56\% | -24\% | 10\% | 15\% | 27\% | 199\% |
| 2002 | PIXAR | TECHNICAL_DIRECTOR | 125 | 7\% | -71\% | -64\% | 11\% | 14\% | 16\% | 22\% | 272\% |
| 2003 | PIXAR | TECHNICAL_DIRECTOR | 122 | -18\% | -81\% | -76\% | -17\% | -15\% | -13\% | -1\% | 205\% |
| 2004 | PIXAR | TECHNICAL_DIRECTOR | 146 | 41\% | -80\% | -69\% | 17\% | 56\% | 73\% | 106\% | 167\% |
| 2005 | PIXAR | TECHNICAL_DIRECTOR | 163 | 23\% | -71\% | -57\% | 6\% | 24\% | 39\% | 84\% | 147\% |
| 2006 | PIXAR | TECHNICAL_DIRECTOR | 163 | 4\% | -28\% | -20\% | -13\% | 0\% | 14\% | 47\% | 112\% |
| 2007 | PIXAR | TECHNICAL_DIRECTOR | 155 | 1\% | -53\% | -16\% | -8\% | -4\% | 5\% | 37\% | 121\% |
| 2008 | PIXAR | TECHNICAL_DIRECTOR | 170 | -9\% | -30\% | -22\% | -16\% | -11\% | -6\% | 19\% | 53\% |
| 2009 | PIXAR | TECHNICAL_DIRECTOR | 190 | 15\% | -14\% | 1\% | 10\% | 14\% | 20\% | 32\% | 53\% |
| 2010 | PIXAR | TECHNICAL_DIRECTOR | 256 | 12\% | -12\% | 0\% | 5\% | 10\% | 16\% | 31\% | 71\% |
| 2008 | PIXAR | TECHNICAL_DIRECTOR_LEAD | 28 | -19\% | -37\% | -34\% | -23\% | -18\% | -13\% | -11\% | 7\% |
| 2009 | PIXAR | TECHNICAL_DIRECTOR_LEAD | 33 | 13\% | 0\% | 2\% | 8\% | 11\% | 19\% | 28\% | 41\% |

Notes: Job titles shown include those with at least 25 employees in a given year.
Source: Dr. Leamer's backup data. Leamer Supplemental Report Exhibits 1 and 2.

## Appendix C

## Curriculum Vitae

## Kevin M. Murphy

June 2013

## Business Address:

University of Chicago
Booth School of Business
5807 South Woodlawn Avenue
Chicago, Illinois 60637
email: kevin.murphy@chicagobooth.edu

Home Address:

1810 Pennington Court
New Lenox, Illinois 60451
Phone: (815)463-4756
Fax: (815)463-4758

## Current Positions

July 2005-Present: George J. Stigler Distinguished Service Professor of Economics, Department of Economics and Booth School of Business, University of Chicago

Faculty Research Associate, National Bureau of Economic Research

## Education

University of California, Los Angeles, A.B., Economics, 1981
University of Chicago, Ph.D., 1986
Thesis Topic: Specialization and Human Capital

## Previous Research and Academic Positions

2002-2005: George J. Stigler Professor of Economics, Department of Economics and Booth School of Business, University of Chicago

1993 - 2002: George Pratt Shultz Professor of Business Economics and Industrial Relations, University of Chicago

1989 - 1993: Professor of Business Economics and Industrial Relations, University of Chicago

1988 - 1989: Associate Professor of Business Economics and Industrial Relations, University of Chicago

1986 - 1988: Assistant Professor of Business Economics and Industrial Relations, University of Chicago

1983 - 1986: Lecturer, Booth School of Business, University of Chicago
1982-1983: Teaching Associate, Department of Economics, University of Chicago
1979-1981: Research Assistant, Unicon Research Corporation, Santa Monica, California

## Honors and Awards

2008: John von Neumann Lecture Award, Rajk College, Corvinus University, Budapest
2007: Kenneth J. Arrow Award (with Robert H. Topel)
October 2005: Garfield Research Prize (with Robert H. Topel)
September 2005: MacArthur Foundation Fellow
1998: Elected to the American Academy of Arts \& Sciences
1997: John Bates Clark Medalist
1993: Fellow of The Econometric Society
1989-1991: Sloan Foundation Fellowship, University of Chicago
1983 - 1984: Earhart Foundation Fellowship, University of Chicago
1981 - 1983: Fellowship, Friedman Fund, University of Chicago
1980-1981: Phi Beta Kappa, University of California, Los Angeles
1980 - 1981: Earhart Foundation Fellowship, University of California, Los Angeles
1979 - 1981: Department Scholar, Department of Economics, University of California, Los Angeles

## Publications

## Books

Social Economics: Market Behavior in a Social Environment with Gary S. Becker, Cambridge, MA: Harvard University Press (2000).

Measuring the Gains from Medical Research: An Economic Approach edited volume with Robert H. Topel, Chicago: University of Chicago Press (2003).

## Articles

"Government Regulation of Cigarette Health Information," with Benjamin Klein and Lynne Schneider, 24 Journal of Law and Economics 575 (1981).
"Estimation and Inference in Two-Step Econometric Models," with Robert H. Topel, 3 Journal of Business and Economic Statistics 370 (1985).
"Unemployment, Risk, and Earnings: Testing for Equalizing Wage Differences in the Labor Market," with Robert H. Topel, in Unemployment and the Structure of Labor Markets, pp. 103-139, ed. Kevin Lang and Jonathan S. Leonard. London: Basil Blackwell (1987).
"The Evolution of Unemployment in the United States: 1968-1985," with Robert H. Topel, in NBER Macroeconomics Annual, pp. 11-58, ed. Stanley Fischer. Cambridge, MA: MIT Press (1987).
"Cohort Size and Earnings in the United States," with Mark Plant and Finis Welch, in Economics of Changing Age Distributions in Developed Countries, pp. 39-58, ed. Ronald D. Lee, W. Brian Arthur, and Gerry Rodgers. Oxford: Clarendon Press, (1988).
"The Family and the State," with Gary S. Becker, 31 Journal of Law and Economics 1 (1988).
"A Theory of Rational Addiction," with Gary S. Becker, 96 Journal of Political Economy 675 (1988).
"Vertical Restraints and Contract Enforcement," with Benjamin Klein, 31 Jourzal of Lan and Economics 265 (1988).
"Income Distribution, Market Size, and Industrialization," with Andrei Shleifer and Robert W. Vishny, 104 Quarterly Journal of Economics 537 (1989).
"Wage Premiums for College Graduates: Recent Growth and Possible Explanations," with Finis Welch, 18 Educational Researcher 17 (1989).
"Industrialization and the Big Push," with Andrei Shleifer and Robert W. Vishny, 97 Journal of Political Economy 1003 (1989).
"Building Blocks of Market Clearing Business Cycle Models," with Andrei Shleifer and Robert W. Vishny, in NBER Macroeconomic Annual pp. 247-87, ed. Olivier Jean Blanchard and Stanley Fischer. Cambridge, MA: MIT Press (1989).
"Efficiency Wages Reconsidered: Theory and Evidence," with Robert H. Topel, in Advances in the Theory and Measurement of Unemployment, pp. 204-240. ed. Yoram Weiss and Gideon Fishelson. London: Macmillan, (1990).
"Empirical Age-Earnings Profiles," with Finis Welch, 8 Journal of Labor Economics 202 (1990).
"Human Capital, Fertility, and Economic Growth," with Gary S. Becker and Robert F. Tamura, 98 Journal of Political Economy, S12 (1990).
"Accounting for the Slowdown in Black-White Wage Convergence," with Chinhui Juhn and Brooks Pierce, in Workers and Their Wages: Changing Patterns in the United States, pp. 107-143, ed. Marvin Kosters. Washington, D.C.: American Enterprise Institute (1991).
"The Role of International Trade in Wage Differentials," with Finis Welch, in Workers and Their Wages: Changing Patterns in the United States, pp. 39- 69, ed. Marvin Kosters. Washington, D.C.: American Enterprise Institute (1991).
"Why Has the Natural Rate of Unemployment Increased over Time?" with Robert H. Topel and Chinhui Juhn, 2 Brookings Papers on Economic Activity 75 (1991).
"The Allocation of Talent: Implications for Growth," with Andrei Shleifer and Robert W. Vishny, 106 Quarterly Journal of Economics 503 (1991).
"Rational Addiction and the Effect of Price on Consumption," with Gary S. Becker and Michael Grossman, 81 American Economic Revien 237 (1991).
"Wages of College Graduates," in The Economics of American Higher Education, pp. 121-40, ed. William E. Becker and Darrell R. Lewis. Boston: Kluwer Academic Publishers (1992).
"Changes in Relative Wages, 1963-1987: Supply and Demand Factors," with Lawrence E. Katz, 107 Quarterly Journal of Economics 35 (1992).
"The Structure of Wages," with Finis Welch. 107 Quarterly Journal of Economics 285 (1992).
"The Transition to a Market Economy: Pitfalls of Partial Planning Reform," with Andrei Shleifer and Robert W. Vishny, 107 Quarterly Jonnnal of Economics 889 (1992).
"The Division of Labor, Coordination Costs, and Knowledge," with Gary S. Becker, 107 Quarteryy Journal of Economics 1137 (1992).
"Industrial Change and the Rising Importance of Skill" with Finis Welch, in Uneven Tides: Rising Inequality in America, pp. 101-132, ed. Peter Gottschalk and Sheldon Danziger. New York: Russell Sage Foundation Publications (1993).
"Wage Inequality and the Rise in Returns to Skill," with Chinhui Juhn and Brooks Pierce, 101 Journal of Political Economy 410 (1993).
"Occupational Change and the Demand for Skill, 1940-1990," with Finis Welch, 83 American Economic Revien 122 (1993).
"Inequality and Relative Wages," with Finis Welch, 83 American Economic Revien' 104 (1993).
"Why Is Rent-Seeking So Costly to Growth?" with Andrei Shleifer and Robert W. Vishny, 83 American Economic Revien 409 (1993).
"A Simple Theory of Advertising as a Good or Bad," with Gary S. Becker, 108 Quarterby Journal of Economics 941 (1993).
"Relative Wages and Skill Demand, 1940-1990," with Chinhui Juhn, in Labor Markets, Employment Policy, and Job Creation, pp. 343-60, ed. Lewis C. Solmon and Alec R. Levenson. The Milken Institute Series in Economics and Education. Boulder, CO: Westview Press, (1994).
"Cattle Cycles," with Sherwin Rosen and Jose A. Scheinkman, 102 Journal of Political Economy 468 (1994).
"An Empirical Analysis of Cigarette Addiction," with Gary S. Becker and Michael Grossman, 84 American Economic Revien 396 (1994).
"Inequality in Labor Market Outcomes: Contrasting the 1980s and Earlier Decades," with Chinhui Juhn, 1 Economic Policy Revien 26 (1995).
"Employment and the 1990-91 Minimum Wage Fike," with Donald R. Deere and Finis Welch, 85 American Economic Revien 232 (1995).
"Examining the Evidence on Minimum Wages and Employment," with Donald R. Deere and Finis Welch, in The Effects of the Minimum Wage on Employment, pp. 26-54, ed. Marvin H. Kosters. Washington, D.C.: The AEI Press, (1996).
"Social Status, Education, and Growth," with Chaim Fershtman and Yoram Weissm, 104 Journal of Political Economy 108 (1996).
"Wage Inequality and Family Labor Supply," with Chinhui Juhn, 15 Journal of Labor Economics 72 (1997).
"Quality and Trade," with Andrei Shleifer, 53 Journal of Development Economics 1 (1997).
"Wage Inequality and Family Labor Supply," with Chinhui Juhn, 15 Journal of Labor Economics 72 (1997).
"Vertical Integration as a Self-Enforcing Contractual Arrangement," with Benjamin Klein, 87 American Economic Revien 415 (1997).
"Unemployment and Nonemployment," with Robert H. Topel, 87 American Econamic Retiem 295 (1997).
"Wages, Skills, and Technology in the United States and Canada," with W. Craig Riddell and Paul M. Romen, in General Purpose Technologies and Economic Growth, pp. 283309, ed. Elhanan Helpman. Cambridge, MA: M.I.T. Press, (1998).
"Perspectives on the Social Security Crisis and Proposed Solutions," with Finis Welch, 88 American Economic Reviem 142 (1998).
"Population and Economic Growth," with Gary S. Becker and Edward Glaeser, 89
American Economic Retien 145 (1999).
"A Competitive Perspective on Internet Explorer," with Steven J. Davis, 90 American Economic Revien 184 (2000).
"Industrial Change and the Demand for Skill" with Finis Welch, in The Causes and Consequences of Increasing Inequality, pp. 263-84, ed. Finis Welch. Volume II in the Bush School Series in the Economics of Public Policy. Chicago: University of Chicago Press, (2001).
"Wage Differentials in the 1990s: Is the Glass Half Full or Half Empty?" with Finis Welch, in The Causes and Consequences of Increasing Inequality, pp. 341-64, ed. Finis Welch. Volume II in the Bush School Series in the Economics of Public Policy. Chicago: University of Chicago Press, (2001).
"Economic Perspectives on Software Design: PC Operating Systems and Platforms," with Steven J. Davis and Jack MacCrisken, in Microsoft, Antitrust, and the New Economy: Selected Essays, pp. 361-420, ed. Davis S. Evans. Boston, MA: Kluwer, (2001).
"Current Unemployment, Historically Contemplated," with Robert H. Topel and Chinhui Juhn, 1 Brookings Papers on Economic Activity 79 (2002).
"The Economics of Copyright "Fair Use' in A Networked World," with Andres Lerner and Benjamin Klein, 92 American Economic Review 205 (2002).
"The Economic Value of Medical Research" with Robert H. Topel, in Measuring the Gains from Medical Research: An Economic Approach, pp. 41-73, ed. Robert H. Topel and Kevin M. Murphy. Chicago: University of Chicago Press, (2003).
"School Performance and the Youth Labor Market," with Sam Peltzman, 22 Journal of Labor Economics 299 (2003).
"Entrepreneurial ability and market selection in an infant industry: evidence from the Japanese cotton spinning industry," with Atsushi Ohyama and Serguey Braguinsky, 7 Revien of Economic Dynamics 354 (2004).
"Entry, Pricing, and Product Design in an Initially Monopolized Market," with Steven J. Davis and Robert H. Topel, 112 Journal of Political Economy: S188 (2004).
"Diminishing Returns: The Costs and benefits of Increased Longevity," with Robert H. Topel, 46 Perspectives in Biology and Medicine S108 (2004).
"Persuasion in Politics," with Andrei Shleifer, 94 American Economic Review 435 (May 2004).
"Black-White Differences in the Economic Value of Improving Health," with Robert H. Topel, 48 Perspectives in Biology and Medicine S176 (2005).
"The Equilibrium Distribution of Income and the Market for Status," with Gary S. Becker and Iván Werning, 113 Journal of Political Economy 282 (2005).
"The Market for Illegal Goods: The Case of Drugs," with Gary S. Becker and Michael Grossman, 114 Journal of Political Economy 38 (2006).
"Competition in Two Sided Markets: The Antitrust Economics of Payment Card Interchange Fees," with Benjamin Klein, Kevin Green, and Lacey Place, 73 Antitrust Law Journal 571 (2006).
"The Value of Health and Longevity," with Robert H. Topel, 114 Journal of Political Economy 871 (2006).
"Social Value and the Speed of Innovation," with Robert H. Topel, 97 American Economic Review 433 (2007).
"Education and Consumption: The Effects of Education in the Household Compared to the Marketplace," with Gary S. Becker, 1 The Journal of Human Capital 9 (Winter 2007).
"Why Does Human Capital Need a Journal?" with Isaac Ehrlich, 1 The Journal of Human Capital 1 (Winter 2007).
"Critical Loss Analysis in the Whole Foods Case" with Robert H. Topel, 3 (2) GCP Magazine (March 2008).
"Exclusive Dealing Intensifies Competition for Distribution," with Benjamin Klein, Antitrust Law Journal, Vol. 75 (October 2008).
"Fertility Decline, the Baby Boom and Economic Growth," with Curtis Simon and Robert Tamura, 2 The Journal of Human Capital 3 (Fall 2008).
"The Market for College Graduates and the Worldwide Boom in Higher Education of Women" with Gary S. Becker and William H. J. Hubbard, 100 American Economic Revien: Papers e~ Proceedings 229 (May 2010).
"Explaining the Worldwide Boom in Higher Education of Women," with Gary S. Becker \& William H. J. Hubbard," Journal of Human Capital, University of Chicago Press, vol. 4(3), 203 (2010).
"How Exclusivity is Used to Intensify Competition for Distribution-Reply to Zenger," with Benjamin Klein, 77 Antitrust Law Journal No. 2 (2011).
"Achieving Maximum Long-Run Growth," Federal Reserve Bank of Kansas City Proceedings of the Annual Jackson Hole Conference 2011.

## Selected Working Papers

"Gauging the Economic Impact of September 11 "," with Gary S. Becker, Unpublished Working Paper (October 2001).
"War In Iraq Versus Containment: Weighing the Costs," with Steven J. Davis and Robert H. Topel, NBER W orking Paper No. 12092 (March 2006).
"Estimating the Effect of the Crack Epidemic," with Steve Levitt and Roland Fryer, Unpublished Working Paper (September 2006).
"The Interaction of Growth in Population and Income," with Gary S. Becker, Unpublished Working Paper (2006),
"Persuasion and Indoctrination," with Gary Becker (2007).
"The Value of Life Near Its End and Terminal Care," with Gary S. Becker and Tomas Philipson (2007).
"On the Economics of Climate Policy," with Gary S. Becker and Robert H. Topel, Working Paper No. 234 (January 2010, Revised September 2010).
"The Collective Licensing of Music Performance Rights: Market Power, Competition and Direct Licensing" (March 2013).
"Competitive Discounts and Antitrust Policy," with Edward Snyder and Robert Topel (March 2013).

## Selected Comments

Comment on "Causes of Changing Earnings Equality," by Robert Z. Lawrence. Federal Reserve Bank of Kansas City (1998).
"Comment: Asking the Right Questions in the Medicare Reform Debate," Medicare Reform: Issues and Answers, pp. 175-81, ed. Andrew J. Rettenmaier and Thomas R. Saving. Chicago: University of Chicago Press (2000).

Comment on "Social Security and Demographic Uncertainty," by Henning Bohn in Risk Aspects of Investment-Based Social Security Reform, ed. John Y. Campbell and Martin Feldstein. Chicago: University of Chicago Press (2001.)

Comment on "High Technology Industries and Market Structure," by Hal R, Varian. Federal Reserve Bank of Kansas City (2001).

## Popular Press Articles

"The Education Gap Rap," The American Enterprise, (March-April 1990), pp. 62.
"Rethinking Antitrust," with Gary S. Becker, W all Streel Journal, (February 26, 2001) pp. pA22.
"Prosperity Will Rise Out of the Ashes," with Gary S. Becker, Wall Street Journul, (October 29, 2001) pp. pA22.
"The Economics of NFL Team Ownership" with Robert H. Topel, report prepared at the request of the National Football League Players' Association. (January 2009).

## Articles About Murphy

"Higher Learning Clearly Means Higher Earning," by Carol Kleiman. Chicago Tribune, March 12, 1989, Jobs Section pp. 1. Long article about "The Structure of Wages" with picture of Murphy.
"Why the Middle Class Is Anxious," by Louis S. Richman. Fortune, May 21, 1990, pp. 106. Extensive reference to Murphy's work on returns to education.
"Unequal Pay Widespread in U.S.," by Louis Uchitelle., New York. Times, August 14, 1990, Business Day section pp. 1. Long piece on income inequality.
"One Study's Rags to Riches Is Another's Rut of Poverty," by Sylvia Nasar, New Yonk Times, June 17, 1992, Business Section pp. 1. Long piece on the income inequality research.
"Nobels Pile Up for Chicago, but Is the Glory Gone?" by Sylvia Nasar, New York Times November 4, 1993, Business Section pp. 1. Long piece on Chicago School of economics. Featured a photo of five of the "brightest stars on the economics faculty" (including Murphy) and a paragraph about Murphy's research.
"This Sin Tax is Win-Win," by Christopher Farrell. Business Week, April 11, 1994, pp. 30. Commentary section refers to Murphy, Becker, and Grossman's work on rational addiction.
"Growing inequality and the economics of fragmentation," by David Warsh, Boston Sunday Globe, August 21, 1994, pp. A1. Two-page article with picture and biographical details about Murphy and his research; part of a series about "how the new generation replaced the old in economics."
"A Pay Raise's Impact," by Louis Uchitelle. New York Times, January 12, 1995, Business Section pp. 1. Article about consequences of proposed increase in the minimum wage. Articles featuring Murphy's comments on the minimum wage appeared in numerous other publications, including the Chicago Tribune; in addition, Murphy was interviewed on CNN (January 26, 1995).
"The Undereducated American," Wall Street Journal, August 19, 1996, pp. A12. Changes in the rate of returns to education.
"In Honor of Kevin M. Murphy: Winner of the John Bates Clark Medal," by Finis Welch, 14 Journal of Economic Perspectives 193 (2000).

## Testimony, Reports, and Depositions (Last 4 Years)

Final Submission of Kevin M. Murphy, January 16, 2009, in the 2006 MSA Adjustment Proceeding.

Expert Report of Kevin M. Murphy, January 23, 2009, in the Matter of City of New York v. Amerada Hess Corp., et al., The United States District Court for the Southern District of New York. Report submitted on behalf of Citgo Petroleum Corporation.

Declaration of Kevin M. Murphy, January 29, 2009, in the Matter of Insignia Systems, Inc. v. News America Marketing In-Store, Inc., The United States District Court for the District of Minnesota.

Deposition of Kevin M. Murphy, February 10, 2009, in the Matter of Valassis Communications, Inc. v. News America Incorporated, $\mathrm{a} / \mathrm{k} / \mathrm{a}$ News America Marketing Group, News America FSI, Inc. a/k/a News America Marketing FSI, LLC and News America Marketing In-Store Services, Inc. a/a/a News American Marketing In-Store Services, LLC., The United States Third Circuit Court of Michigan Detroit Division. Case No. 07-706645.

Expert Report of Kevin M. Murphy, February 13, 2009, in the Matter of City of New York v. Amerada Hess Corp., et al., The United States District Court for the Southern District of New York. Report submitted on behalf of Citgo Petroleum Corporation regarding Citgo's share of total RFG supply at the New York Harbor.

Expert Report of Kevin M. Murphy, March 3, 2009, in the Matter of St. Francis Medical Center, on behalf of itself and all others similarly situated vs. C.R. Bard, Inc., The United States District Court for the Eastern District of Missouri Southeastern Division.

Deposition of Kevin M. Murphy, March 6, 2009, in the Matter of St. Francis Medical Center, on behalf of itself and all others similarly situated vs. C.R. Bard, Inc., The United States District Court for the Eastern District of Missouri Southeastern Division.

Expert Report of Kevin M. Murphy, March 17, 2009, in the Matter of ZF Meritor LLC and Meritor Transmission Corporation v. Eaton Corporation., The United States District Court of Delaware. Case No. 06-CV-623.

Deposition of Kevin M. Murphy, April 6, 2009, in the Matter of ZF Meritor LLC and Meritor Transmission Corporation v. Eaton Corporation., The United States District Court of Delaware. Case No. 06-CV-623.

Declaration of Kevin M. Murphy, April 16, 2009, in the Matter of Sun Microsystems, Inc., a California corporation v. Hynix Semiconductor Inc., et al., The United States District Court Northern District of California San Francisco Division.

Declaration of Kevin M. Murphy, April 23, 2009, in the Matter of Sun Microsystems, Inc., a California corporation v. Hynix Semiconductor Inc., a Korean corporation, Hynix Semiconductor America Inc., a California corporation, et al., The United States District Court Northern District of California San Francisco Division.

Expert Report of Kevin M. Murphy, May 11, 2009, in the Matter of Jim Hood, Attorney General ex rel State of Mississippi v. Microsoft Corporation., The Chancery Court of Hinds County First Judicial District.

Expert Report of Professor Kevin M. Murphy, June 12, 2009, in the Matter of CITGO Petroleum Corporation v. Ranger Enterprises, Inc., The United States District Court for the Western District of Wisconsin.

Expert Report of Kevin M. Murphy, June 24, 2009, in the Matter of Novell, Incorporated v. Microsoft Corporation., The United States District Court Northern District of Maryland.

Trial Testimony of Kevin M. Murphy, July 16, 2009, in the Matter of Valassis Communications, Inc. v. News America Incorporated, a/k/a News America Marketing Group, News America FSI, Inc. a/k/a News America Marketing FSI, LLC and News America Marketing In-Store Services, Inc. a/a/a News American Marketing In-Store Services, LLC., The United States Third Circuit Court of Michigan Detroit Division. Case No. 07-706645.

Declaration of Kevin M. Murphy, August 14, 2009, in the Matter of EBay Seller Antitrust Litigation, The United States District Court for the Northern District of California. Declaration submitted in support of defendant Ebay Inc.'s motion for summary judgment.

Expert Report of Kevin M. Murphy, August 21, 2009, in the Matter of Go Computer, Inc., and S. Jerrold Kaplan v. Microsoft Corporation., The Superior Court for the State of California for the City and County of San Francisco.

Deposition of Kevin M. Murphy, September 16, 2009, in the Matter of Novell, Incorporated v. Microsoft Corporation., The United States District Court Northern District of Maryland.

Deposition of Kevin M. Murphy, September 21, 2009, in the Matter of Ebay Seller Antitrust Litigation, The United States District Court for the Northern District of California. Deposition in support of defendant Ebay Inc.'s motion for summary judgment.

Expert Report of Kevin M. Murphy, September 29, 2009, in the Matter of Motor Fuel Temperature Sales Litigation, The United States District Court of Kansas.

Trial Testimony of Kevin M. Murphy, October 1, 2009, in the Matter of ZF Meritor LLC and Meritor Transmission Corporation v. Eaton Corporation., The United States District Court of Delaware. Case No. 06-CV-623.

Declaration of Kevin M. Murphy, October 16, 2009, in the Matter of Ebay Seller Antitrust Litigation, The United States District Court for the Northern District of California. Declaration in further support of defendant Ebay Inc.'s motion for summary judgment.

Expert Report of Kevin M. Murphy, October 20, 2009, in the Matter of Advanced Micro Devices, Inc., and AMD International Sales \& Service, LTD v. Intel Corporation and Intel Kabushiki Kaisha., The United States District Court for the District of Delaware.

Deposition of Kevin M. Murphy, October 24, 2009, in the Matter of Go Computer, Inc., and S. Jerrold Kaplan v. Microsoft Corporation., The Superior Court for the State of California for the City and County of San Francisco.

Deposition of Kevin M. Murphy, October 26, 2009, in the Matter of Motor Fuel Temperature Sales Litigation, The United States District Court of Kansas.

Expert Report of Kevin M, Murphy, December 14, 2009, in the Matter of Payment Card Interchange Fee and Merchant Discount Antitrust Litigation, The United States District Court for the Eastern District of New York.

Supplemental Expert Report of Kevin M. Murphy, December 21, 2009, in the Matter of Valassis Communications, Inc. v. News America Incorporated, a/k/a News America Marketing Group, News America FSI, Inc. a/k/a News America Marketing FSI, LLC and News America Marketing In-Store Services, Inc. a/a/a News American Marketing In-Store Services, LLC., The United States Third Circuit Court of Michigan Detroit Division. Case No. 07-706645.
'Trial Testimony of Kevin M. Murphy, January 11, 2010, in the Matter of Go Computer, Inc., and S. Jerrold Kaplan v. Microsoft Corpotation., The Superior Court for the State of California for the City and County of San Francisco.

Supplemental Rebuttal Expert Report of Kevin M. Murphy, January 14, 2010, in the Matter of Valassis Communications, Inc. v. News America Incorporated, $\mathrm{a} / \mathrm{k} / \mathrm{a}$ News America Marketing Group, News America FSI, Inc. a/k/a News America Marketing FSI, LLC and News America Marketing In-Store Services, Inc. a/a/a News American Marketing In-Store Services, LLC., The United States Third Circuit Court of Michigan Detroit Division. Case No. 07-706645.

Deposition of Kevin M. Murphy, January 26, 2010, in the Matter of Valassis Communications, Inc. v. News America Incorporated, a/k/a News. America Marketing Group, News America FSI, Inc. a/k/a News America Marketing FSI, LLC and News America Marketing In-Store Services, Inc. a/a/a News American Marketing In-Store Services, LLC., The United States Third Circuit Court of Michigan Detroit Division. Case No. 07-706645.

Declaration of Kevin M. Murphy, January 28, 2010, in the Matter of Automobile Antitrust Cases I and II., The United States Superior Court of the State of California for the County of San Francisco.

Declaration of Kevin M. Murphy, April 2, 2010, in the Matter of the Application for the Determination of Interim License Fees for The Cromwell Group, Inc. and Affiliates, et al., The United States District Court Southern District of New York.

Deposition of Kevin M. Murphy, April 13-14, 2010, in the Matter of Payment Card Interchange Fee and Merchant Discount Antitrust Litigation., The United States District Court for the Eastern District of New York.

Supplemental Expert Report of Kevin M. Murphy, June 1, 2010, in the Matter of Insignia Systems, Inc. v. News America Marketing In-Store, Inc. (corrected June 8, 2010)., The United States District Court for the District of Minnesota.

Expert Report of Kevin M. Murphy, June 21, 2010, in the Matter of Applications of Comcast Corporation, General Electric Company and NBC Universal, Inc., for Consent to Assign Licenses or Transfer Control of Licensees., Federal Communications Commission.

Supplement to Expert Report of Kevin M. Murphy, June 24, 2010, in the Matter of Payment Card Interchange Fee and Merchant Discount Antitrust Litigation., The United States District Court for the Eastern District of New York.

Second Supplemental Expert Report of Kevin M. Murphy, July 6, 2010, in the Matter of Insignia Systems, Inc. v. News America Marketing In-Store, Inc., The United States District Court for the District of Minnesota.

Deposition of Kevin M. Murphy, July 8, 2010, in the Matter of Insignia Systems, Inc. v. News America Marketing In-Store, Inc., The United States District Court for the District of Minnesota.

Expert Report of Kevin M. Murphy, July 28, 2010, in the Matter of Commonwealth of Pennsylvania by Thomas W. Corbett, Jr., in his capacity as Attorney General of the Commonwealth of Pennsylvania v. TAP Pharmaceutical Products, Inc., et al., in the Commonwealth Court of Pennsylvania, No. 212 MD 2004.

Response of Kevin M. Murphy to Reply Report of Mark Israel and Michael Katz, August 19, 2010, in the Matter of Applications of Comcast Corporation, General Electric Company and NBC Universal, Inc., for Consent to Assign Licenses or Transfer Control of Licensees., Federal Communications Commission.

Expert Report of Kevin M. Murphy, September 14, 2010, in the Matter of City of St. Louis, et al. v. American Tobacco Co., et al., The Circuit Court of the City of St. Louis State of Missouri.

Deposition of Kevin M. Murphy, September 24, 2010, in the Matter of City of St. Louis, et al. v. American Tobacco Co., et al., The Circuit Court of the City of St. Louis State of Missouri.

Supplemental Expert Report of Kevin M. Murphy, September 30, 2010, in the Matter of Commonwealth of Pennsylvania by Thomas W. Corbett, Jr., in his capacity as Attorney General of the Commonwealth of Pennsylvania v. TAP Pharmaceutical Products, Inc., et al., in the Commonwealth Court of Pennsylvania, No. 212 MD 2004.

Espert Report of Kevin M. Murphy, October 1, 2010, in the Matter of State of New Hampshire v. Hess Corporation, et al., The State of New Hampshire Superior Court.

Expert Report of Kevin M. Murphy, October 4, 2010, in the Matter of the Arbitration between Cordis Corporation and Abbott Vascular., CPR International Institute for Conflict Prevention \& Resolution.

Deposition of Kevin M. Murphy, October 7, 2010, in the Matter of the Arbitration between Cordis Corporation and Abbott Vascular., CPR International Institute for Conflict Prevention \& Resolution.

Trial Testimony of Kevin M. Murphy, November 8, 2010, in the Matter of the Arbitration between Cordis Corporation and Abbott Vascular., CPR International Institute for Conflict Prevention \& Resolution.

Declaration of Kevin M. Murphy, November 12, 2010, in the Matter of RWJ Management Company, Inc. v. BP Products North America, Inc., The United States District Court for the Northern District of Illinois Eastern Division.

Expert Report of Kevin M. Murphy, November 15, 2010, in the Matter of RWJ Management Company, Inc. v. BP Products North America, Inc., The United States District Court for the Northern District of Illinois Eastern Division.

Expert Report of Kevin M. Murphy, November 19, 2010, in the Matter of Craft, et al., v. Philip Morris Companies, Inc., a corporation, and Philip Morris Incorporated, a corporation, Missouri Circuit Court, Twenty-Second Judicial District (City of St. Louis), Case No. 002-00406-02.

Economic Analysis of Kevin M. Murphy to Guide Interpretation of Provisions of the Dodd-Frank Act Regarding Regulation of Debit Interchange Fees, November 23, 2010, submission on behalf of Bank of America Corporation.

Comments of Kevin M. Murphy on the November 10, 2010 Report of Drs. Mark Israel and Michael L. Katz, November 24, 2010, in the Matter of Applications of Comcast Corporation, General Electric Company and NBC Universal, Inc., for Consent to Assign Licenses or Transfer Control of Licensees., Federal Communications Commission.

Expert Report of Kevin M. Murphy, November 29, 2010, in the Matter of Reggie White, et al., v. NFL: Lockout Insurance \& Lockout Loans., The United States District Court District of Minnesota.

Deposition of Kevin M. Murphy, December 3, 2010, in the Matter of Reggie White, et al., v. NFL: Lockout Insurance \& Lockout Loans., The United States District Court District of Minnesota.

Deposition of Kevin M. Murphy, December 13, 2010, in the Matter of RWJ Management Company, Inc. v. BP Products North America, Inc., The United States District Court for the Northern District of Illinois Eastern Division.

Deposition of Kevin M. Murphy, January 17-18, 2011, in the Matter of Craft, et al., v. Philip Morris Companies, Inc., a corporation, and Philip Morris Incorporated, a corporation, Missouri Circuit Court, Twenty-Second Judicial District (City of St. Louis), Case No. 002-00406-02.

Report of Kevin M. Murphy, February 15, 2011, submitted by TCF Financial Corporation on February 16, 2011 to the Subcommittee on Financial Institutions and Consumer Credit of the Committee on Financial Services of the U.S. House of Representatives.

Declaration of Kevin M. Murphy, March 2, 2011, in the Matter of TCF National Bank v. Ben S. Bernanke, Janet L. Yellen, Kevin M. Warsh, Elizabeth A. Duke, Daniel K. Tarullo and Sarah Bloom Raskin, the Board of Governors of the Federal Reserve System, in their official capacities; and John Walsh, Comptroller of the Currency, in his official capacity.

Expert Report of Kevin M. Murphy, April 11, 2011, in the Matter of Datel Holdings, LTD., and Datel Design \& Development, Inc., v. Microsoft Corporation., The United States District Court Northern District of California.

Declaration of Kevin M. Murphy, May 26, 2011, filed with the National Labor Relations Board on behalf of the National Basketball Players Association.

Deposition of Kevin M. Murphy, June 14, 2011, in the Matter of Datel Holdings, LTD., and Datel Design \& Development, Inc., v. Microsoft Corporation., The United States District Court Northern District of California.

Expert Report of Kevin M. Murphy, July 1, 2011, in the Matter of Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof., The United States International Trade Commission.

Expert Report of Kevin M. Murphy, August 17, 2011, in the Matter of American Airlines, Inc. v. Sabre Inc., et al., The Judicial District of Tarrant County, Texas $67^{\text {dr }}$ Judicial District.

Expert Report of Kevin M. Murphy, August 19, 2011, in the Matter of Motor Fuel Temperature Sales Litigation, The United States District Court for the District of Kansas.

Deposition of Kevin M. Murphy, September 6, 2011, in the Matter of Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof., The United States International Trade Commission.

Expert Report of Kevin M. Murphy, September 9, 2011, in the Matter of State of New York v. Intel Corporation, The United States District Court for the District of Delaware.

Deposition of Kevin M. Murphy, September 14, 2011, in the Matter of Motor Fuel Temperature Sales Litigation, The United States District Court for the District of Kansas.

Direct Testimony of Kevin M. Murphy, September 27, 2011, in the Matter of Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof., The United States International Trade Commission.

Deposition of Kevin M. Murphy, October 8-10, 2011, in the Matter of State of New York v. Intel Corporation, The United States District Court for the District of Delaware.

Report of Kevin M. Murphy, October 10, 2011, in connection with dispute between NRLC and railroad employees, National Mediation Board Case Nos. A-13569; A-13570; A-13572; A-13573; A-13574; A-13575; A-13592, before Emergency Board No. 243.

Hearing Testimony of Kevin M. Murphy, October 13, 2011, in connection with dispute between NRLC and railroad employees, National Mediation Board Case Nos. A-13569; A-13570; A-13572; A-13573; A-13574; A-13575; A-13592, before Emergency Board No. 243.

Expert Report of Kevin M. Murphy, October 17, 2011, in the Matter of State of New Hampshire v. Hess Corporation, et al., The State of New Hampshire Superior Court.

Declaration of Kevin M. Murphy, December 1, 2011, the Matter of Motor Fuel Temperature Sales Litigation, The United States District Court for the District of Kansas.

Expert Report of Kevin M. Murphy, December 5, 2011, in the Matter of Retractable Technologies, Inc. and Thomas Shaw v. Becton, Dickinson and Company, The United States District Court for the Eastern District of Texas Marshall Division.

Trial Testimony of Kevin M. Murphy, December 7-8, 2011, in the Matter of Novell, Incorporated v, Microsoft Corporation., The United States District Court Northern District of Maryland.

Trial Testimony of Kevin M. Murphy, December 29, 2011, in the Matter of RWJ Management Company, Inc. v. BP Products North America, Inc., The United States District Court for the Northern District of Illinois Eastern Division.

Supplemental Expert Report of Kevin M. Murphy, January 15, 2012, in the Matter of Retractable Technologies, Inc. and Thomas Shaw v. Becton, Dickinson and Company, The United States District Court for the Eastern District of Texas Marshall Division.

Trial Testimony of Kevin M. Murphy, January 18, 2012, in the Matter of Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof., The United States International Trade Commission.

Supplemental Expert Report of Kevin M. Murphy, February 23, 2012, in the Matter of State of New Hampshire v. Hess Corporation, et al., The State of New Hampshire Superior Court.

Affidavit of Kevin M. Murphy, March 12, 2012, in the Matter of Sharon Price and Michael Fruth, Individually and on Behalf of Others Similarly Situated vs. Philip Morris Incorporated, The United States Circuit Court, Third Judicial Court, Madison County, Illinois.

Declaration of Kevin M. Murphy, May 3, 2012, in the Matter of Retractable Technologies, Inc. and Thomas Shaw v. Becton, Dickinson and Company, The United States District Court for the Eastern District of Texas Marshall Division.

Comments of Kevin M. Murphy of DirecTV, LLC, June 22, 2012, in the Matter of Revision of the Commission's Program Access Rules; News Corporation and the DIRECTV Group, Inc., Transferors, and Liberty Media Corporation, Transferee, for Authority to Transfer Control; Applications for Consent to the Assignment and/or Transfer of Control of Licenses, Adelphia Communications Corporation (and Subsidiaries, Debtors-in-Possession), Assignors, to Time Warner Cable, Inc. (Subsidiaries), Assignees, et al., Federal Communications Commission.

Expert Report of Kevin M. Murphy, July 20, 2012, in the Matter of American Airlines v. Sabre, Inc., Sabre Holdings Corp., and Sabre Travel International Ltd., The United States Judicial District Tarrant County, Texas $67^{\text {th }}$ Judicial District.

Declaration of Kevin M. Murphy, July 21, 2012, in the Matter of Kirk Dahl v. Bain Capital Partners, LLC., The United States District Court District of Massachusetts.

Expert Report of Kevin M. Murphy, July 23, 2012, in the Matter of Kirk Dahl v. Bain Capital Partners, LLC., The United States District Court District of Massachusetts.

Expert Report of Kevin M. Murphy, July 24, 2012, in the Matter of Microsoft Corporation v. Motorola, Inc., The United States District Court Western District of Washington at Seattle.

Deposition of Kevin M. Murphy, August 22, 2012, in the Matter of Microsoft Corporation v. Motorola, Inc., The United States District Court Western District of Washington at Seattle.
"Economic Analysis of the Impact on DIRECTV's Subscribership of Carrying an RSN: Evidence from San Diego," August 31, 2012, submitted in the Matter of Revision of the Commission's Program Access Rules; News Corporation and the DIRECTV Group, Inc., Transferors, and Liberty Media Corporation, Transferee, for Authority to Transfer Control; Applications for Consent to the Assignment and/or Transfer of Control of Licenses, Adelphia Communications Corporation (and Subsidiaries, Debtors-inPossession), Assignors, to Time Warner Cable, Inc. (Subsidiaries), Assignees, et al., Federal Communications Commission.)

Expert Report of Kevin M. Murphy, September 7, 2102, in the Matter of Willard R. Brown, et al. v. The American Tobacco Co., Inc., et al., Superior Court for the State of California for the County of San Diego.

Deposition of Kevin M. Murphy, September 14, 2012, in the Matter of Willard R. Brown, et al. v. The American Tobacco Co., Inc., et al., Superior Court for the State of California for the County of San Diego.

Deposition of Kevin M. Murphy, September 24, 2012, in the Matter of American Airlines Inc. v Sabre, Inc., Sabre Holdings Corp., and Sabre Travel International Ltd. for the State of Texas for the Judicial District of Tarrant County.

Expert Report of Kevin M. Murphy, October 10, 2012, in the Matter of Avery Dennison Corporation v. 3M Innovative Properties and 3M Company, The United States District Court for the District of Minnesota.

Expert Report of Kevin M. Murphy, November 12, 2012, in the Matter of Re High-Tech Employee Antitrust Litigation, The United States District Court Northern District of California San Jose Division.

Trial Testimony of Kevin M. Murphy, November 13, 2012, in the Matter of Microsoft Corporation v. Motorola INC, The United States District Court Western District of Washington at Seattle.

Expert Report of Kevin M. Murphy, November 15, 2012, in the Matter of New Jersey Dep't of Envtl. Prot, et al. v. Atlantic Richfield Co., et al., The United States District Court Southern District of New York.

Deposition of Kevin M. Murphy, December 3, 2012, in the Matter of Re High-Tech Employee Antitrust Litigation, The United States District Court Northern District of California San Jose Division

Expert Report of Kevin M. Murphy, December 21, 2012, in re: Titanium Dioxide Antitrust Litigation, The United States District Court for the District of Maryland.

Deposition of Kevin Murphy, January 16, 2013, in the Matter of Avery Dennison Corporation v. 3M Innovative Properties and 3M Company, The United States District Court for the District of Minnesota.

Amended Expert Report of Kevin M. Murphy, February 8, 2013, in the Matter of New Jersey Dep't of Envtl. Prot., et al. v. Atlantic Richfield Co., et al, The United States District Court Southern District of New York.

Expert Report of Professor Kevin M. Murphy, February 8, 2013, in United States of America v. Apple Inc., et al., The United States District Court Southern District of New York.

Declaration of Kevin M. Murphy, February 22, 2013, in the Matter of Willard R. Brown, et al. v. The American Tobacco Co., Inc., et al., Superior Court for the State of California for the County of San Diego.

Rebuttal Expert Report of Kevin M. Murphy, March 1, 2013, in United States of America v. Apple Inc., et al., The United States District Court Southern District of New York.

Second Supplemental Expert Report of Kevin M. Murphy, March 8, 2013, in the Matter of Retractable Technologies, Inc. and Thomas Shaw v. Becton, Dickinson and Company, The United States District Court for the Eastern District of Texas Marshall Division.

Direct Testimony of Kevin M. Murphy, April 26, 2013, in United States of America v. Apple Inc., et al., The United States District Court Southern District of New York (revised and resubmitted on May 29, 2013).

Declaration of Kevin M. Murphy, May 13, 2013, in the Matter of Brenda Blakeman v National Milk Producers Federation, et al., The United States District Court for the Southern District of Illinois.

Expert Report of Kevin M. Murphy, May 29, 2013, in the Matter of Microsoft Corporation v. Motorola, Inc., et al., The United States District Court Western District of Washington at Seattle.

Declaration of Kevin M. Murphy, June 6, 2013, in the Matter of WNET, Thirteen, Fox Television Stations, Inc.; Twentieth Century Fox Film Corporation, WPIX, Inc., Univision Television Group, Inc.; The Univision Network Limited Partnership, and Public Broadcasting Service v. Aereo, Inc. f/k/a Bamboom Labs, Inc., The United States Court for the Southern District of New York.

Expert Report of Kevin M. Murphy, June 7, 2013, in the Matter of Patrick Brady, et al., v. Airline Pilots Association, International, The United States District Court District of New Jersey.

Rebuttal Expert Report of Kevin M. Murphy, June 10, 2013, in the Matter of Microsoft Corporation v. Motorola, Inc., et al., The United States District Court Western District of Washington at Seattle.

Trial Testimony of Kevin M. Murphy, June 19, 2013, in United States of America v. Apple Inc., et al., The United States District Court Southern District of New York.

## Appendix D

## Materials Relied Upon

| Court Documents |
| :--- |
| In Re: High-Tech Employee Antitrust Litigation, Order Granting in Part, Denying in Part Motion for |
| Class Certification, April 4, 2013 |
| In Re: High-Tech Employee Antitrust Litigation, Transcript of Proceedings Before The Honorable <br> Lucy H. Koh United States District Judge, January 17, 2013 |
| In Re: High-Tech Employee Antitrust Litigation, Plaintiffs' Supplemental Motion and Brief in Support <br> of Class Certification, May 10, 2013 |
| Deposition Transcripts |
| Deposition of Edward E. Leamer, June 11, 2013 |
| Expert Reports |
| In Re: High-Tech Employee Antitrust Litigation, Expert Report of Edward E. Leamer, Ph.D., October |
| 1, 2012 |
| In Re: High-Tech Employee Antitrust Litigation, Supplemental Expert Report of Edward E. Leamer, <br> Ph.D., May 10, 2013 |
| In Re: High-Tech Employee Antitrust Litigation, Expert Report of Professor Kevin M. Murphy, <br> January 17, 2013 |
| Academic Sources |
| George Casella and Roger L. Berger, Statistical Inference, 1990 |
| William H. Greene, Economerric Analysis, Sixth Edition |
| Milton Friedman, "Do Old Fallacies Ever Die?," Journal of Economic Literature 30 (1992): 2129-- <br> 2132. <br> Susan E. Jackson et al,, Managing Human Resources. Eleventh Edition <br> ChangHwan Kim and Christopher R. Tamborini, "Do Survey Data Estimate Earnings Inequality <br> Correctly? Measurement Errors Among Black and White Male Coworkers," Social Forces (2012) <br> Charles F. Manski, "Economic Analysis of Social Interactions," Journal of Economic Perspectives 14 <br> (2000): 115-136 <br> Robert A. Moffitt, "Policy Interventions, Low-Level Equilibria, and Social Interactions" in Social <br> Dynamics. MIT Press, 2001 <br> Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models and Economic Forecasts. Fourth <br> Edition <br> Donggyun Shin and Gary Solon, "New Evidence on Real Wage Cyclicality within Employer- <br> Employee Matches," Scottish, Journal of Political Economy 54 (2007) <br> Nate Silver, The Signal and the Noise. Penguin, 2012 <br> Other Sources <br> Agam Shah, "Intel Freezes Salaries from CEO on Down," Computerworld, March 23, 2009 <br> The Integrated Public Use Microdata Series (IPUMS-uSA) (https://usa:ipums.org/usa/) |



## UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA, SAN JOSE DIVISION

IN RE: HIGH-TECH EMPLOYEE ANTITRUST LITIGATION

THIS DOCUMENT RELATES TO:
ALL ACTIONS

Master Docket No. 11-CV-2509-LHK

EXPERT REPORT OF KATHRYN SHAW, PH.D.

## TABLE OF CONTENTS

## Page

I. Qualifications ..... 1
IL. Introduction ..... 5
III. Assignment ..... 6
IV. Materials Reviewed ..... 6
V. Summary of Opinions ..... 6
VI. Defendants' Pay for Performance Philosophy Leads to Large Variances in Pay Based on Subjective Manager Evaluations ..... 8
VII. Defendants' Pay Practices Do Not Support Spillover of Pay Increase From One Individual to All or Nearly All Class Members ..... 12
VIII. Dr. Hallock's Prediction That Impact "Could" Spread Through Certain "Avenues" Is Inaccurate ..... 14
A. Internal Equity is Used by Managers to Make Individual Compensation Decisions By Comparing Similarly Performing Employees Who Do Similar Work ..... 14
B. Dr. Hallock's Opinion That the Suppression of External Pay Data in One Job Code Could Lead to Spillover is Unsupported ..... 20
C. Dr. Hallock's Opinion Regarding Market Data For Merit Increase Budgets Is Also Unsupported ..... 23
D. Dr. Hallock's Top of the Box Theory Is Incorrect. ..... 25
IX. Conclusion ..... 27
Reference Guide to Cited Exhibits ..... 28

## I. Qualifications

1. I am the Ernst C. Arbuckle Professor of Economics at the Stanford Graduate School of business. I have researched and taught labor economics and personnel economics for over 30 years. Personnel economics is the study of how firms manage their employees, including compensation methods and hiring/firing practices. I also co-pioneered the field of "insider econometrics," a research field in personnel economics in which researchers go within companies and use insider knowledge and data to identify the performance gains from management practices. ${ }^{1}$
2. Throughout the course of my work on insider econometrics, I have studied and visited approximately 95 firms in the U.S., Europe, and Japan. Firms I have visited have been involved in diverse industries such as software, steel, chemicals, electricity generation, retail trade, services, bio-technology, pharmaceuticals, and trucking sector. The purpose of these visits was to study the effects of the personnel management practices on workers' productivity. From 2003 to 2009, I (along with Richard Freeman) headed the National Bureau of Economics Research project on "International Differences in the Business Practices and Productivity of Multinational Firms in Advanced Capitalist Countries." In the course of that work, I edited three books. Two books studied the productivity gains from human resource management practices, and one book studied the structure of wages within and across firms in Organization for Economic Cooperation and Development ("OECD") countries. For this and earlier work, I have raised $\$ 2.95$ million (with other principal investigators) from the National Science Foundation, the Alfred P. Sloan Foundation, the Russell Sage Foundation, the Rockefeller Foundations, and the Department of Labor.
3. For the past decade, I have been studying technology companies in Silicon Valley. From 2005 to 2007, I developed and taught a course at Stanford on Managing Talent in

[^28]which one tool used was to analyze the compensation practices of about forty companies in Silicon Valley. During the course, we immersed students with company CEOs, high level managers, engineers, and other managers and individual contributors. Using a question and answer format, we discussed companies' policies on compensation, performance evaluation, the links between evaluation and pay, bonuses, equity, and promotions. We also studied how companies attract and select new employees, how they award and retain star performers, and how they address outside offers.
4. Technology companies are often featured in my many other classes at Stanford on human resource management strategies for both MBAs and executives. In my current course, Making Data Relevant, the curriculum involves how managers can best use compensation and productivity data to manage companies. We perform exercises in which we simulate the use of data to evaluate, reward, and hire employees. During the course of teaching these classes, I have taught executives and MBA students who are or were employed at technology companies and who share their experiences on managing talent and the cultures of their respective firms. Quite often, issues relevant to my opinion in this case arise, including pay for performance, internal equity and individualized compensation systems.
5. I also recently worked with a team of researchers to study how firms in the software industry attract and compensate star talent, using a unique data set on the compensation and careers of about 50,000 software employees. ${ }^{2}$ Our focus was to investigate the relationship between different software product types and the worker compensation in the software industry. In particular, we examined how firms in a product line where "home run" products matter, attract and pay star employees. Our investigation was based on a rich longitudinal data set matching employers and employees. Specifically, we measured both earnings levels and earnings growth due to pay increases within firms and job-hopping between firms. We used this rich data source

[^29]to investigate the connection between the payoff to high stakes products and the rewards to stars in the software industry. In short, our analysis revealed that firms that operate in "home run" product markets will pay stars both higher starting salaries and higher performance pay. The highest skilled stars are much more highly valued and paid than those who are slightly less skilled.
6. Prior to my time at Stanford, I taught and researched labor economics, personnel economics and insider econometrics at Carnegie Mellon University from 1981 through 2003. As a part of this work, I used production-level data from firms in the steel industry to model the effects of alternative management strategies on productivity. ${ }^{3}$ I have also studied the productivity gains from information technologies in other manufacturing industries. ${ }^{4}$
7. I am widely published on the topic of personnel economics. ${ }^{5}$ These, and related publications, have been published in the top three journals in the economics profession, the American Economic Review, the Journal of Political Economy, and the Quarterly Journal of Economics. I am the author of over fifty publications in journals and books. My publications have focused on a wide range of personnel economics topics, including the interplay between wage structures and human resource management practices and their combined impact on employee performance, why companies use particular human resource management practices,

[^30]the dispersion of talent between firms and the variance of compensation within firms, the impact of information technology on productivity, and the productivity impact of non-compensation practices (such as the use of work teams, carefully interviewing and selecting workers to identify those with high level job and task skills, and ongoing training). ${ }^{6}$
8. I hold an A.B. degree from Occidental College in Los Angeles California and a Ph.D. in Economics from Harvard University. I was a Senate confirmed Member of the Council of Economic Advisors, Executive Office of the President, from 1999 to 2001. I have been an editor of the Journal of Labor Economics and the Review of Economics and Statistics, and on the Editorial Advisory Board of the Journal of Economic Perspectives. I am currently a board member of the Society of Labor Economists, and in 2008 was elected a Fellow of the Society of Labor Economists. In 2001, I received the Columbia University award for the best paper on international business, and in 1998 I was honored as the recipient of the Minnesota Award for Employment Research for the best paper in 1997-98 on the topic of employment issues. I have received several teaching awards, including the Trust Faculty Fellow for 2005-06 and 2011-12, and the Xerox Research Chair. I have served on a Research Panel of the National Science Foundation and am currently a board member of the STEP panel of the National Academy of Sciences. I have given keynote lectures, including those at meetings of the Society of Labor Economics and the European Labour Economics Association.
9. Attached as Appendix A is my Curriculum Vitae.

[^31]
## II. Introduction

10. I understand that Plaintiffs allege defendants Adobe Systems Inc. ("Adobe"), Apple Inc. ("Apple"), Google Inc. ("Google"), Intel Corporation ("Intel"), Intuit Inc. ("Intuit"), Lucasfilm Ltd. ("Lucasfilm") and Pixar (collectively, "Defendants") conspired to refrain from cold calling each other's employees and other forms of solicitations. Plaintiffs claim that the alleged conspiracy caused compensation to be suppressed for all or nearly all salaried employees at each Defendant.
11. I understand that the Court denied Plaintiffs' first class certification motion on the ground that Plaintiffs failed to support or confirm their "theory that there was a rigid wage structure such that an impact to some of Defendants' employees would necessarily have resulted in an impact to all or nearly all employees."7
12. I further understand that Plaintiffs have filed a renewed motion, asking the Court to certify a class of employees "in the technical, creative, and/or research and development fields during part or all of the period from January 2005 through December 2009 (the "Technical Class"). Plaintiffs offer the Expert Witness Report of Kevin F. Hallock ("Hallock Report") in an attempt to answer the Court's question whether Defendants had such rigid compensation structures that suppression of wages to some employees would have affected all or nearly all class members.
13. Dr. Hallock states that defendants each had formalized pay systems that have certain features that "could" spread an impact on compensation for some employees to all or nearly all technical class employees. He clarified at deposition that impact "could" be spread

[^32]through three "avenues": (i) internal equity, (ii) use of external market survey data to benchmark internal salary ranges, and (iii) use of external market data to benchmark annual salary merit increase percentages. Hallock Dep. 153:8-158:6, 214:25-215:11, 227:25-230:10. Dr Hallock also states that impact could be spread based on a "top of the box" theory. None of these avenues would necessarily lead to or require transmission of impact on some employees to all or nearly all class members.

## III. Assignment

14. Counsel for Defendants have asked me to address Dr. Hallock's opinions in this matter, and offer my opinion regarding whether he has demonstrated that a suppression of wages to some employees would have affected all or nearly all Class members.

## IV. Materials Reviewed

15. In reaching my opinions, I reviewed and considered Plaintiffs' Consolidated Amended Complaint, Dr. Hallock's report, material cited by Dr. Hallock, relevant exhibits attached to the expert report of Dr. Kevin Murphy, deposition transcripts and exhibits, declarations and exhibits, documents produced in discovery, expert reports, and my 30 years of experience researching, publishing, and teaching in the fields of labor economics and personnel economics, including experience working with Silicon Valley companies. Appendix B includes the materials I have relied on and reviewed for this matter.

## V. Summary of Opinions

16. Dr. Hallock's conclusion that Defendants each had formalized systems does not answer the question of whether suppression of wages to some employees would affect all or nearly all other employees. Consistent with technology firms in Silicon Valley (and unlike the government or unionized firms Dr. Hallock points to), Defendants employ a pay for performance philosophy implemented by individual managers based on each manager's subjective evaluation of their employees' performance, talent, skills, contribution to the company, and potential. As I would expect, the exhibits prepared by Defendants' expert Dr. Kevin Murphy regarding the
variance in pay changes in Defendants' compensation data is consistent with a pay for performance system. Compensation varies dramatically between and among employees within the same job titles and across job titles.
17. In addition to Defendants' pay for performance philosophy, Defendants' pay practices and entire pay process (from using external market data, to creating internal salary ranges, to empowering managers to evaluate employees and set pay, etc.) does not support a theory that pay increases for some individuals will spillover to all or nearly all class members. In Defendant firms, and the technology firms I have studied, there is no propagation mechanism built in to the pay process.
18. Dr. Hallock's prediction that impact "could" spread through certain "avenues" is flawed. He first relies on a misplaced view of "internal equity" to argue that any impact on compensation due to the alleged conspiracy could have been transmitted to all or nearly all class members due to internal equity considerations. In a pay for performance culture, internal equity is but one factor considered by managers in setting pay for individuals. Internal equity is simply a notion that managers should consider the pay of similarly performing employees doing similar work when setting an individual's pay. The concept of internal equity was used at the manager level to make individual employee compensation decisions, not on a company-wide level to make automatic adjustments to groups of people. From my experience and based on the evidence in this case, there is no reason that internal equity should impact workers who are doing dissimilar work, such as employees in different jobs, or workers who perform at different levels.
19. Dr. Hallock's next "avenue" relates to Defendants' use of external market data to benchmark internal salary ranges. Dr. Hallock concludes that if the market compensation data is suppressed (as a result of the alleged anti-solicitation agreements), then internal compensation levels at Defendants could also be suppressed. However, given how Defendants used external market data, I would not expect this "avenue" to lead to impact on all or nearly all class members. First, Defendants did not use the same compensation benchmarking data and each benchmarked against a large group of firms beyond the one, two, or three with which it had an
alleged cold calling agreement. Given the large size of the labor market surveyed by consulting firms, it is hard to imagine that the suppression of pay in a few jobs could lead to suppression of pay in benchmark data. Second, assuming that market data was in fact suppressed, most Defendants used job title specific market data to benchmark internal job specific salary ranges. Thus, suppressed market data for one job title would not affect data for another job title, nor would suppressed salary range for one job title affect the salary range for another job title. Third, Dr. Hallock ignores the fact that changes in salary ranges do not lead to changes in actual compensation levels for all employees.
20. Dr. Hallock's next theory, that suppressed market data led to suppressed merit increase budget, is equally unsupported. I am not aware of any evidence that market data on base salary increase percentages was suppressed, or that suppressed data resulted in impact on all or nearly all class members.
21. Finally, Dr. Hallock's "top of the box" theory is incorrect. This theory finds no basis in the Defendants' compensation systems. The documents and testimonies show the opposite - that pay determinations were left in the hands of individual managers based on their assessment of individual performance.

## VI. Defendants' Pay for Performance Philosophy Leads to Large Variances in Pay Based on Subjective Manager Evaluations.

22. Dr. Hallock spends much of his report explaining compensation design and summarizing general concepts of compensation structures and principles that might apply across typical large firms in the economy. Hallock 9T10-109. He then summarizes evidence from the Defendants and concludes that "the defendants each had formalized or sophisticated human resource (HR) or compensation systems of one type or another." Hallock 45
23. I agree that Defendants had formalized compensation systems or structures to administer compensation. In Silicon Valley and elsewhere, most large companies have formalized compensation systems or structures to administer pay, including using job
classification systems, job titles, benchmarking to external market intelligence, setting salary ranges, providing guidelines and recommendations for increases to compensation, etc. ${ }^{8}$
24. The fact that a company has a formalized compensation system or structure, however, does not answer the question of whether suppression of wages to some employees would affect all or nearly all other employees. A formalized compensation system can be carried out and implemented in a way such that some workers' wages can be adjusted without widespread effect on other workers.

25 Dr. Hallock stops short of adequately addressing Defendants' compensation philosophies, how Defendants' compensation systems were actually implemented, how actual pay determinations were made, and what the actual compensation data in this case shows. To test and verify whether impact spread to all or nearly all class members, one should examine the evidence regarding how actual pay decisions were made and the compensation data. ${ }^{9}$
26. Consistent with other technology firms I have studied, Defendants employ a pay for performance philosophy implemented by individual managers based on each manager's subjective evaluation of their employees' performance, talent, skills, contribution to the company, and potential. ${ }^{10}$ Technology firms adopt a pay for performance philosophy to attract high performers and incentivize greater effort and talent. It is, however, difficult to measure performance in a mechanical or objective way for high-tech employees. For example, in software development, the number of lines of code written in one day could be measured, but

[^33]may tell the firm nothing meaningful about performance (such as, the quality of the code or the complexity of the project). Thus, firms in high-tech, like Defendants, leave pay decisions in the hands of individual managers, who are in the best position to evaluate employee performance based on their discretion. ${ }^{11}$
27. Appendix C is a collection of the evidence I have seen in this case demonstrating that Defendants believed in the managerial philosophy of paying for performance and implemented this philosophy by empowering managers to evaluate performance and set pay.
28. From the employer's perspective, a pay for performance system can increase productivity by incentivizing the right behavior and attracting the right workers. There is extensive literature on the significant amount of productivity increase that results from switching from a traditional lockstep pay system to a pay for performance system. The classic paper, by Lazear (2000), follows one particular firm that changed its pay practices from paying on an hourly basis to paying for productivity. The firm in question replaced broken windshields at the customer's house. When the firm instituted pay for performance by giving piece-rate pay, not only did employees install more windshields, but the firm attracted better employees who were very good at installing windshields. These factors raised productivity by $44 \% .^{12}$
29. Dr. Hallock refers to examples from the government sector or unionized setting to support his conclusions, as if to suggest that Defendants used similar systems. Hallock $\mathbb{\|} \mathbb{T} 15$, 18, 206, Figure 1. Dr. Hallock also repeatedly relied on these examples during his deposition. Hallock Dep. 95:15-96:12 (referencing government organizations, state police officers, school

[^34]teachers); 127:22-129:25 (stating public school teachers' compensation is an example of a rigid pay structure). Dr. Hallock's reliance on these systems illustrates the core problem with his conclusions. Unlike Defendants in this case, government and unionized firms employ a traditional compensation philosophy. ${ }^{13}$ These traditional firms base pay on measures such as education, tenure, and hours worked, rather than on individualized performance and output. Traditional compensation philosophy therefore leads to a compensation structure in which compensation decisions are not made at the individual level, but are set by a rigid rule of salary schedules that leave no discretion for management to determine the wages of individuals.

Because the traditional compensation system has rigid rules for allocating pay, it maintains a salary structure in which the pay of one worker is fixed relative to the pay of another worker.
30. In contrast, in technology based firms (among others), the compensation system generally begins with pay ranges assigned to job codes, but these serve as mere guidelines for managers as they use their discretion to determine compensation when hiring, promoting, and allocating annual pay increases to individuals as a function of performance and contribution. Unlike traditional compensation firms, the pay of one worker is highly variable relative to the pay of another worker, depending on how their individual performance varies over time and their managers' exercise of discretion.
31. The pay for performance system of technology companies thus leads to variances in pay across workers that reflect differences in workers' skills or effort. ${ }^{14}$ I have reviewed the

[^35]exhibits prepared by Defendants' expert Dr. Kevin Murphy regarding the variance in pay changes in Defendants' compensation data. As one would expect in a pay for performance system, the compensation data shows that compensation changes vary dramatically among employees within the same job titles and across job titles, as would be expected when decisions are highly individualized based on myriad factors including an individual employee's performance, talent, skills, education, potential, demand and overall value to the firm; whether the employee is a "star" employee or a poor performer; an employee's past compensation history; the budget for compensation; the idiosyncrasies of the manager making the compensation decision; and many other factors and considerations that go into deciding the pay for an individual employee. ${ }^{15}$
32. This significant variation in compensation across employees is at odds with a compensation structure in which changes in compensation for individual employees resulting from cold calls necessitates changes in compensation for all class members

## VII. Defendants' Pay Practices Do Not Support Spillover of Pay Increase From One Individual to All or Nearly All Class Members.

33. The pay practices of technology firms form a cohesive system of managerial practices aimed at supporting superior company performance in the marketplace. Based on my experience and the materials I have reviewed in this case, technology firms, including

## (continued...)

because some are more productive per period than others." Kevin F. Hallock, Pay: Why People Earn What They Earn And What You Can Do Now To Make More 87 (Cambridge Univ. Press 2012).

[^36]Defendants, generally use a typical set of compensation practices. The large variances in pay at each of the Defendants reflect compensation systems that were flexible enough to allow the adjustments of an individual employee's compensation without shifting the entire compensation structure.
34. Pay is set first during the hiring process. Jobs are typically arranged in job families, and then in job codes and grade levels within these families. When the manager makes the hiring decision, he/she uses his/her discretion along with the guidelines of pay ranges (formed from market intelligence) to set the pay of the individual he is hiring. The firm typically gathers data from consulting firms, such as Radford and others, on pay by job code. The firm then generally sets a midpoint target and a range for job codes within the firm. When the manager hires an employee, he chooses the pay that fits the individual new hire, based on the new hire's expected value to the firm and his alternative wage at other firms.
35. Pay is adjusted during the promotion process. The employee may be promoted to a higher grade level within the same job code, or to a new job code. The decision to promote is determined by each manager, based on his assessment that the employee can be expected to perform at the higher level of performance consistent with the promotion. As in the decision to hire, the decision to promote is accompanied by a personalized pay decision; pay is set according to the employee's expected contribution to the firm.
36. Pay may also be adjusted during the annual or semi-annual performance review process. Each manager is given a budget and told to allocate that budget to pay increases based on the performance of each employee. Those who are star employees will receive large raises; those who are laggard employees will receive little or no raise.
37. Pay may also be adjusted when bonuses and equity are allocated. These are allocated based on an individual's performance or based on the performance of his team.
38. Lastly, based on my experience, in relatively rare instances, pay may be adjusted to retain an employee when he/she receives an outside offer. I say these instances are relatively
rare because pay increases are typically only offered to the high achievers. The lower achievers are generally allowed to leave.
39. At each juncture of this typical process for determining pay - the hiring, promotion, review, or retention process - individual performance is key. I would not expect a pay gain for one worker to lead to a pay gain for another worker. Consider three workers, A, B, and C. Assume A is the star performer, B is the median performer, and C is the below average performer. The star performer, A, will typically be paid for performance at various stages in his work life: he will likely be at the upper end of the pay range when he is hired; he will likely be promoted to a higher pay range; or he will likely receive a bigger annual pay raise. If A receives an outside offer and that offer is matched by his employer, I would not expect his higher pay to spill over to those who do not have his capabilities.
40. Taken as a whole, there is no apparent propagation mechanism built in to the pay process in Defendant firms and other technology firms I have studied.

## VIII. Dr. Hallock's Prediction That Impact "Could" Spread Through Certain "Avenues" Is Inaccurate.

41. During his deposition, Dr. Hallock was asked to explain his opinion that the antisolicitation agreements could lead to suppression of pay for all or nearly all class members. Dr. Hallock testified that three "avenues" of pay suppression are possible, but concedes that none of the three avenues would necessarily lead to impact on all or nearly all class members. Hallock Dep. 153:08-158:06, 214:25-215:11, 227:25-230:10. I address each "avenue" below.

## A. Internal Equity is Used by Managers to Make Individual Compensation Decisions By Comparing Similarly Performing Employees Who Do Similar Work.

42. According to Dr. Hallock, the first avenue by which pay could be suppressed for all or nearly all class members pertains to the application of internal equity. Plaintiffs claim that if the pay of one individual rises, that would increase the pay of all other class members because it would be inequitable to raise the pay of one and not others. Therefore, if the pay of one
individual is suppressed, that would suppress the pay of all others for whom pay would have risen. This argument is flawed because it makes use of an outdated notion of internal equity and mischaracterizes the notion of internal equity as it is applied to these Defendants.
43. There are two definitions of internal equity in the management world. In the first definition, labeled distributive justice, pay is perceived to be fair when all are paid the same wage. This form of internal equity might be relevant to traditional firms or to unionized firms where the goal is equal pay for all within an education/tenure class. In the second definition, labeled procedural justice, pay is perceived to be fair when the procedures for setting pay are fair. ${ }^{16}$ This form of internal equity is relevant to technology firms that pay for performance, and specifically to Defendants in this case. In these workplaces, pay is perceived to be fair when the firm follows its procedures of paying for performance. The notion of internal equity does not act as a pressure to equalize pay, but is a concept to further the pay for performance philosophy and a means to strive for fairness by establishing fair procedures.
44. Dr. Hallock makes the same point in his report. Hallock \| 202 ("] [W]orkers will be motivated when their perceived inputs (e.g., effort) match their perceived outputs (e.g., pay). If someone thinks she is being unfairly paid (e.g., others are being paid more for the same perceived effort), she will become uncomfortable and unmotivated." ${ }^{\prime \prime}$, ${ }^{17}$ In other words, what matters to employees is not distributive justice, but rather procedural justice where fair procedures ensure pay is based on actual performance. ${ }^{18}$

[^37]45. The evidence in this case shows that managers are trained to consider internal equity as one factor (among many) to consider when making pay decisions based on individual performance. As discussed above, pay is based on a myriad of factors, including an individual's current and expected future contribution to the firm. Internal equity is considered by individual managers in making individual employee compensation decisions. In the evidence I have reviewed, internal equity is not discussed as a means of making automatic company-wide adjustments to the compensation of groups of employees. Nor have I seen evidence that every inequity needs to be remedied.
46. Moreover, from my experience and based on the evidence in this case, there is no reason that internal equity should impact workers who are doing dissimilar work, such as employees in different jobs, or workers who perform at different levels. At deposition, Dr. Hallock stated repeatedly that whether an impact to one or some employees would cause a raise to others because of internal equity would be dependent on the facts and the comparability of the jobs at issue. At most, he suggested that pay spillover would be limited to similar employees doing similar work. As Dr. Hallock explained:
"Imagine . . . five people are working side by side. They're all doing roughly the same work. They're all paid roughly the same way. One of them gets a cold call. That person's wage increases. There is principles of internal equity that would suggest that there is upward pressure on the others." Hallock Dep. 192:2-8.
"If person X doesn't get the job offer, there is [sic] less upward pressure on the wages of the work crew if they're doing similar work. Because peoplethere is this idea of internal equity." Hallock Dep. 202:20-23.
" $[\mathrm{R}]$ elated to internal equity concerns is the idea that people doing similar work would be paid similarly . . . . I don't know if they're doing similar work, but let's assume that they are. So that if one didn't get a raise, there would be less upward pressure on others in the work group than if the person did get a raise." Hallock Dep. 203:15-22.
"Employee A in a work group, say there are two people doing that job. .... [T]hey're both doing very similar jobs. Internal equity, if that - if one gets a raise because of a cold call, it's certainly possible, because of internal equity that another person would get a raise immediately . . . . . If
they're really identical workers and they're really doing the same thing, it would be surprising to me that there wouldn't be pressure due to - due to equity concerns. If they're really performing the similar task or identical task as we were talking about in this case." Hallock Dep. 240:13-241:7.
"[I]t's possible that when one worker gets a bump due to a cold call and then she negotiates with the firm to increase her wage in the incumbent firm that people near her don't immediately get wage changes. That's certainly possible. But at the same time, internal equity concerns, among other things, would suggest that there is then pressure on the wages of people doing similar work." Hallock Dep. 242:14-21.
47. Take for example the job titles in Plaintiffs' proposed Technical Class at Intel, which includes chemical engineers, technical writers, IT support specialists, semiconductor engineers, and web designers. ${ }^{19}$ I am not aware of any evidence in this case, or outside of this case, to suggest that an IT manager who increases compensation of one of his employees would lead to a chemical engineer manager (or semiconductor engineer manager, or technical writer manager) to increase the compensation of his/her employees to maintain internal equity. Appendix E contains the full list of job titles in the Technical Class for each Defendant and the number of managers within each job title from 2008-2009. Appendix E evidences the vast number of jobs at issue in this case, and the large number of managers at each Defendant across jobs and within job titles. I would not expect a manager's consideration of internal equity to impact all or nearly all other employees in different job titles, under the supervision of different managers.
48. Consistent with this, Dr. Hallock first testified during his deposition that he would not expect to see any impact from internal equity outside of a particular job title:
Q. And then assuming suppressed wages for some IT support specialists at Intel, how would that impact the compensation of employees in a different job title, let's say mask designer at Intel.
A. Again, you are asking about a narrow - a narrower part of what's going on. So they don't necessarily - it doesn't necessarily have to be the case that the

[^38]impact on those particular workers led to the prediction that there would be suppression because there are multiple avenues. So I think I understand where you are coming from. So you are asking if - so that's it. It doesn't necessarily have to be that avenue. It could be another avenue that leads to my prediction. ${ }^{20}$ Hallock Dep. 225:1-14.
*******
A. Have I reached an opinion about whether a negative impact on an employee would - in one job title would necessarily impact those in another job title? I haven't - again, I haven't thought about this specific job title to job title thing that you've just brought up before carefully and I'd like to think about that. But I certainly haven't made a general opinion about that." Hallock Dep. 235:6-13.
49. Dr. Hallock revised his testimony later in the deposition, stating that "it's possible that propagation happens from job title to job title" due to internal equity. Hallock Dep. 258:1112. However, Dr. Hallock cites to no evidence to support this job title to job title propagation and simply testified that this "could" occur. Hallock Dep. 258:16-22, 259:9-15, 259:20-22, 261:2-14.
50. I am unaware of any evidence that requires automatic adjustments to compensation across job titles due to internal equity concerns. To the contrary, the evidence regarding each Defendant in Appendix D shows the concept of internal equity was used at the manager level to make decisions about individual compensation, not at the policy level to make changes in pay practices.
51. Dr. Hallock cites to several figures from Defendants' documents containing guidelines for managers on how to exercise their discretion when giving annual salary increases. See Figures 12-15. These figures demonstrate first that managers were advised to give high performers larger salary increases. These figures also show suggested salary increases were dependent on position within a salary range, which is pegged to market conditions. There is no mention of internal equity or any suggestion that pay of one individual is based on the pay of another individual. In other words, employees were not paid in relation to each other, but were

[^39]

Adobe created its salary ranges based on market data. ${ }^{21}$ This Figure shows that Adobe's managers were not advised to compensate employees based on what other employees in the manager's team (or other teams) are paid. Rather, this Figure shows that Adobe suggested that a manager exercise his/her discretion in making pay determinations based on an individual's performance and his/her position in relation to the market data. $\square$

52. Dr. Hallock testified that internal equity would not necessarily lead to impact for all or nearly all class members:
A. An Adobe employee gets a raise after a cold call from Apple. Comes in, negotiates a higher wage. Yes.
Q. Right. Would you predict that that would then lead to a raise to all or nearly all technical employees?
A. I wouldn't necessarily predict that that alone would do that. . . . So that alone might not do that. So no. Hallock Dep. 189:18-190:2.
53. Based on my experience and the evidence in this case, I do not expect that the concept of internal equity would be a means by which impact on a some employee's compensation would spill over to all or nearly all class members.

[^40]
## B. Dr. Hallock's Opinion That the Suppression of External Pay Data in One Job Code Could Lead to Spillover is Unsupported.

54. Dr. Hallock testified that the second avenue by which pay could be suppressed for all or nearly all class members relates to the use of market survey data to benchmark internal compensation. Dr. Hallock states that each Defendant used external market data as benchmarks for internal compensation. Hallock Dep. 223:8-14. Thus, according to Dr. Hallock, if cold calling suppressed the pay of some groups of workers, that lower pay would be reported to the market consultants like Radford and would suppress the pay of the benchmarking data, which in turn would be used to create internal salary ranges. Hallock Dep. 220:18-25. See also Hallock $\mathbb{\pi}$ 240.
55. First, it is hard to imagine that the amount of suppressed cold calling is significant enough to make a difference in the market survey results. ${ }^{24}$
56. Moreover, while it is true that most Defendants used external market data to create internal salary ranges, ${ }^{25}$ not all Defendants used the same compensation benchmarking data and each benchmarked against a large group of firms far beyond the one, two, or three with which it allegedly had a cold-calling agreement, if it benchmarked against those firms at all ${ }^{26}$
[^41]Further, Pixar and Lucasfilm used the Croner Company survey, which none of the other Defendants used or participated in. ${ }^{27}$ Moreover, defendants that relied on the same surveys did not always use the same data slices. Apple, for example,

57. Even assuming that there is suppression of pay for the external data in some job codes due to the alleged anticompetitive conduct, this pay suppression would not spill over between job codes. Taking Adobe as an example, every job code at Adobe has a distinct salary range based on market survey data for similar jobs. ${ }^{31}$ That is, Adobe used job specific market data, and thus, suppression of market data for one job code would not affect the salary range for other job codes. This is true for other Defendants as well. ${ }^{32}$ Thus, suppressed data for one job

```
(continued...)
```

from 2005 to 2011); Burmeister Decl. 14 (Apple used $\square$ list of peer companies which included approximately twenty other companies, only two of which (Google and Intel) are defendants in this case.).
${ }^{27}$ See, e.g., McAdams Dep, 60;9-13; Ex. 1308 (showing Lucasfilm is the only other defendant that participates in the Croner Animation survey).
${ }^{28}$ Burmeister Dep. 164:18-165.3.

${ }^{30}$ McKell Decl. «/ 8, 14; see also McKell 181:19-182:13. Appendix G shows that a vast majority of Intel's employees in the Technical Class were employed outside of silicon Valley.
${ }^{31}$ Streeter Dep. 265:25-266:12 (Adobe created ranges based on some spread that corresponded to the 65th percentile of the market for a particular job title.);
${ }^{32}$ Sheehy Dep. 49:17-20 (Pixar reviews the survey data and determines minimum and maximum pay on a "job-by-job basis."); Wagner Decl \& 8
McKell 87:22-24, 89:6-7 (Intel has very broad salary ranges that are established by grade [i.e., they have one range for all jobs in a particular grade], but also internally benchmarks pay against a smaller, more job-specific range, which it refers to as "pay lines."); Maupin Dep. 148:25-149:12 (Lucasfilm matches job descriptions to relevant market survey data and then assigns a job to a pay range.).
title would not affect data for another job title, nor would suppressed salary range for one job title affect the salary range for another job title.
58. When Dr. Hallock was asked to consider this fact during his deposition, he was unable to explain how suppressed market compensation data for one job code could affect salary ranges for other job codes. Hallock Dep. 229:11-232, 233:21-235:13. Thus, Dr. Hallock's opinion of impact based on market data is limited to particular job titles.
59. Intel's use of market data provides another good example that any changes in the market would be dealt with on a job title level, rather than at a company level. Intel annually examines whether each of its job codes are being paid relative to the midpoint of the pay line. McKell Dep. 90:20-91:9. For job codes that are below market, Intel gives a special market adjustment ("SMA") budget for managers to use for those specific jobs. ${ }^{33}$ McKell Dep. 206:1518. The types of jobs that receive SMA vary by year and by group, and is limited to jobs where Intel felt its market position was deteriorating. McKell Dep. 92:14-16; 206;12-18. Thus, if the market was moving faster for a particular job, and Intel's market position was deteriorating, Intel could respond with an SMA targeted to those particular jobs.
60. Moreover, Dr. Hallock ignores the fact that a change in salary range does not lead to a change in actual compensation levels for all employees. To the contrary, the testimony of several Defendants' compensation personnel confirmed that individuals' salaries do not automatically move because of changes to the salary ranges. ${ }^{34}$ As detailed earlier in the report, individuals' salaries are adjusted by managers based on performance.

[^42]61. Similar to Dr. Hallock's first "avenue" of propagation, Dr. Hallock conceded that this second "avenue" need not propagate to all or nearly all class members. Hallock Dep. 227:25-228:13.

## C. Dr. Hallock's Opinion Regarding Market Data For Merit Increase Budgets Is Also Unsupported.

62. Dr. Hallock states that a third "avenue" that could impact all or nearly all class members is through Defendants' use of market data to benchmark the annual merit increase percentage. Hallock Dep. 230:14-231:8, 249:20-250:4. According to Dr. Hallock, to the extent that Defendants benchmark their merit increases based on market data of other companies' projected merit increase, a suppression of the market data will lead to a suppression of an individual company's merit increase percentage. Dr. Hallock states that the suppression of merit increase percentage could affect all or nearly all class members.
63. I am not aware of any evidence that market data on base salary increase percentages was suppressed, or that suppressed data resulted in impact on all or nearly all class members. Given the vast labor markets at issue in this case, it is hard to imagine as a matter of basic mathematics that the lack of cold calls due to the alleged anti-solicitation agreements would have suppressed the market data.
64. Assuming each Defendant based its merit increase percentage on market data, and further assuming market data was in fact suppressed due to the alleged anticompetitive conduct, this would not lead to the suppression of compensation for all or nearly all class members. Managers at each of the Defendants had discretion (within company suggested guidelines) to allocate the merit increase budget as they saw fit based on their performance evaluations. ${ }^{35}$

> (continued...)


Therefore, a reduction in the merit increase budget could affect top performers but need not affect all performers.
65. Moreover, evidence from several Defendants indicates that these companies discouraged giving merit increases to lower performing employees. As referenced above, Defendants maintained merit increase guidelines for their managers as a guidepost when making compensation decisions. See Hallock's Figures 12-15. For example, Figure 12 to Dr. Hallock's report demonstrates that $\square{ }^{36}$ Dr. Hallock admitted this during his deposition. Hallock Dep. 276:4-8 ("So there would be workers that on the fringe who have very, very low performance rating or very high in range wouldn't, in that circumstance - their wage wouldn't wouldn't be affected in that instance.") Thus, to the extent a manager's merit budget would have been higher but for the alleged anti-solicitation agreements, the evidence I have reviewed does not suggest that all or nearly all employees would have received more (or any) merit increase,

```
(continued...)
```

"F); Sheehy Dep. 70:24-25 (Pixar managers are "given a salary pool, and they spend that pool on their employees, how they see fit...."): McKell Dep. 101:8-17

Chau Dep. 138:20-140:6 (Lucasfilm managers and executives would make recommendations for individual bonuses and merit increases and Ms. Chau "very seldom" made adjustments.); Stubblefield Dep. 32:14-21 (Intuit managers "make the compensation decisions [and] [i]t's in their discretion to choose how they want to pay "); Burmeister Dep, 47:16-19, 53:23-54:1 (Individual Apple managers were responsible for setting compensation for each employee in their groups.).
${ }^{36}$ See Hallock's Figure 12, where employees with a rating of 3.4 or below may not receive salary increase depending on their pre-adjustment position. Wagner Dep. 109:16-19 (Google's .); LUCAS0062293 (Lucasfilm's "Pay for Performance 2007 Merit Budget Recommendations Executive Review" recommended allocations of salary increase and bonus budgets of " $0 \%$ for employees rated unsatisfactory " and "0-2\% for employees rated 'needs improvement."'); LUCAS189964 at 69 (document confirms that low performing Lucasfilm employee was not awarded merit increase or bonus); Burmeister Dep. 48:15-23 (Apple managers were not required to give all employees merit salary increases, rather "if an individual wasn't performing well, he or she may not warrant a merit increase."); James Dep. 25:22-25 (Intel has "a philosophy of pay for performance which means that being an average performer in a certain year in a tight budgetary year does not mean you are necessarily going to get an increase."); Stubblefield Decl. Ex. A, at 9 employees who were struggling might not get any salary increase); Ex. 1304 PIX00044225-44229 (Pixar's salary increase spreadsheet from 2006 containing raises ranging from $25 \%$ to $0 \%$.); Arriada-Keiper Dep. 75:16-18 (

## D. Dr. Hallock's Top of the Box Theory Is Incorrect.

66. According to Dr. Hallock, another way that pay can be lowered for nearly all workers has to do with the "top" workers. ${ }^{37}$ Some of the cold calling restrictions were targeted to the high-end top talent, says Dr. Hallock. His theory is that if the "top of the box," or the compensation for the highest performing employees, was lowered in the presence of cold-calling restrictions, the entire box (or the compensation for the lower performing employees) may be lowered as well.
67. This theory finds no basis in the Defendants' compensation systems. Nor have I studied compensation systems outside of this case that would support this theory. For Dr. Hallock's theory to work, when companies increase the compensation for a top performing employee in one job title, the company would have to increase the compensation of lesser performing employees to maintain the same differentials or relative compensation between all employees in that job title. Plus, for Dr. Hallock's theory to work, the company would then need to look at the compensation of all employees in other job titles, and adjust them upward to maintain the same compensation structure across job titles.
68. Dr. Hallock recognizes his "top of the box" theory works only with respect to an organization where "those at the top of a pay scale help determine the relative gains of those "below' them," Hallock 『 207. There is no such evidence in this case of which I am aware. As discussed above, the documents and testimonies show that pay determinations were left in the hands of individual managers based on their assessment of individual performance. There is no evidence that managers were trained to undertake the rigid approach needed under Dr. Hallock's theory and automatically move others within their team because the "top" employee's compensation increased simply to maintain the same relative compensation. For example, when Adobe's compensation personnel was asked whether Adobe targeted a particular percentage

[^43]difference in compensation between
Ms. Arriada-Keiper testified: "Not a specific percentage. ... [M]anagers
ultimately have the discretion. Arriada-Keiper Dep. 111:13-25.
69. Moreover, each job title spans many managers. Appendix E shows the number of managers for each job title at each Defendant firm from 2005 to 2009. To give a few examples, in that time period, Adobe's Computer Scientist Software Developer 3 had 258 managers, Intel's Component Design Engineer 7 had 1,074 managers, Intel's Hardware Engineer 7 had 274 managers, and Intuit's Product Manager had 110 managers. I have not seen any evidence that shows a coordinated, rigid approach across managers within a job title. Furthermore, I have not seen any evidence that this rigid approach would then be applied outside of the job title, and affect other job titles. Such adjustments would be the antithesis to an individualized pay for performance system. ${ }^{38}$
70. During deposition, Dr. Hallock testified that the "box" refers to the salary ranges for a particular job code (that is, the salary maximum makes up the top of the box and the salary minimum makes up the bottom of the box). Hallock Dep. 278:7-279:9. Dr. Hallock appears to contend that but for the alleged conspiracy, employees at the top of the salary range would have received cold calls, would have received a raise, which would cause the box to "grow." Hallock

Report ๆ 229.
71. This theory is inaccurate because, like other companies I am familiar with, Defendants' salary ranges (or the "boxes") were based purely on market survey data, not on individual compensation increases within the company. ${ }^{39}$ Thus, an individual's compensation

[^44]movement within the company does not alter the "box"; the "box" only grows based on market data. Moreover, because the salary ranges (or the "boxes") are pegged to the market by job, movement of one "box" does not cause another "box" to move.
72. Even assuming the salary ranges would have been higher but for the alleged conspiracy, as explained above, movement of the salary range does not automatically move all individual's actual compensation. To the contrary, the testimony of several Defendants' compensation personnel confirmed that individual salaries are not required to fit within the salary ranges nor do salaries automatically move because of changes to the range. ${ }^{40}$
73. Nor does Dr Hallock's "top of the box" theory have any application to a number of situations when a firm decides to retain an employee by increasing wages other than base salary. For example, Dr. Hallock does not offer an opinion that "top of the box" applies when a firm decides to retain an employee by promoting him to a higher position, or by giving a onetime equity grant or a one-time bonus. Dr. Hallock agrees that if a Defendant gave a retention bonus to retain an employee, it would not give every employee a raise. Hallock Dep. 137:17-21.
IX. Conclusion

Dr. Hallock does not show that a suppression of wages to some employees allegedly caused by the alleged conspiracy would have affected all or nearly all Technical Class members. Based on Defendants' compensation systems, pay practices, and pay philosophy, I would not expect that a suppression of wages to some employees would affect all or nearly all Technical Class members.


Kathryn Shaw, PhD.
June 21, 2013

[^45]
## Reference Guide to Cited Exhibits

| Exhibit | Location in record |
| :---: | :---: |
| 76586DOC001050_AEO.xls | Attached as Ex. 24 to the 6/21/13 Decl. of Lin Kahn |
| Declaration of Daniel McKell | Attached as Ex. 17 to 11/12/12 Brown Decl. ISO Opp. |
| Declaration of Donna Morris | Attached as Ex. 14 to 11/12/12 Brown Decl. ISO Opp. |
| Declaration of Frank Wagner | Attached as Ex. 21 to 11/12/12 Brown Decl. ISO Opp. |
| Declaration of Lori McAdams | Attached as Ex. 23 to 11/12/12 Brown Decl. ISO Opp. |
| Declaration of Mason Stubblefield | Attached as Ex. 19 to 11/12/12 Brown Decl. ISO Opp. |
| Declaration of Michelle Maupin | Attached as Ex. 22 to 11/12/12 Brown Decl ISO Opp. |
| Declaration of Steven Burmeister | Attached as Ex. 16 to 11/12/12 Brown Decl. ISO Opp. |
| Excerpts from the Deposition of Alvaro Gonzalo Alvarez | Attached as Ex. 23 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Bob Mansfield | Attached as Ex. 13 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Brian Croll | Attached as Ex. 14 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Chris Galy | Attached as Ex. FF to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Dan Batali | Attached as Ex. 22 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Daniel McKell | Attached as Ex. 8 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Darrin Baja | Attached as Ex. I to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Deborah Conrad | Attached as Ex. 16 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Deborah Streeter | Attached as Ex. 1 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Digby Horner | Attached as Ex. 11 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Donna Morris | Attached as Ex. 6 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of FrankWagner | Attached as Ex 3 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Jan Van der Voort | Attached as Ex. 19 to the 6/21/13 Decl. of Lin Kahn |


| Excerpts from the Deposition of Kevin Hallock | Attached to the 6/21/13 Decl. of Christina Brown |
| :---: | :---: |
| Excerpts from the Deposition of Laszlo Bock | Attached as Ex. 15 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Lori Beck | Attached as Ex. 20 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Lori McAdams | Attached as Ex. SS to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Mason Stubblefield | Attached as Ex. 7 to the $6 / 21 / 13$ Decl. of Lin Kahn |
| Excerpts from the Deposition of Micheline Chau | Attached as Ex. 10 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Michelle Maupin | Attached as Ex. 5 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Paul Otellini | Attached as Ex. DD to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Renee James | Attached as Ex. AA to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Richard Bechtel | Attached as Ex. J to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Rosemary ArriadaKeiper | Attached as Ex 9 to the 6/21/13 Decl of Lin Kahn |
| Excerpts from the Deposition of Sharon Coker | Attached as Ex. 18 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Sherry Whiteley | Attached as Ex. JJ to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Shona Brown | Attached as Ex S to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Excerpts from the Deposition of Stephanie Sheehy | Attached as Ex. 4 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Steven Burmeister | Attached as Ex 2 to the 6/21/13 Decl of Lin Kahn |
| Excerpts from the Deposition of Steven Condiotti | Attached as Ex. 17 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the Deposition of Tim Cook | Attached as Ex. 12 to the 6/21/13 Decl. of Lin Kahn |
| Excerpts from the March 19, 2013 Deposition of Lynwen Brennan | Attached as Ex. 21 to the 6/21/13 Decl. of Lin Kahn |
| Exhibit 1158, ADOBE 005661 | Attached as Ex. 1158 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 1159, ADOBE 019278 | Attached as Ex. 1159 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 1160, ADOBE 009652 | Attached as Ex. 1160 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 1304, PIX00044225-44229 | Attached as Ex. 27 to the 6/21/13 Decl. of Lin Kahn |


| Exhibit 1308, Pixar Salary Analysis | Attached as Ex 1308 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| :---: | :---: |
| Exhibit 1309, PLX00049648 | Attached as Ex. 1309 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 1855, Declaration of Steven Burmeister | Attached as Ex. 1855 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 1861, 231APPLE105542 | Attached as Ex. 28 to the 6/21/13 Decl. of Lin Kahn |
| Exhibit 216, ADOBE 050724 | Attached as Ex. 216 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 2425, GOOG-HIGH-TECH 00625147 | Attached as Ex. 2425 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 2501, ADOBE 009425 | Attached as Ex. 2501 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 2739, INTUIT_043560 | Attached as Ex 2739 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 2740, INTUIT_052841 | Attached as Ex. 2740 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 391, 76583DOC003888 | Attached as Ex. 391 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit 398, 76579DOC005956 | Attached as Ex 398 to 5/10/13 Cisneros Decl. ISO Supp. Class |
| Exhibit A to the Declaration of Frank Wagner | Attached as Ex. 21 to 11/12/12 Brown Decl. ISO Opp. |
| Exhibit B to the Declaration of Frank Wagner | Attached as Ex. 21 to 11/12/12 Brown Decl. ISO Opp. |
| Exhibits to the Declaration of Donna Morris | Attached as Ex. 14 to 11/12/12 Brown Decl. ISO Opp. |
| INTUIT 018387 | Attached as Ex. B to Stubblefield Decl., Ex. 19 to 11/12/12 Brown Decl. ISO Opp. |
| INTUIT 043603 | Attached as Ex 30 to the $6 / 21 / 13$ Decl. of Lin Kahn |
| INTUIT_038812 | Attached as Ex. A to Stubblefield Decl., Ex. 19 to $11 / 12 / 12$ Brown Decl. ISO Opp. |
| LUCAS00062271 | Attached as Ex. 29 to the 6/21/13 Decl. of Lin Kahn |
| LUCAS00189964-69 | Attached as Ex. 26 to the 6/21/13 Decl. of Lin Kahn |
| LUCAS0062293 | Attached as Ex. 25 to the 6/21/13 Decl. of Lin Kahn |

## APPENDIXA

Curriculum Vitae

## KATHRYN SHAW

Home
868 Lathrop Drive
Palo Alto, CA 94305
(650) 804-5879 (cell)
kathryns $@$ gsb.stanford.edu
http://www.nber.org/cgi-bin/search family2.pl

## CURRENT POSITION

Emest C. Arbuckle Professor of Economics
2003-present
Graduate School of Business
Stanford University

## PREVIOUS ACADEMIC APPOINTMENTS

Graduate School of Industrial Administration (GSIA)
Carnegie Mellon University
Ford Distinguished Research Chair, Professor of Economics 2002-2003
Professor of Economics
1997-2003
Associate Professor of Economics with Tenure 1994-1997
Associate Professor of Economics 1989-1994
$\begin{array}{ll}\text { Assistant Professor of Economics } & \text { 1981-1989 }\end{array}$

## GOVERNMENT APPOINTMENT

Council of Economic Advisors, Executive Office of the President
Member (Senate confirmed, June 2000)
1999-2001
Washington, D.C.

## AFFILIATIONS

Research Fellow, IZA, Germany
Research Associate, National Bureau of Economic Research (NBER)
Research Fellow, Center for Economic and Policy Research (CEPR), London
Research Fellow, Center for Corporate Performance (CCP), Denmark

Office
Graduate School of Business
Stanford University
Stanford, CA 94305-5015
(650) 725-4168
(650) 725-9932 (fax)

| Research Fellow, IZA, Germany | 2012-present |
| :--- | ---: |
| Research Associate, National Bureau of Economic Research (NBER) | 1995-present |
| Research Fellow, Center for Economic and Policy Research (CEPR), London | 2004-present |
| Research Fellow, Center for Corporate Performance (CCP), Denmark | 2004-present |

## EDUCATION

Harvard University, Ph.D. (Economics)
1981
$\begin{array}{ll}\text { Occidental College, Los Angeles, California } & 1976 \\ \text { A B (Economics, Mathematics) }\end{array}$
A.B. (Economics, Mathematics)

## RESEARCH STATEMENT

Insider Econometrics: Modeling Management Practices and Productivity, NBER Reporter, 2009 http://www.nber.org/reporter/2009number4/shaw.html

## HONORS

Graduate School of Business Trust Faculty Fellow ..... 2011-2012
Fellow, Society of Labor Economists ..... 2008
Graduate School of Business Trust Faculty Fellow ..... 2005-2006
Special Award for Sustained Teaching Excellence, Economics Department, CMU ..... 2003
CMU Business School Teaching Award Commendation ..... 1999, 2000, 2002
Columbia University Best Paper on International Business ..... 2001
Minnesota Award for Best Paper on Employment Institutions ..... 1998
Xerox Research Chair, GSIA, Carnegie Mellon University ..... 1992-1993
CMU Department of Economics Teaching Award ..... 1992
Harvard University Graduate Student Fellowship ..... 1976-1979
Phi Beta Kappa, Magna cum laude, Departmental Honors in Economics, 4.0 Graduate in Mathematics, Occidental College ..... 1976
Valedictorian, Verdugo Hills High School ..... 1972
HONORARY LECTURES
Occidental College $125^{\text {bh }}$ Year, Distinguished Alumni Speaker ..... 2012
Distinguished Women in Economics, Washington University ..... 2012
Keynote speaker, Society of Labor Economists ..... 2012
Guest Lecturer, University of Paris, Science P-O, "What Do CEOs Do?" ..... 2009
Adam Smith Lecture, European Labor Economics Association ..... 2008
Keynote Address, Conference on Education, Training and the Evolving Workplace, ..... 2006
TARGET, Vancouver Canada
Bertha Leigh Memorial Lecture, Washington State University ..... 2005
Sloan Industry Studies, Keynote address, Atlanta ..... 2004
National Defense University, University Address, Washington DC ..... 2004
OTHER PROFESSIONAL EXPERIENCE
Carnegie Mellon University
Heinz School of Public Policy, Carnegie Mellon University, Affiliated Faculty ..... 1996-2003
Department Head, Industrial Management Department ..... 1987-1990
Department Head, Economics Department (Acting) ..... 1989
Board of Governors of the Federal Reserve Washington, DC
Visiting Economist ..... 1984-1986
Harvard University Cambridge, Massachusetts
Assistant Head Tutor in Economics ..... 1978-1981
Massachusetts Institute of Technology
Cambridge, Massachusetts
Research Staff Economist

## EDITOR AND PROFESSIONAL PANEL

Board Member, Society of Labor Economists<br>Bureau of Labor Statistics, Technical Advisory Committee<br>STEP Board, National Academy of Science<br>Editorial Advisory Board Member, Journal of Economic Perspectives<br>2013-present<br>Outside Review Panel, Hass School of Business, University of Califomia, Berkeley 2009<br>The Conference Board, Evidence-Based HR Research Working Group 2007-2009<br>Bennett Award Committee (chair), AEA, CSWEP 2008-2009<br>Mincer Award Committee, Society of Labor Economists 2006-2008<br>John Dunlop Award Committee, Labor and Employment Relations Associations<br>2006-2008<br>Associate Editor, Review of Economics and Statistics<br>Editor (Associate), Journal of Labor Economics<br>2003-2011<br>Outside Review Panel, Management and Strategy, Kellogg School, Northwestern University<br>2006<br>Outside Review Panel, Economics Research Department, Chicago Federal Reserve 2005<br>NSF Advisory Panel<br>1997-1999, 2001-2003<br>American Compensation Association, Academic Research Committee 1997-1999, 2001-2003<br>IRRA, Labor Economics Subsection, co-chair<br>1996-1999<br>Journal of Regional Science, Associate Editor 1994-1997

## RESEARCH GRANTS

Alfred P. Sloan Foundation -
"International Differences in the Business Practices and Productivity of Multinational Firms in Advanced Capitalist Countries" January 2003-2009, \$1,000,000
Role: Principal Investigator (with Richard Freeman)
Alfred P. Sloan Foundation -
"Firms, Workers, and Workforce Quality: Implications for Earnings Inequality and Economic Growth," January 2003-December 2005, $\$ 90,000$, principal investigators John Abowd, John Haltiwanger, Julia Lane
Role: subcontract with Limor Golan to study the software industry
Alfred P. Sloan Foundation - Officers' Planning Grant
"International Differences in the Business Practices and Productivity of Multinational Firms in Advanced Capitalist Countries" June 2002 - December 2002 \$45,000
Role: Principal Investigator (with Richard Freeman, Martin Feldstein)
Russell Sage Foundation
"The Impact of Workplace and Technological Innovations on the Demand for Less-Skilled Labor,"
August 1999-September 2002, $\$ 300,000$
Role: Principal Investigator (with Ann Bartel, Casey Ichniowski)
Alfred P. Sloan Foundation
"The Impact of Human Resource Management Practices in the Steel Industry," June 1994 - December 2002, $\$ 700,000$.
Role: Principal Investigator (with Casey Ichniowski)
National Science Foundation
"The Effects of Participatory Human Resource Management Practices on Productivity and Quality in U.S. and Japanese Firms," January 1995-April 1999, \$350,000

Role: Principal Investigator (with Casey Ichniowski)

Department of Labor
"The Impact of HRM Practices on Performance: An International Perspective," October 1994 - August 1997, \$76,000.
Role: Principal Investigator (with Casey Ichniowski)
National Science Foundation
"The Dynamics of Franchise Contracting," October 1993 - October 1995, \$98,000.
Role: Principal Investigator (with Francine Lafontaine)
Alfred P. Sloan Foundation
"The Impact of Human Resource Management and Labor Relations Practices in the Global Steel Industry," June 1991 - June 1994. Award to project I headed, about $\$ 216,000$.
Role: Principle investigator for Human Resource Management component.
W.E. Upjohn Institute for Employment Research
"The Changing Distribution of Family Income and Wealth," January 1991 - June 1992, \$30,000.
Role: Principal Investigator
National Science Foundation
"Empirical Analysis of the Effects of Risk Aversion on the Investment in Human Capital," June 1987 January 1989, \$27,000.
Role: Principal Investigator
Social Impact of Information and Robotics Technology
Carnegie Mellon University, supporting work on "Individual Adjustment to Structural Change," 1983 1984, \$20,000.
Role: Principal Investigator
Doctoral Dissertation Grant, US Department of Labor, 1980-1981

## TEACHING EXPERIENCE

MBA Courses
Contemporary Economic Policy
Stanford University, 2003-present
Making Data Relevant
Data Driven Human Resource Strategy
Managing Talent
Entrepreneurship from the Perspective of Women (pre-term with Garth Saloner)
Human Resource Management Strategy (280, 281, 289)
Productivity and Incentives (with Ed Lazear)
Macroeconomics
Carnegie Mellon University
Internal Strategy of Firms
1981-2003
Topics in Labor Market Analysis
The Changing Global Environment and the Wealth of Nations

## Undergraduate Courses

Managing in the Information Economy
Markets, Incentives, and Value
Camegie Mellon University
Labor Economics
Labor and Manpower
1981-present

Industrial and Labor Relations
Intermediate Macroeconomics
U.S. Labor Policies

Harvard University, 1978-1980

## Ph.D. Courses

Personnel Economics
Doctoral Seminar in Labor Economics
Stanford University, 2004-present Carnegie Mellon University, 1984

## Executive Education

GSB Summer Institute (Co-Director) 2004-present<br>Citigroup Executive Program<br>Sloan Executive Program<br>HR Executive Program<br>Alumni Weekend, Events

## STUDENT SUPERVISION

| Thesis advisors, Sara Champion (chair), Chris Stanton (chair) | 2006-present |
| :--- | ---: |
| James Liang, Brianna Cardiff | 2006 |
| Outside Committee Head, Education Dept, Stanford, Anna Mastri | 2005 |
| Outside Committee Head, Economics Dept, Stanford, Kelly Russell | Carnegie Mellon University |
| Ph.D. Thesis Chairman - Zili Zhuang, Brent Boning, Jonathon Gant, | 1986-2003 |

## PUBLICATIONS -- Journal Articles

"A Personnel Economics Approach to Productivity Enhancement," (with Edward Lazear), Nordic Economic Policy Review, 2 (2011)
"Insider Econometrics: A Roadmap with Stops Along the Way," Labour Economics, 2009.
"Reaching for the Stars: Who pays for Talent in Innovative Industries?" (with Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane), Economic Journal, 2009.
"Tenure and Output," (with Edward Lazear), Labour Economics, 15 (2008): 710-724.
"Personnel Economics: The Economist's View of Human Resources," (with Edward Lazear) Journal of Economic Perspectives, 21 (4), (Fall 2007): 91-114.
"How Does Information Technology affect Productivity? Plant-Level Comparisons of Product Innovation, Process Improvement and Worker Skills," (with Ann Bartel and Casey Ichniowski), Quarterly Journal of Economics, 122 (4), (November 2007): 1721-1758.
"Opportunity Counts: Teams and the Effectiveness of Production Incentives," (with Brent Boning and Casey Ichniowski), Journal of Labor Economics 25 (2007): 613-650.
"Targeting Managerial Control: Evidence from Franchising," (with Francine Lafontaine), Rand Journal of Economics 36 (1) (Spring 2005): 131-150.
"Beyond Incentive Pay: Insiders' Estimates of the Value of Complementary Human Resource Management Practices," (with Casey Ichniowski), Journal of Economic Perspectives, 17 (1) (Winter 2003): 155-178.
"Social Capital and Organizational Change in High-Involvement and Traditional Work Organizations," (with Jon Gant and Casey Ichniowski), Journal of Economics and Management Strategy, I1 (2) Summer 2002: 289-328.

Industrial Change and Wage Inequality: Evidence from the Steel Industry" (with Patricia Beeson and Lara Shore-Sheppard) Industrial and Labor Relations Review, 54 (March 2001): 466-483.
"The Dynamics of Franchise Contracting: Evidence from Panel Data" (with Francine Lafontaine) Journal of Polifical Economy, 107 (October 1999): 1041-1080.

Reprinted in Empirical Industrial Organization, Paul Joskow and Michael Waterson, Eds., Cheltenham, UK: Edward Elgar Publishing, Ltd., (forthcoming), and in The International Library of the New Institutional Economics, Claude Menard, Ed., UK: Edward Elgar Publishing, Ltd., (forthcoming).
"The Effects of Human Resource Systems on Productivity: An International Comparison of U.S. and Japanese Plants" (with Casey Ichniowski) Management Science, 45 (May 1999): 704-722.
"The Effects of Human Resource Management Practices on Productivity" (with Casey Ichniowski and Giovanna Prennushi) American Economic Review, 86 (June 1997): 291-313.

Reprinted in Personnel Economics, Edward P. Lazear and Robert McNabb, Eds., Cheltenham, UK: Edward Elgar Publishing, Ltd., (forthcoming).
"Pensions and Wage Premia" (with Edward Montgomery) Economic Inquiry, 35 (July 1997): 510-522.
"Franchising Growth and Franchiser Entry and Exit in the U.S. Market: Myth and Reality" (with Francine Lafontaine), Journal of Business Venturing, Special Issue on Franchising (1997).
"An Empirical Analysis of Risk Aversion and Income Growth," Journal of Labor Economics, 14 (October 1996): 626-653.
"Old Dogs and New Tricks: Determinants of the Adoption of Productivity-Enhancing Work Practices" (with Casey Ichniowski) Brookings Papers on Economic Activity: Microeconomics (1995): 1-65.
"The Impact of Pension Benefits on the Distribution of Earned Income" (with Mary Ellen Benedict) Industrial and Labor Relations Review, 48 (July 1995): 740-757.
"The Life-Cycle Persistence of Female Labor Supply," Jotrnal of Human Resources, 29 (Spring 1994): 348378.
"The Distribution of Family Income and Benefits" (with Mary Ellen Benedict) Ohio Journal of Economics and Politics (1994).
"Unanticipated Aggregate Disturbances and Tests of the Life-Cycle Consumption Model Using Panel Data" (with Randall Mariger) Review of Economics and Statistics, 75 (February 1993): 48-56.
"The Life-Cycle Labor Supply of Married Women and its Implications for Household Income Inequality," Economic Inquiry, 30 (October 1992): 659-672.
"Pensions and Wages: An Hedonic Price Theory Approach" (with Edward Montgomery and Mary Ellen Benedict) International Economics Review, 33 (February 1992); 111-128.
"The Effects of Skill Investment on Migration and Industry Change," Journal of Regional Science, 31 (November 1991): 397-416.
"Intertemporal Labor Supply and the Distribution of Family Income," Review of Economics and Statistics, 71 (May 1989): 196-205.
"Life-Cycle Labor Supply with Human Capital Accumulation," International Economic Review, 30 (May 1989): 431-456.
"Wage Variability in the 1970's: Sectoral Shifts or Cyclical Sensitivity?" Review of Economics and Statistics, 71 (February 1989): 26-36.
"Disaggregate Estimates of the Real Wage-Employment Relationship" (with Edward Montgomery) Economic Letters, 26 (1988): 241-246.
"The Quit Propensity of Married Men," Journal of Labor Economics, 5 (October 1987): 533-560.
"Occupational Change, Employer Change, and the Transferability of Skills," Southern Economic Journal, 54 (January 1987): 702-719.
"Long Term Contracts, Expectations and Wage Inertia" (with Edward Montgomery) Journal of Monetary Economics, 16 (September 1985): 209-226.
"A Formulation of the Earnings Function Using the Concept of Occupational Investment," Journal of Human Resources, 19 (Summer 1984): 319-340

## PUBLICATIONS - Articles in Books

"Insider Econometrics: Empirical Studies of How Management Matters,"(with Casey Ichniowski), Handbook of Organizational Economic, editors Robert Gibbons and John Roberts, Princeton University Press, 2013: 263-311.
"Zooming in and Zooming Out: Rethinking the "Conspiracy of Dysfunction" in School District Human Resource Management," (with Michael DeArmond and Patrick Wright), in Dan Goldhaber and Jane Hannaway, editors, Creating a New Teaching Profession, Urban Institute Press, 2009.
"Jobs Online," (with Alice Nakamura, Emi Nakamura, Richard Freeman, Amanda Pyman), Studies of Labor Market Intermediation, Editor, David Autor, University of Chicago, National Bureau of Economic Research, 2009.
"Wage Structure, Wages, and Mobility," (with Edward Lazear), 2008. The Structure of Wages: An International Perspective, Editor Edward Lazear and Kathryn Shaw, University of Chicago, National Bureau of Economic Research, 2009.
"International Differences in the Adoption and Impact of New Information Technologies and New HR Practices: The Valve-Making Industry in the U.S. and U.K.," (with Ann Bartel, Casey Ichniowski, Ricardo Correa), International Differences in the Business Practices and Productivity of Firms, Editors Richard Freeman and Kathryn Shaw, University of Chicago, National Bureau of Economic Research,.
"Wage Structure, Wages, and Mobility: An Overview," (with Edward Lazear), in Alex Bryson and J.Forth, and Catherine Barber, Making Linked Employer-Employee Data Relevant to Policy, DTI Economics Paper, Department of Trade and Industry, London, April 2006:9-27.
"The Value of Innovative HRM Practices," in eds. Edward Lawler and James O'Toole, Work in America, August 2006:227-240.
"The Human Resources Revolution: Is it a Productivity Driver?, in Adam Jaffe, Josh Lerner, and Scott Stern, Innovation, Policy and the Economy, Chicago; University of Chicago, National Bureau of Economic Research, 2003: 69-114.
"New Technology" and Its Impact on the Jobs of High School Educated Workers: A Look Deep Inside Three Manufacturing Industries," (with Ann Bartel and Casey Ichniowski), in Eileen Appelbaum, Annette Bernhardt, and Richard Murnane, editors, Low Wage America, New York: Russell Sage Foundation, 2003: 155-194.
"Technology Shocks and Problem-solving Capacity," in Donna Ginther and Madeline Zavodny, editors, Technology, Growth, and the Labor Market, Boston: Kluwer Academic Publishers, 2003: 235-258.
"By What Means Does Information Technology Affect Employment and Wages?" in Nathalie Greenan, Yannick L'Horty, and Jacques Mairesse, editors, Productivity. Inequality, and the Digital Economy: A Transatlantic Perspective, Cambridge: MIT Press, 2002.
"The Incentives of Quality and the Quality of Incentives: Quality Improvement and Incentive Pay for Frontline Workers" (with David Levine) in Robert Cole and Richard Scott, eds., The Quality Movement in America: Lessons from Theory and Research, Russell Sage: 367-386.
"TQM Practices and Innovative HRM Practices: New Evidence on Adoption and Effectiveness" (with Casey Ichniowski) in Robert Cole and Richard Scott, eds., The Quality Movement in America: Lessons from Theory and Research, Russell Sage, 2000: 347-366.

## BOOKS EDITED

The Analysis of Firms and Employees: Quantitative and Qualitative Approaches, Editors Stefan Bender, Julia Lane, Kathryn Shaw, Fredrik Andersson, and Till Von Wachter, University of Chicago Press, National Bureau of Economic Research, 2008.

The Structure of Wage: An International Comparison, Editors Edward Lazear and Kathryn Shaw, University of Chicago Press, National Bureau of Economic Research, 2009. (Book listed as Noteworthy Books in Industrial Relations and Labor Economics for 2009, by the Industrial Relations Section, Princeton University.)

International Differences in the Business Practices and Productivity of Firms, Editors Richard Freeman and Kathryn Shaw, University of Chicago, National Bureau of Economic Research, 2009.

Co-editor, Journal of Labor Economics special issue on "Compensation Strategies" (with George Baker and Abbie Smith, March 2002.

Co-editor, Journal of Human Resources special issue on "The Economics of Women and Children" (with Alice Nakamura) 29 (Spring 1994).

## DISCUSSION IN BOOKS

Discussion commentary, Managing Capital in the New Economy, edited by Carol Corrado, John Haltiwanger, and Dan Sichel, National Bureau of Economic Research, forthcoming 2003.

Discussion commentary, The New Relationship: Human Capital in the American Corporation, edited by Margaret Blair and Thomas Kochan. Washington, D.C., Brookings Institution, 1999.

## BOOK REVIEWS

Review of Harry C. Katz Shifting Gears: Changing Labor Relations in the US Automobile Industry, in Southern Economic Journal, 53 (October 1986): 299-300.

## PAPERS AND PROCEEDINGS

"Using 'Insider Econometrics' to Study Productivity," American Economic Association Papers and Proceedings, 94 (May 2004): 217-223.
"Women's Contribution to Productivity," Regional Review, Federal Reserve Bank of Boston, 14(3), Q1 2005; 44-48,
"Technology Shocks and Problem-Solving Capacity," Economic Review, Federal Reserve Bank of Atlanta, 2002.
"The Relentless Search for Efficiency in the Workplace" Proceedings of the $53^{\text {nd }}$ Anmual Meeting of the National Academy of Arbitrators, Washington, D.C.: Bureau of National Affairs, forthcoming.
"Getting the Job Done: HRM and the Production Function" (with Jon Gant, Casey Ichniowski), Industrial Relations Research Association Proceedings, 1999: 43-52.
"The Adoption of HRM and TQM Practices and Their Effects on Performance in U.S. and Japanese Steel Lines," Proceedings of the 1997 NSF Design and Manufacturing Grantees Conference, Seattle, WA, Society of Manufacturing Engineers, 1997: 659-670,
"The Effects of Participatory Human Resource Management Practices on Productivity and Quality in U.S. and Japanese Firms" Proceedings of the 1996 NSF Design and Mamufacturing Grantees Conference, Dearborn, MI, Society of Manufacturing Engineers, 1996; 613-614.

## WORKING PAPERS

"The Spread of Modern Retail: Implications for Wages," with Brianna Cardiff and Francine Lafontaine (available December 2012)
"Making Do with Less: Why Productivity is Rising During Recessions," with Edward Lazear and Christopher Stanton, January 2012.
"The Value of Bosses," with Edward Lazear and Christopher Stanton, December 2011
"The Teachers Who Leave: Pulled by Opportunity or Pushed by Accountability?" with Sara Champion, September 2011.
"Teachers' Pay Compression: Leaving for Opportunity?" with Anna Mastri and Sara Champion, Sept 2010.
"Connective Capital as Social Capital: The Value of Problem-Solving Networks for Team Players in Firms," with Casey Ichniowski, NBER working paper \#15619, December 2009.
"Insider Econometrics: Empirical Studies of How Management Matters," NBER Working Paper no. 15618, December 2009.
"People Management Practices and Productivity," October I6, 2009
"What do Bosses Do?", Working Paper, September 2009.
"Wage Compression and Teacher Quality," with Anna Mastri and Sara Champion, January 2008.
"Talent Sorting and Skill Complementarity Among Software Engineers," (with Frederik Andersson, Matthew Freedman, John Haltiwanger, Paul Oyer), January 2007.
"Insider Econometrics: A Roadmap to Estimating Models of Organizational Performance" (with Casey Ichniowski), November 2006.
"Connective Capital: Building Problem-Solving Networks Within Firms," (with Casey Ichniowski), revised April 2005.
"How Does IT Really Affect Productivity" Plant-Level Comparisons of Product Innovation, Process Improvement and Worker Skills" (with Ann Bartel and Casey Ichniowski), National Bureau of Economic Research Working Paper No. 11773, November 2005.
"Explorer Firms and Star Workers: Investigating the Link Between Product and Human Resource Strategies," (with Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane), December 2004.
"Technology Shocks and Problem-Solving Capacity," March 2002.
"Productivity in the New Economy," (speech) September 2000.
"Innovative Human Resource Practices and Workplace Efficiency," (speech) July 2000
"Innovative HRM Practices as a Technology Shock: Building "Problem-Solving Capacity" in Production Workers," for presentation at conference on Technology, Regulation, and Employment, sponsored by CEMFI, Madrid, June 1999.
"The Evolution Towards High-Involvement Organizations: Distinguishing Differences in Workers' Networks," (with Jon Gant and Casey Ichniowski), April 1999.
"HRM Practices, Knowledge Capital, and the Changing Access to 'Good' Jobs," June 12, 1998
"Labor Supply, Human Capital Accumulation, and the Changing Distribution of Family Income," 1996.
"Firm-Specific Fixed Effects in Franchise Contracting: Sources and Implications" (with Francine Lafontaine) December 1995.
"Investment in Industry Skills: Implications for Wage Growth and Worker Displacement," December 1993.
"Labor Supply and Taxes: Estimates from a Life-Cycle Model Produce a Pessimistic View of Estimation Possibilities," December 1992.
"Labor Supply and Taxes, 1967-1987" (with Randall Mariger) December 1991.

## REFEREE

American Economic Review, Canadian Journal of Economics. Eastern Economic Journal, Economic Inquiry, Economic Journal, Economics of Education Review, Industrial Relations, International

Economic Review, International Journal of Manpower. Journal of Applied Econometrics. Journal of Economics and Management Strategy, Journal of Financial Economics, Journal of Human Resources, Journal of Labor Economics, Journal of Law and Economics, Journal of Macroeconomics, Journal of Money Credit and Banking, Journal of Political Economy, Journal of Regional Science Management Science, Quarterly Journal of Economics, Review of Economic Studies, Review of Economics and Statistics, Social Science Quarterly, Southern Economic Journal, National Science Foundation

## SERVICE ON COMMITTEES

GSB, Stanford University Committees
University Committee on Faculty Staff Human Resources (2013- present)
Data Center Report (2011-12)
Management-X Committee (2011-12)
Kenya MBA Study Trip (2012)
Academic Coordinating Committee (2010-present)
Faculty Liaison GSB Student Newspaper (2010-2011)
University Committee on Evaluation of Human Resources (2009-2010)
Committee on Faculty Staff Human Resource (2007-2009)
Co-Director, Stanford GSB Summer Institute (2004-present)
Philippines MBA Study Trip (2006)

## Carnegie Mellon University Committees

Budget and Finance Committec (2002-2003)
Chairman, Faculty Senate (1999)
Presidential Review Committee: the Social Sciences (1999)
University First Year Council (1996-1999)
President's Lecture Series Committee, (1998- 1999)
Faculty Affairs Council (1996-1998) (Chair, 1996-1997)
Vice-Chairman, Faculty Senate (1998-99)
Advising Award Committee (Co-chair) (1994-1997)
Advisory Committee for the Undergraduate Teaching Center (1992-1998)
Advisory Board of the Center of the Study of African Americans (1994-1998)
Executive Committee of the Faculty Senate (1996-1997)
Committee on Non-Tenured Appointments (1995-1996)
Senator for Faculty Senate (1994-1995)
University Parking Committee (1994-1995)
University Education Council (with new structure) (1993-1995)
Committee on Faculty Promotion and Tenure Policy (1993-1994)
Graduate Student Luncheon Series (presentation) (1994)
Committee on Flexible Rates for Employees (1994)
Selection Committee for University Award for Academic Advising (1993-1994)
"97 Network" Orientation (1993)
Human Relations Commission (1989-1992)
Committee on Academic Support Services (1991-1992)
H\&SS Dean's Search Committee (1991-1992)
Committee on Non-tenured Appointments (1990-1992)
Ryan Award Committee (1989-1990) (1991-1992)
Teaching Center Orientation presentations (1992)
Advisory Committee on Family and Work (1989-1991)
Retention Committee (1990-1991)
Watson Fellowship Committee (1990-1991)
Flexible Benefits Advisory Group (1989-1990)

Educational Facilities Committee (1989-1991)
Gender Studies Committee, H\&SS (1988-1989)
H\&SS Subcommittee on Internships (1988-1989)
Fulbright Committee (1989-1990)
University Education Council (1987-1990)
Associate Deans Council (1987-1990)
CMU, Graduate School of Industrial Administration, Committees
MBA Curriculum Review Committee (2003)
GSIA Executive Education Faculty Advisory Board (2003)
Faculty MBA Funding Committee (2003)
Dean's Advisory Committee (2002-)
Engineering/MBA Planning Committee (chair), (2002-)
BS/BA Academic Actions Committee (2001-)
IM Policy Committee (1987-)
Strategy Recruiting Committee, (2001-2002)
MBA Curriculum Committee, (2001-2002)
Co-organizer CMU- University of Pittsburgh Applied Micro Workshop (1995-1999)
Economics Review Committee (1998)
Management Game Board (1981-1998, most years)
Dean's Advisory Council (1997)
Subcommittee on Sabbaticals (1996)
GSIA Committee on Women (Chair) (1994-1995)
Subcommittee Head, Tracks in IM (1992-1993)
IM Curriculum Review Committee (1991-1992)
Economics Curriculum Committee (1991-1992)
Advisory Committee on Undergraduate Economics (1990-1992)

## Organization of Conferences or Sessions

Conference Co-Organizer, NBER Personnel and Labor Studies, Summer Institute, July 26-27, 2012
Conference Co-Organizer, NBER Personnel and Labor Studies, Summer Institute, July 28-30, 2011
Conference Co-Organizer, NBER Personnel and Labor Studies, Summer Institute, July 27-30, 2010
Conference Organizer, NBER Personnel and Labor Studies, Summer Institute, July 26-30, 2009
Conference Organizer, NBER Personnel and Labor Studies, Summer Institute, July 30-31, 2008
Conference Organizer, NBER Personnel and Labor Studies, Summer Institute, July 29-30, 2007
Conference Co-Organizer and Sponsor, Conference on Firms and Employers, Ammersee, Germany, September 2006.

Conference Organizer, NBER Summer Institute, Personnel Economics, Cambridge, July 28, 2006.
Conference Co-Organizer, International Differences in the Business Practices and Productivity of Firms, Stanford University, January 19-20, 2005.
Conference Co-Organizer, " $21^{\text {st }}$ Century Human Resource Management Practices and Their Effects on Firms and Workers," University of Illinois, November 11-12 2005.

## Appendix B

| Court Documents |
| :--- |
| Declaration of Steven Burmeister in Support of Defendant's Opposition to Plaintiff's Motion for <br> Class Certification and Exhibits |
| Declaration of Michelle Maupin in Support of Defendant's Opposition to Plaintiff's Motion for <br> Class Certification and Exhibits |
| Declaration of Lori McAdams in Support of Defendant's Opposition to Plaintiff's Motion for <br> Class Certification and Exhibits |
| Declaration of Danny McKell in Support of Opposition to Class Certification and Exhibits |
| Declaration of Donna Morris of Adobe Systems Inc. in Support of Defendant's Opposition to <br> Plaintiff's Motion for Class Certification and Exhibits |
| Declaration of Mason Stubblefield and Exhibits |
| Declaration of Frank Wagner in Support of Defendant's Opposition to Plaintiff's Motion for <br> Class Certification and Exhibits <br> Deposition of Alvaro Gonzalez Alvarez (March 5, 2013) <br> Deposition of Rosemary Arriada-Keiper (March 28, 2013) <br> Deposition of Darrin Baja (March 1, 2013) <br> Deposition of Dan Batali (March 19, 2013) <br> Deposition of Richard Bechtel (March 7, 2013) <br> Deposition of Lori Beck (March 8, 2013) <br> Deposition of Lazlo Bock (March 27, 2013) <br> Deposition of Lynwen Brennan (March 19, 2013) <br> Deposition of Shona Brown (January 20, 2013) <br> Deposition of Steven Burmeister (March 15, 2013) <br> Deposition of Micheline Chau (February 21, 2013) <br> Deposition of Sharon Coker (November 1, 2012) <br> Deposition of Steven Condiotti (March 20, 2013) <br> Deposition of Deborah Conrad (November 21, 2012) <br> Deposition of Tim Cook (March 21, 2013) <br> Deposition of Brian Croll (March 22, 2013) <br> Deposition of Chris Galy (March 20, 2013) <br> Deposition of Kevin Hallock (June 7, 2013) <br> Deposition of Digby Horner (March 1, 2013) <br> Deposition of Renee James (March 22, 2013) <br> Deposition of Bob Mansfield (April 11, 2013) <br> Deposition of Michelle Maupin (February 12, 2013) <br> Deposition of Lori McAdams (August 2, 2012) |


| Deposition of Daniel McKell (March 20, 2013) |
| :--- |
| Deposition of Donna Morris (August 21, 2012) |
| Deposition of Paul Otellini (January 29, 2013) |
| Deposition of Stephanie Sheehy (March 5, 2013) |
| Deposition of Deborah Streeter (April 5, 2013) |
| Deposition of Mason Stubblefield (March 29, 2013) |
| Deposition of Jan Van der Voort (February 5, 2013) |
| Deposition of Frank Wagner (March 7, 2013) |
| Deposition of Sherry Whiteley (March 14, 2013) |
| Exhibit 216, ADOBE 050720 |
| Exhibit 391, 76583DOC003750 |
| Exhibit 398, 76579DOC005956 |
| Exhibit 1158, ADOBE 005661 |
| Exhibit 1159, ADOBE 019278 |
| Exhibit 1160, ADOBE 009652 |
| Exhibit 1304, PIX00044225 |
| Exhibit 1308 |
| Exhibit 1309, PIX00049648 |
| Exhibit 1855 |
| Exhibit 1861, 231APPLE105537 |
| Exhibit 2501, ADOBE 009425 |
| Exhibit 2739, INTUIT 043560 |
| Exhibit 2740, INTUIT 052841 |
| Expert Witness Report of Kevin F. Hallock and Citations (May 10, 2013) |
| Expert Report of Professor Kevin M. Murphy and Exhibits (November 12, 2012) |
| Order Granting in Part, Denying in Part Motion for Class Certification, In re: High-Tech <br> Employee Antitrust Litigation, Case No, 11-CV-02509-LHK, Dkt. 382, Filed 04/05/2013 |
| Plaintiffs' Consolidated Amended Complaint (filed September 13, 2011) |
|  |
| Academic Papers |
| Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane, and Kathryn Shaw, <br> "Reaching for the Stars: Who Pays for Talent in Innovative Industries?", Economic Journal, <br> 2009 <br> James N. Baron \& David M. Kreps, Strategic Hurman Resources (1999) <br> Kevin F. Hallock, Pay: Why People Earn What They Earn And What You Can Do Now To Make <br> More, 87 (Cambridge Univ. Press 2012) <br> Casey Ichniowski and Kathryn Shaw, "Beyond Incentive Pay: Insiders' Estimates of the Value <br> of Complementary Human Resource Management Practices," 17 Journal of Economic <br> Perspectives 155, 163-168 (2003) <br> Casey Ichniowski and Kathryn Shaw, "Insider Econometrics: Empirical Studies of How |


| Management Matters," Handbook of Organizational Economic, editors Robert Gibbons and John <br> Roberts, Princeton University Press, 2013 |
| :--- |
| Edward Lazear and Kathryn Shaw, "Personnel Economics: The Economist's View of Human <br> Resources," Journal of Economic Perspectives, 21 (4), (Fall 2007) |
| Thomas Lemieux, W. Bentley MacLeod, and Daniel Parent, "Performance Pay and Wage <br> Inequality," The Quarterly Journal of Economics (2009) |
| George Milkovich, Jerry Newman \& Barry Gerhard, Compensation, 87 (McGraw |
| Paul Oyer and Kathryn Shaw, "Reward Systems," Human Resource Class Notes: Chapter 4 <br> (Spring 2012) |
| Kathryn Shaw, "Insider Econometrics: A Roadmap with Stops Along the Way," Labour <br> Economics, 2009 |
|  |
| Bates Documents |
| 76586DOC0001050 AEO.xls |
| INTUIT 018387 |
| INTUIT 043603 |
| INTUIT 038812 |
| LUCAS00062271 |
| LUCAS00189964 |
| LUCAS0062293 |
| LUCAS189964 |


#### Abstract

APPENDIX C

The purpose of this appendix is twofold. It is first to provide evidence that the compensation strategy of these Defendants is a pay for performance philosophy. It is second to highlight multiple key human resource management practices that contribute to making it a pay-for-performance environment.

\section*{Adobe} 1. Adobe's compensation policy has always been to pay employees based on their performance and expected future contribution to the company. Declaration of Donna Morris ("Morris Decl.") 9 6. This is confirmed by deposition testimony as well as internal HR documents. Arriada-Keiper Dep. 68:18-21, 88:15-25, 105:10-13, 105:18-22, 176:22-177:2, 184:14-185:6; Deposition of Deborah Streeter ("Streeter Dep.") 115:5-7; Deposition of Digby Horner ("Horner Dep.") 190:7-12; Deposition of Donna Morris ("Morris Dep.") 117:20-118:1; Morris Decl. Exhibits 1-5. Compensation for individual employees were not determined on a company-wide basis, but were determined by managers, who were in the best position to assess each employee's performance. Morris Decl. IT 7, 9; Arriada-Keiper Dep. 73:9-15, 87:18-88:1; Streeter Dep. 56:11-14. Managers were trained and encouraged to differentiate compensation among employees based on their assessments of individual performance. Morris Decl. 99 7-18; Arriada-Keiper Dep. 88;13-25, 89:11-90:4, 105:4-13, 175:24-177:2. 2. Specifically, each year, Adobe conducted an annual review during which every employee was evaluated by his/her manager. Morris Decl. ๆ 10; Streeter Dep. 53:15-54:5. Managers were trained to make salary adjustments for their employees based on these performance evaluations within budgetary confines, while taking into consideration each job code's salary range. Morris Decl. बाT 7-18. The salary ranges did not restrict a manager's discretion, but rather served as guide posts. Arriada-Keiper Dep. 69:2-24. Managers could pay, and did pay, above and below the salary ranges. Arriada-Keiper Dep. 69:12-24. Bonuses and equity grants were also based on individual employee performance. Morris Decl. ITI 23-25;


## Appendix C-1

Arriada-Keiper Dep. 208:23-209:16. Moreover, Adobe trained its managers to pay for performance at the hiring stage. A new hire's compensation lies within the discretion of the hiring manager. Arriada-Keiper Dep. 212:23-213:1. Adobe trained its managers that starting salaries should reflect and differentiate an individual's education and skills in comparison to existing employees. Morris Decl. \| 32 .

## Apple

3. Apple's philosophy is to compensate employees based on their personal job performance and individual contributions to the company. "Apple's general philosophy has been to compensate its employees based on their individual contributions to the company and differences in their job scope, responsibilities, and experience." Declaration of Steven Burmeister ("Burmeister Decl.") ๆ 3 ; Deposition of Tim Cook ("Cook Dep.") 96:10-11 ("Apple's built on a meritocracy. We pay for performance, and so that's number one, you know, by a long shot."); Deposition of Bob Mansfield ("Mansfield Dep.") 31:1-12. Individual managers were responsible for setting compensation for each employee in their groups. Burmeister Decl. ๆ 7; Burmeister Dep. 47:13-19, 53:23-54:1, 165:25-166:5. Managers were instructed to consider a variety of factors in setting compensation, including each employee's individual contribution to the team as well as his or her education, professional experience, responsibilities, and job scope. Burmeister Dep. 46:8-14, , 48:19-23, 137:23-138:12. Presentations prepared for Apple managers in September 2006 and July 2007 confirm that compensation decisions must be individualized and based on employee performance. Ex. 1855.103 at 231APPLE095048 (training managers to "differentiate by performance level"); Ex. 1861.6 at 231APPLE105542 ("[compensation] [c] hanges must be commensurate with contribution and performance").
4. Each manager at Apple conducted annual or $\square$ performance reviews of employees in his or her group. Burmeister Decl. qf 7. Managers received budgets for merit salary increases, stock grants, and bonuses, which they had discretion to allocate among employees in their group. Burmeister Decl. T9 6-7; Burmeister Dep. 58:8-11

1861.6 at 231APPLE105542 ("Three core compensation elements help motivate employees. Base salary: to stay competitive. Bonus: to reward outstanding achievement. Stock: to invest in long-term motivation and retention.").
5. Managers were also provided with recommended salary ranges for each job level, but these guidelines served only as a reference point, and were one of many factors that managers were expected to use to determine individual compensation. Burmeister Dep, 46:347:7, 55;13-19, 57:11-20 ('Salaries are awarded based on the individual's performance. . . Our salary ranges are reference points. They're - they're not hard minimums or hard maximums. Those are purely a reference point. But salaries are truly determined based on an individual one-by-one assessment of the individual."). Managers could and did set individual base salaries above or below the maximum and minimum salary guidelines for an employee's job level, based on that employee's yearly performance and contributions to the group. Burmeister Dep. 57:1120, 69:1-13, 136:20-138:11.
6. As a result, total compensation varied significantly at Apple, even among employees within the same job level. As a manager states, "if you contribute a lot, you'll get paid well and you'll be compensated for your contributions. If you don't contribute as much, you won't get paid as much as someone who contributes a lot. So it's really about merit, and if you are a major contributor, you'll do very, very well at Apple." Deposition of Brian Croll ("Croll Dep.") 190:20-191:2.

## Google

7. Google pays its employees

Declaration of Frank Wagner ("Wagner Decl.") If 4-5; Wagner Decl. Exhibits A \& B (Google compensation presentations dated 2007 and 2009); Deposition of Frank Wagner ("Wagner Dep.") 28:7-16; Deposition of Laszlo Bock ("Bock Dep.") 48:25-49:4; Deposition of Shona Brown ("Brown Dep.") 67:24-68:4.


Wagner Dep. 26:22-25, 27:1-6, 29:15-21;
Brown Dep. 76:5-14; Wagner Decl 16.

11. Compensation at Google has always included equity and bonuses, in addition to


Appendix C-4

12. Compensation at Intel is based on the individual performance of each employee, Deposition of Deborah Conrad ("Conrad Dep.") 203:7-8. ("The number one criterion for setting compensation is performance and performance to grade, performance versus peers, and performance versus the market"). Deposition of Renee James ("James Dep.") 244:21-245:7. Meritocracy is one of the five key tenets of Intel's total compensation philosophy, and is therefore a high priority for Intel. Deposition of Daniel McKell ("McKell Dep.") 190:1-3,
13.


Appendix C-5

17. Deposition testimony from Intuit witnesses demonstrate Intuit's pay for performance philosophy. As explained by Intuit employee Mason Stubblefield, "[w]e train managers to focus on performance and mak[e] pay decisions based on performance." Deposition of Mason Stubblefield ("Stubblefield Dep.") at 109:20-22. Further, "[w]e don't have any training that focuses on paying anybody the same. All of our focus on training on compensation is paying for performance, and appropriate pay for the person, the skills they bring, and the contribution that they bring." Stubblefield Dep. 111:1-6. Moreover, Intuit employee Sherry Whiteley explained that Intuit is a "pay-for-performance company" which means that managers are taught that Intuit's "highest-rated, highest retention people, when you look at their total

Appendix C-6
compensation, we need to make sure we are rewarding the right people." Deposition of Sherry Whiteley ("Whiteley Dep.") at 36:14-19. In this vein, managers are specifically trained to differentiate among employees. Whiteley Dep 111:8-12,
18. Intuit does not "seek to achieve pay equity or parity among employees" but rather "managers are instructed to set individual salaries based on each employee's own circumstances." Stubblefield Decl. ๆ 10, Ex. 19 to Brown Decl. in Support of Defendants' Opp. to Plaintiffs' Mtn for Class Cert., Dkt. No. 215. Intuit trains its managers to differentiate. Exhibit 2739.5 (" $[\mathrm{U}]$ nderstanding the fundamentals of total rewards will help you, as a leader, differentiate rewards and recognition . . . linking pay decisions to performance outcomes and business strategy.").
19. Employees' pay is reviewed on an annual basis, and increases may be awarded based on performance. Id. at 2739.9. See also Hallock 『164, Exhibit 2740.2 ("Differentiating Performance for Results . . . Differentiating Pay Decisions for Performance"); 2740.23 ("Differentiate AND Meet the Budget").
20. Moreover, a person's role at the company is not determinative of their salary. Whiteley Dep. 38:24-39:11 ("Because we're in so many different business units, [key or important skills] for one business unit in a point in time it might be strategy leaders, and in another business unit that's facing big marketing challenges, it could be marketing. But it really is about performance, because we have so many different jobs and roles inside the company."). Intuit does not have salary ranges. Stubblefield, 131:21

## Lucasfilm

21. Lucasfilm's overall compensation philosophy is to pay for performance, a "practice whereby pay is based on differentiated performance at the individual and business unit level." LUCAS00062271 (Pay for Performance Toolkit for Managers); see also Deposition of Steve Condiotti ("Condiotti Dep.") 163:25-164:4.
22. Performance is an important factor that determines an individual employee's compensation at Lucasfilm. Deposition of Micheline Chau ("Chau Dep.") 119:6-15; Deposition Appendix C-7
of Sharon Coker ("Coker Dep.") 253:23-254;1, 261:16-20; Deposition of Michelle Maupin ("Maupin Dep.") 39:5-11; 95:6-7; see also Deposition of Jan Van der Voort ("Van der Voort Dep.") 19:17-18 (two components of salary determination are performance and competitive market data). For example, Lucasfilm recruiter Lori Beck testified that all of her salary increases were attributed to good performance and she has never been told that her salary increased for any reason other than performance. Deposition of Lori Beck ("Beck Dep.") 31:1-32:8.
23. Lucasfilm adjusts employee compensation annually based on performance. An individual's merit (i.e. annual salary) increase and bonus is performance-based and determined by the employee's manager. The Lucasfilm Board of Directors provides managers with overall compensation budgets as well as general guidelines for merit increases and bonuses, which depend on performance ratings (e.g. 6\% merit increase for employees with a "distinguished" rating), although managers have discretion to deviate from the Board's guidelines as long as they stay within their overall budget. Chau Dep. 138:7-140:20; see also LUCAS189964 at 69 (compensation records showing that the bonuses for certain employees were $140 \%, 175 \%$, $160 \%$, and $145 \%$ of targets, also noting that one employee was not eligible for a merit increase or bonus "due to Needs Improvement rating"). It means that "[h]igher performing employees receive larger pay increases than lower performing employees." "Each individual is treated differently" in terms of compensation "depending on how [ ] they perform." Deposition of Lynwen Brennan ("Brennan Dep,") 166:20-21.

## Pixar

24. Pixar believes in a philosophy of pay for performance in its compensation practices. Pixar determines base salary raises based on specific, individual recommendations from employees' department managers. McAdams Decl. 『| 21.
25. Salary increases in particular reflect the contribution of the employee. Pixar generally sets the pool for base salary raises at an amount equal to approximately $\quad$ percent of total salary, but individual managers are given wide discretion to distribute their salary pool among the employees. The determination of each employee's salary increase generally reflects

## Appendix C-8

the employee's performance, skill and contributions to Pixar. Deposition of Lori McAdams ("McAdams Dep.") 31:2-17; Deposition of Stephanie Sheehy ("Sheehy Dep.") 169:22-170:3 (noting that the "people who were struggling [would probably not receive a percent increase]").
26. For example, Dana Batali, Manager of Pixar's RenderMan Team, "ascribe[s] a percentage to each of the members of [his] team according to their performance of the previous year." Deposition of Dana Batali ("Batali Dep.") 43:12-17. Mr. Batali "felt [he] had the discretion [to award more than raises], and practiced that discretion regularly." Id. at 46:9-47:11.


#### Abstract

APPENDIX D

The purpose of this appendix is to clarify the definition of internal equity as used by each Defendant and to provide examples of its application.


## Adobe

1. At Adobe, the concept of internal equity refers to the act of comparing an individual employee's skills and performance with those of other employees. See, e.g., ArriadaKeiper Dep. 122:9-15; Morris Dep. 148:13-149:8 ("Internal equity is just parity between candidates and employees ... [it] is about looking at skills and capabilities which are similar," among other factors). Adobe encourages its managers to consider internal equity as one factor when making compensation decisions to ensure that pay is differentiated based on differences in performance and contribution. Arriada-Keiper Dep. 123:19-25; 250:25-251:11; Streeter Dep. $90: 1-15 ; 175: 8-13$. Thus, the concept of internal equity is applied on an individual basis to differentiate, not at a firm-wide level to equalize compensation. Morris Decl. 1944.
2. The evidence cited by Plaintiffs and Dr. Hallock demonstrates the ways managers considered internal equity when making compensation decisions for individual employees. For example, Dr. Hallock cites to the testimony of Adobe's Senior Vice President of Engineering, Digby Horner, to support his claim that Adobe cared about internal equity. Hallock $\mathbb{1} 113$. But the testimony and evidence shows the concept was applied at the manager level by comparing 10 employees doing similar work (same job code) in deciding the compensation of a specific star employee. Internal equity was not used as a means of adjusting the pay of a group of employees. Horner Dep. 190:15-201:17 ("I want to understand what his performance is relative to that peer community so that I can really, in a data-driven fashion, decide is this guy really a rock star and are we willing to make an exception here because this is an infrequent occurrence . . . it's more about his performance and being able to say, well, what has he done in comparison to some of these other folks, particularly the one on the list here who is a high.").
3. Dr. Hallock also relies on several emails from Donna Morris that contain the phrase internal equity. Similar to Mr. Horner, Ms. Morris considered internal equity when recommending compensation packages for specific individual employees, not as a basis of automatically adjusting the compensation of a group of employees. Exhibit 2501, ADOBE_009425 (recommending reduction to base salary increase from $9 \%$ to $5 \%$ and reduction to base salary increase from $9 \%$ to $7 \%$ to align with internal equity); Exhibit 1158, ADOBE_005661 (recommending compensation offer for a potential new hire, $\square$ by comparing him with an existing employee, $\square$ ); Exhibit 1159 , ADOBE_019278 (recommending promotional compensation packages for $\square$ and based on considerations of the market and internal equity); Exhibit 1160, ADOBE_009652 (recommending compensation offer for $\square$ by, among other things, considering the compensation packages of existing employees). See also Arriada-Keiper Dep. 122:14-123:2 (considering internal equity when deciding the compensation offer for a new hire by comparing expected performance of the new hire with those of existing employees); Exhibit 216 at ADOBE_050724 (HR document stating internal equity should always be considered when making a counter offer, which is "to be handled on a case by case basis").

## Apple

4. At Apple, internal equity is a measure of how individual employees within a particular group are compensated relative to others who share their performance levels and contribution. Baja Dep. 44:2-16; Burmeister Dep. 63:17-21. ("Internal equity means, to me, that what you're looking at, if you're looking at compensation, that it's fair based on the individual's contribution relative to the other employees in your group, or across your organization, whatever your scope of management is.")
5. Internal equity is but one of multiple factors that may figure into the decisions of managers in determining the pay of their reports. Burmeister Dep. 64:13-17 ("At Apple, each manager has the latitude to determine what is appropriate to pay an individual . . . for promotional increase. Internal equity may or may not factor into their ultimate decision.") Apple Appendix D-2
was more concerned with rewarding individual performance than making comparisons across employees. Burmeister Dep. 165:25-166:5 ("I would say that Apple, we don't try to control consistency, that we look at the individual's merit, scope of responsibility, achievements, background, and they're always individual decisions." ${ }^{\text {" }}$.
6. The evidence Dr. Hallock cites confirms Apple recruiters were aware of and sometimes considered - as one of many factors - the relative pay of employees with similar experience and job functions when making compensation determinations for new recruits. See Hallock ๆ120 ("when making an offer to a new hire one of the factors to consider in compensation is internal equity" (citing Deposition of Alvaro "David" Gonzalo Alvarez ("Alvarez Dep.") 30)), 1122 (noting that looking at what other people were making is "one thing [Apple] would do" when hiring someone onto a team (citing Baja Dep. 43-44)), ๆ 124 (" 'we'd want to know why we were paying somebody more coming in than somebody who is, you know, their peer that's performing at a good level. And there have been circumstances that we've done that, but there's been business reasons for it." (quoting Deposition of Richard Bechtel ("Bechtel Dep.") 44)). When asked if offering higher pay to new hires might create pressure to pay current employees at the same level, Mr. Bechtel responded, "No. No, I wouldn't say that." Bechtel Dep. 45:3-15.
7. Many factors other than internal equity are considered in making individual pay decisions. As Apple recruiting manager David Alvarez noted, "Every situation's very different. Every manager has different methods that they apply in terms of when they bring on people to their groups." Alvarez Dep. 208:21-210:25.
8. Likewise, former Apple technical recruiter Darrin Baja testified that the compensation of employees in the group for which he was hiring was "one thing" he would consider when making an offer to a candidate. Hallock ๆ 122 (citing Baja Dep. 44:17-24). Mr Baja continued, however, that a candidate's offer would also be determined based on her existing compensation as well as "what this individual could bring to the company as a technical contributor." Baja Dep. 44:25-45:4.

## Google

9. Google uses the term internal equity to mean that people of like contributions should be paid at similar compensation levels. Frank Wagner, Google's Director of Compensation, states that internal equity means "Google employees should receive equitable compensation treatment based on their performance, and that therefore there should be variation in compensation for each employee that corresponds to each employee's performance and contribution to the company relative to other employees." Wagner Decl. व| 12.
10. However, internal equity is a little used term at Google. Bock Dep. 47:25-48:1. "In the compensation field, people talk about internal equity, which generally means peopleyou know, pay should be fair across people.

Bock Dep. 48:2-9.


48:25-49:4. He goes on to say, "You know, fairness is commonly taken to mean, you know, well, everything's equally distributed . . . Within Google


Appendix D-4

12. At Intel, internal equity is used to compare people of similar skill levels and as a check on pay for those individuals. James Dep. 242:20-243:14. It is an extension of the concept of pay for performance and is " $[a]$ set of criteria that we use to in aggregate check between different people in the same grade band across a variety of different metrics, performance, pay, equity." Id. 242:20-243:2.
13. Internal equity is but one of many factors that are evaluated when making pay decisions. When asked "Did you think maintaining at some general level principles of internal equity across the workforce at Intel was an important goal?" the response was "I think internal equity is aspirational. I think it is a guideline that helps you look at, you know, apples and oranges data and give you a sense of what's going on, but we focus on pay for performance." James Dep. 244:21-245:3. Managers first and foremost look individually at each employee's compensation based on performance, and take into account how similarly situated employees are being compensated based on their grade level, performance in that grade level, their skill set, and other factors. Conrad Dep. 203:8-10; McKell Dep. 123:2-124:1, 188:1-4.
14. Deborah Conrad, a Vice President and Intel's Chief Marketing Officer, testified that she has given hundreds of employees raises over time, but that giving one person in her group a raise has not resulted in her raising the compensation for all the other employees in that group. Conrad Dep. 249:19-250:22.
15.


Whiteley Dep. 103:22-104:3. When Stubblefield was asked to define pay equity, he stated that "[i]t's looking for that - I think it's looking for that relationship between pay and performance in that your highest performing employee should likely be one of your highest paid employees." Stubblefield Dep. 117:3-9; see also Deposition of Chris Galy ("Galy Dep.") 202:17-19. Stubblefield further testified, "All our focus in training on
compensation is paying for performance... We specifically train not to focus on internal equity in paying people the same." Stubblefield Dep 111: 2-7.

19. The overwhelming majority of documents after 2005 make it clear that Intuit had transitioned away from the traditional concept of internal equity. In a traditional workplace such as a union environment - internal equity would mean equal pay for all employees. In a high performance workplace that characterizes the high-tech world, pay equity means paying employees commensurate with their contributions. Intuit documents reflect this transition in the meaning of pay equity. Intuit documents contain the oft-repeated phrase "'Internal Equity' is not an objective since talent and markets are not equal." See, e.g., INTUIT_043603 (2006), INTUIT_038812 (2007), INTUIT_018387 (2009). These documents explain that instead of focusing on internal equity, the focus is on a pay for performance philosophy, and that there should be "Differentiating Performance for Results . . . Differentiating Pay Decisions for Performance." INTUIT_038812 at 1,4 .

## Lucasfilm

20. At Lucasfilm, internal equity is an issue in evaluating employees relative to their peers. This definition of equity is evident in the many quotes the Dr. Hallock uses in defining equity. He states that Senior Manager of Compensation, Michelle Maupin was asked "Can you explain the significance of peer relationships in setting compensation at Lucasfilm?" she

[^46]answered "The significance is to consider individual employees' pay within a similar job and pay range using the same type of skill sets to appropriately align those employees relative to their peers and to market." Hallock $\mathbb{1} 167$.
21. As evident from this past quote, equity is but one factor relevant in setting pay. Employees are compensated based on job level, ${ }^{41}$ skill set, and performance - not on what other employees are making. Coker Dep. 246:6-14; Maupin Dep. 166:24-167:6.
22. The notion of internal equity does not affect pay policies instituted by Lucasfilm. These policies reflect many other factors. Plaintiffs' theory that a compensation increase for one employee would put upward pressure on the entire pay structure and raise salaries for every employee is contrary to the facts regarding compensation at Lucasfilm for several reasons.
23. Since compensation was determined on an individual-by-individual basis and was heavily related to performance, giving a raise to one individual would not affect the overall pay structure or even the pay range to which the individual's job was assigned. Jan Van der Voort, Lucasfilm's Chief Administrative officer, testified that Lucasfilm's salary structure provides a range of salary for a particular pay grade and "what you pay an individual does not have any impact on" the salary range for that job. Van der Voort Dep. 204:22-24. Lucasfilm's pay structure had wide ranges within salary grades (generally 60\%) and then multiple levels of grade within a job family. Michelle Maupin, Lucasfilm's compensation manager testified that it would be "extremely rare" that internal equity would "require adjusting the pay for higher level employees in the same job family where the pay of the lowest employee in the job family increased" because "in a job family you have typically three to four levels and the lowest level would be three to four levels below, obviously, the senior level." Maupin Dep. 186:13-21. And, conversely, adjustments to Lucasfilm's overall salary structure did not have a direct effect on

[^47]individual compensation because the pay structure and individual compensation moved independently of one another. Id. 94:24-95:8.

## Pixar

24. Dr. Hallock does not cite any Pixar documents in which the phrase internal equity is used, in light of this fact, Dr. Hallock points to evidence that Pixar makes peer-to-peer comparisons. Dr. Hallock cites the deposition testimony of Pixar's Vice President of Human Resources, Lori McAdams. She was asked how Pixar determines the base salary of a new salaried employee and answered: "We look at their experience and education and how we evaluate them against existing employees and-and make them an offer relative to their experience and-and our existing talent." McAdams Dep. 32:12-15. While McAdams' testimony indicates that Pixar takes other employees' salaries, skills and performance into account in setting compensation, the cited testimony as well as other Pixar evidence demonstrates that Pixar is guided much more by an individualized assessment of a particular employee's specific experience, performance and skill level. Id. 31:10-17 ("With an existing employee we evaluate performance, ....contributions to the studio, [and] the number of projects [they've worked on] . . . And then we look at where they are in the range relative to those things and determine whether they're in the right place . . . given their performance."); id. 40:25-41;7; Sheehy Dep. 143:20-24 (noting that Pixar analyzes how employees "are performing all along the spectrum from rock star to struggling"); id. 169:22-170:3 (noting that, while most employees receive the standard $\square$ percent raise, "people who were struggling [would not receive a percent increase]"); Batali Dep. Tr. 43:12-17 ("I ascribe a percentage to each of the members of my team according to their performance of the previous year."). See also Ex. 1304 (PIX00044225-44229) (a contemporaneous salary increase spreadsheet demonstrating that, in 2006, base salary increases among employees of one Pixar group varied significantly, from as high as $25 \%$ to as low as 0\%).
25. Second, Dr. Hallock cites an email written by Pixar's Vice President of Software, Howard Look. In the email, Look describes a proposed "leveling matrix" he has developed "to Appendix D-9
give [Pixar] a consistent framework for evaluating the expected contribution of [its] software engineers. It also makes it much easier to compare ourselves against the Radford survey." Ex. 1309 (PIX00049648). Look continues, "[w]e want to send a clear message to these engineers that we value them at least as much as some new hires who are seeing much more competitive offers from other companies." Id. Contrary to Hallock's claim that the email describes issues related to internal equity, the email underscores that Pixar's compensation decisions are guided by benchmarking survey comparisons and based on individual employee contributions.

## Appendix E-1

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: |
| ADOBE | 4 | 4 | 5 | 6 |
| ADOBE | 15 | 31. | 23 | 49 |
| ADOBE | 1 | 7 | 1 | 7 |
| ADOBE | 16 | 28 | 30 | 69 |
| ADOBE | 14 | 20 | 25 | 37 |
| ADOBE | 12 | 16 | 16 | 23 |
| ADOBE | 1 | 3 | 1 | 3 |
| ADOBE | 3 | 2 | 3 | 3 |
| ADOBE | 258 | 477 | 546 | 1.035 |
| ADOBE | 238 | 451 | 534 | 1,036 |
| ADOBE | 1 | 1 | 1 | 1 |
| ADOBE | 2 | 2 | 2 | 2 |
| ADOBE | 3 | 3 | 3 | $4$ |
| ADOBE | 1 | 1 | 2 | 2 |
| ADOBE | 4 | 17 | 8 | 27 |
| ADOBE | 3 | 10 | 4 | 15 |
| ADOBE | $9$ | 11 | 12 | 14 |
| ADOBE | $17$ | 22 | 27 | $34$ |
| ADOBE | $13$ | 14 | 17 | 20 |
| ADOBE | 3 | 2 | 3 | 3 |
| ADOBE | $6$ | 5 | 10 | 15 |
| ADOBE | $10$ | 19 | 20 | $43$ |
| ADOBE | $10$ | 9 | 19 | 21 |
| ADOBE | 33 | 61 | 94 | 159 |
| ADOBE | 3 | 3 | 5 | 5 |
| ADOBE |  | 1 |  | 2 |
| ADOBE | $3$ | 5 | 4 | $6$ |
| ADOBE | $1$ | 1 | 1 | 1 |
| ADOBE | 4 | 3 | 12 | 12 |
| ADOBE | $2$ | 1 | 2 | 2 |
| ADOBE | $22$ | 32 | 44 | 70 |
| ADOBE | $12$ | 12 | 14 | 17 |
| ADOBE | $2$ | 1 | 2 | 2 |
| ADOBE | 1 | 1 | 1 | 1 |
| ADOBE | 2 | 3 | 3 | 5 |
| ADOBE | 1 | 4 | 2 | 5 |
| ADOBE |  | 1 |  | 3 |
| ADOBE | $28$ | 48 | 40 | 81 |
| ADOBE | $58$ | 106 | 100 | $204$ |
| ADOBE | $65$ | 138 | 106 | 288 |
| ADOBE | $40$ | 46 | 60 | 84 |
| ADOBE | $3$ | 2 | 4 | 4 |
| ADOBE | $13$ | 18 | 20 | 40 |
| ADOBE | $4$ | 18 | 8 | 39 |
| ADOBE | 18 | 18 | 28 | 34 |
| ADOBE | $10$ | 13 | 13 | 19 |
| ADOBE | 8 | 10 | 13 | $18$ |
| ADOBE | 1 | 1 | 1 | $1$ |
| ADOBE | 2 | 3 | 2 | 3 |
| ADOBE | - 75 | 79 | 143 | 185 |
| ADOBE | $48$ | 44 | 81 | 101 |
| ADOBE | (1) 1 | 1 | 2 | 3 |
| ADOBE | \| 11 | 19 | 13 | 22 |
| ADOBE | ( 4 | 6 | 5 | 7 |
| ADOBE | ( 3 | 3 | 4 | 4 |
| ADOBE | 年 37 | 55 | 77 | 115 |
| ADOBE | 34 | 42 | 59 | 84 |
| ADOBE | 年 26 | 38 | 47 | 75 |
| ADOBE | \| 20 | 24 | 32 | 44 |
| ADOBE | ( 59 | 74 | 94 | 130 |
| ADOBE | 93 | 121 | 196 | 292 |
| ADOBE | 88 | 109 | 189 | 312 |
| ADOBE | 25 | 29 | 43 | 50 |
| ADOBE | ( 53 | 56 | 97 | 119 |
| ADOBE | - 43 | 53 | 98 55 | 139 |
| ADOBE | ( 27 | 20 | 55 | 59 3 |
| ADOBE | 3 | 3 7 | 6 | 12 |
| ADOBE | 4 | 5 | 5. | 9 |
| ADOBE | 6 | 14 | 8 | 18 |
| ADOBE | 5 | 5 | 5 | 5 |
| ADOBE | 7 | 11 | 7 | 11 |
| ADOBE | 1 | 1 | 1 | 1 |
| ADOBE | 17 | 9 | 8 | 16 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009


Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009


Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| APPLE |  | 2 | 3 | 4 | 6 |
| APPLE |  | 2 | 1 | 4 | 4 |
| APPLE |  | 4 | 1 | 2 | 2 |
| APPLE |  | 7 | 10 | 11 | 16 |
| APPLE |  | 6 | 10 | 12 | 24 |
| APPLE |  | 7 | 7 | 14 | 21 |
| APPLE |  | 2 | 2 | 4 | 4 |
| APPLE |  | 13 | 17 | 15 | 19 |
| APPLE |  | 20 | 43 | 29 | 51 |
| APPLE |  | 22 | 54 | 37 | 76 |
| APPLE |  | 18 | 31 | 29 | 40 |
| APPLE |  | 3 | 4 | 3 | 4 |
| APPLE |  | 2 | 1 | 2 | 2 |
| APPLE |  | 4 | 8 | 7 | 10 |
| APPLE |  | 12 | 10 | 15 | 17 |
| APPLE |  | 4 | 3 | 7 | 7 |
| APPLE |  | 2 | 1 | 2 | 2 |
| APPLE |  | 6 | 12 | 21 | 40 |
| APPLE |  | 6 | 3 | 10 | 10 |
| APPLE |  | 3 | 2 | 4 | 4 |
| APPLE |  | 2 | 7 | 5 | 15 |
| APPLE |  | 6 | 15 | 12 | 33 |
| APPLE |  | 5 | 12 | 11 | 29 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 2 | 2 | 4 | 4 |
| APPLE |  | 1 | 1 | 3. | 3 |
| APPLE |  | 4 | 6 | 7 | 7 |
| APPLE |  | 33 | 39 | 54 | 78 |
| APPLE |  | 51 | 79 | 97 | 170 |
| APPLE |  | 59 | 92 | 126 | 216 |
| APPLE |  | 40 | 54 | 93 | 149 |
| APPLE |  | 7 | 6 | 11 | 11 |
| APPLE |  | 7 | 5 | 11 | 16 |
| APPLE |  | 13 | 24 | 22 | 36 |
| APPLE |  | 28 | 36 | 54 | 90 |
| APPLE |  | 10 | 9 | 16 | 18 |
| APPLE |  | 2 | 2 | 2 | 2 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 13 | 17 | 24 | 34 |
| APPLE |  | 3 | 2 | 3 | 3 |
| APPLE |  | 14 | 15 | 17 | 18 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 4 | 4 | 4 | 4 |
| APPLE |  | 181 | 331 | 407 | 775 |
| APPLE |  | 81 | 119 | 146 | 231 |
| APPLE |  | 9 | 10 | 14 | 17 |
| APPLE |  | 2 | 1 | 2 | 2 |
| APPLE |  | 7 | 10 | 14 | 20 |
| APPLE |  | 6 | 5 | 9 | 9 |
| APPLE |  | 1 | 1 | 2 | 2 |
| APPLE |  | 2 | 1 | 5 | 5 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 3 | 2 | 5 | 5 |
| APPLE |  | 2 | 2 | 4 | 4 |
| APPLE |  | 2 | 1 | 3 | 3 |
| APPLE |  | 1 | 1 | 2 | 2 |
| APPLE |  | 14 | 15 | 22 | 24 |
| APPLE |  | 24 | 24 | 37 | 53 |
| APPLE |  | 11 | 10 9 | 21 | 25 27 |
| APPLE APPLE |  | 13 20 | 9 39 | 26 40 | 27 61 |
| APPLE |  | 38 | 52 | 70 | 101 |
| APPLE |  | 39 | 45 | 79 | 101 |
| APPLE |  | 6 | 4. | 9 | 10 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 2 | 2 | 4 | 4 |
| APPLE |  | 57 | 65 | 96 | 116 |
| APPLE |  | 135 | 216 | 269 | 438 |
| APPLE |  | 13 | 18 | 14 | 19 |
| APPLE |  | 3 | 3 | 3 | 3 |
| APPLE |  | 8 | 9 | 8. | 9 |
| APPLE |  | 16 | 22 | 16 | 22 |
| APPLE |  | 5 | 4 | 7 | 7 |
| APPLE |  | 16 | 28 | 26 | 57 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009


Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title ${ }^{\text {a }}$ Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: |
| APPLE | 2 | 2 | 4 | 4 |
| APPLE | 1 | 1 | 2 | 2 |
| APPLE | 2 | 1 | 2 | 2 |
| APPLE | 7 | 8 | 11 | 11 |
| APPLE | 31 | 51 | 54 | 124 |
| APPLE | 27 | 61 | 61 | 133 |
| APPLE | 18 | 24 | 40 | 56 |
| APPLE | 2 | 2 | 2 | 2 |
| APPLE | 1 | 1 | 3 | 3 |
| APPLE | 16 | 21 | 29 | 38 |
| APPLE | 42 | 81 | 93 | 166 |
| APPLE | 25 | 34 | 44 | 55 |
| APPLE | 1 | 1 | 1 | 1 |
| APPLE | 3 | 8 | ${ }_{6}^{6}$ | 12 |
| APPLE | 7 | 32 | 15 | 58 |
| APPLE | 10 | 18 | 18 | 34 |
| APPLE | 1 | 1 | 3 | 3 |
| APPLE | 1 | $1$ | 3 | 3 |
| APPLE | 1 | 1 | 1 | 1 |
| APPLE | 3 | 2 | 5 | 5 |
| APPLE | - 4 | 2 | 5 | 5 |
| APPLE | $19$ | 24 | 33 | 46 |
| APPLE | 21 | 27 | 41 | 58 |
| APPLE | 29 | 44 | 53 | 97 |
| APPLE | 15 | 19 | 35 | 45 |
| APPLE | 1 | 2 | 3 | 4 |
| APPLE | 2 | 2 | 3. | 3 |
| APPLE | 8 | 9 | 14 | 15 |
| APPLE | 9 | 12 | 15 | 20 |
| APPLE | 4 | $8$ | 10 | 21 |
| APPLE | 2 | 2 | 3 | 6 |
| APPLE | 6 | 5 | 8 | 10 |
| APPLE | 10 | 13 | 20 | 38 |
| APPLE | $13$ | 30 | 26 | 76 |
| APPLE | $6$ | 11 | 9 | 18 |
| APPLE | 1 | 1 | 2 | 2 |
| APPLE | 1 | 1 | 2 | 2 |
| APPLE | $2$ | $1$ | 3 | 3 |
| APPLE | 2 | 3 | 4 | 5 |
| APPLE | 2 | 4 | 5 | 9 |
| APPLE | 2 | $\frac{2}{5}$ | 4 | 4 |
| APPLE | 2 | 5 | 4. | 7 |
| APPLE. | 4 | 11 | 9 | 27 |
| APPLE | 1 | 1 | 2 | 2 |
| APPLE | 1 | 3 | 2 | 6 |
| APPLE | $2$ | $4$ | 6 | 11 |
| APPLE | 1. | 3 | 3. | 5 |
| APPLE | 1 | ${ }^{6}$ | 5 | 13 |
| APPLE | $1$ | 10 | 5 | 26 |
| APPLE | $1$ | $4$ | $5$ | $14$ |
| APPLE | 4 | 3 | 6 | $6$ |
| APPLE | 15 | 25 | 30 | 40 |
| APPLE | 35 | 36 | 65 | 143 |
| APPLE | $42$ | $87$ | $86$ | $161$ |
| APPLE | $26$ | $40$ | $41$ | $60$ |
| APPLE APPLE | 3 | 3 9 | 4 9 | 4 17 |
| APPLE | 4 | 9 | 9 | 17 |
| APPLE APPLE | ( ${ }^{\text {a }}$ | 17 15 | 17 21 | 30 32 |
| APPLE | 7 | 12 | 17 | 26 |
| APPLE | 2 | 2 | 4 | 4 |
| APPLE | $5$ | $4$ | 13 | 13 |
| APPLE | 2 | 1 | 3 | $3$ |
| APPLE | $1$ | $1$ | 1 | $1$ |
| APPLE APPIE | 6 | 4 | 9 | 11 |
| APPLE APPLE | 2 | 1 | 4 4 | 4 |
| APPLE | 3 | 8 | 3. | 10 |
| APPLE | 14. | 12 | 25 | 28 |
| APPLE | 23 | 36 | 49 | 81 |
| APPLE | 4 | 6 | 7 | 12 |
| APPLE | 5 | $4$ | $7$ | $7$ |
| APPLE APPLE | 5 15 | ${ }_{17}^{3}$ | 6 | 6 36 |
| APPLE |  |  |  | . |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| APPLE |  | 6 | 6 | 9 | 11 |
| APPLE |  | 2 | 2 | 2 | 2 |
| APPLE |  | 5 | 2 | 5 | 5 |
| APPLE |  | 15 | 17 | 27 | 43 |
| APPLE |  | 28 | 51 | 49 | 97 |
| APPLE |  | 9 | 7 | 15 | 22 |
| APPLE |  | 2 | 2 | 2 | 2 |
| APPLE |  | 2 | 3 | 2 | 4 |
| APPLE |  | 9 | 9 | 12 | 14 |
| APPLE |  | 7 | 8 | 10 | 12 |
| APPLE |  | 2 | 1 | 2 | 2 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 2 | 2 | 2 | 2 |
| APPLE |  | 4 | 4 | 5. | 7 |
| APPLE |  | 5 | 4 | 7 | 7 |
| APPLE |  | 1 | 1 | 3 | 3 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 2 | 2 | 10 | 10 |
| APPLE |  | 4 | 8 | 9 | 16 |
| APPLE |  | 8 | 16 | 20 | 41 |
| APPLE |  | 10 | 14 | 22 | 35 |
| APPLE |  | 2 | 2 | 4 | 4 |
| APPLE |  | 3 | 4 | 6 | 7 |
| APPLE |  | 1 | 2 | 5. | 10 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 3 | 5 | 5. | 7 |
| APPLE |  | 2 | 4 | 4 | 7 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 8 | 7 | 10 | 10 |
| APPLE |  | 10 | 10 | 15 | 19 |
| APPLE |  | 12 | 12 | 17 | 18 |
| APPLE |  | 8 | 6 | 11 | 13 |
| APPLE |  | 5 | 5 | 5 | 5 |
| APPLE |  | 16 | 17 | 22 | 22 |
| APPLE |  | 62 | 91 | 101 | 135 |
| APPLE |  | 132 | 239 | 279 | 529 |
| APPLE |  | 141 | 325 | 320 | 809 |
| APPLE |  | 90 | 113 | 186 | 286 |
| APPLE |  | 14 | 9 | 34 | 36 |
| APPLE |  | 12 | 9 | 20 | 21 |
| APPLE |  | 29 | 34 | 50 | 63 |
| APPLE |  | 57 | 83 | 118 | 199 |
| APPLE |  | 64 | 115 | 148 | 309 |
| APPLE |  | 41 | 64 | 94 | 176 |
| APPLE |  | 3 | 8 | 10 | 17 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 1. | 1 | 1 | 1 |
| APPLE |  | 21 | 30 | 37 | 42 |
| APPLE |  | 86 | 242 | 228 | 572 |
| APPLE |  | 106 | 314 | 280 | 761 |
| APPLE |  | 79 | 130 | 182 | 317 |
| APPLE |  | 11 | 16 | 19 | 27 |
| APPLE |  | 1 | 2 | 2 | 4 |
| APPLE |  | 2 | 6 | 2 | 11 |
| APPPLE |  | 1 | 3 | 1 | 3 2 |
| APPLE |  | 10 | 6 | 11 | 15 |
| APPLE |  | 5 | 4 | 6 | 6 |
| APPLE |  | 14 | 13 | 21 | 30 |
| APPLE |  | 2 | 1 | 3 | 3 |
| APPLE |  | 2 | 2 | 2 | 2 |
| APPLE |  | 1 | 1 | 2 | 2 |
| APPLE |  | 3 | ${ }^{6}$ | 6 | 10 |
| APPLE |  | 6 | 14 20 | 26 26 | 42 73 |
| APPLE |  | 2 | 1 | 4 | 4 |
| APPLE |  | 3 | 3 | 3. | 3 |
| APPLE |  | 60 | 76 | 77 | 87 |
| APPLE |  | 192 | 409 | 389 | $729$ |
| APPLE |  | 272 | 694 | 684 | 1,643 |
| APPLE |  | 243 | 575 | 582 | 1,500 |
| APPLE |  | 120 | 140 | 271 | 391 |
| APPLE |  | 22 | 19 | 38 | 39 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| APPLE |  | 47 | 69 | 82 | 113 |
| APPLE |  | 75 | 165 | 205 | 365 |
| APPLE |  | 54 | 106 | 153 | 275 |
| APPLE |  | 22 | 28 | 50 | 61 |
| APPLE |  | 1 | 1 | 2 | 2 |
| APPLE |  | 5 | 7 | 10 | 11 |
| APPLE |  | 21 | 32 | 47 | 78 |
| APPLE |  | 30 | 36. | 49 | 58 |
| APPLE |  | 47 | 64 | 91 | 141 |
| APPLE |  | 42 | 65 | 99 | 177 |
| APPLE |  | 6 | 8 | 19 | 24 |
| APPLE |  | 22 | 34 | 46 | 85 |
| APPLE |  | 5 | 4 | 7 | 7 |
| APPLE |  | 20 | 23 | 35 | 50 |
| APPLE |  | 20 | 22 | 32 | 45 |
| APPLE |  | 10 | 18 | 26 | 43 |
| APPLE |  | 3 | 2 | 6. | 6 |
| APPLE |  | 38 | 63 | 86 | 163 |
| APPLE |  | 36 | 47 | 79 | 130 |
| APPLE |  | 17 | 13 | 33 | 33 |
| APPLE |  | 3 | 2 | 3 | 3 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 4 | 2 | 6 | 6 |
| APPLE |  | 9 | 13 | 20 | 35 |
| APPLE |  | 10 | 16 | 27 | 35 |
| APPLE |  | 9 | 14 | 24 | 35 |
| APPLE |  | 3 | 2 | 7 | 7 |
| APPLE |  | 1 | 1 | 4 | 4 |
| APPLE |  | 3 | 3 | 7 | 8 |
| APPLE |  | 33 | 97 | 37 | 272 |
| APPLE |  | 3 | 4 | 9 | 14 |
| APPLE |  | 7 | 9 | 11 | 13 |
| APPLE |  | 12 | 28 | 31 | 95 |
| APPLE |  | 2 | 1 | 4 | 4 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 4 | 2 | 6 | 6 |
| APPLE |  | 10 | 10 | 16 | 21 |
| APPLE |  | 17 | 24 | 43 | 55 |
| APPLE |  | 13 | 41 | 35 | 96 |
| APPLE |  | 6 | 11 | 10 | 18 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE. |  | 1 | 1 | 4 | 4 |
| APPLE |  | 8 | 14 | 21 | 29 |
| APPLE |  | 4 | 7 | 8 | 22 |
| APPLE |  | 2 | 1 | 5 | 5 |
| APPLE |  | 3. | 1 | 4 | 4 |
| APPLE |  | 4 | 6 | 5 | 7 |
| APPLE |  | 8 | 7 | 19 | 19 |
| APPLE |  | 1 | 1 | 4 | 4 |
| APPLE |  | 2 | 4 | 3 | 5 |
| APPLE |  | 10 | 16 | 18 | 35 |
| APPLE |  | 14 | 27 | 36 | 66 |
| APPLE |  | 12 | 34 | 42 | 100 |
| APPLE |  | 7 | 14 | 24 | 52 1 |
| APPLE |  | 4 | 4 | 13 | 13 |
| APPLE |  | 9 | 7 | 18 | 20 |
| APPLE |  | 2 | 2 | 5. | 5 |
| APPLE |  | 1 | 1 | 5 | 5 |
| APPLE |  | 2 | 2 | 5 | 5 |
| APPLE |  | 1 | 1 | 5 | 5 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE APPLE |  | 1 | 1 | 3 5 | 3 13 |
| APPLE APPLE |  | 1 | 3 2 | 5 5 | 13 5 |
| APPLE |  | 3 | 3 | 4 | 4 |
| APPLE |  | 7 | 12 | 21 | 28 |
| APPLE |  | 5 | 10 | 12 | 22 |
| APPLE |  | 1 | 2 | 2 | 4 |
| APPLE |  | 6 | 4 | 8. | 8 |
| APPLE |  | 5 | 3 | 10 | 10 |
| APPLE |  | 2 | 1 | 4. | 4 |
| APPLE |  | 1 | 1 | 5 | 5 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| APPLE |  | 6 | 5 | 10 | 13 |
| APPLE |  | 15 | 17 | 26 | 38 |
| APPLE |  | 8 | 11 | 13 | 18 |
| APPLE |  | 2 | 2 | 4. | 4 |
| APPLE |  | 3 | 2 | 3 | 3 |
| APPLE |  | 25 | so | 39 | 152 |
| APPLE |  | 29 | 59 | 56 | 114 |
| APPLE |  | 18 | 35 | 26 | 55 |
| APPLE |  | 2 | 4 | 2 | 4 |
| APPLE |  | 1 | 1 | 2 | 2 |
| APPLE |  | 2 | 2 | 3. | 3 |
| APPLE |  | 3 | 6 | 4 | 7 |
| APPLE |  | 8 | 15 | 18 | 34 |
| APPLE |  | 2 | 1 | 3 | 3 |
| APPLE |  | 2 | 1 | 4 | 4 |
| APPLE |  | 7 | 10 | 9 | 12 |
| APPLE |  | 12 | 11 | 15 | 19 |
| APPLE |  | 7 | 4 | 12 | 12 |
| APPLE |  | 2 | 5 | 5 | 8 |
| APPLE |  | 18 | 36 | 36 | 65 |
| APPLE |  | 36 | 47 | 62 | 93 |
| APPLE |  | 15 | 25 | 25 | 33 |
| APPLE |  | 8 | 6 | 14 | 16 |
| APPLE |  | 4 | 4 | 5 | 5 |
| APPLE |  | 12 | 22 | 23 | 44 |
| APPLE |  | 31 | 43 | 57 | 87 |
| APPLE |  | 29 | 38 | 59 | 84 |
| APPLE |  | 5. | 8 | 9 | 12 |
| APPLE |  | 1 | 1 | 1 | 1 |
| APPLE |  | 2 | 2 | 2 | 2 |
| APPLE |  | 1 | 1 | 2 | 2 |
| APPLE |  | 8 | 19 | 15 | 47 |
| APPLE |  | $4$ | $6$ | $8$ | 14 |
| APPLE |  | 2 |  | $8$ | 9 |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| G00GLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
|  | GOOGLE |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE GOOGLE |  |  |  |  |  |
| GOOGLEGOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| G00GLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| G00GLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |

Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GOOGLE |  |  |  |  |  |
| GOOGLE | G00GLE |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE | GOOGLE |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| G00GLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLEGOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |
| GOOGLE GOOGLE |  |  |  |  |  |
|  |  |  |  |  |  |

Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GOOGLE |  |  |  |  |  |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009


Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009


Manager and Employee Counts by Employers and Titles
Technical Class-2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 3 | 6 | 3 | 6 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 5 | 4 | 5. | 5 |
| INTEL |  | 4 | 4 | 4 | 4 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 55 | 124 | 103 | 251 |
| INTEL |  | 72 | 207 | 173 | 475 |
| INTEL |  | 79 | 210 | 182 | 526 |
| INTEL |  | 72 | 118 | 153 | 285 |
| INTEL |  | 29 | 32 | 54 | 71 |
| INTEL |  | 9 | 7 | 14 | 16 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 12 | 12 | 19 | 24 |
| INTEL |  | 20 | 30 | 34 | 58 |
| INTEL |  | 33 | 64 | 63 | 141 |
| INTEL |  | 44 | 106 | 96 | 287 |
| INTEL |  | 29 | 55 | 70 | 141 |
| INTEL |  | 14 | 14 | 32 | 39 |
| INTEL |  | 3 | 4 | 3 | 4 |
| INTEL |  | 3 | 5 | 3 | 5 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 5 | 6 | 5. | 6 |
| INTEL |  | 4 | 6 | 4 | 6 |
| INTEL |  | 4 | 7 | 4 | 7 |
| INTEL |  | 3 | 3 | 4 | 4 |
| INTEL |  | 20 | 15 | 29 | 30 |
| INTEL |  | 81 | 106 | 121 | 188 |
| INTEL |  | 117 | 140 | 182 | 266 |
| INTEL |  | 139 | 219 | 235 | 411 |
| INTEL |  | 108 | 134 | 169 | 240 |
| INTEL |  | 49 | 54 | 79 | 97 |
| INTEL |  | 5 | 2 | 5 | 5 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 5 | 6 | 6 | 14 |
| INTEL |  | 3 | 4 | 4 | 5 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 8 | 19 | 8 | 19 |
| INTEL |  | 13 | 24 | 13 | 24 |
| INTEL |  | 16 | 30 | 16 | 30 |
| INTEL |  | 19 | 31 | 19 | 31 |
| INTEL |  | 7 | 8 | 7 | 8 |
| INTEL |  | 48 | 46 | 69 | 75 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 287 | 376 | 502 | 681 |
| INTEL |  | 805 | 1,610 | 1,695 | 3,688 |
| INTEL |  | 969 | 1,864 | 2,142 | 4,438 |
| INTEL |  | 1,074 | 2,258 | 2,557 | 5,983 |
| INTEL |  | 918 | 1.711 | 2,228 | 4,597 |
| INTEL |  | 604 | 945 | 1,451 | 2.782 |
| INTEL |  | 4 | 9 2 | 9 | 26 5 |
| INTEL |  | 19 | 23 | 28 | 38 |
| INTEL |  | 32 | 51 | 57 | 106 |
| INTEL |  | 59 | 89 | 106 | 234 |
| INTEL |  | 65 | 149 | 145 | 428 |
| INTEL |  | 45 | 88 | 103 | 230 |
| INTEL |  | 23 | 35 | 46 | 98 |
| INTEL |  | 3 | 5 | 5 | 14 |
| INTEL |  | 5 | 5 | 6 | 6 |
| INTEL INTEL |  | 12 20 | 21 32 | 16 | 32 57 |
| INTEL |  | 21 | 32 48 | 27 33 | 57 107 |
| INTEL |  | 4 | 6 | 7 | 12 |
| INTEL |  | 3 | 7 | 5 | 11 |
| INTEL |  | 5 | 4 | 6. | 6 |
| INTEL |  | 7 | 11 | 10 | 23 |

Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 2 | 3 | 3 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 7 | 8 | 11 | 12 |
| INTEL |  | 14 | 12 | 18 | 23 |
| INTEL |  | 47 | 51 | 76 | 114 |
| INTEL |  | 69 | 76 | 120 | 199 |
| INTEL |  | 24 | 19 | 45 | 61 |
| INTEL |  | 22 | 18 | 31 | 38 |
| INTEL |  | 21 | 24 | 26 | 46 |
| INTEL |  | 33 | 36 | 50 | 78 |
| INTEL |  | 34 | 43 | 56 | 102 |
| INTEL |  | 8 | 9 | 15 | 16 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 3 | 5 | 4 | 6 |
| INTEL |  | 4 | 5 | 4 | 5 |
| INTEL |  | 4 | 5 | 5 | 6 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 8 | 9 | 8 | 9 |
| INTEL |  | 12 | 18 | 12 | 18 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 3 | 2 | 7 | 8 |
| INTEL |  | 1 | 2 | 1 | 2 |
| INTEL |  | 3 | 5 | 4 | 10 |
| INTEL |  | 4 | 10 | 5 | 14 |
| INTEL |  | 1 | 1 | 9 | 15 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 10 | 7 | 13 | 16 |
| INTEL |  | 8 | 8 | 10 | 16 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 18 | 18 | 25 | 28 |
| INTEL |  | 34 | 39 | 42 | 48 |
| INTEL |  | 31 | 30 | 41 | 43 |
| INTEL |  | 41 | 41 | 63 | 72 |
| INTEL |  | 39 | 34 | 58 | 65 |
| INTEL |  | 20 | 18 | 33 | 38 |
| INTEL |  | 1 | 2 | 1 | 2 |
| INTEL |  | 3 | 3 | 4 | 4 |
| INTEL |  | 16 | 24 | 29 | 47 |
| INTEL |  | 433 | 653 | 1,007 | 1,835 |
| INTEL |  | 149 | 237 | 388 | 712 |
| INTEL |  | 42 | 48 | 91 | 141 |
| INTEL |  | 8 | 8 | 21 | 25 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 11 | 13 | 17 | 22 |
| INTEL |  | 67 | 70 | 88 | 110 |
| INTEL |  | 338 | 506 | 602 | 965 |
| INTEL |  | 627 | 988 | 1,285 | 2,201 |
| INTEL |  | 729 | 1,140 | 1,594 | 2.801 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | ${ }_{1}^{1}$ | 18 | 1 |
| INTEL |  | 73 24 | 156 | 187 | 457 |
| INTEL |  | 6 | 23 | 21 | 77 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 17 | 21 | 28 | 32 |
| INTEL |  | 79 | 114 | 156 | 210 |
| INTEL |  | 172 | 297 | 372 | 611 |
| INTEL |  | 151 | 305 | 355 | 780 |
| INTEL INTEL |  | 1 | 1 | 2 | 2 |
| INTEL INTEL |  | 2 2 | 2 | 6 | 6 10 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 18 | 15 | 26 | 28 |
| INTEL |  | 3 | 2 | 6 | 6 |
| INTEL |  | 2 | 1 | 2 | 2 |
| INTEL |  | 4 | 4 | 4 | 6 |
| INTEL |  | 51 | 54 | 70 | 116 |
| INTEL |  | 85 | 121 | 141 | 303 |
| INTEL |  | 60 | 83 | 113 | 200 |

Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 6 | 4 | 8 | 8 |
| INTEL |  | 19 | 23 | 24 | 35 |
| INTEL |  | 20 | 19 | 26 | 31 |
| INTEL |  | 14 | 18 | 17 | 21 |
| INTEL |  | 10 | 11 | 11 | 13 |
| INTEL |  | 15 | 15 | 24 | 28 |
| INTEL |  | 33 | 41 | 72 | 102 |
| INTEL |  | 37 | 36 | 69 | 95 |
| INTEL |  | 37 | 50 | 75 | 130 |
| INTEL |  | 15 | 22 | 37 | 64 |
| INTEL |  | 3 | 3 | 7 | 7 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 7 | 12 | 7 | 12 |
| INTEL |  | 6 | 7 | 6 | 7 |
| INTEL |  | 15 | 21 | 15 | 21 |
| INTEL |  | 8 | 9 | 8 | 9 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 5 | 5 | 8 | 8 |
| INTEL |  | 14 | 17 | 22 | 29 |
| INTEL |  | 28 | 49 | 58 | 110 |
| INTEL |  | 37 | 88 | 87 | 253 |
| INTEL |  | 21 | 22 | 44 | 62 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 3 | 2 | 4 |
| INTEL |  | 6 | 18 | 12 | 38 |
| INTEL |  | 7 | 22 | 15 | 46 |
| INTEL |  | 7 | 9 | 14 | 22 |
| INTEL |  | 1 | 1 | 3 | 3 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 26 | 34 | 44 | 73 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 2 | 2 | 3 | 3 |
| INTEL |  | 7 | 1 | 1 | 1 |
| INTEL |  | 4 | 4 | 6 | 7 |
| INTEL |  | 4 | 5 | 7 | 9 |
| INTEL |  | 6 | 3 | 7 | 7 |
| INTEL |  | 4 | 1 | 2 5 | 2 |
| INTEL |  | 12 | 15 | 17 | 21 |
| INTEL |  | 23 | 24 | 35 | 45 |
| INTEL |  | 23 | 25 | 33 | 44 |
| INTEL |  | 20 | 36 | 34 | 68 |
| INTEL |  | 9 | 20 | 17 | 38 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL INTEL |  | 4 | 6 | 4 | 6 |
| INTEL |  | 3 | 4 | 3 5 | 4 11 |
| INTEL |  | 21 | 21 | 30 | 39 |
| INTEL |  | 36 | 66 | 58 | 115 |
| INTEL |  | 46 | 82 | 74 | 150 |
| INTEL |  | 53 | 113 | 94 | 221 |
| INTEL |  | 43 | 67 | 75 | 142 |
| INTEL |  | 27 | 41 | 41 | 79 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 6 5 | 9 7 | 6 5 | 9 7 |
| INTEL |  | 2 | 3 | 2 | 3 |
| INTEL |  | 13 | 17 | 20 | 26 |
| INTEL |  | 2 | 3 | 3 | 4 |
| INTEL |  | 101 | 117 | 165 | 218 |
| INTEL |  | 193 | 279 | 362 | 578 |
| INTEL |  | 240 | 333 | 445 | 724 |
| INTEL |  | 274 | 374 | 521 | 888 |
| INTEL |  | 122 | 273 135 | 429 232 | 661 339 |
| INTEL |  | 4 | 3 | 4 | 4 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 12 | 8 | 14 | 16 |
| INTEL |  | 23 | 22 | 31 | 57 |
| INTEL |  | 27 | 37 | 45 | 78 |
| INTEL |  | 17 | 19 | 29 | 47 |
| INTEL |  | 9 | 7 | 13 | 15 |
| INTEL |  | 5 | 4 | 7 | 10 |
| INTEL |  | 9 | 7 | 13 | 17 |
| INTEL |  | 10 | 7 | 13 | 15 |
| INTEL |  | 6 | 5 | 10 | 10 |
| INTEL |  | 1 | 1 | 4 | 4 |
| INTEL |  | 56 | 72 | 95 | 143 |
| INTEL |  | 113 | 185 | 204 | 395 |
| INTEL |  | 119 | 166 | 220 | 393 |
| INTEL |  | 92 | 115 | 170 | 260 |
| INTEL |  | 29 | 28 | 56 | 62 |
| INTEL |  | 5 | 4 | g | 8 |
| INTEL |  | 2 | 3 | 4 | 4 |
| INTEL |  | 4 | 4 | 5 | 5 |
| INTEL |  | 16 | 23 | 23 | 34 |
| INTEL |  | 27 | 29 | 42 | 66 |
| INTEL |  | 28 | 18 | 43 | 45 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 5 | 8 | 6 | 8 |
| INTEL |  | 4 | 8 | 4 | 8 |
| INTEL |  | 4 | 4 | 4 | 4 |
| INTEL |  | 4 | 5 | 6. | 7 |
| INTEL |  | 22 | 24 | 23 | 28 |
| INTEL |  | 53 | 70 | 59 | 93 |
| INTEL |  | 46 | 57 | 50 | 71 |
| INTEL INTEL |  | 20 | 26 | 24 | 35 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL INTEL |  | 9 | 10 1 | 13 1 | 21 |
| INTEL |  | 43 | 47 | 47 | 64 |
| INTEL |  | 102 | 126 | 115 | 164 |
| INTEL |  | 143 | 214 | 165 | 300 |
| INTEL |  | 113 | 180 | 129 | 241 |
| INTEL |  | 36 | 41 | 41 | 53 |
| INTEL |  | 4 | 4 | 4 | 4 |
| INTEL |  | 87 | 136 | 183 | 354 |
| INTEL INTEL |  | 28 | 46 | 57 14 | 130 |
| INTEL INTEL |  | 8 | 13 | 14 | 37 5 |
| INTEL |  | 3 | 3 | 5 | 5 |
| INTEL |  | 2 | 4 | 2 | 4 16 |
| INTEL |  | 28 | 37 | 40 | 54 |
| INTEL |  | 145 | 222 | 246 | 375 |
| INTEL |  | 242 | 396 | 451 | 819 |
| INTEL |  | 196 | 318 | 395 | 794 |
| INTEL |  | 56 | 58 | 131 | 195 |
| INTEL |  | 2 | 3 | 2 | 3 |
| INTEL |  | 8 | 13 | 8 | 13 |
| INTEL |  | 3 | 7 | 3 | 7 |
| INTEL |  | 4 | 4 | 4 | 4 |
| INTEL |  | 2 | 3 | 2 | 3 |
| INTEL |  | 3 | 7 | 3 | 7 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 49 | 119 | 83 | 232 |
| INTEL |  | 86 81 | 152 122 | 153 150 | 352 305 |
| INTEL |  | 81 36 | 122 49 | 71 | 305 118 |
| INTEL |  | 14 | 11 | 26 | 33 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 3 | 4 | 3 | 4 |
| INTEL |  | 22 | 36 | 22 | 36 |
| INTEL |  | 32 | 73 | 32 | 73 |
| INTEL |  | 28 | 50 | 28 | 50 |
| INTEL |  | 12 | 14 | 13 | 15 |
| INTEL |  | 6 | 7 | 6 | 7 |

Manager and Employee Counts by Employers and Titles
Technical Class-2005-2009


Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 25 | 30 | 47 | 67 |
| INTEL |  | 49 | 107 | 109 | 255 |
| INTEL |  | 73 | 148 | 149 | 349 |
| INTEL |  | 90 | 159 | 168 | 363 |
| INTEL |  | 56 | 85 | 101 | 180 |
| INTEL |  | 26 | 33 | 47 | 69 |
| INTEL |  | 19 | 24 | 29 | 52 |
| INTEL |  | 42 | 61 | 75 | 155 |
| INTEL |  | 62 | 87 | 117 | 252 |
| INTEL |  | 45 | 78 | 106 | 225 |
| INTEL |  | 20 | 36 | 47 | 118 |
| INTEL |  | 6. | e | 16 | 20 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 8 | 4. | 11 |
| INTEL |  | 4 | 5 | 5. | 9 |
| INTEL |  | 10 | 19 | 20 | 47 |
| INTEL |  | 5 | 7 | 12 | 16 |
| INTEL |  | 4 | 4 | 7 | 9 |
| INTEL |  | 5 | 5 | 8 | 8 |
| INTEL |  | 5 | 4 | 6 | 7 |
| INTEL |  | 6 | 6 | 6 | 6 |
| INTEL |  | 8 | 8 | 11 | 12 |
| INTEL |  | 9 | 9 | 11 | 12 |
| INTEL |  | 14 | 14 | 17 | 21 |
| INTEL |  | 8 | 7 | 12 | 12 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 16 | 14 | 22 | 22 |
| INTEL |  | 5 | 6 | 7 | 9 |
| INTEL |  | 11 | 11 | 15 | 18 |
| INTEL |  | 7 | 8 | 10 | 14 |
| INTEL |  | 11 | 15 | 19 | 28 |
| INTEL |  | 3 | 3 | 7 | 7 |
| INTEL |  | 2 | 2 | 3 | 3 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 21 | 26 | 38 | So |
| INTEL |  | 63. | 95 | 108 | 187 |
| INTEL |  | 60 | 80 | 119 | 178 |
| INTEL |  | 114 | 259 | 253 | 697 |
| INTEL |  | 72 | 108 | 149 | 233 53 |
| INTEL |  | 20 | 21 | 43 | 52 |
| INTEL |  | 25 | 23 | 36 | 40 |
| INTEL |  | 40 | 55 | 60 | 96 |
| INTEL |  | 50 | 77 | 89 | 168 |
| INTEL |  | 64 | 90 | 120 | 199 |
| INTEL |  | 32 | 47 | 53 | 98 |
| INTEL |  | 23 | 19 | 39 | 46 |
| INTEL |  | 18 | 17 | 32 | 34 |
| INTEL |  | 3 | 4 | 6 | 6 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 6 | 6 | 7 | 9 |
| INTEL |  | 16 | 15 | 25 | 31 |
| INTEL |  | 38 | 45 | 57 | 83 |
| INTEL |  | 70 | 91 | 120 | 204 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 3 | 2 | 6 | 7 |
| INTEL |  | 2 | 1 | 3 1 | 3 1 |
| INTEL |  | 1 | 2 | 1 | 2 |
| INTEL |  | 2 | 4 | 5 | 9 |
| INTEL |  | 4 | 3 | 6 | 6 |
| INTEL |  | 4 | 2 | 4 | 4 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 3 | 2 | 4 3 | 4 3 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 2 | 2 | $2$ |
| INTEL INTEL |  | 4 8 | 7 5 | 5. | 9 |
| INTEL |  | 5 | 3 | 2 | 8 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 1 | 2 | 2 |
| INTEL |  | 2 | 2 | 2 | 2 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 6 | 5 | 9 | 11 |
| INTEL |  | 697 | 816 | 1,703 | 2,789 |
| INTEL |  | 206 | 212 | 509 | 715 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 4 | 2 | 4. | 4 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 1 | 2 | 1 | 2 |
| INTEL |  | 255 | 362 | 452 | 682 |
| INTEL |  | 395 | 826 | 834 | 1,794 |
| INTEL |  | 403 | 725 | 830 | 1,669 |
| INTEL |  | 419 | 656 | 860 | 1,585 |
| INTEL |  | 249 | 277 | 415 | 592 |
| INTEL |  | 78. | 83 | 143 | 186 |
| INTEL |  | 2 | 2 | 3. | 3 |
| INTEL |  | 12 | 20 | 17 | 30 |
| INTEL |  | 19 | 22 | 24 | 37 |
| INTEL |  | 16 | 24 | 21 | 40 |
| INTEL |  | 10 | 12 | 15 | 19 |
| INTEL |  | 5 | 4 | 5 | 5 |
| INTEL |  | 6 | 6 | 7 | 7 |
| INTEL |  | 80 | 86 | 128 | 169 |
| INTEL |  | 221 | 293 | 421 | 678 |
| INTEL |  | 272 | 332 | 503 | 768 |
| INTEL |  | 438 | 1,215 | 993 | 2,815 |
| INTEL |  | 275 | 466 | 595 | 1,068 |
| INTEL |  | 97 | 121 | 191 | 278 |
| INTEL |  | 9 | 7 | 13 | 13 |
| INTEL |  | 141 | 186 | 246 | 364 |
| INTEL |  | 265 | 508 | 536 | 1,185 |
| INTEL |  | 254 | 461 | 552 | 1.088 |
| INTEL |  | 269 | 438 | 583 | 1,122 |
| INTEL |  | 199 | 259 | 426 | 693 |
| INTEL |  | 76 | 90 | 163 | 238 |
| INTEL |  | 4 | 4 | 8 | 8 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 23 | 36 | 37 | 58 |
| INTEL |  | 43 | 63 | 73 | 123 |
| INTEL |  | 42 | 58 | 77 | 114 |
| INTEL |  | 40 | 46 | 74 | 96 |
| INTEL |  | 47 | 44 | 63 | 86 |
| INTEL |  | 20 | 13 | 27 | 27 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 4 | 4 | 4 | 4 |
| INTEL |  | 6 | 8 | 6 | 8 |
| INTEL |  | 1. | 1 | 1 | 12 |
| INTEL |  | 49 | 55 | 82 | 126 |
| INTEL INTEL |  | 25 5 | 26 5 | 51 | 60 |
| INTEL |  | 8 | 9 | 11 | 11 14 |
| INTEL |  | 26 | 23 | 31 | 35 |
| INTEL |  | 62 | 79 | 99 | 151 |
| INTEL |  | 2 | 3 | 2 | 3 |
| INTEL |  | 4 | 5 | 4 | 5 |
| INTEL |  | 22 | 33 | 22 | 33 |
| INTEL |  | 24 | 34 | 24 | 34 |
| INTEL |  | 9 | 12 | 9 | 12 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 2 | 3 | 3 |
| INTEL |  | 3 5 | 4 | 4 | 4 7 |
| INTEL |  | 24 | 38 | 39 | 69 |
| INTEL |  | 35 | 42 | 50 | 74 |
| INTEL |  | 17 | 25 | 26 | 43 |
| INTEL |  | 31 | 23 | 48 | 52 |
| INTEL |  | 181 | 186 | 337 | 422 |
| INTEL |  | 18 | 21 | 42 | 63 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 34 | 30 | 2 46 | ${ }_{54}^{2}$ |
| INTEL |  | 139 | 141 | 212 | 253 |
| INTEL |  | 349 | 394 | 568 | 821 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 662 | 832 | 1,110 | 1,825 |
| INTEL |  | 734 | 913 | 1,334 | 2,150 |
| INTEL |  | 510 | 548 | 972 | 1,360 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 4 | 4 | 4 | 4 |
| INTEL |  | 69 | 260 | 128 | 490 |
| INTEL |  | 66 | 108 | 117 | 211 |
| INTEL |  | 24 | 48 | 44 | 95 |
| INTEL |  | 11 | 10 | 17 | 17 |
| INTEL |  | 31 | 30 | 56 | 61 |
| INTEL |  | 49 | 43 | 75 | 89 |
| INTEL |  | 74 | 71 | 115 | 147 |
| INTEL |  | 48 | 42 | 72 | 97 |
| INTEL |  | 10 | 8 | 11 | 11 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 3 | 2 | 4 | 4 |
| INTEL |  | 3 | 3 | 5 | 5 |
| INTEL |  | 3 | 3 | 4 | 4 |
| INTEL |  | 8 | 8 | 8 | 8 |
| INTEL |  | 15 | 18 | 15 | 18 |
| INTEL |  | 21 | 32 | 21 | 32 |
| INTEL |  | 28 | 51 | 28 | 51 |
| INTEL |  | 20 | 29 | 20 | 29 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 1 | 2 | 1 | 2 |
| INTEL |  | 13 | 16 | 22 | 30 |
| INTEL |  | 45 | 54 | 74 | 105 |
| INTEL |  | 66 | 70 | 109 | 151 |
| INTEL |  | 81 | 140 | 162 | 314 |
| INTEL |  | 78 | 112 | 154 | 270 |
| INTEL |  | 21 | 24 | 53 | 61 |
| INTEL |  | 21 | 20 | 32 | 35 |
| INTEL |  | 7 | 4 | 7 | 7 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 4 | 3 | 5 | 5 |
| INTEL |  | 8 | 6 | 11 | 11 |
| INTEL |  | 124 | 204 | 250 | 478 |
| INTEL |  | 126 | 196 | 271 | 478 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 135 | 189 | 315 | 540 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 2 30 | 2 | 2 |
| INTEL |  | 5 | 14 | 14 | 32 |
| INTEL |  | 4 | 7 | 9 | 20 |
| INTEL |  | 2 | 1 | 3 | 4 |
| INTEL |  | 5 | 2 | 7 | 7 |
| INTEL |  | 3 | 3 | 6. | 6 |
| INTEL |  | 15 | 13 | 22 | 27 |
| INTEL |  | 14 | 19 | 21 | 47 |
| INTEL |  | 10 | 12 | 21 | 3.3 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 5 | 85 | 14 | 91 |
| INTEL |  | 11 | 69 | 21 | 79 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 9 | 14 | 17 | 23 |
| INTEL |  | 11 | 9 | 17 | 17 |
| INTEL |  | 25 | 37 | 43 | 72 |
| INTEL |  | 34 | 59 | 66 | 157 |
| INTEL |  | 42 | 65 | 81 | 168 |
| INTEL |  | 26 | 36 | 49 | 90 |
| INTEL |  | 5 | 7 | 11 | 16 |
| INTEL |  | 12 | 11 | 31 | 43 |
| INTEL |  | 38 | 29 | 51 | 55 |
| INTEL |  | 5. | 4 | 6 | 9 |
| INTEL |  | 282 | 296 | 431 | 562 |
| INTEL |  | 606 | 959 | 1,130 | 2,027 |
| INTEL |  | 832 | 1,322 | 1.597 | 3,069 |
| INTEL |  | 945 | 1,636 | 1.954 | 4.103 |

Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 784 | 1,144 | 1,634 | 3,032 |
| INTEL |  | 398 | 520 | 865 | 1,412 |
| INTEL |  | 17 | 18 | 24 | 34 |
| INTEL |  | 43 | 59 | 67 | 140 |
| INTEL |  | 37 | 60 | 64 | 139 |
| INTEL |  | 39 | 38 | 70 | 94 |
| INTEL |  | 17 | 13 | 24 | 33 |
| INTEL |  | 7 | 5 | 8 | 9 |
| INTEL |  | 11 | 16. | 19 | 40 |
| INTEL |  | 12 | 15 | 20 | 31 |
| INTEL |  | 5 | 8 | 12 | 14 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 2 | 2 | 3 | 3 |
| INTEL |  | 21 | 24 | 37 | 44 |
| INTEL |  | 5 | 5 | 9 | 9 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 3 | 3 | 3 | 3 |
| INTEL |  | 27 | 35 | 37 | 58 |
| INTEL |  | 46 | 75 | 89 | 148 |
| INTEL |  | 68 | 100 | 124 | 207 |
| INTEL |  | 18 | 17 | 23 | 33 |
| INTEL |  | 6 | 4 | 8 | 8 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 6 | 5 | 9 | 9 |
| INTEL |  | 17 | 21 | 27 | 38 |
| INTEL |  | 1 | 2 | 1 | 2 |
| INTEL |  | 14 | 12 | 20 | 21 |
| inTEL |  | 28 | 31 | 39 | 74 |
| INTEL |  | 22 | 40 | 37 | 75 |
| INTEL |  | 22 | 34 | 37 | 75 |
| INTEL |  | 7 | 8 | 11 | 21 |
| INTEL |  | 3 | 2 | 3 | 3 |
| INTEL |  | 58 | 68 | 89 | 125 |
| INTEL |  | 154 | $194$ | 260 | $412$ |
| INTEL |  |  | $\begin{gathered} 1 \\ 337 \end{gathered}$ |  | 1 758 |
| INTEL INTEL |  | 187 200 | 337 335 | 335 345 | 758 799 |
| INTEL |  | 87 | 94 | 143 | 208 |
| INTEL |  | 8 | 7 | 9 | 10 |
| INTEL |  | 11 | 10 | 14 | 19 |
| INTEL |  | 40 | 45 | 65 | 81 |
| INTEL |  | 83 | 99 | 132 | 191 |
| INTEL |  | 112 | 137 | 179 | 287 |
| INTEL |  | 143 | 176 | 240 | 351 |
| INTEL |  | 134 | 160 | 237 | 354 |
| INTEL |  | 92 | 107 | 164 | 244 |
| INTEL INTEL |  | 2 51 | 4 70 | 5 77 | ${ }_{117}^{9}$ |
| ${ }^{1} \mathrm{NTEL}$ |  | 51 | 70 | 77 | 117 |
| INTEL INTEL |  | 107 | 173 | 219 300 | 386 |
| INTEL |  | 137 | 282 | 313 | 777 |
| INTEL |  | 83 | 106 | 184 | 283 |
| INTEL |  | 17 | 20 | 33 | 50 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 28 | 32 | 40 | 55 |
| INTEL |  | 49 | 81 | 82 | 159 |
| INTEL |  | 57 | 88 | 99 | 183 |
| INTEL |  | 65 | 78 | 98 | 158 |
| INTEL |  | 38 | 40 | 61 | 85 |
| INTEL INTEL |  | 8 3 | 10 4 | 12 3 | 20 4 |
| INTEL |  | 12 | 15 | 12 | 15 |
| INTEL |  | 9 | 13 | 9 | 13 |
| INTEL |  | 30 | 46 | 30 | 46 |
| INTEL INTEL |  | 17 7 | 22 | 17 | 22 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 2 | 1 | 2 | 2 |
| INTEL |  | 2 | 3 | 2 | 4 |
| INTEL |  | 9 | 13 | 21 | 33 |
| INTEL |  | 9 | 15 | 20 | 40 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 4 | 4 | 6. | 6 |
| INTEL |  | 2 | 2 | 3 | 3 |
| INTEL |  | 10 | 9 | 12 | 13 |
| INTEL |  | 18 | 16 | 28 | 29 |
| INTEL |  | 1 | 1 | 2 | 2 |
| INTEL |  | 5 | 3 | 7 | 7 |
| INTEL |  | 19 | 30 | 43 | 70 |
| INTEL |  | 12 | 15 | 21 | 32 |
| INTEL |  | 9 | 6 | 11 | 11 |
| INTEL |  | 2 | 1 | 2 | 2 |
| INTEL |  | 41 | 35 | 54 | 65 |
| INTEL |  | 126 | 154 | 194 | 281 |
| INTEL |  | 229 | 336 | 408 | 754 |
| INTEL |  | 282 | 404 | 515 | 1,015 |
| INTEL |  | 219 | 269 | 398 | 548 |
| INTEL |  | 97 | 90 | 170 | 221 |
| INTEL |  | 32 | 26 | 56 | 62 |
| INTEL |  | 5 | 5 | 11 | 11 |
| INTEL |  | 3 | 4 | 3. | 4 |
| INTEL |  | 24 | 26 | 31 | 38 |
| INTEL |  | 55 | 85 | 107 | 182 |
| INTEL |  | 57 | 63 | 101 | 142 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 1 | 1 | 2. | 2 |
| INTEL |  | 2 | 1 | 2 | 2 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 4 | 4 | 5 | 7 |
| INTEL |  | 5 | 4 | 6 | 7 |
| INTEL |  | 6 | 6 | 10 | 13 |
| INTEL |  | 13 | 22 | 24 | 39 |
| INTEL |  | 18 | 34 | 40 | 89 |
| INTEL |  | 18 | 34 | 41 | 78 |
| INTEL |  | 4 | 5 | 8 | 12 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 2 | 1 | 2 | 2 |
| INTEL |  | 7 | 5 | 10 | 10 |
| INTEL |  | 9 | 8 | 11 | 13 |
| INTEL |  | 5 | 12 | 9 | 22 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 2 | 3 5 | 2 4 | 3 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 22 | 15 | 27 | 33 |
| INTEL |  | 5 | 5 | 8 | 14 |
| INTEL |  | 6 | 8 | 8 | 10 |
| INTEL |  | 25 | 26 | 38 | 47 |
| INTEL |  | 60 | 65 | 84 | 140 |
| INTEL |  | 45 | 52 | 66 | 122 |
| INTEL |  | 18. | 17 | 32 | 40 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 5 | 6 | 5 | 6 |
| INTEL |  | 14 | 22 | 14 | 22 |
| INTEL |  | 11 | 21 | 11 | 21 |
| INTEL |  | 5 | 4 | 8 | 8 |
| INTEL INTEL |  | 6 3 | 6 3 | 13 | 15 10 |
| INTEL |  | 1 | 1 | 3 | 3 |
| INTEL |  | 31 | 38 | 51 | 61 |
| INTEL |  | 62 | 76 | 107 | 157 |
| INTEL |  | 65 | 78 | 117 | 165 |
| INTEL |  | 56 | 61 | 97 | 132 |
| INTEL |  | 17 | 19 | 30 | 36. |
| INTEL |  | 4 | 4 | 8 | 11 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 16 | 15 | 26 | 34 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTEL |  | 50 | 58 | 87 | 129 |
| INTEL |  | 68 | 84 | 121 | 174 |
| INTEL |  | 57 | 152 | 137 | 362 |
| INTEL |  | 44 | 70 | 95 | 168 |
| INTEL |  | 16 | 24 | 34 | 65 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 5. | 6 | 8 | 10 |
| INTEL |  | 15 | 16. | 15 | 24 |
| INTEL |  | 17 | 16 | 18 | 23 |
| INTEL |  | 14 | 16 | 18 | 22 |
| INTEL |  | 2 | 2 | 2 | 2 |
| INTEL |  | 3 | 2 | 3 | 3 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 3. | 3 | 3. | 3 |
| INTEL |  | 17 | 13 | 19 | 21 |
| INTEL |  | 17 | 15 | 18 | 19 |
| INTEL |  | 27 | 21 | 34 | 39 |
| INTEL |  | 12 | 11 | 20 | 21 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 31 | 27 | 42 | 50 |
| INTEL |  | 50 | 80 | 101 | 160 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 58 | 103 | 108 | 203 |
| INTEL |  | 76 | 129 | 150 | 310 |
| INTEL |  | 51 | 71 | 106 | 181 |
| INTEL |  | 20 | 22 | 35 | 56 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTEL |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 11 | 19 | 19 | 32 |
| intuit |  | 23 | 34 | 35 | 66 |
| INTUIT |  | 109 | 116 | 182 | 296 |
| INTUIT |  | 57 | 61 | 78 | 98 |
| intuit |  | 28 | 22 | 48 | 49 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 2 | 2 | 6 | ${ }^{6}$ |
| intuit |  | 19 | 51 | 43 | 117 |
| inturt |  | 7 | 7 | 10 | 12 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 16 | 21 | 24 | 43 |
| INTUIT |  | 23 | 28 | 41 | 62 |
| INTUIT |  | 1 | 1 | 2 | 2 |
| INTUIT |  | 6 | 5 | 7 | 9 |
| INTUIT |  | 5 | 7 | 7 | 11 |
| Inturt |  | 10 | 8 | 14 | 14 |
| intult |  | 1 | 1 | 1 | 3 1 |
| IntuIt |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 2 | 1 | 4 | 4 |
| INTUIT |  | 24 | 42 | 37 | 74 |
| Intuit |  | 4 | 4 | 4 | 4 |
| intuit |  | 10 | 7 | 16 | 18 |
| INTUIT |  | 2 | 3 | 2 | 3 |
| Intuit |  | 20 | 37 | 28 | 59 |
| INTUIT |  | 2 | 5 | 2 | 7 |
| INTUIT |  | 42 | 46 | 63 | 78 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 38 | 54 | 58 | 90 |
| INTUIT INTUIT |  | 3 | 3 | 4 3 | 4 3 |
| INTUIT |  | 2 | 1 | 2 | 2 |
| INTUIT |  | 3 | 2 | 4 | 4 |
| INTUIT |  | 2 | 1 | 3 | 3 |
| INTUIT |  | 1 | 1 | 2 | 2 |
| Intuit |  | 5 | 6 | 7 | 10 |
| Intuit |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 2 | 2 |
| INTUIT intuit |  | 1 | 2 | 3 | 2 |
| intuit |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 5 | 3 | 5 | 5 |
| INTUIT |  | 3 | 2 | 3 | 3 |

Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INTUIT |  | 1 | 1 | 1 | 1 |
| InTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 2 | 3 | 2 | 5 |
| INTUIT |  | 4 | 3 | 4 | 4 |
| INTUT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 68 | 72 | 115 | 150 |
| INTUIT |  | 2 | 1 | 2 | 2 |
| Intuit |  | 1 | 1 | 1 | 1 |
| Intuit |  | 2 | 1 | 4. | 4 |
| INTUIT |  | 2 | 2 | 2 | 2 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 2 | 1 | 2 | 2 |
| INTUIT |  | 11 | 20 | 17 | 31 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 6 | 3 | 6 | 7 |
| INTUIT |  | 7 | 7 | 8 | 9 |
| intult |  | 3 | 5 | 3 | 5 |
| InTUIT |  | 7 | 8 | 7 | 8 |
| INTUIT |  | 5 | 6 | 6 | 9 |
| INTUIT |  | 18 | 29 | 20 | 32 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 4 | 5 | 4 | 5 |
| INTUIT |  | 42 | 48 | 49 | 62 |
| INTUIT |  | 9 | 10 | 9 | 10 |
| INTUIT |  | 14 1 | 16 | 16 | 1 |
| INTUIT |  | 3 | 2 | 3 | 3 |
| intuit |  | 6 | 3 | 8 | 8 |
| Intuit |  | 3 | 3 | 4 | 4 |
| INTUIT |  | 82 | 113 | 116 | 193 |
| INTUIT |  | 3 | 4 | 3 | 4 |
| INTUIT |  | 12 | 16 | 19 | 32 |
| intuit |  | 58 | 72 | 93 | 144 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 59 | 83 | 78 | 107 |
| INTUIT |  | 12 | 17 | 12 | 17 |
| INTUIT |  | 34 | 33 | 43 | 54 |
| INTUIT |  | 2 | 2 | 2 | 2 |
| intuit intuit |  | 24 5 | 25 | 24 | 28 |
| INTUIT |  | 3 | 5 2 | 5 4 | 6 4 |
| INTUIT |  | 5 | 7 | 6 | 7 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 4 | 2 | 4 | 4 |
| INTUIT |  | 63 | 90 | 91 | 165 |
| INTUIT |  | 2 | 2 | 3 | 3 |
| INTUIT |  | 8 | 8 | 10 | 11 |
| INTUIT |  | 57 | 81 | 71 | 110 |
|  |  | 9 | 12 | 12 | 15 5 |
| INTUIT |  | 4 41 | 51 | 5 | 5 87 |
| INTUIT |  | 3 | 4 | 6 | 9 |
| INTUIT |  | 4 | 3 | 4 | 4 |
| inturt |  | 4 | 7 | 4 | 7 |
| INTUIT |  | 2 | 4 | 3 | 4 |
| INTUIT |  | 2 | 4 | 4 | 5 |
| INTUIT |  | 6 | 6 | 7 | 8 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 3 1 | 2 3 | 3 | 3 |
| intuit |  | 4 | 1 | 4 | 4 |
| intult |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 3 | 3 | 3 | 3 |
| Intuit |  | 4 | 4 | 5 | 5 |
| intult |  | 7 | 7 | 7 | 7 |
| INTUIT |  | 2 | 1 | 3 | 3 |
| INTUIT |  | 26 | 26 | 31 | 33 |
| INTUIT |  | 5 | 5 | 5 | 5 |

Manager and Employee Counts by Employers and Titles
Technical Class-2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| intuit |  | 5 | 3 | 5 | 7 |
| INTUIT |  | 12 | 15 | 12 | 15 |
| intuit |  | 9 | 7 | 18 | 19 |
| intuit |  | 4 | 4 | 4 | 4 |
| Intult |  | 8 | 6 | 10 | 10 |
| intuit |  | 2 | 1 | 2 | 2 |
| intuit |  | 1 | 1 | 1 | 1 |
| intuit |  | 2 | 2 | 2 | 2 |
| INTUIT |  | 11 | 15 | 13 | 18 |
| intuit |  | 110 | 132 | 163 | 232 |
| INTUT |  | 2 | 2 | 2 | 2 |
| intuit |  | 2 | 2 | 2 | 2 |
| intuit |  | 1 | 1 | 2 | 2 |
| InTUIT |  | 1 | 2 | 1 | 2 |
| INTUIT |  | 5 | 9 | 9 | 16 |
| intuit |  | 2 | 3 | 4 | 6 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 26 | 26 | 34 | 48 |
| intuit |  | 1 | 1 | 1 | 1 |
| intuit |  | 1 | 1 | 1 | 1 |
| intuit |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 1 | 1 | 1 | 1 |
| intuit |  | 2 | 2 | 2 | 2 |
| InTUIT |  | 3 | 1 | 3 | 3 |
| INTUIT |  | 2 | 2 | 4 | 4 |
| intuit |  | 2 | 5 | 4 | 8 |
| intult |  | 1 | 2 | 3 | 5 |
| INTUIT |  | 235 | 392 | 396 | 699 |
| Intuit |  | 98 | 176 | 98 | 178 |
| INTUIT |  | 9 | 9 | 11 | 14 |
| intuit |  | 11 | 9 | 13 | 14 |
| intuit |  | 3 | 4 | 3 | 4 |
| intuit |  | 86 | 132 | 140 | 251 |
| intuit |  | 1 | 1 | 1 | 1 |
| INTUIT |  | 2 | 2 | 2 | 2 |
| INTUIT |  | 5 | 2 | 6 | 6 |
| intuit |  | 2 | 2 | 2 | 2 |
| intuit |  | 17 | 52 | 17 | 52 |
| intuit |  | 15 | 14 | 23 | 28 |
| INTUIT intuit |  | 11 | 29 | 26 | 59 |
| intuit |  | 30 | 34 | 46 | 66 |
| INTUIT |  | 9 | 11 | 13 | 18 |
| intuit |  | 1 | 1 32 | 1 | 1 48 |
| intuit |  | 26 18 | 32 23 | 34 21 | 48 30 |
| Intuit |  | 1 | 4 | 2 | 4 |
| INTUIT |  | 3 | 5 | 3. | 5 |
| INTUIT intuit |  | 9 | 13 | 10 | 19 |
| intuit |  | 1 | 1 40 | 1 | 1 |
| INTUIT |  | 2 | 2 | 2 | 2 |
| intuit |  | 4 | 3 | 4 | 4 |
| intuit |  | 1 | 1 | 1 | 1 |
| intuit |  | 2 | 2 | 2 | 2 |
| inturt |  | 24 | 36 | 24 | 38 |
| intuit inturt |  | 3 | 5 | 6 | 14 |
| Intuit intuit |  | ${ }_{113}$ | $\stackrel{1}{151}$ | 18 187 | 1 299 |
| INTUIT |  | 8 | 16 | 11 | 21 |
| inturt |  | 34 | 40 | 51 | 99 |
| INTUIT intuit |  | 2 | 1 10 | 2 10 | 2 17 |
| INTUIT intuit |  | 340 | 10 792 | 10 696 | 1,878 <br> 18 |
| intuit |  | 91 | 176 | 159 | 346 |
| intuit |  | 34 | 58 | 34 | 58 |
| Intuit |  | 54 | 105 | 54 | 105 |
| Intuit |  | 18 | 31 | 25 | 53 |
| Intuit intuit |  | 59 | 125 | 114 | 219 |
| intuit |  | 48 34 | 70 33 | 75 43 | 156 66 |
| intuit |  | 23 | 12 | 31 | 33 |
| INTUIT |  | 3 | 2 | 4 | 4 |
| intuit |  | 1 | 1 | 1 | 1 |
| intuit |  | 6 | 6 | 8 | 11 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009


Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009


Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title ${ }^{\text {a }}$ Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: |
| LUCASFILM | 1 | 3 | 3 | 4 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 2 | 2 | 5 | 5 |
| LUCASFIM | 1 | 1 | 2 | 2 |
| LUCASFILM | 4 | 4 | 5 | 5 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 2 | 2 | 3. | 3 |
| LUCASFILM | 1 | 1 | 3. | 3 |
| LCASFILM | 1 | 1 | 4 | 4 |
| WCASFIM | 1 | 1 | 3 | 3 |
| WCASFILM | 1. | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 4 | 4 |
| LUCASFILM | 3 | $s$ | 8 | 17 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 4 | 4 |
| WCASFILM | 1. | 1 | 3 | 3 |
| LUCASFILM | 3 | 3 | 5 | 5 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 4 | 4 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| WCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 2 | 2 | 4 | 4 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| tUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 4 | 4 |
| LUCASFILM | 3 | 4 | 5 | 7 |
| UUCASFILM | 2 | 2 | 2 | 2 |
| UCASFILM LUCASFILM | 3 | 7 | 7 | 15 2 |
| LUCASFILM | 2 | 2 | 3 | 3 |
| LUCASFLM | 1 | 1 | 3 | 3 |
| WCASFILM | 3 | 3 | 3 | 3 |
| LUCASFILM | 3 | 5 | 6 | 9 |
| LUCASFILM | 2 | 2 | 6 | 6 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 3 | 3 | 7 | 7 |
| LUCASFILM LUCASFIM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 3 | 3 | 5 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 4 | 6 | 13 | 14 |
| LUCASFILM | 2 1 | 2 | 2 1 | 2 |
| LUCASFILM | 3 | 4 | 6 | 6 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| WCASFILM | 1 | 1 | 2 | 2 |
| WCASFILM WCASFILM | 1 | 1 | 4. 3 | 4 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| WCASFILM | $2$ | 4 | 4 | 8 |
| WCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | - 1 | 1 | 2 | 2 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title ${ }^{\text {a }}$ Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: |
| LUCASFILM | 2 | 2 | 3 | 3 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| WCASFILM | 2 | 5 | 5. | 13 |
| LUCASFIM | 1 | 5 | 3 | 12 |
| LUCASFIM | 1 | 1 | 1 | 1 |
| LUCASFILM | 2 | 2 | 4 | 4 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 2 | 2 | 6 | 6 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| WCASFILM | 1 | 1 | 1 | 1 |
| WCASFILM | 4 | 4 | 7 | 7 |
|  | 1. | 1 | 2 | 2 |
| LUCASFILM | 5 | 5 | 7 | 7 |
| LUCASFILM | 2 | 2 | 3 | 3 |
| LUCASFILM | 1 | 3 | 3 | 9 |
|  | 1 | 1 | 1 | 1 |
| UCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 6 | 7 | 11 | 11 |
| LUCASFILM | 2 | 4 | 4 | 7 |
| LUCASFILM | 3 | 3 | 5 | 5 |
| LUCASFILM | 1. | 1 | 1 | 1 |
| LUCASFILM | 1 | 2 | 3 | 4 |
| LUCASFILM | 2 | 3 | 3 | 4 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 3. | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| WCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| UUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | ${ }_{2}$ | 1 | 1 | 1 |
| LUCASFILM | 2 | 3 | 5 | 6 |
| LUCASFILM | 1 | 1 | 3 | $3$ |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM LUCASFIM | 1 1 | $\frac{1}{2}$ | 1 | 1 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 2 | 2 | 2 | 2 |
| LUCASFILM | 2 | 2 | 3 | 3 |
| LUCASFILM | 1 | 1 | 4. | 4 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 4 | 4 |
| LUCASFILM | 1 | 1 | 3 | 3 |
| LUCASFILM | 1 | 1 | 3. | 3 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 2 | 2 | 7 | 7 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 1 | 1 | 1 | 1 |
| LUCASFILM | 3 | 6 | 12 | 18 |
| LUCASFILM | 15 | 23 | 31 | 46 |
| LUCASFILM | 1 | 3 | 2 | 4 |
| LUCASFILM | 3 | 3 | 7 | 7 |
| WCASFILM | 1 | 1 | 1 | 1 |
| WCASFILM | 6 | 8 | 14 | 17 |
| WCASFILM | 1 | 1 | 2 | 2 |
| LUCASFILM | 2 | $2$ | 3 | $3$ |
| LUCASFILM | 9 | 10 | 9 | 10 |
| WCASFLM | 11 | $23$ | $21$ | $38$ |
| WCASFILM LUCASFILM | $\begin{aligned} & 1 \\ & 5 \end{aligned}$ | 1 | 11 | 13 |

Manager and Employee Counts by Employers and Titles Technical Class-2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 3 | 3 | 6 | 6 |
| LUCASFIM |  | 4 | 7 | a | 10 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 2 | 3 | 4 | 5 |
| LUCASFILM |  | 2 | 5 | 2 | 5 |
| LUCASFIMM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 3 | 4 | 7 | 8 |
| LUCASFLM |  | 2 | 5 | 6 | 11 |
| LUCASFIM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 4 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFIMM |  | 3 | 3 | 6 | 6 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFIMM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 2 | 2 | 3 | 3 |
| LUCASFLM |  | 3 | 4 | 9 | 11 |
| LUCASFIM |  | 5 | 12 | 10 | 17 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFIM |  | 1 | 1 | 2 | 2 |
| LUCASFIMM |  | 1 | 1 | 2 | 2 |
| LUCASFIMM |  | 1 | 1 | 2 | 2 |
| LUCASFIMM |  | 1 | 1 | 2 | 2 |
| UUCASFIMM |  | 1 | 1 | 2 | 2 |
| LUCASFIMM |  | 1 | 1 | 1 | 1 |
| LUCASFIMM |  | 2 | 2 | 3 | 3 |
| LUCASFILM |  | 4 | 4 | 4 | 4 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFIM |  | 16 | 33 | 41 | 70 |
| LUCASFILM |  | 13 | 15 | 29 | 31 |
| LUCASFILM |  | 1. | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
|  |  | 1 | 1 | 3 | 3 |
| LUCASFIMM |  | 1 | 1 | 1 | 1 |
| LUCASFIMM |  | 2 | 2 | 3 | 3 |
| LUCASFILM |  | 3 | 5 | 5 | 6 |
| LUCASFILM |  | 2 | 2 | 2 | 2 |
| LUCASFILM |  | 2 | 2 | 4 | 4 |
| LUCASFILM |  | 1 | 3 | 3 | 6 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFIMM LUCASFILM |  | 15 | 23 5 | 38 4 | 52 |
| LUCASFIMM |  | 4 | 5 | 4 | 5 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFIM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFIMM LUCASFIM |  | 2 | 2 5 | 3 | 3 |
| LUCASFILM LUCASFILM |  | 5 | 5 | 9 | $\frac{9}{4}$ |
| LUCASFILM |  | 1 | 2 | 3 | 4 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFIM |  | 1 | 3 | 4 | 9 |
| LUCASFILM |  | 2 | 3 | 6 | 9 |
| LUCASFIM |  | 2 | 3 | 4 | 5 |
| LUCASFILM |  | 1 | 1 | 4 | 4 |
| LUCASFIM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | $\frac{1}{2}$ |
| LUCASFIMM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 2 | 2 | 4 | 4 |

Manager and Employee Counts by Employers and Titles Technical Class-2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 4 | 4 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 4 | 4 |
| LUCASFILM |  | 2 | 5 | 4 | 9 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 2 | 3 | 4 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 4 | 4 |
| LUCASFILM |  | 4 | 4 | 5 | 5 |
| LUCASFILM |  | 1 | 1 | 4 | 4 |
| LUCASFILM |  | 2 | 5 | 5 | 11 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 4 | 4 |
| LUCASALM |  | 6 | 17 | 14 | 36 |
| LUCASFILM |  | 2 | 4 | 6 | 9 |
| LUCASFILM |  | 2 | 2 | 2 | 2 |
| LUCASFILM |  | 12 | 33 | 27 | 55 |
| UUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 2 | 4 | 5 |
| LUCASFILM |  | 9 | 10 | 15 | 16 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 2 | 2 | 6 | 6 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 30 | 63 | 69 | 121 |
| LUCASFILM |  | 11 | 15 | 19 | 20 |
| LUCASFILM |  | 2 | 2 | 2 | 2 |
| LUCASFILM |  | 1 | 3 | 3 | 6 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 3 | 4 | 3 | 4 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 2 | 4 | 8 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 9 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 2 | 2 | 5 | 5 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 4 | 4 | 7 | 7 |
| LUCASFILM |  | 1 | 1 | A | 4 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 2 | 3 | 4 | 6 |
| LUCASFIMM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFILM |  | 7 | 14 | 12 | 20 |
| LUCASFILM |  | 5 | 6 | 9 | 10 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFIM |  | 1 | 1 | 2 | 2 |
| LUCASFIMM |  | 2 | 2 | 4 | 4 |
| LUCASFIM LUCASFIM |  | 1 | 1 | 1 | 1 |
| LUCASFIMM LUCASFILM |  | 2 | 3 1 | 5 3 | 7 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 2 | 2 | 3 | 3 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFIM |  | 2 | 2 | 2 | 2 |
| LUCASFILM |  | 1 | 1 | 1 | 1 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |

Manager and Employee Counts by Employers and Titles
Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LUCASFILM |  | 3 | 10 | 8 | 24 |
| LUCASFILM |  | 3 | 17 | 6 | 36 |
| LUCASFILM |  | 1 | 5 | 2 | 10 |
| LUCASFILM |  | 3. | 5 | 5 | 9 |
| LUCASFILM |  | 2 | 6 | 5 | 16 |
| LUCASFILM |  | 1 | 1 | 3 | 3 |
| LUCASFLM |  | 1 | 1 | 1 | 1 |
| WUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 2 | 5 | 4 | 9 |
| LUCASFILM |  | 1 | 1 | 2 | 2 |
| LUCASFILM |  | 1 | 3 | 3. | 6 |
| PIXAR | 360_DEGREE_CREATIVE_LEAD | 2 | 1 | 2 | 2 |
| PIXAR | 360 _DEGREE_TECH_LEAD | 1 | 1 | 3 | 3 |
| PIXAR | ADMINISTRATOR_TECH_DEPT | 6 | 3 | 13 | 13 |
| PIXAR | ANIMATOR | 25 | 113 | 36 | 385 |
| PIXAR | ANIMATOR_DIRECTING | 7 | 9 | 9 | 18 |
| PIXAR | ANIMATOR_FIX | 7 | 22 | 8 | 39 |
| PIXAR | ANIMATOR_FIX LEAD | 2 | 1 | 2 | 2 |
| PIXAR | ANIMATOR_SUPERVISING | 15 | 11 | 24 | 36 |
| PIXAR | ARCHITECT_SYSTEM | 5 | 3 | 6 | 6 |
| PIXAR | ARTIST_AFTER_EFFECTS | 10 | 6 | 15 | 15 |
| PIXAR | ARTIST_CHARACTER. | 1 | 1 | 3 | 3 |
| PIXAR | ARTIST_GRAPHIC | 10 | 9 | 18 | 25 |
| PIXAR | ARTIST_MOTION_GRAPHIC | 2 | 2 | 2 | 2 |
| PIXAR | ARTIST_SKETCH | 21 | 23 | 29 | 67 |
| PIXAR | ARTIST_STORY | 21 | 39 | 37 | 135 |
| PIXAR | ARTIST_STORY_DEVELOPMENT | 8 | 3 | 10 | 11 |
| PIXAR | ART_DIRECTOR | 18 | 13 | 24 | 33 |
| PIXAR | ART_DIRECTOR_SHADING | 10 | 4 | 13 | 14 |
| PIXAR | CGI PAINTER | 9 | 14 | 11 | 26 |
| PIXAR | CHARACTER_DESIGNER: | 2 | 1 | 2 | 2 |
| PIXAR | CREATIVE_RESOURCES_ARTIST | 1 | 1 | 1 | 1 |
| PIXAR | DESIGNER | 1 | 1 | 2 | 2 |
| PIXAR | DESIGNER_CAMERA | 3 | 1 | 3 | 3 |
| PIXAR | DESIGNER_ENVIRONMENTAL | 4 | 1 | 5 | 5 |
| PIXAR | DESIGNER_GRAPHIC | 1 | 1 | 1 | 1 |
| PIXAR | DESIGNER_PRODUCTION | 14 | 6 | 22 | 29 |
| PIXAR | DESIGNER_SHADING | 1 | 1 | 1 | 1 |
| PIXAR | OESIGN_LEAD | 1 | 1 | 2 | 2 |
| PIXAR | DEVELOPER_RENDERMAN_PRODUCTS | 1 | 1 | 5 | 5 |
| PIXAR | DIR_ARTIST_MANAGEMENT | 2 | 1 | 3 | 3 |
| PIXAR | DIR_CREATIVE_ARTISTS | 2 | 1 | 3 | 3 |
| PIXAR | DIR_MEDIA_SYSTEMS | 2 | 1 | 2 | 2 |
| PIXAR | DIR_RENDERMAN_PRODUCT_DEV | 1 | 1 | 5 | 5 |
| PIXAR | DIR_STUDIO_TOOLS | 2 | 1 | 5 | 5 |
| PIXAR | DIR_SYSTEMS_INFRASTRUCTURE | 1 | 1 | 4 | 4 |
| PIXAR | DIR_TECHNICAL_ARTISTS | 1 | 1 | 2 | 2 |
| PIXAR | ENGINEER | 2 | 1 | 5 | 5 |
| PIXAR | ENGINEERING_MANAGER | 1 | 1 | 5 | 5 |
| PIXAR | ENGINEER_APL_QUALITY_ASSURANC | 3 | 2 | 6 | 7 |
| PIXAR | ENGINEER_APPLICATIONS | 2 | 2 | 3 | 3 |
| PIXAR | ENGINEER_ASSOCIATE | 1 | 1 | 5 | 5 |
| PIXAR | ENGINEER_ASSURANCE_AUTOMATION | 1 | 1 | 4 | 4 |
| PIXAR | ENGINEER_EDITORIAL_PIPELINE | 1 | 2 | 3 | 5 |
| PIXAR | ENGINEER_IMAGE_MASTERING | 2 | 2 | 4 | 4 |
| PIXAR | ENGINEER_LEAD | 1 | 1 | 4 | 4 |
| PIXAR | ENGINEER_LEAD_SOFTWARE | 3 | 5 | 4 | 7 |
| PIXAR | ENGINEER_MEDIA_SYTEMS | 2 | 4 | 6 | 12 |
| PIXAR | ENGINEER_MENV_SUPPORT | 1 | 1 | 3 | 3 |
| PIXAR | ENGINEER_PIPELINE | 1 | 3 | 5 | 14 |
| PIXAR | ENGINEER_PIPEUINE_ROTATION | 1 | 1 | 1 | 1 |
| PIXAR | ENGINEER_PNG_LEAD_SOFTWARE | 3 | 3 | 7 | 8 |
| PIXAR | ENGINEER_PNG_QUALITY_ASSURANC | 2 | 1 | 5 | 5 |
| PIXAR | ENGINEER_PNG_SOFTWARE | 9 | 29 | 19 | 78 |
| PIXAR | ENGINEER_PNG_SR_SOFTWARE | 3 | 1 | 5 | 5 |
| PIXAR | ENGINEER_PRODUCTION_SUPPORT | 2 | 5 | 5 | 16 |
| PIXAR | ENGINEER_QUALITY_ASSURANCE | 3 | 9 | 10 | 24 |
| PIXAR | ENGINEER_RECOBDING | 2 | 1 | 5. | 5 |
| PIXAR | ENGINEER_RENDERMAN_SUPPORT | 2 | 2 | 5 | 7 |
| PIXAR | ENGINEER_SCREENING_RDOM | 1 | 1 | 5 | 5 |
| PIXAR | ENGINEER_SOFTWARE | 19 | 66 | so | 191 |
| PIXAR | ENGINEER_SOFTWARE_GRAPHICS | 2 | 2 | 4 | 5 |
| PIXAR | ENGINEER_SOFTWARE_TECHSUPPORT | 1 | 1 | 5 | 5 |
| PIXAR | ENGINEER_SOFTWARE_TEMPORARY | 1 | 1 | 1 | 1 |

# Manager and Employee Counts by Employers and Titles Technical Class - 2005-2009 

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PIXAR | ENGINEER_SOFTWARE_TEST | 1 | 6 | 3 | 11 |
| PIXAR | ENGINEER_SR_AUTOMATION | 1 | 1 | 1 | 1 |
| PIXAR | ENGINEER_SR_MEDIA_SYSTEM | 2 | 3 | 6 | 7 |
| PIXAR | ENGINEER_SR_SOFTWARE | 9 | 5 | 22 | 22 |
| PIXAR | ENGINEER_SR_SW_INFRASTRUCTURE | 2 | 2 | 6 | 6 |
| PIXAR | ENGINEER_STUDIO_SUPPORT | 2 | 1 | 3 | 3 |
| PIXAR | ENGINEER_SW_INFRASTRUCTURE | 2 | 5 | 2 | 7 |
| PIXAR | ENGINEER_TECHNICAL_SUPPORT | 2 | 1 | 3 | 3 |
| PIXAR | FINANCIAL_APPS_DEVELOPER | 1 | 1 | 4 | 4 |
| PIXAR | HR_APPLICATION_DEVELOPER | 1 | 1 | 5 | 5 |
| PIXAR | IMAGE_MASTERING_COORDINATOR | 2 | 2 | 5 | 6 |
| PIXAR | INTERACTION_DESIGNER | 3 | 3 | 5 | 6 |
| PIXAR | INTRANET_DESIGNER_PNG | 1 | 1 | 1 | 1 |
| PIXAR | LAYOUT_ARTIST | 18 | 19 | 26 | 58 |
| PIXAR | LAYOUT_ARTIST_LEAD | 2 | 1 | 2 | 2 |
| PIXAR | MEDIA_SYSTEMS_COORDINATOR | 3 | 3 | 7 | 7 |
| PIXAR | MGR_350_GROUP | 1 | 1 | 1 | 1 |
| PIXAR | MGR_APPLICATIONS_GROUP | 1 | 1 | 3 | 3 |
| PIXAR | MGR_BUIL | 3 | 1 | 4 | 4 |
| PIXAR | MGR_DESKTOP_SYSTEMS | 2 | 1 | 5 | 5 |
| PIXAR | MGR_FINANCIAL_SYSTEMS | 2 | 1 | 5 | 5 |
| PIXAR | MGR_IMAGE_MASTERING | 3 | 2 | 5 | 5 |
| PIXAR | MGR_IT_CONSTRUCTION | 2 | 1 | 2 | 2 |
| PIXAR | MGR_LEAD_PROI_STUDIO_TOOLS | 1 | 1 | 2 | 2 |
| PIXAR | MGR_MEDIA_SYSTEMS | 3 | 2 | 6 | 7 |
| PIXAR | MGR_PROJECT | 2 | 2 | 4 | 4 |
| PIXAR | MGR_QUALTY_ASSURANCE | 3 | 1 | 5 | 5 |
| PIXAR | MGR_SR_PROJECT_STUDIO_TOOLS | 1 | 1 | 2 | 2 |
| PIXAR | MGR_SW INFRASTRUCTURE | 1 | 1 | 1 | 1 |
| PIXAR | MGR_SYSTEMS_INFRASTRUCTURE | 1 | 1 | 1 | 1 |
| PIXAR | MGR_SYSTEMS_OPERATIONS | 2 | 1 | 4 | 4 |
| PIXAR | MGR_TOOLS_WORKFLOW | 1 | 1 | 4 | 4 |
| PIXAR | MGR_USER_INTERFACE | 2 | 1 | 4 | 4 |
| PIXAR | PAINTER_DIGITAL | 10 | 12 | 15 | 28 |
| PIXAR | PAINTER_MATTE | 9 | 6 | 11 | 15 |
| PIXAR | PNG_GROUP_LEAD | 2 | 1 | 4. | 4 |
| PIXAR | PROJECT_MGR_PNG | 1 | 1 | 1 | 1 |
| PIXAR | PROJECT_MGR_RENDERMAN | 1 | 1 | 2 | 2 |
| PIXAR | PROJECT_MGR_STUDIO_TOOLS | 6 | 9 | 13 | 19 |
| PIXAR | RAPD_PROTOTYPE_COMPUTER_ARTIST | 1 | 1 | 3 | 3 |
| PIXAR | RENDER PIPEUNE SPECIALIST | 1 | 4 | 5 | 15 |
| PIXAR | RESIDENT_ANIMATION | 1 | 2 | 1 | 2 |
| PIXAR | RESIDENT_SOFTWARE_ENGINEER | 1 | 1 | 1 | 1 |
| PIXAR | RESIDENT_TECHNICAL_DIRECTOR | 3 | 41 | 4 | 41 |
| PIXAR | RESIDENT_TET_PILOT | 1 | 1 | 1 | 1 |
| PIXAR | SCIENTIST_SR | 9 | 6 | 21 | 26 |
| PIXAR | SCULPTOR | 7 | 2 | 9 | 10 |
| PIXAR | SR_VP_TECHNOLOGY | 2 | 1 | 3 | 3 |
| PIXAR | STORY_ARTIST_DIGTAL | 2 | 2 | 2 | 2 |
| PIXAR | SYSTEMS_ADMINISTRATOR | 5 | 16 | 14 | 57 |
| PIXAR | SYSTEMS_ADMINISTRATOR_ASSET | 2 | 2 | 3 | 4 |
| PIXAR | SYSTEMS_ADMINISTRATOR_JR | 1 | 1 | 2 | 2 |
| PIXAR | SYSTEMS_ADMINISTRATOR_JR_MAC | 1 | 2 | 4 | 7 |
| PIXAR | SYSTEMS_ADMINISTRATOR_LEAD | 1 | 3 | 1 | 3 |
| PIXAR | SYSTEMS_ADMINISTRATOR_SR | 5 | 11 | 19 | 47 |
| PIXAR | SYSTEMS_ANALYST | 1 | 1 | 2 | 2 |
| PIXAR | SYSTEMS_COORDINATOR | 1 | 1 | 2 | 2 |
| PIXAR | TECHNICAL DIRECTOR | 62 | 292 | 131 | 841 |
| PIXAR | TECHNICAL DIRECTOR_LEAD | 31 | 41 | 47 | 94 |
| PIXAR | TECHNICAL_DIRECTOR_ROTATION | 1 | 1 | 1 | 1 |
| PIXAR | TECHNICAL_IEAD_BACKUP_GROUP | 1 | 2 | 5 | 6 |
| PIXAR | TECHNICAL_IEAD JMAG_MASTERING | 1 | 1 | 1 | 1 |
| PIXAR | TECHNICAL_LEAD_MEDIA_SYSTEMS | 2 | 2 | 5 | 6 |
| PIXAR | TECHNICAL_LEAD_RENDERING | 1 | 1 | 5 | 5 |
| PIXAR | TECHNICAI_LEAD_STORAGE | 1 | 1 | 1 | 1 |
| PIXAR | TECHNICAL_LEAD_TELECOM | 2 | 1 | 5 | 5 |
| PIXAR | TECHNICAL WRITER | 2 | 2 | 4 | 4 |
| PIXAR | TECHNICAL_ WRITER_API | 3 | 1 | 4. | 4 |
| PIXAR | TECH_DIRECTOR_CRTV_SVCS | 1 | 9 | 5 | 22 |
| PIXAR | TECH_DIRECTOR_DEPT_SUPV | 13 | 25 | 18 | 53 |
| PIXAR | TECH_DIRECTOR 1 IEAD_CRTV_SVCS | 1 | 1 | 5 | 5 |
| PIXAR | TECH_DIRECTOR_SUPERVISING | 18 | 11 | 34 | 36 |
| PIXAR | TECH_DIR_SR_ANIM_SCIENTIST | 1 | 1 | 1 | 1 |
| PIXAR | TEST_PILOT_LEAD | 2 | 1 | 3 | 3 |

## Manager and Employee Counts by Employers and Titles <br> Technical Class - 2005-2009

| Employer | Title | Managers | Employees | Manager - Years | Employee - Years |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PIXAR | TEST_PILOT_SENIOR | 1 | 1 | 1 | 1 |
| PIXAR | USER_INTERFACE_DESIGNER | 4 | 3 | 6 | 8 |
| PIXAR | VISUAL_DESIGNER | 1 | 1 | 2 | 2 |
| PIXAR | VP_ADVANCED_TECHNOLOGY | 2 | 1 | 3 | 3 |
| PIXAR | VP_SOFTWARE_ENGINEERING | 3 | 3 | 6 | 7 |
| PIXAR | VP_SYSTEMS | 1 | 1 | 1 | 1 |
| PIXAR | VP_TECHNOLOGY | 1 | 1 | 1 | 1 |
| PIXAR | WORKFLOW_ARTIST | 2 | 2 | 3 | 3 |
| PIXAR | WORKFLOW INTERACTION DESIGNER | 2 | 1 | 3 | 3 |

Notes:
[1] Google data does not have Manager Information.
[2] Column Managers and Employees show the count of unique Manager IDs and Employee IDs by Employer and Job Title during 2005 - 2009.
[3] Column Manager - Years and Employee - Years show the total count of unique Manager IDs and Employee IDs by year and employer for each of the years in 2005 - 2009
Source: Dr. Leamer's backup data.

## Employee Counts by Employers and Year

 Technical Class - 2005-2009| Employer | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ | $\mathbf{2 0 0 9}$ | Unique Employee Counts <br> (2005-2009) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADOBE | 2,202 | 2,216 | 2,277 | 2,400 | 2,551 | 3,603 |
| APPLE | 3,343 | 3,673 | 4,231 | 4,933 | 5,571 | 6,908 |
| GOOGLE | 2,258 | 3,774 | 5,286 | 6,376 | 6,800 | 8,082 |
| INTEL | 28,989 | 27,780 | 26,709 | 26,390 | 26,458 | 37,338 |
| INTUIT | 1,592 | 1,849 | 2,237 | 2,344 | 2,230 | 3,719 |
| LUCASFILM | 2 | 295 | 587 | 572 | 626 | 869 |
| PIXAR | 478 | 550 | 568 | 666 | 704 | 848 |

Note: LUCASFILM data does not have title information before 2006, hence the low number in 2005. Source: Dr. Leamer's backup data.

## Manager Counts by Employers and Year Technical Class - 2005-2009

| Employer | 2005 | 2006 | 2007 | $\mathbf{2 0 0 8}$ | $\mathbf{2 0 0 9}$ | Unique Manager Counts <br> (2005-2009) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADOBE | 425 | 448 | 428 | 464 | 493 | 847 |
| APPLE | 689 | 761 | 860 | 1,050 | 1,155 | 1,615 |
| INTEL | 5,663 | 4,232 | 4,007 | 4,003 | 3,983 | 8,135 |
| INTUIT | 418 | 448 | 537 | 542 | 519 | 1,095 |
| LUCASFILM | 2 | 142 | 199 | 181 | 184 | 238 |
| PIXAR | 72 | 72 | 72 | 80 | 85 | 132 |

## Note:

[1] Google data does not have Manager information.
Source: Dr. Leamer's backup data.

## Intel Employee Counts by Job Function Technical Class - 2005 to 2009



Source: Intel compensation data. 76586DOC001050_AEO.xIs. Dr, Leamer's backup data.

## Intel Employee Counts by Region

Technical Class - 2005 to 2009

Source: Dr. Leamer's backup data.


[^0]:    ${ }^{1}$ Supplemental Expert Report of Edward E. Leamer, May 10, 2013 ("Leamer Supplemental Report").
    ${ }^{2}$ In Re: High-Tech Employce Antitrust Litigation, Order Granting in Part, Denying in Part Motion for Class Certification (April 5, 2013) ("Order") at 36.

[^1]:    ${ }^{3}$ Order at 42-43 and fn. 15 .

[^2]:    ${ }^{4}$ Leamer Supplemental Report 919 .
    ${ }^{5}$ Order at 36 .

[^3]:    ${ }^{6}$ Leamer Supplemental Report 967.
    ${ }^{7}$ Agam Shah, "Intel Freezes Salaries from CEO on Down," Computerworld, March 23, 2009.

[^4]:    ${ }^{8}$ I selected the job titles by restricting the data to class members who remained employed by the Defendant in that job title in each year from 2005 through 2010 (2006-2010 for Lucasfilm because its data did not include job titles before 2006). I then selected for each Defendant the job title that included 25 employees (or the closest number to 25 ) in order to have examples with as many employees as seemed reasonable to display graphically in a single chart. If more than one job title contained 25 employees, then I selected the first one ranked alphabetically.
    ${ }^{9}$ According to Dr. Leamer, "A high positive correlation means that compensation of a title moves in a way that is similar to compensation in the rest of the Technical Class, thus supporting the conclusion that the title and the class have "coordinated" compensation levels, a fact which is consistent with sharing of gains and broad impact of the anti-cold-calling conspiracy whether it directly affects the title under study or the rest of the Technical Class" (Leamer Supplemental Report \$51). I infer from this that Dr. Leamer considers his calculated correlations to be "high" and "positive."
    ${ }^{10}$ I include individuals that change job titles in my analysis because moving an individual into a new job title (e.g., promoting him from a Software Engineer 3 to a Software Engineer 4) is one way in which a firm can increase an individual's compensation (in response to a cold call or othervise) without adjusting the firm's compensation structure more broadly.

[^5]:    ${ }^{11}$ This comparison eliminates systematic effects, such as larger average increases for younger employees or for those with less tenure.

[^6]:    ${ }^{12}$ The difference between a 19 percent increase and a 19 percent decrease is 38 percent. In Exhibits 3-6, percent differences are defined as differences in logs.
    ${ }^{13}$ Appendix A provides additional evidence, relied upon by Dr. Leamer in his Reply Report, of the dispersion of compensation changes for employees at Intel and Apple within a single job title.
    ${ }^{14}$ Leamer Supplemental Report $\uparrow 4$.
    ${ }^{15}$ Leamer Supplemental Report $\uparrow \uparrow$.

[^7]:    ${ }^{16}$ Leamer Supplemental Report $942,46$.
    ${ }^{17}$ See, for example, George Casella and Roger L. Berger, Statistical Inference, 1990, pp. 160-168.

[^8]:    ${ }^{18}$ Data for Lucasfilm are limited to 2006-2011.
    ${ }^{19}$ These calculations correct for the difference in individual characteristics across titles by using annual-level regressions of compensation changes on individual characteristics and fixed job effects. The job-level deviations are measured by the fixed job effects in these regressions. Correcting for individual characteristics makes very little difference to the results. but Dr. Leamer has expressed concern that variation in individual characteristics may be generating some of the variation over time in job-level compensation (Expert Report of Edward E. Leamer, Ph.D.,
     characteristics and obtain very similar results which support the same economic conclusions.
    ${ }^{20}$ I select the jobs as follows. First, I take the top five jobs from each of the ten deciles at each Defendant. Because some deciles have fewer than five jobs, I have fewer than 50 jobs for most Defendants after this first step. Second, I take the next largest jobs (based on 2001-2011 employment, which is the same employment measure used by Dr. Leamer when constructing his deciles) until I have 50 jobs for each Defendant. Finally, when plotting the changes, I require the average number of employees across the two years for which I am calculating the change to be at least five. The number of jobs plotted ranges from 9 (at Google in 2002) to 50 (at Intel in years 2004 through 2011).

[^9]:    ${ }^{21}$ Exhibits 7 and 8 show changes in the raw data. I have also looked at versions of these charts adjusting the compensation changes for individual characteristics and fixed job effects. Adjusting for individual characteristics makes very little difference to the results.
    ${ }^{22}$ I have performed the same analysis for starting years of 2004 and 2006 because the starting year matters somewhat for the average level of change (although much less so for the variation in changes), and the results are comparable.
    ${ }^{23}$ Leamer Dep. at 563:8-15,

[^10]:    ${ }^{24}$ Dr. Leamer actually uses the average of class-wide compensation excluding the job at issue. Given the number of jobs, this is similar to the class-wide average compensation.
    ${ }^{25}$ In his backup. Dr. Leamer provided an estimate of the mean correlation by firm based on his "shrinkage" methodology. The average across Defendants of these measures is 0.57 . I use 0.6 for illustrative purposes.
    ${ }^{26}$ The square of the correlation coefficient, which measures the percentage of the variance in job-level compensation changes that are explained by changes in the class-wide average, is . 36 ( $0.36=0.6^{2}$ in this example). However, the range of variation in compensation changes we observe is measured by the standard deviation (which equals the square root of the variance), not the variance. This shows why Dr. Leamer's focus on the degree of correlation is so misguided.

[^11]:    ${ }^{27}$ Order at 36.
    ${ }^{28}$ Leamer Supplemental Report 924 (footnote omitted, emphasis added).

[^12]:    ${ }^{29}$ This problem is a critical issue in deriving conclusions from analyses such as those performed by Dr. Leamer.

[^13]:    ${ }^{30}$ Charles F. Manski, "Economic Analysis of Social Interactions" 14 J. Econ. Perspectives 115 (2000), at 128. Understanding mean reversion (or simultaneity) in data is an important issue when evaluating policy interventions (see Robert A. Moffitt, "Policy Interventions, Low-Level Equilibria, and Social Interactions" in Social Dynamics. MIT Press, 2001, Section 3.2.1 - Simultaneity).

[^14]:    ${ }^{31}$ Deposition of Edward Leamer, June 11, 2013 ("Leamer Dep.") at 747:17-749:16.

[^15]:    ${ }^{32}$ Leamer Dep. at 571:25-573:3 and 597:21-598:2.

[^16]:    ${ }^{33}$ Leamer Supplemental Report ${ }^{6} 65$.

[^17]:    ${ }^{34}$ Endogeneity causes the ordinary least squares estimator to be biased and inconsistent. See for example, William H. Greene, Econometric Analysis, Sixth Edition, Chapter 12. See also Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models and Economic Forecasts, Fourth Edition, Chapter 12.
    ${ }^{35}$ See, e.g., Milton Friedman, "Do Old Fallacies Ever Die?" 30 J. Econ. Literature 2129 (1992). Friedman says that he "suspect[s] that the regression fallacy is the most common fallacy in the statistical analysis of economic data." He also notes that "the phenomenon in question is what gave regression analysis its name."

[^18]:    ${ }^{36}$ This example is easily extended to allow for persistence in compensation over time. In particular, if we assume that the state persists with probability $\mathrm{p}<1$ (i.e. if times are good this year, they will be good the next year with probability p and shift to being average or bad each with probability (1-p)/2 then the regression coefficient will be $3 / 2(1-p)$ ). When $\mathrm{p}=1 / 3$ then we have the same case discussed above (no persistence). As long as $\mathrm{p}<1$, i.e. there is some temporary component to compensation, the regression coefficient will be negative.

[^19]:    ${ }^{37}$ Leamer Dep. at 634:3-635:6.
    ${ }^{38}$ Leamer Dep. at 690:5-691:22,
    ${ }^{39}$ Dr. Leamer's conduct regression estimates undercompensation based on total compensation, which includes onetime stock grants and bonuses. Therefore, even if one were to accept the results of his conduct regression, those results may be caused by the types of compensation that Dr. Leamer admits might not be shared.
    ${ }^{40}$ Susan E. Jackson et al., Managing Human Resources. Eleventh Edition. Chapter 11.
    ${ }^{41}$ At his deposition, Dr. Leamer stated that he believed that there would not be "measurement error" or "randomness" in compensation that "create regression to the mean" (Leamer Dep. at 642:12-643:10). However, this is incorrect. When pay is based on performance there will be random elements of pay due to the fact that there are many factors that determine performance beyond the skill level of the individual. Of course, this is not random like flipping a coin; it simply means there are many factors other than the measurable productivity of the individual or group that contribute to performance (and thus pay), and that such factors will vary over time. For example, the

[^20]:    batting averages of individual players and even teams exhibit strong reversion to the mean because the relationship between skill and outcomes is highly imperfect (see, for example, Nate Silver, The Signal and The Noise (2012)).
    ${ }^{42}$ Leamer Supplemental Report $\boldsymbol{\$ 2 6}$.
    ${ }^{43}$ In Re: High-Tech Employee Antitust Litigation, Plaintiffs' Supplemental Motion and Brief in Support of Class Certification, August 8, 2013 ("Motion") at 24.
    ${ }^{44}$ Chang Hwan Kim and Christopher R. Tamborini, "Do Survey Data Estimate Earnings Inequality Correctly? Measurement Errors Among Black and White Male Coworkers," Social Forces (2012). Donggyun Shin and Gary Solon, "New Evidence on Real Wage Cyclicality within Employer-Employee Matches," Scottish Journal of Political Economy 54 (2007).

[^21]:    ${ }^{45}$ The ACS database is obtained from IPUMS-USA (Integrated Public Use Microdata Series) which is a project "dedicated to collecting and distributing United States census data." (https:///Lsa.ipums.org/usa/) "The Integrated Public Use Microdata Series (IPUMS-USA) consists of more than fifty high-precision samples of the American population drawn from fifteen federal censuses and from the American Community Surveys of 2000-2011." (https://usa.ipums.org/usa-action/faq) "The ACS is a project of the U.S. Census Bureau that has replaced the decennial census as the key source of information about American population and housing characteristics. ... The 2000 ACS is an approximately 1 -in-750 public use sample consisting of 372,000 person records. Public use samples from the 2001-onward ACS are even larger. The 2001-2004 samples each represent approximately $0.4 \%$ of the population, including more than $1,000,000$ person records per sample. The 2005 -onward ACS datasets are full $1 \%$ samples containing more than $2,800,000$ person records." (https://usa.ipums.org/usa/acs.shtml).
    ${ }^{46}$ Like Dr. Leamer, I exclude the given occupation from the calculation of U.S. average compensation.

[^22]:    ${ }^{47}$ In Re: High-Tech Employee Antitrust Litigation, Expert Report of Professor Kevin M. Murphy, November 12, 2012.
    ${ }^{48}$ Motion at 24.

[^23]:    ${ }^{49}$ Leamer Supplemental Report ${ }^{4} 10$.
    ${ }^{50}$ Leamer Supplemental Report $\$ 11$.

[^24]:    ${ }^{51}$ Order fn. 15.
    ${ }^{52}$ Leamer Dep, at 770:25-771:13,
    ${ }^{53}$ Leamer Dep. at 770:19-23.
    ${ }^{54}$ When asked if he recalled "any reason why you didn't offer a criticism of that second approach by Dr. Murphy in your ... reply declaration," Dr. Leamer responded "Presumably because I didn't have comments to make about it" (Leamer Dep. at 771:6-13).

[^25]:    Source: Dr. Leamer's backup data and materials.

[^26]:    Source: http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm

[^27]:    Sources: Dr. Leamer's backup data; Dr. Leamer's Reply Report at 9/64.

[^28]:    ${ }^{1}$ Casey Ichniowski and Kathryn Shaw, "Insider Econometrics: Empirical Studies of How Management Matters," Handbook of Organizational Economic, editors Robert Gibbons and John Roberts. Princeton University Press, 2013: 263-311. "Insider Econometrics: A Roadmap with Stops Along the Way," Labour Economics, 2009.

[^29]:    ${ }^{2}$ Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane, Kathryn Shaw, "Reaching for the Stars: Who Pays for Talent in Innovative Industries?", Economic Journal, 2009.

[^30]:    ${ }^{3}$ Casey Ichniowski and Kathryn Shaw, "Beyond Incentive Pay: Insiders' Estimates of the Value of Complementary Human Resource Management Practices," 17 Journal of Economic Perspectives 155, 163-168 (2003). Casey Ichniowski and Kathryn Shaw, "Insider Econometrics: Empirical Studies of How Management Matters," Handbook of Organizational Economic, editors Robert Gibbons and John Roberts, Princeton University Press, 2013: 274-77. Casey Ichniowski and Kathryn Shaw, "Old Dogs and New Tricks: Determinants of the Adoption of Productivity-Enhancing Work Practices," Brookings Papers on Economic Activity, Microeconomics (1995), 1-65.
    ${ }^{4}$ Ann Bartel, Casey Ichniowski and Kathryn Shaw, "How Does Information Technology Affect Productivity? Plant-Level Comparisons of Product Innovation, Process Improvement, and Worker Skills," Quarterly Journal of Economics vol. 122 (4) (2007): 1721-1758.
    ${ }^{5}$ Edward Lazear and Kathryn Shaw, "Personnel Economics: The Economist's View of Human Resources," Journal of Economic Perspectives, vol. 21 (4), (Fall 2007): 91-114. Casey Ichniowski and Kathryn Shaw, "Beyond Incentive Pay; Insiders' Estimates of the Value of Complementary Human Resource Management Practices," Journal of Economic Perspectives, vol. 17 (1) (Winter 2003): 155-178.

[^31]:    ${ }^{6}$ See, e.g., Kathryn Shaw, "Insider Econometrics: A Roadmap with Stops Along the Way," 16 Labour Economics 607 (2009): 607-617; Casey Ichniowski and Kathryn Shaw, "Beyond Incentive Pay: Insiders' Estimates of the Value of Complementary Human Resource Management Practices," 17 Journal of Economic Perspectives 155, 163-168 (2003). Edward Lazear and Kathryn Shaw "Wage Structure, Wages, and Mobility," in An International Comparison of the Structure of Wages (2008). Casey Ichniowski and Kathryn Shaw, "Old Dogs and New Tricks: Determinants of the Adoption of Productivity-Enhancing Work Practices," Brookings Papers on Economic Activity: Microeconomics (1995): 1-65,

[^32]:    ${ }^{7}$ Order Granting in Part, Denying in Part Motion for Class Certification, In re: High-Tech Employee Antitrust Litigation, Case No. 11-CV-02509-LHK. Dkt. 382, Filed 04/05/2013 ("Class Certification Order") at 43:14; id. at 36:3-7 ("However, Dr. Leamer fails to explain how it may be inferred from [his analysis] that Defendants' salary structures were so rigid that compensation for employees with entirely different titles would necessarily move together through time such that a detrimental impact to an employee with one job title would necessarily result in an impact to other employees in entirely different jobs (i.e., that any impact would ripple across the entire salary structure.)"; id. at 45:1-3 ("The Court is most concerned about whether the evidence will be able to show that Defendants maintained such rigid compensation structures that a suppression of wages to some employees would have affected all or nearly all Class members.").

[^33]:    ${ }^{8}$ See generally Edward Lazear and Kathryn Shaw, "Personnel Economics: The Economist's View of Human Resources," Journal of Economic Perspectives, 21 (4), (Fall 2007): 91-114.
    ${ }^{9}$ Casey Jchniowski and Kathryn Shaw, "Insider Econometrics: Empirical Studies of How Management Matters," Handbook of Organizational Economic, editors Robert Gibbons and John Roberts, Princeton University Press, 2013; 263-311 (describing the benefits of insider economics, which uses insider information and data to analyze the impact of human resources management practices. "Insider Econometrics: A Roadmap with Stops Along the Way," Labour Economics, 2009 (same).
    ${ }^{10}$ Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane, and Kathryn Shaw, "Reaching for the Stars: Who Pays for Talent in Innovative Industries?", Economic Journal, 2009, 4-8 (describing software industry compensation practices). Paul Oyer and Kathryn Shaw, "Reward Systems," Human Resource Class Notes: Chapter 4 (Spring 2012) (describing subjective performance evaluations).

[^34]:    ${ }^{11}$ Paul Oyer and Kathryn Shaw, "Reward Systems," Human Resource Class Notes: Chapter 4 (Spring 2012). In contrast, certain firms are better suited to measure performance based on objective measures (such as, a call center may measure productivity and performance by tracking the number of calls processed or the length of each call).
    ${ }^{12}$ See also Casey Ichniowski and Kathryn Shaw, "Insider Econometrics: Empirical Studies of How Management Matters," Handbook of Organizational Economic, editors Robert Gibbons and John Roberts, Princeton University Press, 2013: 263-311. Edward Lazear and Kathryn Shaw, "Personnel Economics: The Economist's View of Human Resources," Journal of Economic Perspectives, 21 (4), (Fall 2007): 91-114. Kathryn Shaw, "Insider Econometrics: A Roadmap with Stops Along the Way," Labour Economics, 2009.

[^35]:    ${ }^{13}$ Casey Ichniowski and Kathryn Shaw, "Beyond Incentive Pay: Insiders" Estimates of the Value of Complementary Human Resource Management Practices," 17 Journal of Economic Perspectives 155, 163-168 (2003): 155-80 (contrasting the objectives of "innovative" human resource management practices and to contrast these with more "traditional" practices). Cf. Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane, Kathryn Shaw, "Reaching for the Stars: Who Pays for Talent in Innovative Industries?", Economic Journal, 2009; 5 ("[S]oftware firms on average pay relatively high salaries, but a small subset of workers in the industry receive particularly high wages."). Id. at 33 ("[T] he increasing movement of the economy towards knowledge workers has increased the value of stars to firms, and thus increased the variance of pay.").
    ${ }^{14}$ Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane, Kathryn Shaw, "Reaching for the Stars: Who Pays for Talent in Innovative Industries?", Economic Journal, 2009: 4 ("The highest skilled stars are much more highly valued and paid than those who are slightly less skilled."). Hallock himself wrote that "it should be recognized that paying people the same for working for a period of time (for example) may make others upset,

[^36]:    ${ }^{15}$ Thomas Lemieux, W. Bentley MacLeod, and Daniel Parent, "Performance Pay and Wage Inequality." The Quarterly Journal of Economics (2009) 124 (1):1-49. Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane, Kathryn Shaw, "Reaching for the Stars: Who Pays for Talent in Innovative Industries?", Economic Journal, 2009: 4 ("The highest skilled [software industry] stars are much more highly valued and paid than those who are slightly less skilled."). Edward Lazear and Kathryn Shaw, "Personnel Economics: The Economist's View of Human Resources," Journal of Economic Perspectives, vol. 21 (4), (Fall 2007): 4 ("IW]age inequality has risen markedly mainly because the upper tail of high earners has grown. This rising variance of pay has occurred within occupations and across occupations. The variance of pay has also risen within firms and across firms." (citing Autor, Katz, and Kearney, 2006)).

[^37]:    ${ }^{16}$ As a leading text book put it, a "justice principle that has been shown to prevail in many settings, especially where performance varies significantly across individuals, is simple equity. According to the equity principle, individuals ought to be rewarded commensurate with the outcomes they generate, factoring in the inputs effort, ability, and so on - they brought to bear in performing the task." (James N. Baron \& David M. Kreps, Strategic Human Resources 107 (1999)).
    ${ }^{17}$ The materials that Dr. Hallock relied upon in his report also makes this point. George Milkovich. Jerry Newman \& Barry Gerhard, Compensation 87 (McGraw-Hill Irwin 2011) ("One group argues that if fair (i.e., sizable) differentials among jobs are not paid, individuals may harbor ill will toward the employer, resist change, change employment if possible, become depressed, and lack that zest and enthusiasm which makes for high efficiency and personal satisfaction in work.").
    ${ }^{18}$ Paul Oyer and Kathryn Shaw, "Reward Systems," Human Resource Class Notes: Chapter + (Spring 2012) (comparing distributive justice and procedural justice in determining pay).

[^38]:    ${ }^{19} 76586 \mathrm{DOC} 001050$ AEO.xls. Appendix F, created based on this document, categorizes Intel's employees in the Technical Class by Job Functions.

[^39]:    ${ }^{20}$ I discuss the "other avenues" in detail below in sections B through $\mathrm{D}_{\text {, }}$

[^40]:    ${ }^{21}$ Streeter Dep. 265:25-266:12 (Adobe created ranges based on some spread that corresponded to the 65 th percentile of the market for a particular job title.);
    ${ }^{22}$ Ex. 1855 at 1855.107 containing the "sample distribution matrices" from which Dr. Hallock's Figure 14 is drawn) and 1855.103 (instructing managers to "differentiate by performance level" in determining their employees' compensation); Burmeister Dep. 104:9-14 (Figure 14 is an illustration of how Apple awarded merit salary increases based on individual performance and salary relative to market [SRP stands for salary range position and is "in reference to th[e] market midpoint" 1 .).
    ${ }^{23}$ Wagner Decl. Ex. A at 11

[^41]:    ${ }^{24}$ Dr. Hallock stated during his deposition that he did not examine whether market data included suppressed wages. Hallock Dep.216:18-217:22.
    ${ }^{25}$ Sheehy Dep. 8999-16 (Pixar uses the $\square$ percentile of the market data as the minimum and the $\square$ percentile of the market data as the maximum); Otellini Dep. 252:3- (Intel "establish[s] the ranges based upon our view of the market..."); Streeter Dep. 265:25-266:12 (Adobe created ranges based on some spread that corresponded to the 65th percentile of the market for a particular job title.); Wagner Decl, af 7-8
    ); Maupin Dep. 148:25-149:12 (Lucasfilm matches job descriptions to relevant market survey data and then assigns a job to a pay range that aligns with the percentile of the relevant market data for that job); Burmeister Decl. ๆ 4
    

    - McAdams Decl. 113 (Pixar requests the "Bay Area" or "Northern California" cut of Radford data, which includes hundreds of companies.); Maupin Decl. "F| 13 (iii), 14 (Lucasfilm used data from Croner Games for certain technical jobs, which no Defendant participated in

[^42]:    19. 33 McKell Dep. 269:6-
    20. 

    ${ }^{34}$ Arriada-Keiper Dep, 23:24-25 (Adobe: "Q: if the ranges go up do salaries increase? A: No."); Id. at 24:4-22 ("it becomes manager's discretion" on whether to raise a sub-minimum salary up to the minimum in the range); Maupin Dep. 94;24-95:8 (stating that, for Lucasfilm, while the market may cause "range structure increases" it does "not directly" lead to individual salary increases because such "salary increases [are] based on their performance"); McAdams Dep. 29:8-10 (Pixar employee offers and salaries are "usually within that salary range."); Burmeister Dep. 55:13-19 ("[Apple] salary ranges are reference points. They're - they're not hard minimums or hard maximums. Those are purely a reference point."); Ex. 391, 76583 DOC003753 (Intel's documents show that its employees were permitted to fall below salary ranges.): Wagner Dep. 26:22-25, 29:15-21

[^43]:    ${ }^{37}$ Hallock 91 207, 229, 239.

[^44]:    ${ }^{38}$ Fredrik Andersson, Matthew Freedman, John Haltiwanger, Julia Lane, Kathryn Shaw, "Reaching for the Stars: Who Pays for Talent in Innovative Industries?", Economic Journal, 2009; 4 ("IF]irms that operate in innovative high payoff product markets will select star workers and will pay stars both higher starting salaries and higher performance pay."), Id. 35 ("The high pay that innovating firms offer top knowledge workers increases the variance of pay in software - both across firms and within firms."). Edward Lazear and Kathryn Shaw, "Personnel Economics: The Economist's View of Human Resources," Journal of Economic Perspectives, vol. 21 (4), (Fall 2007): 21 ("[T]he wages of highly skilled 'star' workers have grown relative to the typical employee.").
    ${ }^{39}$ See, supra, footnote 25.

[^45]:    ${ }^{40}$ See, supra, footnote 34 .

[^46]:    Appendix D-7

[^47]:    ${ }^{41}$ The salary range for a job level is determined by benchmarking against relevant external market survey data. Van der Voort Dep. 195:25-196:6; Chau Dep. 32:9-33:15, 124:11-125:23; Maupin Dep. 148:25-149:12.

