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ABSTRACT

This paper introduces a Hierarchical Vector Quantiza-
tion {HVQ) scheme that can operate on "supervectors’ of
dimensionality in the hundreds of samples. HVQ is based
on a tree-structured decomposition of the original super-
vector into a large number of low dimensional vectors. The
supervector is partitioned into subvectors, the subvectors
into minivectors and so on. The "glue"” that links subvec-
tors at one level to the parent vector at the next higher
level is a feature vector that characterizes the correlation
pattern of the parent vector and controls the quantization
of lower level feature vectors and ultimately of the final
descendant data vectors. Each component of a feature
vector is a scalar parameter that partially describes a
corresponding subvector. The paper presents a three level
HVQ for which the feature vectors are based on subvector
energies. Gain normalization and dynamic codebook allo-
cation are used in coding both feature vectors and the final
data subvectors. Simulation results demonstrate the
effectiveness of HVQ for speech waveform coding at 9.6 and
16 Kb/s.

1. INTRODUCTION

Speech waveforms may contain significant correlation
over hundreds of samples, i.e.. corresponding to basic
sound units of duration 0.1 seconds or larger. Although
vector quantization (VQ) is in principle the ideal way to
encode a block or segment of this size, the associated
computational and storage complexities are astronomi-
cally high. Existing suboptimal VQ schemes that trade per-
formance for a reduced complexity are still limited to
dimensionalities in the range of 10 to 20. For a review of
current work in VQ, see [15] and [18].

The Hierarchical Vector Quantization (HVQ) scheme
proposed in this paper can operate on vectors of dimen-
sionality in the hundreds of samples. HVQ is particularly
suitable for speech waveform coding because speech is
characterized by large correlated segments, due to its
quasi-periodicity and its slowly varying production
mechanism. The correlation pattern within a speech seg-
ment, or some other feature of its internal structure, may
be described by a properly defined feature vector of
dimensionality much lower than that of the segment itself.
This vector contains valuable side information about the
segment, which can be used to efficiently code lower
dimensional subsets of the segment.
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HVQ is based on a tree-structured decomposition of
the given large dimensionality input vector, called the
supervector. The supervector is split into subvectors, each
subvector is then split into lower dimensional minivectors,
and so on until the lowest level subvectors, called cells, are
obtained. At each level {except the bottom level), a
feature vector is extracted from each data vector at that
level. The feature vectors are themselves vector quantized
and used to control the bit allocation for quantizing lower
level feature vectors and ultimately the cells themselves.
Fach quantized feature vector contains a partial descrip-
tion of the data vector at that level and provides a vital
unit of side information about the supervector characteris-
tics. The bottom level is composed of low dimensional vec-
tors, the cells, which are efficiently quantized using the
acquired side information

The essence of this scheme lies in the definition of the
various feature vectors and in the way they are used in the
coding process. It is crucial that these vectors be highly
correlated and easy to extract from the data vectors.
Also, the way vectors from different levels are interrelated
during the coding process must be simple and efficient.

This paper focuses on a three level HVQ using the
Euclidean norm of a subvector as a basic feature. Normali-
zation and codeword allocation are used in exploiting the
side information during the coding process.

In Section 2, the system is introduced and explained
in detail. Section 3 discusses the dynamic codeword allo-
cation problem. Section 4 contains a discussion on the
design of the various codebooks used in the system. Sec-
tion 5 considers the capability of the system as a variable
dimension VQ. Finally, Section 6 describes simulation
resuits.

2. THREE LEVEL HVQ - GENERAL DESCRIPTION

The proposed scheme is shown in Figure 1. The high
dimensional supervector, X=(z;zs, - - ,zg), where K is
the dimension of the input supervector, is partitioned into
M subvectors: X=(X; X,.....Xy) where X; denotes the i*"
subvector. An M-dimensional feature vector, denoted by
S={s,,85 ' ',y is defined and associated with the vec-
tor on the basis of one scalar feature per subvector. In
the proposed coder, this feature is simply the norm of the
corresponding subvector, although other definitions are
possible. 5; is, therefore given by:

so= %) = quz"‘]g_ (1)

Each subvector is further partitioned into I cellvec-
tors, called cells, of dimension k=K/(ML):
X,=(X1. X2 .. Xuz) where X, ; is the j cell of the i sub-
vector. An I-dimensional feature vector, denoted by
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Figure 1. Three level HVQ scheme.

P, =(py,piz.-- P ), is associated with each subvector and
consists of the corresponding cell norms. Thus, the norm
of the 7% cell in the i** subvector is given by:

1
5 ©
iz L. 13

oy = | X =

The quantization is carried out in a hierarchical
fashion: In the first level, the M-dimensional vector S is
quantized to S5 using one first level codebook. In the
second level, each L-dimensional vector P; is normalized
using § and then quantized, using a second codebook. In
the third level, each cell is normalized by the correspond-
ing quantized norms from the second level and quantized
by a set of third level variable size codebooks.

The main idea of this quantization structure is that
some features of the entire supervector characteristics
are passed all the way down to every minivector, thereby,
influencing the way it is quantized. One way in which the
quantization of an individual cell is influenced by the entire
input speech segment is the normalization process men-
tioned above. The second way is through dynamic codebook
allocation whereby the coder uses the quantized vectors of
norms to optimally allocate a codebook of an appropriate
size to each cell while maintaining a fixed number of bits
for the overall specification of the supervector.

3. THE CODEBOOK ALLOCATION PROBLEM

The codebook allocation takes place in the third level
where each cell is coded using a codebook of different size.
 Through this operation {and the normalization process - to
be discussed later} coding of each individual cell is
affected by the entire block pattern in such a way as to
minimize the overall distortion.

The problem is to find the allocation rule, or, the map-
ping from the quantized version of the norms By to the
corresponding codebook sizes denoted by ny;;. The code-
book sizes are, more conveniently, expressed by the
required number of bits as: 7;=logany;. One basic con-
straint is imposed on these allocation vafues, that is:
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f érij =R = K(b —bs) (3)

{=1j=1 :
where R is the overall number of bits assigned to the main
information (the quantized cells), b is the overall system
bit rate and by is the bit rate of the side information {the
quantized norms). Both & and b are given in bits/sample.
Since there are practical limitations on the number and
size of the third level codebooks, 7 can only assume
values from a given finite set:

Ty € EBLBg,”..,Bq%:B (4')

Also, the allowed codebook sizes 2Fm , m=1,.,9, must be
non-negative integers. A reasonable, but not necessary,
choice for the set Bis §{0,1,2,..,9¢.

The optimal allocation rule aims at minimizing an
average of a given distortion measure, subject to the above
constraints. The distortion measure is defined over the
entire supervector and denoted by d(X,X), where X is the
quantized supervector. For mathematical tractability we
impose an additivity restriction on the distortion meas-
ure, to be decomposable in terms of subvectors and cells:

axx) = Far) = RRa .5 @

i= i=ly=1
This also decouples different cells with respect to their
contribution to the overall distortion. This means that
each cell can be assigned a measure d;; independently of
other cells. It is easy, in this case, to achieve noise shap-

ing by assigning the cells different weights.

The definition of the features as norms of of subvec-
tors is particularly suited to the following distortion meas-
ure:

M L
d(X.X) = (X-XY W(X-X) = _lelwij 1X5-%; 11*  (8)
i=lj=
where # is a triangular non negative matrix whose ele-
ments on the main diagonal are wy;. The constants wy
may be chosen to achieve a desired shaping of the quanti-
zation noise. If no shaping is desired, we set w;;=1 and get
the usual Euclidean distance for the distortion measure.
In the subsequent discussion we assume that wy =1 for
simplicity. It can be shown that the only change required
to account for the case where w;;#1 is to replace py by
Py =Vuypy.
Using (8) the expected value of the distortion measure
D=F {d(X X){. may be written in terms of conditional
expectations as follows:

D= E{‘ﬁ zL:Dc (_'ﬁij,rij)} (7

t=17=1
where

D, (By.my) = E{” X=Xy ”2/ B "'v] (8)

This expression is conditioned on the scalars pi; and 7y
which are randomly related to each other. Nevertheless,
the allocation algorithm (to be determined) deterministi-
cally maps the set P={py ,i=1,M,j=1L] to the set
R={ry .i=1,M . j=1,L} To minimize (7), the double sum-
mation has te be minimized over all possible mappings,
subject to the constraints imposed on7y;.
The optimization problem can, now, be stated as fol-
lows: Given the set P, minimize ), ) D, (B 7y) over all
t=15=1
possible sets R, subject to é fr.;,:}? and 7,;zB
ji=li=l
To solve the problem, the conditional expectations
D, (py,mi;) should be explicitly expressed in terms of By
and 7y;. This functional dependency, which is crucial to the
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allocation algorithm, is not given. However, a good esti-
mate of it can be found, based on the following arguments.

As will be explained in the next section, the cell quan-
tizer is of gain-shape type which means that the quantized
cell is given in the form

Xy =By A ()
where 4 denotes a codevector from a shape codebook of
size ny;. Using (9) we get:

2@y =psE (1 0= 41/ 8] o)
i

We, now, asswme that conditional expectation in (1Q) is
essentially independent of f;. This agsurnption, which has
been verified experimentally, is heuristically explained by
the fact that due to the large long-term dynamic range of
the speech waveform, the cell energy is essentially
independent of the cell shape. Therefore, the performance
of the shape codebook in coding the cell shape, is almost
independent of the gain of the cell. As a result, (10) can be
rewritten as:

D (By Tiy) = B3 G(ry) (11
G{r) represents the distortion of a normalized cell quan-
tizer as a function of the codebook size (in bits). Values of
G(r) versus T, for T¢B, are obtained during the codebook
design. Experimental data shows that &{r) can, quite
accurately, be modeled as:

G(r) = g~ (:2)

The parameter a can be found from a best fit to the design
data, and is approximately equal to 2/%. Using (12) the
problem reduces to that of minimizing:

% $pge ()
Jj=li=t
with respect to the set R, for a given set P, subject to (3)
and (4).

We briefly outline two methods for solving the prob-
lem. In the first method the problem is, initially solved
without the constraint (4), i.e., vy are assumed to be con-
tinuous but non-negative values. This problem is solved
using variational calculus techniques. See [1]. The result-
ing ry;'s are, then, quantized to the nearest value in the set
B. as required by (4). This last operation may violate the
constraint (3), but, by properly constructing the set B, the
effect of this violation can be made negligible.

The second method is based on the "Marginal Returns”
approach [2] and provides an exact solution. It works in
the case where the set B is uniform, i.e., B={0,f,2¢,...gt}. ¢
is the bit allocation increment. The process goes as fol-
lows: 7y are initialized to zero and the marginals
'ﬁ,f(G(rij ~G(ry;+t)) are found for all i,j. Ty for which the
marginal is maximum, is incremented by { bits. These
steps are repeated until {9) is satisfied.

4. THE CODEBOOK DESIGN

Three codebooks must be designed. The first level
codebook is Used in coding the vector 5. The second level
codebook codes each of the vectors P;, i=1,..,.# and pro-
vides the set P which determine the allocation set R. A set
of g- third level codebooks of sizes 5,,5za...5, (in bits) is
used to code the cells X;;. This set constitutes the dynami-
cally controlled, variable size third level codebook.

The first level codebook is designed as a standard VQ
using the LBG algorithm [3] with the Euclidean distance for
the distortion measure.

Both the second and the third level guantizers are
based on a special form of a gain-shape quantizer [4]
where the gain is provided externally and is not subject to
optimization. Figure 2 depicts the structure of such a
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Figure 2. Gain normalized vector quantizer.

quantizer. As shown, the gquantized version of the input
vector X is given by:

X =gA (14)

where o, an input gain value, is supplied by another exter-
nal quantizer. A4 represents a codevector from a shape
codebook. The design objective is to optimize this shape
codebook taking into account the statistical relationship of
the supplied gain to the input vector. The basic idea
behind this structure is the utilization of the information,
carried by o about the input vector, to improve the coder
performance.

The design of this coder is carried out using an algo-
rithm, similar to the LBG algorithm. The coding (partition)
rule and the centroid calculation are modified to account
for the special situation but the logical flow of the algo-
rithm is exactly the same as described in [3].

The coder has, in fact, two inputs, X and o, which may
be combined into one augmented input vector (X.¢). The
coding rule is defined over the space of the augmented
input. Let us denote by 4; the j** codevector in a code-
book of size M. The optimal coding rule is, then, given by:

gl = 15— gmm (1)

where j° is the index of the best codeword, given the input
(X.0). This coding rule implies a partition over the aug-
mented space, whose individual subset is denoted by
and given by:

G = E(X.O') ; Ag is choseni (18)

With the aid of (18) we define the following conditional
expectation

Bt} =Bl / xoeg) (17)

Then, it can be shown that the centroid, or the optimal 7%
codeword is given by:

- B, {oX}

Fey t ot

Note that unlike [4] we do not impose the constraint that
the shape vector has unit norm. Rather, an optimal nor-
malization process determines the shape norms, allowing
improved performance.

Expressions (15) and (16), which state necessary con-
ditions for optimality, are used in the LBG design pro-
cedure to get the optimal shape codebooks of the second
and third levels.

The codebook design is, usually, based on a training
set which is assumed to adequately represent the random

(18)
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process X. The conditional expectations are estimated
from the training set by:

E’chan = ]—CIJ_—(XEL‘;C}UX (19)
and
Byfot) = A T o (20)

= = g
|CJ | (X.u)sC,
where | ;| is the number of training vectors in Cj.

To avoid excessive coding complexity, in cases where
the required shape codebbook is too large, a suboptimal
lew complexity VQ method can be incorporated. In partie-
ular, it is convenient, in this case, to use the muiti-stage
VG approach [5]. It can be shown that equations (10)
through {12) still hold, so, the allocation algorithm does
not change.

The training set used in the codebook design is a large
set of augmented vectors. This means that a set of quan-
tized gaing has to be prepared before designing the second
and the third codebooks The overall system design is.
therefore conducted in the following sequence:

(1) Given a training set of K-dimensional supervectors,
prepare an M-dimensional training set of vectors of
norms by calculating the norm of the corresponding
subvectors.

{2) Design the first level codebook using the above train-
ing set and store the resulting training set of quan-
tized M-dimensional norm vectors.

{(3) Prepare a training set of L-dimensional norm vectors
by splitting each subvector into Z cells and calculat-
ing the L subnorms.

(4) Design the second level codebook using the training
set of step (3) and the quantized norms (gains) of step
(2). Store the resulting training set of quantized sub-
norm vectors.

{5) Prepare a training set of cells by splitting the subvec-
tors into L k-dimensional cells.

{6) Design the third level codebooks using the training set
of step (5) and the quantized gains of step (4). Note
that ¢ such codebooks have to be designed, one for
each of the By,Bp,... By codebook sizes,

5. VARIABLE DIMENSION VR

The HVQ scheme allows an easy way of implementing
variable dimension vector quantization (VDVQ). This is
because the major difficulty in VDVQ, maintaining a fixed
bit rate, is readily solved here through the partitioning and
ecodeword allocation processes. The parameters LM and &
are kept fixed to allows for a maximum main dimension of
Knex=kLM. If, however, the actual dimension X is less
then K. the missing data points are simply assigned
zero values. Unlike the usual VQ schemes, bits are not
wasted on coding zero valued components since they
define cells with zero norm and, by means of the feature
veciors, are assigned zero mumber of bitg and are not
transmitted. An additional small amount of side-
information is transmitted to inform the receiver of the
actual segment size K. To keep the bit rate fixed, the allo-
cation algorithm is adjusted to the new dimension by
changing only the parameter 7.

VDVQ ig important in the context of speech waveform
coding. It enables an efficient waveform segmentation into
the natural variable-length speech units.

6. SIMULATION RESULTS

To demonstrate the operation of the system, we con-
structed a special training set, with highly correlated vec-
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tors of norms. This was done by segmenting a speech
waveform into variable size "steady state" segments and
transforming each segment to the frequency domain using
the discrete cosine transform. Since the smoothed short-
term power spectrum of a speech segment belongs to a
very limited family of possible shapes, the resulting vec-
tors are highly correlated.

The speech material was commposed of 8 male and 3
female voices. The full speech segment was 75 sec and was
sampled at a rate of BOOO s/sec.

In the sirmulations, the parameters #,L and k& were
18, 12 and 4 respectively. The segment length varied in
the range from 256 to 768 data points. Three-stage
codeooks [5] were used to reduce the coding ¢ompiexity.
About 30% of the total number of bits was allocated to the
side information. The system was tested with two different
bit rates: 2.0 and 1.2 bit/sample.

Preliminary simulations without any systenl optimiza-
tion gave the following results in terms of MSE signal to
quantization noise ratio: 20db for 18.0 kb/s and 15db for
9.6 kb/s Although the SNR is not necessarily indicative of
speech perceptual quality, it enables quick comparison
with other coding systems. The use of noise shaping allows
an improved perceptual quality that is not indicated by the
9INR values. Informal listening tests indicate that good
communication quality is achieved at 9.6 kb/s and very
nearly toll quality is achieved at 16 kb/s.

References [8]-[16] describe several representative
speech wavelorm coding systems for whicn the SKR is
reported. Specifically, [12]-{18] refer to VQ based sys-
tems. Based on the above preliminary results, the HVQ
scheme outperforms all of these systems and, thus,
appears to be very prormising.
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