
United States Court of Appeals
for the Federal Circuit

WISCONSIN ALUMNI RESEARCH FOUNDATION,
Plaintiff-Appellee

v.

APPLE INC.,
Defendant-Appellant

2017-2265, 2017-2380

Appeals from the United States District Court for the

Western District of Wisconsin in No. 3:14-cv-00062-wmc,
Judge William M. Conley.

Decided: September 28, 2018

MORGAN CHU, Irell & Manella LLP, Los Angeles, CA,

argued for plaintiff-appellee. Also represented by
CHRISTOPHER ABERNETHY, GARY N. FRISCHLING, ALAN J.
HEINRICH, AMY E. PROCTOR, JASON SHEASBY.

 WILLIAM F. LEE, Wilmer Cutler Pickering Hale and
Dorr LLP, Boston, MA, argued for defendant-appellant.
Also represented by ANDREW J. DANFORD, FELICIA H.
ELLSWORTH, LAUREN B. FLETCHER, KEITH SYVERSON.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 2

Before PROST, Chief Judge, BRYSON and O’MALLEY,
Circuit Judges.

PROST, Chief Judge.
The Wisconsin Alumni Research Foundation

(“WARF”) sued Apple Inc. for infringement of U.S. Patent
No. 5,781,752 (“the ’752 patent”). After a two-week,
bifurcated trial, a jury found Apple liable for infringement
and awarded over $234 million in damages. The district
court denied Apple’s post-trial motions for judgment as a
matter of law and for a new trial. Because no reasonable
juror could have found infringement based on the evi-
dence presented during the liability phase of trial, we
reverse the district court’s denial of Apple’s motion for
judgment as a matter of law. With respect to invalidity,
we affirm the grant of summary judgment in favor of
WARF.

I
 The technology at issue relates to how computer
processors execute a computer program’s instructions.
Computer programs are made up of lists of program
instructions written in “program order.” Although these
instructions could be executed sequentially—i.e., in
program order—some processors execute program in-
structions “out-of-order” to improve computer perfor-
mance.

Of course, when executing instructions out-of-order,
the processor must obtain the same result as if it had
executed the instructions in program order. This can be
complicated by the fact that “data dependencies” may
exist between individual program instructions. A data
dependence exists between two instructions if one instruc-
tion relies upon data produced or modified by an earlier,
or “older,” instruction in the program order. To illustrate,
the parties discuss “store” and “load” instructions that
access the same location in memory. Memory can be

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 3

thought of as a set of places to store data, where each
place has an address by which the contents of that place
can be accessed. See J.A. 1713 (testimony of Apple’s
expert, Dr. Colwell). A “store” instruction, or simply a
“store,” writes data to a given location in memory, over-
writing any data that had previously been stored in that
memory location. A “load instruction,” or “load,” reads
data from a given memory location and then uses that
data to perform some function. Id. at 1714. A data de-
pendence exists between a store instruction and a load
instruction if (1) the store instruction appears earlier than
the load instruction in the program order; and (2) the
store and load instructions will access the same memory
location—i.e., the same address—if and when the store
and load instructions are executed. In such a scenario,
the load instruction depends on the store instruction
having been executed first so that the data the load
instruction reads from memory is current and correct.

At the time a processor decides whether to allow in-
structions to execute out-of-order, it may be unclear
whether a data dependence exists between given store
and load instructions. This is called an “ambiguous
dependency.” J.A. 1429 (testimony of WARF’s expert, Dr.
Conte), 1715 (testimony of Dr. Colwell). This ambiguity
can occur, for example, if the address where the store
instruction will store data has not yet been determined,
due to some independent calculation. Without knowing
the ultimate storage location, the processor cannot deter-
mine whether the store and load instructions will access
the same memory location and, thus, cannot determine
whether a data dependence exists between those store
and load instructions.
 Even where an ambiguous dependency exists, the
processor may nonetheless choose to execute the poten-
tially dependent load instruction before the store instruc-
tion has finished executing. This is called “speculation”
because the processor is effectively speculating that no

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 4

data dependence exists between those store and load
instructions. A “mis-speculation” occurs if a data depend-
ence does exist between the two instructions, and the
processor executes the dependent load instruction before
the store instruction. If a processor correctly speculates—
in other words, if the processor correctly guesses that a
load instruction is not dependent on an earlier store
instruction that has not yet executed—processor perfor-
mance may be improved because the processor did not
needlessly delay execution of that load instruction.
J.A. 1431–32 (testimony of Dr. Conte). But, if a processor
mis-speculates, the processor essentially has to discard
work it has already performed and re-do the work in the
correct order. J.A. 1433 (testimony of Dr. Conte), 1717–19
(testimony of Dr. Colwell). This recovery process is called
“squashing” or “flushing.” J.A. 1433 (testimony of Dr.
Conte). As might be expected, mis-speculations do not
help processor performance, and may in fact harm per-
formance. In short, while out-of-order execution of in-
structions with ambiguous dependencies may improve
performance in cases where the processor speculates
correctly, performance may be decreased by mis-
speculation.

One method to minimize mis-speculation is for the
processor to make an informed decision as to whether it
should speculate. This is called “prediction.” This case
concerns a particular prediction method used to increase
the accuracy of processor speculation such that mis-
speculations are minimized.

A
The ’752 patent, which expired on December 26, 2016,

describes a specific prediction technique for an out-of-
order processor. In this case, WARF asserted independ-
ent claims 1 and 9, as well as dependent claims 2, 3, 5,
and 6. Claim 1 reads:

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 5

1. In a processor capable of executing program in-
structions in an execution order differing from
their program order, the processor further having
a data speculation circuit for detecting data de-
pendence between instructions and detecting a
mis-speculation where a [load] instruction de-
pendent for its data on a [store] instruction of ear-
lier program order, is in fact executed before the
[store] instruction, a data speculation decision cir-
cuit comprising:

a) a predictor receiving a mis-speculation indi-
cation from the data speculation circuit to
produce a prediction associated with the
particular [load] instruction and based on
the mis-speculation indication; and

b) a prediction threshold detector preventing
data speculation for instructions having a
prediction within a predetermined range.

’752 patent claim 1.1 Claim 9 reads:
9. In a processor capable of executing program in-
structions in an execution order differing from the
program order of the instructions, the processor
further having a data speculation circuit for de-
tecting data dependence between instructions and
detecting a mis-speculation where a [load] in-
struction dependent for its data on a [store] in-
struction of earlier program order, is in fact
executed before the [store] instruction, a data
speculation decision circuit comprising:

1 The modifications to the claim language reflect

the parties’ substitutions, for clarity, of the term “load” for
“data consuming,” and the term “store” for “data produc-
ing.” See Appellant’s Br. 12 n.1; Appellee’s Br. 13. We
adopt this helpful substitution in this opinion.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 6

a) a prediction table communicating with the
data speculation circuit to create an entry
listing a particular [load] instruction and
[store] instruction each associated with a
prediction when a mis-speculation indica-
tion is received; and

b) an instruction synchronization circuit only
instructing a processor to delay a later exe-
cution of the particular [load] instruction if
the prediction table includes an entry.

’752 patent claim 9.2
 According to the claim language, when the data
speculation circuit detects a mis-speculation, it sends a
mis-speculation indication to a predictor. Id. at claim 1.
The predictor then produces a prediction, based on the
mis-speculation indication, as to whether a data depend-
ence likely exists between the corresponding load and
store instructions. A higher prediction value indicates a
greater likelihood of data dependence and, therefore, a
greater likelihood that a mis-speculation will occur if
those instructions are executed out-of-order. Id. at col. 11
ll. 29–32. The prediction may be “updated based on
historical mis-speculations detected by the data specula-
tion circuit.” Id. at col. 8 ll. 8–9. Going forward, the
predictor “provides a dynamic indication to the data
speculation circuit . . . as to whether data speculation
should be performed.” Id. at col. 8 ll. 1–3. And, if the
prediction for a given load instruction exceeds a certain
“predetermined range,” speculation is prevented. Id. at
claim 1.

2 The parties have not distinguished these claims

for purposes of the infringement issues on appeal.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 7

B
 The products accused of infringement in this case are
Apple’s A7, A8, and A8X integrated circuit chips, which
include one or more processors. These processors include
a Load-Store Dependency Predictor (“LSD predictor”),
which is the technology at issue in this case.
 The LSD predictor detects data dependences between
load and store instructions and uses a prediction table to
make predictions based on those dependences. Each
entry in the prediction table includes (among other
things) a load tag, a store tag, and a prediction (or “coun-
ter”). The load tag is generated by taking certain infor-
mation about a load instruction, such as its address, and
creating a 12-bit load tag using a hashing function.
Because the load tags are limited to 12 bits, only 4,096
load tags are available. The hashing algorithm uses a
one-way hash, meaning that a given load tag cannot be
expanded back to the load instruction that generated that
load tag. Moreover, based on this hashing algorithm, it is
possible for multiple load instructions to hash to the same
load tag.

When multiple load instructions hash to the same
load tag, it is possible for multiple instructions to update
the same prediction in the LSD predictor’s prediction
table. This is called “aliasing.” See J.A. 2237 (testimony
of Apple’s expert, Dr. August), 2294 (same); see also
Appellant’s Br. 23–24; Appellee’s Br. 14. This means that
a given instruction’s history may impact the behavior of
all load instructions that share the same load tag.
J.A. 2166 ll. 15–18, 2168 ll. 7–11 (testimony of Dr. Au-
gust).

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 8

C
 WARF filed this patent infringement suit against
Apple in January 2014.3 Apple answered and asserted
counterclaims for declaratory judgment of non-
infringement and invalidity of the ’752 patent.
 Before trial, both Apple and WARF moved for sum-
mary judgment with respect to Apple’s counterclaims and
defenses of anticipation under 35 U.S.C. § 102, based on
U.S. Patent No. 5,619,662 (“Steely”). Specifically, Apple
asserted that claims 1–3, 5, 6, and 9 of the ’752 patent
were invalid as anticipated by Steely. The district court
granted summary judgment of no anticipation in favor of
WARF.
 Once the case proceeded to trial, the district court
bifurcated the trial into two phases: liability and damag-
es. After the liability phase, the jury found the asserted
claims infringed and not invalid.4 After the damages
phase of trial, the jury awarded WARF over $234 million
in damages.
 After trial, Apple moved for judgment as a matter of
law (“JMOL”) and, in the alternative, for a new trial. The
district court denied Apple’s post-trial motions in their
entirety. Apple timely appealed. This court has jurisdic-
tion under 28 U.S.C. § 1295(a)(1).

3 WARF has since filed a second infringement suit

against Apple with respect to additional products released
by Apple that WARF also believes infringe the ’752 pa-
tent. See Compl., Wis. Alumni Research Found. v. Apple
Inc., No. 3:15-cv-00621-WMC (W.D. Wis. Sept. 25, 2015),
ECF No. 1. That case is currently stayed pending the
outcome of this appeal. See J.A. 20346.

4 We note that the invalidity issues presented to the
jury are not before this court on appeal.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 9

II
“We review a district court’s denial of JMOL or a new

trial under the law of the regional circuit.” LifeNet Health
v. LifeCell Corp., 837 F.3d 1316, 1322 (Fed. Cir. 2016).
The Seventh Circuit reviews a district court’s denial of a
motion for judgment as a matter of law de novo. Clarett v.
Roberts, 657 F.3d 664, 674 (7th Cir. 2011). In doing so,
the appellate court “review[s] the record as a whole to
‘determine whether the evidence presented, combined
with all reasonable inferences permissibly drawn there-
from, is sufficient to support the verdict when viewed in
the light most favorable to the party against whom the
motion is directed.’” Id. (quoting Erickson v. Wis. Dep’t of
Corr., 469 F.3d 600, 601 (7th Cir. 2006)). A jury verdict
will be overturned only if no reasonable juror could have
found in the non-movant’s favor. Id.

A
 Apple contends that no reasonable juror could have
found that Apple’s processors literally infringe the assert-
ed claims of the ’752 patent.5 Specifically, Apple argues
that its processors satisfy neither the “particular” nor the
“mis-speculation” limitations recited in each of the claims.
 With respect to the “particular” limitation, independ-
ent claim 1 requires a predictor that “produce[s] a predic-
tion associated with the particular [load] instruction.”
’752 patent claim 1. Likewise, independent claim 9 re-
quires a prediction table that “create[s] an entry listing a
particular [load] instruction and [store] instruction each
associated with a prediction.” Id. at claim 9.

5 WARF abandoned its theory of infringement un-

der the doctrine of equivalents before trial, and has pro-
ceeded only on a theory of literal infringement.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 10

 Although neither party asked the district court to
construe “particular” before trial, WARF moved during
trial to preclude Apple’s expert, Dr. August, from testify-
ing that a prediction cannot be associated with a “particu-
lar” load instruction if each load tag represents multiple
load instructions. J.A. 18646–62. Specifically, WARF
argued that Apple’s expert should have been forbidden
from making any suggestion that each prediction must be
associated with one and only one load instruction.

Apple responded by arguing that the term “particular”
should carry its plain and ordinary meaning, and that its
expert’s theory of non-infringement was consistent with
that meaning. J.A. 18728 (“Apple has always maintained
that the phrase—which uses only an ordinary word—does
not require construction; the plain and ordinary meaning
should apply.”); J.A. 18730 (“Apple believes that the word
‘particular’ does not require any construction, because the
’752 patent uses the word in its ordinary sense.”); J.A.
18728 (“With respect to the ‘particular’ limitation, Dr.
August has consistently applied the plain and ordinary
meaning of the claim language.”). Apple explained that
the plain and ordinary meaning of “particular” meant that
the claimed “prediction” must be associated with a single
load instruction (i.e., one and only one load instruction),
rather than with a group of load instructions. See
J.A. 18729–33; see also J.A. 144 (Dist. Ct. Op. (summariz-
ing Apple’s argument)).

The district court denied WARF’s motion to exclude
the testimony of Apple’s expert. J.A. 142–46. In doing so,
the district court agreed with Apple that the term “par-
ticular” should be given its plain and ordinary meaning
and thus ruled that no jury instruction was necessary to
define that term. J.A. 145. Consistent with Apple’s
understanding of the plain and ordinary meaning, the
district court reasoned that “[f]rom the court’s reading of
claim 1 as a whole, it contemplates a single load instruc-
tion.” J.A. 144 (emphasis added). In the district court’s

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 11

view, this was “consistent with the plain meaning of the
claim terms ‘the’ and ‘the particular.’” J.A. 145. The
court thus “conclude[d] that claim 1 discloses a prediction
associated with a single load instruction.” J.A. 145 (em-
phasis added).6

On appeal, WARF does not dispute the district court’s
decision to give the term “particular” its plain and ordi-
nary meaning. See Appellee’s Br. 11, 26. Instead, WARF
appears to disagree with the district court’s understand-
ing of the plain meaning. Giving a term its plain and
ordinary meaning does not leave the term devoid of any
meaning whatsoever. Instead, “the ‘ordinary meaning’ of
a claim term is its meaning to the ordinary artisan after
reading the entire patent.” Phillips v. AWH Corp., 415
F.3d 1303, 1321 (Fed. Cir. 2005) (en banc). In our view,
the plain meaning of “particular,” as understood by a
person of ordinary skill in the art after reading the ’752
patent, requires the prediction to be associated with a
single load instruction. A prediction that is associated
with more than one load instruction does not meet this
limitation.7

6 We note that the district court, in its order deny-

ing Apple’s JMOL, stated that “a reasonable jury could
conclude that a prediction was associated with a particu-
lar load instruction even if that same prediction may be
associated with other load instructions.” J.A. 205 (altera-
tion omitted).

7 WARF contends that this view of the plain mean-
ing reads out the preferred embodiment of the ’752 pa-
tent, which purportedly uses partial instruction addresses
to identify load instructions, similar to the load tags used
in Apple’s products. See Appellee’s Br. 28–29. We are
unpersuaded. Figure 1 of the patent shows a program
stored in memory “at a plurality of physical addresses 19
here depicted as xx1–xx6 where the values xx indicate

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 12

 Applying the plain and ordinary meaning of the term
“particular,” and drawing all reasonable inferences from
the evidence in favor of WARF, we hold that no reasona-
ble juror could have found literal infringement in this
case. As explained above, each entry in Apple’s LSD
prediction table includes, among other things, a load tag
and a prediction. Each load tag is generated by hashing
information about a load instruction, such as its address,
down to a 12-bit load tag. Only 4,096 load tags are possi-
ble. And because of the way Apple’s hashing algorithm is
designed, multiple load instructions may hash to the
same load tag. Each load tag can therefore be associated
with a group of load instructions—namely, all of the load
instructions that hash to the same load tag. The practical
effect of this is that a given load instruction’s history will
impact the prediction associated with all load instructions
that hash to that same load tag.
 WARF first contends that the “prediction” correspond-
ing to a load tag will necessarily remain associated with a
“particular” load instruction that mis-speculates because
that load instruction will always hash to the same 12-bit
load tag. Appellee’s Br. 13. But, even accepting that a
load instruction will always generate the same 12-bit load
tag, see J.A. 2518 ll. 19–24, this is insufficient to satisfy

some higher ordered address bits that may be ignored in
this example.” ’752 patent col. 6 ll. 62–67; see also id. at
col. 5 ll. 44–49 (discussing Fig. 2). Although Figures 5–8,
which show the prediction table, then refer to the instruc-
tions as “LD 8” and “ST 10,” there is no indication in the
specification that instruction addresses are hashed or
truncated before being added to the prediction table.
Instead, the specification explains that the prediction
table of Figure 5 is reviewed to determine if a “particular”
instruction “identified by its physical address” is in the
prediction table. Id. at col. 11 ll. 3–7.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 13

this claim limitation because this argument ignores the
plain and ordinary meaning of the term “particular,” as
described above. Under that meaning, it is not enough
that an instruction hash to the same tag every time; the
dispositive issue is whether other instructions also hash
to that tag, such that the prediction is associated with a
group of instructions, rather than a particular instruc-
tion.8
 WARF’s second argument for upholding the jury
verdict appears to be that, even if the prediction must be
associated with a single load instruction, the products still
infringe in at least some circumstances—i.e., those in
which aliasing does not occur. Appellee’s Br. 15–18.
Certainly, a product that “sometimes, but not always,
embodies a claim nonetheless infringes.” Broadcom Corp.
v. Emulex Corp., 732 F.3d 1325, 1333 (Fed. Cir. 2013)
(alteration omitted) (quoting Bell Commc’ns Research,
Inc. v. Vitalink Commc’ns Corp., 55 F.3d 615, 622–23
(Fed. Cir. 1995)). But after reviewing the evidence and
drawing all reasonable inferences in favor of WARF, we
find that there is insufficient evidence to support WARF’s
theory that Apple’s load tags are sometimes associated
with a single load instruction.

8 On this point, WARF also argues that even if mul-

tiple instructions hash to the same load tag, “the ‘predic-
tion’ merely becomes associated with two loads, including
‘the particular [load]’ that mis-speculated.” Appellee’s Br.
16. WARF then contends that infringement still exists
because the preamble of the claims uses the word “com-
prising,” which allows for additional, unrecited elements.
Id. at 15–16. But “‘[c]omprising’ is not a weasel word with
which to abrogate claim limitations,” Spectrum Int’l, Inc.
v. Sterilite Corp., 164 F.3d 1372, 1380 (Fed. Cir. 1998),
and WARF’s application of that term here would frustrate
the plain meaning of “particular” as used in this patent.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 14

The evidence WARF points us to in support of this
theory is sparse. WARF contends that the frequency of
“aliasing” in Apple’s products is low (specifically, 0.1%),
which WARF takes to mean that load tags represent a
single load instruction at least sometimes (in fact, 99.9%
of the time). This conclusion, however, does not follow
from the evidence cited by WARF.

First, the inference WARF seeks to draw from the ev-
idence cited is not reasonable. The 0.1% statistic comes
from an email from Stephan Meier, an Apple engineer,
that pertains to testing various hashing functions.
J.A. 1499 (testimony of Dr. Conte). During trial, the
parties disputed the meaning of the 0.1% statistic, with
WARF arguing that it represents the frequency of alias-
ing, and Apple arguing that it represents the performance
impact of aliasing, see, e.g., J.A. 2238 ll. 10–18 (cross-
examination testimony of Dr. August). Although there
are a few isolated statements from Apple’s fact and expert
witnesses that WARF argues support its theory, see
J.A. 2238–40, the most thorough explanation of this piece
of evidence comes from WARF’s expert, and his testimony
undermines the inference WARF seeks to draw. Accord-
ing to WARF’s expert, Mr. Meier was trying to determine
the “performance impact” of using different hashing
functions to determine which hashing function performs
best, including an analysis of how many bits should be
used for the load tag. J.A. 1499–500 (testimony of Dr.
Conte). As explained by WARF’s expert, Mr. Meier con-
cluded that a 9-bit load tag would cause a loss of “0.9
percent in performance”; a 10-bit load tag would cause a
0.4% loss in performance; and a 12-bit load tag would
cause less than a 0.1% loss in performance. J.A. 1500
(testimony of Dr. Conte). Despite this explanation, which
indicates that Mr. Meier’s statistics were indeed describ-
ing overall performance, WARF’s expert jumped to the
conclusion that “aliasing is very rare.” J.A. 1501 (testi-
mony of Dr. Conte). But, in light of Dr. Conte’s testimony,

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 15

it is unreasonable to infer that the 0.1% statistic was
referring to the frequency of aliasing.

Second, even accepting WARF’s unreasonable view of
this evidence (that the frequency of aliasing is 0.1%), this
does not support an inference that load tags sometimes
represent a single load instruction. “Aliasing” does not
simply refer to two load instructions hashing to the same
load tag. Instead, “aliasing” occurs when two load in-
structions actually update the same prediction in opera-
tion because they share the same load tag. See J.A. 2294
(testimony of Dr. August) (“Q: First, what’s the difference
between the load tags’ grouping of load instructions and
the concept of aliasing? A: So the grouping is always
present. Aliasing is when the program is running, what is
the performance impact of that grouping.”); see also
Appellant’s Br. 23–24; Appellee’s Br. 14. It is therefore
not reasonable to infer that load instructions rarely hash
to the same load tag, merely because the frequency of load
instructions actually updating the same prediction during
operation is low.

Finally, WARF points to Apple’s technical documenta-
tion, arguing that certain language in the documentation
demonstrates that Apple’s LSD predictor “uniquely”
identifies load instructions. Appellee’s Br. 14 (citing
J.A. 10131); see also J.A. 1489 l. 8–1490 l. 8 (testimony of
Dr. Conte, discussing J.A. 10131). Apple points out,
however, that the documentation merely states that the
LSD predictor “can be thought of” as uniquely identifying
load instructions, Reply Br. 2–3 (quoting J.A. 10131), and
that “in practice” the load tags are the result of applying
the hashing algorithm. Id.; see also J.A. 2178 ll. 3–22
(testimony of Dr. August). Reading the quote in context,
it is not reasonable to infer that the load tags, in practice,
uniquely identify load instructions. And even if this
inference were reasonable, it would not be enough to
support a finding that Apple’s processors actually practice
the “particular” limitation.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 16

In short, there is not substantial evidence to support
WARF’s theory that, in Apple’s LSD predictor, a predic-
tion (by way of a load tag) is at least sometimes associated
with a single load instruction. And, given that only 4,096
load tags are possible, and that Apple’s operating system
alone contains millions of load instructions, the only
reasonable inference to draw is that load tags will always
represent multiple load instructions. See J.A. 1605–06
(testimony of Dr. Conte), 2296–97 (testimony of Dr. Au-
gust).9
 In sum, drawing all reasonable inferences in favor of
WARF, there is insufficient evidence to support the jury’s
finding that Apple’s products literally satisfy the “particu-
lar” limitation. As this conclusion is sufficient to set aside
the jury’s infringement finding, we need not address
Apple’s arguments regarding the “mis-speculation” limita-
tion.

B
 Apple also contends that the district court erred in
granting summary judgment of no anticipation based on
the Steely prior art reference. The district court deter-
mined that Steely did not disclose the “prediction”
claimed in the ’752 patent. Wis. Alumni Research Found.
v. Apple, Inc., No. 14-cv-062-WMC, 2015 WL 4668247, at
*13–16 (W.D. Wis. Aug. 6, 2015) (“MSJ Order”). In Ap-
ple’s view, this determination was based on an incorrect
construction of the term “prediction.” Apple also contends
that, even under the court’s construction, a genuine
dispute of material fact exists, making summary judg-
ment improper.

9 Although WARF’s brief states that programs can

have fewer than 4,096 load instructions, WARF has not
pointed us to any evidence to support this assertion. See
Appellee’s Br. 17.

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 17

1
Claim construction is ultimately a legal question re-

viewed de novo, with any subsidiary fact-findings regard-
ing extrinsic evidence reviewed for clear error. Teva
Pharm. USA, Inc. v. Sandoz, Inc., 135 S. Ct. 831, 841
(2015).

The parties dispute the construction of the term “pre-
diction.” WARF contends that a “prediction” must be
dynamic, meaning it is capable of receiving updates.
Apple contends that while a “prediction” includes dynamic
predictions, the term is also broad enough to include
static predictions (i.e., those incapable of receiving up-
dates). The district court agreed with WARF, concluding
that a prediction, as used in the patent, must be “capable
of receiving updates.” MSJ Order at *13.

On appeal, Apple argues that the plain and ordinary
meaning of “prediction” encompasses both dynamic and
static predictions. Apple further contends that the pa-
tent’s specification does not limit a “prediction” to being
dynamic, and that by requiring that the prediction be
capable of receiving updates, the district court improperly
imported a limitation from the preferred embodiment.
See Appellant’s Br. 38–39. Apple’s arguments are unper-
suasive, as explained below.

First, “the ‘ordinary meaning’ of a claim term is its
meaning to the ordinary artisan after reading the entire
patent.” Phillips, 415 F.3d at 1321. Reading the patent
as a whole, it is clear that the claimed prediction must be
capable of receiving updates. The term “prediction” is
used throughout the specification to describe a prediction
value that updates based on a given load instruction’s
historical mis-speculation behavior. See ’752 patent
col. 11 ll. 33–35 (“Normally the prediction 109 starts at
zero when an entry is first made in the prediction table 44
and is incremented and decremented as will be described
below.”); see also id. at col. 8 ll. 7–11 (“The prediction

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 18

provided by the predictor circuit 33, as will be described,
is updated based on historical mis-speculations detected
by the data speculation circuit 30. For this reason, the
data speculation circuit 30 must communicate with the
predictor circuit 33 on an ongoing basis.”). Specifically,
the prediction is updated as new information is gathered
regarding the likelihood of future mis-speculation. Id. at
col. 12 l. 61–col. 13 l. 3 (“[T]he predictor circuit 33 must
also make adjustments in its prediction table 44 if there is
a mis-speculation, [T]he prediction table 44 is
checked to see whether the LOAD/STORE pair causing
the mis-speculation is in the prediction table 44 already.
If so then at process block 302, the prediction 109 is
updated toward synchronize so that this mis-speculation
may be avoided in the future.”); id. at col. 12 ll. 14–17 (“In
this case, the prediction that there was a need to synchro-
nize was wrong and so at process block 120 the prediction
109 is decremented toward the do not synchronize
state.”); id. at col. 12 ll. 50–55 (“In this case, the predic-
tion 109 is updated toward the synchronize condition
indicating that the prediction that there was a need to
synchronize was correct as there is in fact a LOAD in-
struction waiting to be synchronized.”). Where, as here,
“a patent ‘repeatedly and consistently’ characterizes a
claim term in a particular way, it is proper to construe the
claim term in accordance with that characterization.”
GPNE Corp. v. Apple Inc., 830 F.3d 1365, 1370 (Fed. Cir.
2016) (quoting VirnetX, Inc. v. Cisco Sys., Inc., 767 F.3d
1308, 1318 (Fed. Cir. 2014)).

Second, Apple has not pointed us to any portion of the
specification that describes a static prediction. Although
Apple directs our attention to “alternative embodiments”
for obtaining the prediction—methods other than incre-
menting, such as “various weighting schemes” or “complex
pattern matching techniques”—none of the passages
concerning these embodiments describe a static predic-
tion. See Appellant’s Br. 39 (citing ’752 patent col. 14

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 19

ll. 6–14); Reply Br. 13 (citing same). Instead, the embod-
iments merely illustrate methods other than “simply
incrementing it in value for each speculation” for calculat-
ing the value of the prediction. ’752 patent col. 14 ll. 8–9.
In short, by allowing the claimed “prediction” to also
include static predictions, Apple’s proposed construction
would “expand the scope of the claims far beyond any-
thing described in the specification.” Kinetic Concepts,
Inc. v. Blue Sky Med. Grp., Inc., 554 F.3d 1010, 1019 (Fed.
Cir. 2009); see id. (limiting the term “wound” to “skin
wound,” rather than allowing it to encompass “pus pock-
ets,” where all of the examples in the specification in-
volved skin wounds).

In sum, rather than improperly reading a limitation
from the preferred embodiment into the claims, the dis-
trict court’s construction, with which we agree, properly
reads the claim term in the context of the entire patent.

2
 Apple next contends that the district court erred in
granting summary judgment of no anticipation, even
under the district court’s construction of “prediction,”
which requires that the prediction be “capable of receiving
updates.” Appellant’s Br. 40–42. Specifically, it contends
that a genuine factual dispute exists as to whether Steely
discloses predictions capable of receiving updates.
 Applying Seventh Circuit law, “[w]e review the grant
of summary judgment de novo, construing all facts and
drawing all inferences ‘in the light most favorable to the
non-moving party.’” Austin v. Walgreen Co., 885 F.3d
1085, 1087 (7th Cir. 2018) (quoting Zuppardi v. Wal-Mart
Stores, Inc., 770 F.3d 644, 649 (7th Cir. 2014)).

Steely discloses out-of-order processors that use past
mis-speculations (or “collisions”) to predict whether load
instructions should be allowed to execute out-of-order.
See Steely col. 2 ll. 63–66. Steely uses “tags” to indicate

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 20

whether instructions that were “previously reordered and
executed had a collision” and to “ascertain whether the
. . . instructions can be reordered.” See id. at col. 2 l. 64–
col. 3 l. 1. Specifically, Steely assigns “tags” to load and
store instructions that mis-speculate (or “collide”). Alt-
hough Steely discloses multiple techniques for generating
tags, the parties focus on the first technique disclosed.
According to this technique, “when a pair of load and store
instructions cause a problem the first time”—i.e., when
they are executed out-of-order and a mis-speculation
occurs—“a portion of the address in memory which result-
ed in a load-store collision are [sic] saved.” Id. at col. 48
ll. 1–4. The example in Steely uses five bits of the
memory address as the tag. Id. at col. 48 ll. 26–28. That
tag is associated with the load and store instructions that
mis-speculated when reordered. Id. at col. 48 ll. 26–29,
37–50; see also J.A. 15069 ¶ 162 (invalidity report of Dr.
Colwell). The next time that same pair of load and store
instructions is called, the instructions’ tags are compared.
If the tags match, those instructions will not be executed
out-of-order. Steely col. 48 ll. 33–36; J.A. 15069 ¶¶ 162–
63, 15136–37 ¶¶ 301–02 (invalidity report of Dr. Colwell).

Apple contends that the outcome of this comparison is
a “prediction,” as it indicates the likelihood of mis-
speculation if those instructions are executed out-of-order.
We agree that this is a reasonable inference to draw at
the summary judgment stage. The only question, then, is
whether the outcome of that comparison is also “capable
of receiving updates,” as is required under the proper
construction of the term “prediction.”
 Apple’s expert, Dr. Colwell, provided an example in
his invalidity report explaining how the outcome of this
comparison can change. He reasoned that the outcome
may change because, “[a]s more mis-speculations occur,
one or both of the tags of the same pair of load and store
instructions may change to different values, resulting in
different outcomes from a comparison of the tags.”

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 21

J.A. 15137–38 ¶ 303. In other words, if the store instruc-
tion from the first load-store pair is reordered with a
different load instruction, and a mis-speculation occurs,
both of those instructions would receive a tag based on
the memory address that the instructions were accessing.
According to Dr. Colwell, this necessarily causes the store
instruction’s tag to change. And because the store in-
struction’s tag has changed, that tag will no longer match
the tag of the original load instruction. Thus, Dr. Colwell
concludes that the outcome of the comparison of the
original load-store pair will be different. Id. Based on
this example, Apple contends that Steely discloses a
variable “prediction” that is “capable of receiving up-
dates.”
 WARF responds that Dr. Colwell’s example is mere
speculation regarding how Steely might be implemented,
and that Steely itself never discloses that tags, once
generated, can change. Appellee’s Br. 45.
 We agree with WARF that no reasonable juror could
find that Steely’s specification discloses the behavior
described in Dr. Colwell’s example regarding changing
tags. Apple points us to just two statements from the
specification as support for this disclosure: (1) a state-
ment regarding the size of the tag storage table, see Steely
col. 47 ll. 56–60; and (2) a statement that tags “will be
stored” in that table, see id. at col. 48 ll. 29–30. Based on
the size of the table, Apple contends that a fact-finder
could infer that each instruction can be associated with
only a single tag (as opposed to, for example, allowing an
instruction to carry multiple tags). So, the argument
goes, because tags “will be stored,” when a given instruc-
tion receives a new tag, the new tag is stored in the table,
and the former tag is necessarily changed. But the infer-
ence Dr. Colwell would have a fact-finder draw from the
size of the table is not reasonable. And although Apple
cites additional evidence in attempt to bolster this theory
(namely, uncorroborated inventor testimony and another

WISCONSIN ALUMNI RESEARCH v. APPLE INC. 22

reference stating generally that Steely uses a “predic-
tion”), such evidence is insufficient to create a genuine
dispute of material fact.

We therefore agree with the district court that no rea-
sonable juror could find that Steely discloses the “predic-
tion” limitation of the ’752 patent’s claims. We therefore
affirm the district court’s grant of summary judgment on
this issue.

III
 For the reasons stated above, we reverse the district
court’s denial of Apple’s JMOL motion with respect to
non-infringement, but affirm its grant of summary judg-
ment with respect to Apple’s anticipation defense based
on Steely.

AFFIRMED-IN-PART AND REVERSED-IN-PART
COSTS

 The parties shall bear their own costs.

