Cygnus Systems, Inc. Doc. 1 Att. 1

TABLE OF CONTENTS OF EXHIBITS

Exhibit Description
A United States Patent No. 7,346,850

Dockets.Justia.com

http://dockets.justia.com/docket/court-azdce/case_no-2:2008cv02337/case_id-418555/
http://docs.justia.com/cases/federal/district-courts/arizona/azdce/2:2008cv02337/418555/1/1.html
http://dockets.justia.com/

EXHIBIT A

US007346850B2

United States Patent

(12) (10) Patent No.: US 7,346,850 B2
Swartz et al. 45) Date of Patent: Mar. 18, 2008
(54) SYSTEM AND METHOD FOR ICONIC 5,479,599 A 12/1995 Rockwell et al.
SOFTWARE ENVIRONMENT 5,581,760 A 12/1996 Atkinson et al.
MANAGEMENT 5,675,752 A * 10/1997 Scott et al. 715/866
(75) Inventors: Gregory J. Swartz, Kokomo, IN (US); 5,682,536 A 10/1997 Atkinson et al.
James B. Swartz, Kokomoj IN (US), 5,689,703 A 11/1997 Atkinson et al.
Christopher J. Danforth, Bunker Hill, 5,717,877 A 2/1998 Orton et al.
IN (US) 5,751,286 A * 5/1998 Barber et al.ccooceo.... 345/835
(73) Assignee: Cygnus Systems, Inc., Kokomo, IN SILLISY A 6/1999 " Jain et al.
(US) 5,973,692 A * 10/1999 Knowlton et al. 715/835
6,002,401 A 12/1999 Baker
(*) Notice: Subject to any ((aisglaimeé,. the ?I’m gf ﬂ;lg 6,026433 A * 2/2000 D’Arlach et al. 709/217
patent 1s extended or adjusted under 6.052750 A * 4/2000 L 707/1
U.S.C. 154(b) by 439 days. ,052, €8 iirriieeeiri e e
(21) Appl. No.: 09/878,009
(22) Filed: Jun. 8, 2001 * cited by examiner
. .. Primary Examiner—Cao (Kevin) Nguyen
(65) Prior Publication Data (74) Attorney, Agent, or Firm—ILesavich High-Tech Law
US 2001/0028368 Al Oct. 11, 2001 Group, P.C.
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 09/097,283, filed on
Jun. 12, 1998, now abandoned. . o .
A method and system for storing, navigating and accessing
(51) Int. Cl files within an operating system through the use of a
GOG6F 13/00 (2006.01) graphical thumbnail representing the video display of the
GO6F 15/00 (2006.01) active document within the active application, and organized
(52) US.CL oo, 715/763; 715/765 chronologically by the most recent file ‘captured’. Filena-
(58) Field of Classification Search 345/835, mes, application names and thumbnail filenames are stored
345/860, 786, 763, 765; 715/748, 780, 750, in an indexed file. The indexed file can consist of every
715/840, 835, 860, 786, 854, 700, 737, 735, document and application used during a session or categori-
715/743,744,761, 763-765 cally defined by project or tasks or personal preference. This
See application file for complete search history. also stores the application name and path eliminating the
(56) References Cited need to remember which application last edited the file and

U.S. PATENT DOCUMENTS

5,375,200 A 12/1994 Dugan et al.

Transfer Screen
Capture Image

where the application is located.

17 Claims, 20 Drawing Sheets

308

. 403 Dacument Path,
\ Document Hendle
. Application Path,

Document Handle
Application Path,
.

.

lication Handle
Document Path,

lication Handle

Document Path,
Document Handle
Application Path,
Application Handle

U.S. Patent Mar. 18, 2008 Sheet 1 of 20 US 7,346,850 B2

103

FIG. 1

U.S. Patent Mar. 18, 2008 Sheet 2 of 20 US 7,346,850 B2

I I SO I R
SEARE 3oOME TR DE940 (O] FEAcE wpPas $AG0 WS X Lot 0D O
pplicatians (1112870465,

301 9(,; : 102

FIG. 2

U.S. Patent Mar. 18, 2008 Sheet 3 of 20 US 7,346,850 B2

302
303

305

304

E I Y Y A s o)

A L s KA

e v
o o e S St 8 o e el o A i S = b
e e

LY ey
S & AL LY N

s *
e et et
o Frims e i 13 W
oA e S S e £ P ¢ ks b Nt e A
s iyt
e

vk ..

el - A i ety
et ¢ ol

1999 Dudgelaty Insues 208

A« wilthry %
‘@7_ f YapinGren
[&

¥t R
e S s
(¥t

|ﬂSIides:4 | 1/28/98' 4:58 PM

FIG. 3

U.S. Patent Mar. 18, 2008 Sheet 4 of 20 US 7,346,850 B2

401
\ Word
Processor Bocy 402
];“_E‘ Opan o,g:g‘ Document Path, K

Flio B \ \d, Document Handle Utility

FieC N Application Path, \ Software
F Application Handle 403

Document Path, File D
Document Handle

1 Application Path, 402

Appilication Handle
401 \/ Multimedia
. Players

\ Database

Program .
[Fiea ‘ .
File B
File C
~—~ Document Path,

..\ Document Handle
Application Path,

Application Handle

401

e

\ Spreadsheet
Program

Flls A ‘
File 8

File C

T

FIG. 4

\

U.S. Patent Mar. 18, 2008

Sheet 5 of 20 US 7,346,850 B2
401
\J word _ /_\
Processor D L__] D
;:: S__L Transfer Screen

Capture | &
File G P mag

305

403 Document Path,
\ Document Handle

. Application Path,
Application Handle

Document Path,
Document Handle

Application Path,
Application Handle

Document Path,
Document Handle
Application Path,

Application Handle

FIG. 5

U.S. Patent Mar. 18, 2008 Sheet 6 of 20 US 7,346,850 B2

401 —~_| word 403
Processor -\
301/ (O] gpon orAcivate
file and/or Flen | Update Document Path,
Application File 8 EL* Document Handle
B Flle C Application Path,
Application Handle
Document Path,
Document Handle
- Application Path,
Application Handle
305

Document Path,
Document Handle
Application Path,

Application Handle

. _/—

FIG. 6

U.S. Patent Mar. 18, 2008 Sheet 7 of 20

US 7,346,850 B2

Activote Softuare)\/ 7000

to track all information on
opened, saved or closed files

!

newly created file in any program

Yy

to activate the capture sequence

:

file is copied onto the topmost
position of the Snapshot Navigator Menu

'

the mouse cursor over the screen
capture image(on the Snapshot Navigator
Menu) of the file they wish to access

l

the retrieve sequence is activated

File Access Tracking Module begins /‘ 7001

7002
User opens afile or saves a /—

7003
User presses keyboard hot key /

Screen capture of the currently active / 7004

User retrieves files by placing / 7005

User presses the mouse button and _/— 7006

User saves File Snapshot List. All the File Snapshots
and the information on their associated application
path and filename path are saved to disk.

f 7007

FIG.7

U.S. Patent Mar. 18, 2008 Sheet 8§ of 20 US 7,346,850 B2

g000
@er Presses Capture Hot-K@’\/

8001
Get Application handle tothe | /"
current active application

l

Get the application filename /- 8002
that corresponds to the current

active application handle

Is this handle the
same handle as the interface
af the present inventign

8004
Determine if this active application f

has an active child document

:

Call Screen Capture routine to 8005
capture the client area of the active

window (MD1) or the application itself,
if no MDI support and Store in Memory

8006
NO

Does Application
have a Multiple Document
Interface?

FIG. 8a

U.S. Patent Mar. 18, 2008 Sheet 9 of 20 US 7,346,850 B2

4

8007
Set search positionat| /"
top of Snapshot List

8008

Is it at the
bottom of the
apshot Li

Yes

Search file access tracking log file for the M- 8009
first instance of current document handle,
increment and save array position

8010

oes the handie
correspond to the
ument filena

No

8011

oes the application
handle for this array position
respond to the applicatio

No
filename
8012
oes filename
exist in log Yes

if we did not find the application handle or application 8013
filename on the running list then. Add the application F/
handle and application filename to the
Snapshot Navigator Menu as a new File Snapshot

J—

8014
Update File Snapshot information L~

Y
C Return)
FIG. 8b

U.S. Patent Mar. 18, 2008 Sheet 10 of 20 US 7,346,850 B2

N8/

Set search position at |/~ 8015
top of snapshot list

8016
bottom of the

Search file tracking access log file 8017
for first instance of current active f
application handle, increment
and save array position

8018

Does the handle
correspond to the
application filename

8019

Does document
filename exist in log

8020

Yes _andle & application Filena

on Snapshot Navigator

f 8021

If we did not find the application handle or application
filename on the running list then add the application
handle and application filename to the Snapshot
Navigator Menu as a new File Snapshot

;

8022
Update File Snapshot information ~a

v
C Return)

FIG. 8c

U.S. Patent Mar. 18, 2008 Sheet 11 of 20 US 7,346,850 B2

Go0o
C Retrieve Filej‘/

f 8001
User clicks on file snapshot

l 9002
Retrieve array paosition of slide list

f 9003
[s this an Yes
MDI files

FIG. 9a

U.S. Patent Mar. 18, 2008

is filename active in
le access tracking |

Is application
handle valid

Does application
handle correspond to
plication Filenam

9005

/ 9011

Sheet 12 of 20 US 7,346,850 B2

f9004

No

No

2006
No

f 90Q7

Launch Application

¥

Update application handie
in the File Snapshot

/ 2008

this file in the log active

Make the application associated with

—

Yes

Launch Document

<

Y

Update document handle
in the File Snapshot

o012

l

File Snapshot at the top

Update slide list with current

f 9013

4
C Return D

FIG. 9b

U.S. Patent

Is application

Mar. 18,

2008 Sheet 13 of 20

9014

Yes

US 7,346,850 B2

handle valid

Ve 9015

Search active windows for
running application filename

No

Was the
running application filename

- 9018

Get its application
handie and update

8017

andle correspond to application

9016

Does Application

filename

di 2 File Snapshot
¢ nmemony? information
9020
Is filename
valid?
Launch
aoiiation |-~ 9% Application |~ 02
& Document

A 4

Sit idle until the application
has completely opened

v

Update Application &
document information
in File Snapshot

FIG. 9¢

Y

U.S. Patent Mar. 18, 2008 Sheet 14 of 20 US 7,346,850 B2

Is Document
handle valid

Make document | /~ 8027
handle active

Is filename

Does document
handle correspond t

Make document active

v

Update document | /™ 9030
handle for File Snapshot

FIG. 9d

U.S. Patent Mar. 18, 2008 Sheet 15 of 20 US 7,346,850 B2

9031
No

Is filename
valid?

Search monitor log for Ve 9032
active document
filename

Was document
filename found in file
ccess tracking log

Get its document handle | /"~ 8034
and update File Snapshot

J’ 8035
Make document active

v

Update document handle |_r— S036
for File Snapshot

FIG. 9e

U.S. Patent Mar. 18, 2008 Sheet 16 of 20

US 7,346,850 B2

9037

is document
file open in any
other application

Yes

- 9039

Launch Document

9040 Store application Handle, Filename,
y ya document handle, document filename
Update document into file access tracking Log
handle for File Snapshot

4 —r_ i

Ignore attempt e 9042
to launch document

y

Update slide list with current |/~ 9043
document at the top

FIG. of

U.S. Patent Mar. 18, 2008 Sheet 17 of 20 US 7,346,850 B2

Sit idle untif File gets opened and O 00
otification is sent from File System Hoo
) 2

10001
File System Hook Tigae Mopmior Prosram -
3

Get the Application Handle to the | _~—— 10002
program that accessed the file

Y

Get the Application Filename associated | /~ 10003
with the program handle that accessed the file

10004

Does the
application Filename match
resent inventi

Yes

Get the document filename from the | _~— 10005
File System Hook

L 2

Get the document handle through the parent application (if one exists) | 10006
associated with the file that got opened

10007

e there any entries t
ave identical information to the newest info
rrent opened/sav

No
Check each entry in the log to see if it has been _/10008
subclassed and if not we need to subclass it
L 2

Subclass the application handle and document handle (if one exists - MDI) |~ 10009
(so that whenever it is closed out it is removed from the list)
) 4

If the application is a non MDI, search the log for any occurrence of both 10010
application Handle and application FileName that are identical to /
newly opened/saved slide and destroy that entry

Yy

Add the application handle, application filename, document handle | ~—10011
(if one exists), document filename to the logging file on the hard drive

y
10012
Sit Idle until a file gets accessed or a h@‘{

> (application or document) that has been <
\ subclassed has been ‘closed’ /

FiG. 10

Yes

U.S. Patent Mar. 18, 2008 Sheet 18 of 20 US 7,346,850 B2

11001
File access tracking /

initiates this kernel

Sit Idle until a document or 11002
application handle gets closed

When a handle is closed the handle |/ 11003
value is passed to this function

y

Remove it from the subclass |~ 11004
list since it is no longer valid

Does this handle

ve a parent hand
_r— 11006
v 11008 Remove from the HD the information
Remove the enﬁre set of fOf ONLY the document including
information for that file inciuding Document Filename, and Document
Application Filename, Application Handle. Leave the Application info alone
Handle, Document File Name, 11007
and Document handle, from the HD v Ve
{ Search the entire list for any

straggler handles and remove
them based on filename only

Search the entire list for any f 11009
straggler handles and remove
them based on application handle only

Check each application handle

11010
to see if its valid in memory |
and remove any invalid ones

Y

Sit Idle until File gets accessed or a handle 11011
{application or document) that has been
subclassed has been ‘closed’

FIG. 11

U.S. Patent Mar. 18, 2008 Sheet 19 of 20

US 7,346,850 B2

|40
@r Converts File Snapshot to ‘TemplaD\/

'

User selects menu function to convert
File Snapshot to “Template'

12001

;

The File Snapshot information is
duplicated into specific data directory

12002

I

Duplicated document file (Template) is
marked as a READ-ONLY file.

FIG. 12

U.S. Patent Mar. 18, 2008 Sheet 20 of 20 US 7,346,850 B2

500
Getrieve ‘Templatey'/

13001
User clicks on template snapshot -/—

'

Template snapshot information is
passed to the document retriesve e 13002
routine at step 9003 (FIG. 9a),
and process continues from step
89003 (FIG. 9a)

FIG. 13

US 7,346,850 B2

1

SYSTEM AND METHOD FOR ICONIC
SOFTWARE ENVIRONMENT
MANAGEMENT

This is a continuation of U.S. patent application Ser. No.
09/097,283, filed Jun. 12, 1998 now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates in general to systems and
methods for managing files and documents in a computer
system. More particularly, the present invention relates to
graphical user interfaces for storing, navigating and retriev-
ing files and documents in a computer system.

It is known to provide a graphical user interface (GUI) for
application programs on a computer. Early GUIs were
provided by applications such as word processors and
spreadsheets. GUIs have since been incorporated into com-
puter operating systems, and provide functions such as
allowing an operator to access files and programs on the
computer by using a mouse to select and activate icons that
represent the files and programs. GUIs for accessing files
and applications through icons are typically either part of or
added to the underlying operating system that. manages
storage of the files and execution of the applications. For
example, the Windows™ operating systems from Microsoft
Corporation, including Windows 3.X, Windows 95, and
Windows NT, and the Macintosh™ operating systems from
Apple Corporation all provide such GUIs.

Continual increases in the amount and complexity of
information stored and manipulated by computer systems
have required operators to interact with an increasing num-
ber of files and applications. The growth of computer
networks and the corollary growth in shared data has also
increased the amount of information accessible to the opera-
tor. Increases in the amount and complexity of information
stored by computer systems and networks have also caused
concomitant increases in the amount and complexity of the
graphical information representing the underlying file sys-
tem presented to the user by operating system GUIs.

SUMMARY OF THE INVENTION

According to aspects of the present invention, methods
and systems are provided to allow a user to manage files for
use by applications on a computer system while insulating
the operator from the complexity of the underlying file
system architecture of the computer operating system. The
user can rely on the visual representations of the files
without the need to recall or determine every directory path
for every file’s location. Visual cues are provided that
eliminate the difficulties in retrieving documents based on
file names and paths used in storage of files in multiple
directories or on multiple computer systems.

The present invention provides an improved method and
system for storing, navigating and retrieving files and docu-
ments in a computer system. A method by which this is
accomplished includes the following: the use of graphical
representations of the documents and applications as viewed
on the screen at the time of ‘capture’, a Snapshot Navigator
Menu that automatically appears when the mouse pointer is
directed to the edge of the screen and disappears when the
mouse leaves the visible area of the Snapshot Navigator
Menu.

The present invention also provides an improved method
and system for storing iconic interfaces to files and docu-
ments on the mass storage devices in a logical, organized

20

25

30

35

40

45

50

55

60

65

2

fashion that eliminates the need for the user to memorize the
exact or actual location of the files stored throughout the
hierarchical directory structure employed by present day
storage devices and operating systems.

The present invention further provides the user the capa-
bility to switch between applications, as well as documents
that are currently open and/or open applications and docu-
ments, with one click of the mouse.

In addition, the present invention provides the user the
ability to create ‘template’ documents for applications that
may not support an internal ‘template’ format, by duplicat-
ing specific files and launching the template file and/or
template file and application with a single click.

Additional features of the invention will become apparent
to those skilled in the art upon consideration of the following
detailed description of the preferred embodiment exempli-
fying the best mode of carrying out the invention as pres-
ently perceived.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description particularly refers to the accom-
panying figures in which:

FIG. 1 is a pictorial representation of a data processing
system which may be utilized to implement methods and
systems of the present invention;

FIG. 2 is a pictorial representation of a computer display
screen illustrating a method and system of the present
invention;

FIG. 3 is a pictorial representation of a graphical user
interface for the methods and systems of the present inven-
tion;

FIG. 4 is a pictorial representation of a file access tracking
log and its interaction with two basic types of applications,
MDI and non-MDI;

FIG. 5 is a pictorial representation of a document capture
sequence illustrating the interaction with an application and
file, a log file, and a user interface to the present invention;

FIG. 6 is a pictorial representation of a document retrieve
sequence illustrating the interaction with a user interface
according to the present invention, an application and file,
and a log file;

FIG. 7 is a flow diagram of the basic operation of software
according to the present invention;

FIGS. 8a-c are a flow diagram of a capture routine;

FIGS. 9a-f are a flow diagram of a retrieve routine;

FIG. 10 is a flow diagram of a file access tracking module
for tracking opening and saving of documents;

FIG. 11 is a flow diagram of a file access tracking module
for tracking closing of application and documents;

FIG. 12 is a flow diagram of a document to template
conversion process; and

FIG. 13 is a flow diagram of a template retrieve routine.

DETAILED DESCRIPTION OF THE DRAWINGS

A brief explanation of ‘window’, ‘handle’, ‘parent win-
dow’, and ‘child window’ is necessary to understand the
references to them throughout the discussion of the present
invention. In the preferred embodiment, a ‘window’ in its
purest form is any graphical element that is displayed on the
screen. A ‘handle’ is an object identifier in memory, which
can be associated with windows, files, and other elements in
memory. A window without a ‘parent window’ is a top level
window, which is typically an application. An application
typically has many ‘child windows’ which make up the
graphical interface consisting of buttons, scroll bars, icons,

US 7,346,850 B2

3

text boxes, etc. Child windows can have multiple child
windows which can also have child windows, thereby con-
structing a structure of parent-child relationships between
the various graphical elements of an application or top-level
window.

It is understood that multiple applications can be opened
or active simultaneously, but only one application can be in
the ‘foreground’ accepting input (keyboard, mouse, etc.)
instructions from the user at any given time, with any other
applications currently open being in the ‘background’. Like-
wise with MDI (multiple document interface) applications
there can only be one document in the foreground accepting
input (keyboard, mouse, etc.) instructions from the user at
any given time and any other documents currently open
within the application would be in the background. Docu-
ment handles only exist with applications that support the
MDI capability. Basically, MDI specifies whether or not an
application can have multiple files open simultaneously to
allow the user to switch between them during their editing
process, and a non-MDI application would only support one
file open at any give time. The term ‘document’ includes, but
is not limited to, text files, graphic images, sound files,
spreadsheets, databases, web pages with URL addresses,
video clips, animations, compound documents which could
include any the file formats mentioned, presentations, etc. A
computer system includes storage devices that would store
the application and document files in directories and sub-
directories, such as a hard drive or floppy drive. In the
preferred embodiment, applications and the operating sys-
tem are provided with an implementation-independent
Application Programming Interface (API) that provides a set
of functions that are invoked by client and server applica-
tions to act upon particular objects.

‘Subclassing’ refers to the process of intercepting Win-
dows messages that are sent to and from the operating
system and ‘windows’ and forcing the operating system to
call a function specified with the present invention before
the operating systems calls the original function for that
window. Windows messages are commands that are used by
the operating system and the applications to communicate
the need to perform specific functions. For example, the
operating system will send a message to a window when the
user has clicked on a button, in order to notify the applica-
tion that it needs to perform the necessary functions asso-
ciated with that button.

A ‘File System Hook’ is a function of the operating
system that allows applications to monitor all activity within
the file system to determine what files have been opened,
saved, read, written, or deleted. The File System Hook
actually intercepts the functions calls made to the operating
system by any application currently open. The File System
Hook has access to the following pieces of information: the
process/application that requested the file access, the file-
name and path of the file that is being accessed, what type
of'access is being performed (save, open, read, etc.), whether
or not the access was completed successfully, and other
miscellaneous information.

With reference now to the figures and in particular FIG.
1, a computer system 100 which may be utilized to imple-
ment the method and system of the present invention
includes a processor 101 coupled to a display screen 102, a
keyboard 103, and a graphical pointing device 104. Proces-
sor 101 includes memory and one or more storage devices
such as a hard disk drive and a floppy disk drive (not shown).
By way of example, computer system 100 is an IBM-PC
compatible computer running the Microsoft Windows 95
operating system and may or may not be connected to a local

20

25

30

35

40

45

50

55

60

65

4

area network or other internetworking system. Graphical
pointing device 104 may be implemented utilizing a mouse,
light pen, touch sensitive screen, voice recognition hard-
ware, or any other device suitable to control and operate the
graphical user interface. A keyboard 103 ‘hot-key’ typically
consists of a combination of keystrokes that activate specific
features or functions in applications. For example, pressing
and holding down the ‘SHIFT” key and then pressing the
function key ‘F1°, and releasing both keys would be con-
sidered a ‘hot-key’ combination.

FIG. 2 depicts computer display screen 102 displaying a
Snapshot Navigator Menu 301 along with open applications,
both MDI 401 and non-MDI 402 capable. Referring now to
FIG. 3, Snapshot Navigator Menu 301 includes five basic
elements: a menu bar 302, a tab strip 303, a File Snapshot
List 304, individual File Snapshots 305, and a status bar 306.
Snapshot Navigator Menu 301 is attached to the left or right
edge of the screen and automatically appears when the
mouse pointer is directed to the edge upon which the
Snapshot Navigator Menu 301 resides. The Snapshot Navi-
gator Menu 301 automatically disappears shortly after the
mouse pointer moves away from the Snapshot Navigator
Menu 301 and into other areas of the screen.

File Snapshot 305 includes a miniaturized graphical
depiction of the screen at the time the document and/or
application is open and was ‘captured’, using a screen
capture of the active window, onto Snapshot Navigator
Menu 301. Alternatively, File Snapshot 305 can be gener-
ated by constructing a graphical depiction based on the
contents of the document without actually without actually
creating a screen display. File Snapshot List 304 is a group
of File Snapshots 305 that are saved/stored to the mass
storage device with a filename that is typically representa-
tive to the collective content of the File Snapshots 305. An
illustrative File Snapshot List 304 would be a group of File
Snapshots 305 that would all pertain to a specific topic. An
example of such a list would be text documents consisting
of memos, letter, notes etc., as well as spreadsheet files,
graphic files of mechanical drawings, etc. that collectively
would be necessary for a person in management to prepare
a budget for a department within a corporation.

An illustrative File Snapshot 305 includes the following
information: graphic thumbnail image of the document at
the point of capture, the document filename, the file object
identifier, document handle (if applicable), the application
filename, the application handle, and the application’s MDI
capabilities. The graphic thumbnail image illustratively is a
screen capture of the document as displayed during manipu-
lation by the application that has been scaled down to fit into
one of the File Snapshot 305 positions on the Snapshot
Navigator Menu 301. Tab strip 303 is used to switch
between File Snapshots 305 and Template Snapshots (not
shown) and Desktop Icons (not shown).

Template Snapshots are a miniaturized graphical depic-
tion of the screen at the time the document was converted
into a ‘template’, as well as the application filename and
document filename. As discussed in more detail below, the
‘template’ is a duplicated copy of a File Snapshot 305 that
allows users to open pre-formatted files within applications
that may or may not inherently support a template format for
its files.

Desktop Icons are graphical icons that are positioned onto
the initial screen of the preferred embodiment and are easily
accessible when applications are either not open or have
been ‘minimized’. Minimized is a state when the application
has been reduced to a small icon and is longer being
displayed onto the main screen. The Desktop Icons feature

US 7,346,850 B2

5

allows Snapshot Navigator Menu 301 to display all of these
icons at any time, whether applications are open and being
displayed on the screen or not, making them easily acces-
sible to the user.

Status bar 306 is used to display the current date and time
as well as the number of File Snapshots 305 or Template
Snapshots currently open and to display any other desired
information during operation. Menu bar 302 is used to
access the commands available for opening, saving, and
printing of File Snapshot Lists 304, as well as exiting the
program and accessing on-line help, configuration settings
and other advanced features. The process of ‘capturing’, as
described in more detail below, includes recording a graphi-
cal representation of the document as well as the document
and application filenames, including the entire directory
path, and placing the image representative of this informa-
tion onto the Snapshot Navigator Menu 301. The process of
‘retrieving’, as described in more detail below, includes
opening the application and document from their respective
locations on the mass storage device, unless either the
application or document is currently active (open in
memory). If an application or document is already active,
“focus’ is switched to that application and document. Focus
indicates which window currently is receiving mouse and
keyboard events.

Referring now to FIG. 4, there is depicted a pictorial
representation of the File Access Tracking Module’s ‘log’
that is dynamically modified to contain the information
about all documents that are currently open and the appli-
cations that they reside in. MDI-capable applications 401
illustrate how each application is listed with each file entered
into the log. Non-MDI-capable applications 402 illustrate
how there exists only one entry for each application that has
one file open within it. Log file 403 maintains the application
filename, application handle, document filename, and docu-
ment handle (if applicable) provided for each application
and file.

Referring now to FIG. 5, there is depicted a pictorial
representation of the document capture sequence. This
sequence is initiated by the user pressing a keyboard capture
hot-key while working within an application 401, 402. A
screen capture of the document with the application is
transferred to the File Snapshot 305 of Snapshot Navigator
Menu 301, as well as the corresponding path and handle
information from the File Access Tracking Module log file
403.

Referring now to FIG. 6, there is depicted a pictorial
representation of the document retrieve sequence. This
sequence is initiated by the user clicking on one of the File
Snapshots 305 of Snapshot Navigator Menu 301. The appli-
cation 401 and/or the document is either opened or simply
activated and brought to the foreground and then the appli-
cation filename, application handle, document filename and
document handle (if applicable) are transferred to the File
Access Tracking Module where the log file 403 is updated.

FIGS. 7-11 illustrate the process of capturing and retriev-
ing files from their original locations and their respective
editing applications onto and from, respectively, Snapshot
Navigator Menu 301. FIGS. 12 and 13 illustrate the process
of converting documents to ‘templates’ and retrieving ‘tem-
plates’, respectively.

In general, as illustrated in FIG. 7, the user begins by
launching the software as described in the present invention
in step 7000. In step 7001 the File Access Tracking Module
begins to track each file as it is opened and the respective
application that opened the file as well as the window handle
for the application and the document, if the document is

20

25

30

35

40

45

50

55

60

65

6

opened within an application supporting standard MDI
features. Tracking of file openings by the File Access
Tracking Module is discussed in more detail below in
reference to FIG. 10. Next, in step 7002, the user proceeds
to open a file or saves a newly created file to a storage
device. Next in step 7003, at any time during the process of
editing and/or viewing the file within the application they
have opened, the user presses a keyboard hotkey to activate
the capture sequence. The capture sequence is discussed in
detail below in reference to FIGS. 8a-c.

In step 7004, the screen capture of the currently active file
and its application are copied onto the topmost position of
the Snapshot Navigator Menu 301 along with the corre-
sponding application directory path and file path. Next in
step 7005, the user places the mouse over the graphical
representation of the file being manipulated and in step
7006, the user clicks the mouse button and the retrieve
sequence is activated. The retrieve sequence is discussed in
detail below in reference to FIGS. 9a-f Next, in step 7007,
when the user has ‘captured’ the documents and would like
to store this listing to a storage device, the listing is stored
with each document filename, application filename and the
graphic thumbnail image.

FIGS. 8a-c are detailed flow diagrams of the capture
process that is activated when the user presses the capture
hotkey in step 8000. FIG. 5 shows a functional diagram of
the capture process. In this routine the screen capture 305
and information from the log file 403 are verified and
transferred to the Snapshot Navigator Menu 301. In step
8001, by intercepting the hotkey keystroke throughout the
entire operating system the active application can be deter-
mined by an API function call. Another API function call is
used to determine the application window handle (the object
identifier in memory used to identify the graphical window
of the application) of the application that is currently active.
In step 8002, an API function call is used to determine the
filename and path of the active application. In step 8003, the
application handle is compared to the application handle of
the software, that is the present invention, and if the handles
are identical this capture is discarded and system control is
returned to the user; otherwise the process continues. In step
8004, the application handle is interrogated to determine
what, if any, child window handles exists and if any of those
handles have characteristics that correspond to the criteria
for an MDI interface. In step 8005; an API function call is
made to perform a screen capture of the contents of a
specified window handle. If a child window handle meets
the specified criteria for an MDI then a screen capture
function is performed on that child window and stored in
memory, otherwise the screen capture function is performed
on the entire application window and stored in memory. In
step 8006, the characteristics of the application window are
analyzed to determine if the application supports MDI, in
which case the process continues to step 8007. If the
application is non-MDI compliant then the process contin-
ues to step 8015.

In step 8007, a search pointer is positioned at the top of
a list of files that have been logged by the File Access
Tracking Module to begin searching through the most
recently logged files and applications. In step 8008, the
search pointer is checked to see if it is at the bottom of the
list, in which case control transfers to step 8013. If the search
pointer is not at the bottom of the list, then in step 8009 the
document handle from the log file 403 is retrieved for the
instance of the current document handle obtained in 8004.
This information is saved, the pointer is incremented and
stored, and control then proceeds to step 8010. In step 8010,

US 7,346,850 B2

7

the document handle captured from step 8004 is compared
to the retrieved document handle, and if they match then
control proceeds to step 8011. If the document handles do
not match then control returns to step 8008 to examine the
next position in the list. In step 8011, the application handle
in the list is compared to the application handle captured
from step 8001 and if they match control proceeds to step
8012. If the application handles do not match then control
returns to step 8008 to examine next position in the list.

In step 8012, the document filename is checked to see if
it exists in the File Access Tracking Module’s log file 403,
and if so control proceeds to step 8014. If the document
filename does not exist in the log then control proceeds to
step 8013. In step 8013, if the current application handle or
application filename could not be found in the log, then the
application handle and application filename get added to the
Snapshot Navigator Menu 301 with a ‘blank’ filename
(blank actually consists of a filename “*No Filename Asso-
ciated*”), and then control proceeds to step 8014. In step
8014, the File Snapshot List 304 is updated with this newly
acquired information for the application handle, application
filename, and document filename, document handle, where
applicable, and then processing is return to the user.

In step 8015, the search pointer is positioned at the top of
the list of files that have been logged by the File Access
Tracking Module to begin searching through the most
recently logged files and applications. In step 8016, the
search pointer is checked to see if it is at the bottom of the
list. If it is then control transfers to step 8020, and otherwise
it continues to step 8017. In step 8017, the document handle
from the log file 403 for the instance of the current document
handle obtained in 8004 is retrieved. This information is
saved, the pointer is incremented and stored, and control
then proceeds to step 8018. In step 8018, the captured
application handle from step 8001 is compared to the
application handle in the list at this position. If the applica-
tion handles match then a check is made to determine if the
captured application filename from step 8002 matches the
application filename in the list. If the filenames match then
control proceeds to step 8019, otherwise control returns to
step 8016.

In step 8019, the filename of the document is checked to
see if it exists in the File Access Tracking Module log file
403. If it does then control transfers to step 8022, otherwise
control proceeds to step 8020. In step 8020, the application
handle and application filename are compared with all the
File Snapshots 305 on the Snapshot Navigator Menu 301 to
see if it has already been captured. If it has been captured
then the document filename information is retrieved from
the Snapshot Navigator Menu 301 and control transfers to
step 8022, otherwise control proceeds to step 8021. In step
8021, if the current application handle or application file-
name could not be found in the log, then the application
handle and application filename are added to the Snapshot
Navigator Menu 301 with a ‘blank” filename (blank actually
consists of a filename “*No Filename Associated*”), and
control proceeds to step 8022. In step 8022, the File Snap-
shot List 304 is updated with this newly acquired informa-
tion for the application handle, application filename, and
document filename, where applicable, and then processing is
returned to the user.

FIGS. 9a-f provide a detailed flow diagram of the retrieve
process that is activated from the user clicking on one of the
File Snapshots 305. FIG. 6 shows a functional diagram of
the retrieve process. In the retrieve process, information
from the File Snapshots 305 is retrieved. After verifying the
accuracy of the information, the file and/or application 401

20

25

30

35

40

45

50

55

60

65

8

is opened or made active and the updated information is
stored in the log file 403. Many variables must be evaluated
throughout the process of retrieving documents in order to
eliminate the possibility of an attempt to open a document a
second time if it is already open, to eliminate the possibility
of opening multiple copies of the same application, as well
as to determine when to open a file from a mass storage
device or when to simply make that document active if it is
already open.

Referring to FIG. 9a, the retrieve process is activated in
step 9000 when a thumbnail or individual File Snapshot 305
is selected from Snapshot Navigator Menu 301. In step
9001, the user clicks on one of the File Snapshots 305. In
step 9002, a pointer position for this File Snapshot 305’s
information is retrieved. In step 9003, the File Snapshot 305
information is evaluated and if the file is from an MDI-
capable application then control proceeds to step 9014,
otherwise it proceeds to step 9004.

Referring now to FIG. 95, in step 9004 the filename for
the document is compared to information from the File
Access Tracking Module log file 403 to see if the file is
currently open. If the file is currently open then control
proceeds to step 9005, otherwise it proceeds to step 9007. In
step 9005, the application handle is checked to see if it is still
valid in memory, in which case control proceeds to step
9006, and otherwise it transfers to step 9007.

In step 9006, the application handle is evaluated to
determine if the application that owns the application handle
corresponds to the application filename that is stored in the
File Snapshot 305 that is being activated. If they correspond
then control transfers to step 9011, otherwise it proceeds to
step 9007. In step 9007, the application filename stored in
the File Snapshot 305 is launched. In step 9008, the appli-
cation handle is retrieved from the operating system and the
application information for this File Snapshot 305 is
updated. In step 9009, the filename is evaluated to see if it
is a valid filename and if it exists on the designated mass
storage device, in which case control proceeds to step 9010,
otherwise it transfers to step 9012. In step 9010, the docu-
ment is launched within the application and the document
handle is retrieved from the operating system.

In step 9011, the application that is associated with the
File Snapshot 305 that the user activated is brought to the
foreground and made active. In step 9012, the document
handle for this File Snapshot 305 is updated. In step 9013,
the Snapshot Navigator Menu 301 information is updated
and the File Snapshot 305 that was activated is moved to the
topmost position and all the other File Snapshots 305 are
moved down one position in the File Snapshot list 304, and
processing is returned to the user.

Referring now to FIG. 9c, in step 9014 the application
handle is evaluated to determine if it is still valid in memory.
Ifit is then control transfers to step 9016, otherwise proceeds
to step 9015. In step 9015, the operating system is queried
to return the filename for every application currently open,
and each open application filename is checked to see if it
matches the handle of the application that is being launched.
Control then proceeds to step 9017, in which the application
filename that is being launched is checked to see if it was
found open in memory. If so, then control proceeds to step
9018, otherwise it transfers to step 9020.

In step 9018, the application handle for the application
filename that was found is retrieved from the operating
system and the application filename and application handle
for the File Snapshot 305 is updated. In step 9019, the
application is brought to the foreground and made active and
control proceeds to step 9025.

US 7,346,850 B2

9

In step 9016, the application handle is compared to the
application filename to see if they correspond. If the appli-
cation handle and filename correspond then control transfers
to step 9019, otherwise it proceeds to step 9015. In step
9020, the document filename is evaluated to see if it is valid
and exists on the mass storage device. If so, then control
proceeds to step 9022, otherwise it proceeds to step 9021. In
step 9021, only the application is launched and control
proceeds to step 9023. In step 9022, the application and
document are both launched and then control proceeds to
step 9023.

In step 9023, processing pauses until the application is
opened completely. The operating system is then queried to
return application handle, and control proceeds to step 9024.
In step 9024, the information for the File Snapshot 305 is
updated with the new application handle and document
handle. Control then proceeds to step 9038.

Referring now to FIG. 9d, in step 9025 the document
handle is evaluated to see if it is valid in memory. If it is then
control proceeds to step 9026, otherwise control proceeds to
step 9031. In step 9026, the filename is evaluated to see if
it is valid and exists on the mass storage device. If it is then
control proceeds to step 9028, otherwise control proceeds to
step 9027. In step 9028, the document handle is compared to
the document filename to see if they correspond. If they do
then control proceeds to step 9029, otherwise it proceeds to
step 9037. In step 9029, the document within the application
is brought to the foreground and made active, and control
then proceeds to step 9030. In step 9030, the document
handle information for the File Snapshot 305 is updated and
then control proceeds to step 9038. In step 9027, the
document is brought to the foreground and made active, and
control then proceeds to step 9038.

Referring now to FIG. 9¢, in step 9031 the document
filename is evaluated to see if it is valid and exists on the
mass storage device. If both conditions are true then control
proceeds to step 9032, otherwise it transfers to step 9038. In
step 9032, the File Access Tracking Module log file 403 is
searched to find the document filename that is being acti-
vated. Next, in step 9033, if the document was found in the
File Access Tracking Module log file 403 then control
proceeds to step 9034, otherwise control transfers to step
9037. In step 9034, the document handle is retrieved from
the File Access Tracking Module log file 403. Next, in step
9035, the document is brought to the foreground and made
active within the application and then control proceeds to
step 9036. In step 9036, the document handle information
for the File Snapshot 305 is updated and control then
proceeds to step 9038.

Referring now to FIG. 97 in step 9037 the document file
is checked to see if it is already open in another application.
If it is, then control transfers to step 9042, otherwise control
proceeds to step 9039. In step 9039, the document file is
launched within the application. Next in step 9040, the
document handle for the File Snapshot 305 is updated with
this information. Alternatively, in step 9042, error checking
is performed to qualify the information for this File Snap-
shot 305 which has been determined in step 9037 to be
faulty, and the attempt to launch the file is ignored.

In step 9038, the application handle, application filename,
document handle and document filename are checked to see
if they exist in the File Access Tracking Module log file 403.
If they do then control transfers to step 9043, otherwise it
proceeds to 9041. In step 9041, the application handle,
application filename, document handle and document file-
name are stored back into the File Access Tracking Module
log file 403. Finally, in step 9043 the Snapshot Navigator

20

25

30

35

40

45

50

55

60

65

10

Menu 301 information is updated and the File Snapshot 305
that was activated is moved to the topmost position and all
the other File Snapshots 305 are moved down one position
in the File Snapshot list 304. Processing is then returned to
the user.

FIG. 10 is a detailed flow diagram of a monitor function
of the File Access Tracking Module that logs the files and
applications during the opening of existing files and/or the
creation of new files. In step 10000, the File Access Tracking
Module sits idle, operating as a background task, until it
receives a notification from the file system hook of the
operating system that a file has been opened or saved and
then proceeds to step 10001. The file system hook intercepts
all function calls to the operating system from applications
that are requesting to open, save, read, write, or delete files,
and passes that information to the File Access Tracking
Module. In step 10001, the monitor function is notified by
the file system hook of a file access. Next, in step 10002, the
operating system is queried to determine which application
is the current foreground application and the handle for that
application is returned from the operating system. In step
10003, the application handle is then evaluated to determine
the application filename. Next, in step 10004, the application
filename is compared to the filename of the present inven-
tion. If they match then control transfers to step 10012,
otherwise it continues to step 10005.

In step 10005, the document filename that triggered the
notification is retrieved from the file system hook. In step
10006, the active application is then evaluated to determine
the document handle, if one exists, for the file that triggered
the notification. Next, in step 10007, the recently acquired
application handle, application filename, document filename
and document handle (if applicable) are compared to the
entries in the File Access Tracking Module’s log file 403 to
see if there are any existing entries that contain this infor-
mation. If a match for the recently accessed file match an
entry in log file 403 then control transfers to step 10012,
otherwise it continues to step 10008.

In step 10008, each entry in the File Access Tracking
Module log file 403 is checked to see if the application and
document handles have not yet been subclassed. If any
entries have not been subclassed then they get subclassed,
otherwise control proceeds directly to step 10009. In step
10009, the handles for the recently acquired application and
document (where applicable) are subclassed. In step 10010,
the application is evaluated to determine if it is an MDI-
capable application. If it is a non-MDI-capable application
then the File Access Tracking Module log file 403 is checked
for any previous occurrence of both the application handle
and application filename that match the recently acquired
application filename and application handle. If such a pre-
vious occurrence is found, that specific entry is removed
from log file 403. Next, in step 10011, the recently acquired
application handle, application filename, document filename
and document handle (if applicable) are added to log file
403. In step 10012, the File Access Tracking Module returns
processing to the operating system and remains as a back-
ground task until triggered by another file system hook
notification.

FIG. 11 is a detailed flow diagram of another monitor
function of the File Access Tracking Module that updates the
log file 403 whenever a subclassed application is closed
and/or document handle is closed. In step 11001, the File
Access Tracking Module initiates a kernel which works in
the background waiting for an application handle or docu-
ment handle to be closed. Next, in step 11002 this tasks sits
idle waiting for a handle to be closed which then proceeds

US 7,346,850 B2

11

to step 11003. In step 11003, the operating system passes the
handle value of the window, application or document that
was closed to the File Access Tracking Module.

In step 11004, the handle is no longer subclassed by the
File Access Tracking Module. Next, in step 11005, this
recently closed window handle is checked to determine if it
has a parent handle (which would indicate an MDI docu-
ment). If a parent handle exists then control proceeds to step
11006 (indicating the recently closed window handle is a
document handle), otherwise it proceeds to step 11008
(indicating the recently closed window handle is an appli-
cation handle).

In step 11006, log file 403 is evaluated and any reference
to this document filename and document handle are cleared,
leaving the application handle and the application filename
in log file 403. Next, in step 11007, the entire log file 403 is
analyzed and any reference to the document filename,
regardless of the document handle, is also cleared, and
control proceeds to step 11010.

In step 11008, log file 403 is evaluated and any reference
to this application handle is cleared, regardless of applica-
tion filename and document information. Next, in step
11009, the entire log file 403 is analyzed and any reference
to the application handle, regardless of the application
filename, document filename or document handle, is also
removed. Control then proceeds to step 11010.

In step 11010, each application handle in log file 403 is
checked to see if it is valid in memory. Any handles that are
no longer valid in memory are removed from log file 403.
Next, in step 11011, processing is returned to the operating
system and the File Access Tracking Module resumes as a
background task until triggered by another file change
notification.

Referring now to FIGS. 12 and 13, there is depicted the
flow diagram of the ‘Template’ conversion and retrieving
routines, respectively. Templates are duplicates of selected
files stored in a specific directory with their graphical
thumbnail images and other related information. Retrieving
templates is performed by passing template information to
the document retrieving routine instead of document infor-
mation.

In step 12001, the user has selected from the menu to
convert a File Snapshot 305 to a ‘“Template’. Next, in step
12002 the File Snapshot 305 information is duplicated into
a specific data directory and a new Template File Snapshot
(not shown) is added to the File Snapshot list 304 in the
Templates section. In step 12003, the duplicated Template
file is mark with a ‘READ-ONLY” status to avoid accidental
erasure and modifications.

In step 13001, the user has selected a Template File
Snapshot. Next, in step 13002 the Template Snapshot infor-
mation is passed to the document retrieve routine at step
9003 in FIG. 9a, from which point processing of the
Template file is performed as discussed above.

An aspect of the present invention is thus that a GUI
object created from a screen capture of a document provides
an iconic object that retains associated information such as
the current active filename, filename path, file object iden-
tifier in memory, application, application path, application
object identifier in memory, URL address if applicable, etc.
Another aspect is provision for a background task that
transparently tracks all opened files by filename, filename
path, file object identifier in memory, application, applica-
tion path, application object identifier in memory, URL
address if applicable, etc.

Yet another aspect is the ability for the iconic object to
bind associated documents automatically to the application

20

25

30

35

40

45

50

55

60

65

12

which opened or edited the file, independent of the filename
extension. It is understood, however, that software according
to the present invention could associate a file with an
application based on intrinsic file information, such as a file
extension or application specific content of the file. Still
another aspect is the capability for single click task switch-
ing and launching of a specific file within the application that
last edited the file. Yet still another aspect is a drag and drop
capable iconic desktop (GUI) interface on autohide slideout
menu, which facilitates access to desktop icons.

Aspects of the present invention thus allow for re-catego-
rizing files on a user defined relationship independent of the
path, in chronological order, and associating them to a visual
representation of the file itself, without duplicating or mov-
ing the files from their original location. Further aspects
provide for gang printing and archiving all or selected files
from a bound group by selecting them from the taskbar. Still
further aspects provide for storing a listing of a user’s files,
with graphical thumbnails for quick access and better orga-
nization. With one click on a thumbnail, the application and
file are launched,

The present invention provides still other features, such as
the ability to create logical groupings of files based on
project, subject matter, presentation, priority, chronological,
client, etc., without altering or moving the files from their
current location on a system. Files can be made into “tem-
plate files” and used as a base for future use, providing a
template feature for applications with no inherent support
for such a feature.

Although the invention has been described in detail with
reference to a certain preferred embodiments, variations and
modifications exist within the scope and spirit of the inven-
tion as described and defined in the following claims.

What is claimed is:
1. A method of accessing one or more computer files via
a graphical icon, comprising the steps of:
capturing automatically one or more graphical represen-
tations of one or more portions of information content
of one or more computer files while an application is
manipulating the one or more computer files;

creating automatically an icon including selected portions
of the captured one or more graphical representations
of the information content of the one or more computer
files wherein the icon graphically depicts at least a
portion of the information content from the one or more
computer files and wherein the icon is created while the
application was manipulating the icon’s corresponding
one or more computer files and includes selected por-
tions of the captured one or more graphical represen-
tations of the information content;

linking the icon to the application and to the one or more

computer files based on the ability of the application to
manipulate the information content of the one or more
computer files corresponding to the icon;

storing the icon in a memory;

displaying the icon in a window on a display screen;

invoking the application for manipulating the information

content of the one or more computer files upon selec-
tion of the icon by accessing the more or more com-
puter files by reference to an underlying file system
corresponding to the icon and opening the one or more
computer files within the application.

2. The method of claim 1, wherein capturing a graphical
representation is initiated by a user input command while the
application manipulating the one or more computer files are
active.

US 7,346,850 B2

13

3. The method of claim 2, wherein the user input com-
mand is a keyboard command.

4. The method of claim 1, further comprising the step of
storing information related to the application for manipu-
lating the one or more computer files in the memory along
with the icon.

5. The method of claim 1, further comprising the step of
displaying the window when a cursor is positioned at an
edge of the screen display.

6. The method of claim 5, further comprising the step of
concealing the window when the cursor is positioned outside
the window.

7. The method of claim 1, wherein the step of invoking the
application comprises invoking the application and opening
the one or more computer files upon a single user input
command selecting the icon.

8. The method of claim 7, wherein the single user input
command comprises depressing a button when a cursor is
placed over the icon.

9. The method of claim 8, wherein the button is a mouse
button and the cursor is a mouse-driver cursor.

10. The method of claim 1, wherein if an application is
active then the step of invoking the application comprises
accessing the active application.

11. The method of claim 1, further comprising the step of
storing data related to the one or more computer files and the
corresponding application each time the one or more com-
puter files and application is opened and closed during a
session, and wherein the step of invoking the application
comprises invoking the one or more computer files and the
application based on the stored data related to the one or
more computer files and corresponding application.

12. The method of claim 11, wherein the data related to
the one or more computer files and the corresponding
application includes a document path, a document handle,
and application path, and an application handle.

13. The method of claim 1, wherein the step of invoking
the further includes printing the computer file.

14. The method of claim 1, wherein the step of invoking
the application comprises copying the one or more computer
files to designated storage device.

5

20

25

30

35

40

14

15. The method of claim 1, wherein the step of creating
an icon comprises creating an icon corresponding to a
template file.
16. A method for providing a user interface for accessing
a file based on a corresponding icon comprising:
storing a plurality of icons in a memory along with a
corresponding plurality of references to an underlying
file system for storage information for a plurality of
files, each icon having an appearance substantially
depicting information content from its corresponding
file, wherein the plurality of icons were created by
capturing automatically one or more graphical repre-
sentations of one or more portions of information
content of an icon’s corresponding file while an appli-
cation was manipulating an icon’s corresponding file
and include selected portions of the captured one or
more graphical representations of the information con-
tent;
linking an application to each icon based utility on the
ability of the application to manipulate the information
content of the file corresponding to the icon;

providing a window on a display screen for displaying the
plurality of icons;

invoking the application for manipulating the information

content of the file corresponding to the selected icon
upon selection of an icon from the plurality of icons in
the window;

accessing the file designated by the reference to the

underlying file system corresponding to the selected
icon; and

opening the accessed file into the corresponding applica-

tion.

17. The method of claim 16, wherein the step of storing
a plurality of icons in a memory further comprises storing
data related to an application for manipulating the corre-
sponding file along with each of the plurality of icons and
wherein the step of invoking the application corresponding
to the selected icon comprises invoking an application based
on the corresponding stored data related to the application.

#* #* #* #* #*

