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Abstract-New algorithms  for  the  design  of  trellis  encoding  data 
compression  systems  are  described.  The  main  algorithm  uses  a 
training  sequence  of  actual  data  from  a  source  to  improve  an  initial 
trellis  decoder.  An  additional  algorithm  extends  the  constraint  length 
of a  given  decode?  Combined,  these  algorithms  allow  the  automatic. 
design  of  a  trellis  encoding  system  for a particular  source.  The 
algorithms'  effectiveness  for  random  sources  is  demonstrated  through 
performance  comparisons  with  other  source  coding  systems  and with 
theoretical  bounds.  The  algorithms  are  applied  to  the  practical 
problem  of  the  design  of  trellis  and  hybrid  codes for medium-to-low- 
rate  speech  compression. 

INTRODUCTION 

I N the past decade considerable progress has  been made 
towards an understanding  of  tree  and trellis encoding  data 

compression systems. In these  discrete-time or sampled-data 
systems (Fig. l),  a deterministic  but possibly nonlinear  decod- 
ing filter  transforms  the  channel sequence into a reproduction 
sequence. The  channel sequence is chosen by a tree  or trellis 
search encoding  algorithm to minimize the  distortion  between 
the  reproduction sequence and  the source  sequence.  Results 
in  information  theory have proved the existence  of tree  and 
trellis systems which operate close to  the  theoretical  limits of 
performance,  but these papers  offer  only existence proofs, 
witho,ut describing  ways of  actually  constructing  good codes 

The  study  of  encoding  algorithms  for  tree  and trellis codes 
has  been  of  interest since the earliest work  on  convolutional 
channel coding. The  Viterbi  algorithm [l 11 is optimum  for 
searching the trellis structures associated with  finite-state 
decoders,  but  has  computational  cost  exponential  in  the  con- 
straint  length  of  the  code.  Some of the  nonoptimal  algorithms, 
such as the  Fano  and  stack algorithms, have been derived from 
problems of decoding  error  correcting  codes;  others have been 
designed  specifically for  the  tree source encoding problem. 
The M ,  L algorithm  [21] , ' for  example, is simply  a breadth- 
first tree search. Other search  algorithms  are classed as depth- 
first or  metric-first  (distortion-first)  types [2],  [3]. 

Because many effective encoding  algorithms are known,  the 
more  difficult  part  of  the design of  a tree  or trellis coding sys- 
tem lie's in the design of the  decoder. Decoders may  be  drawn 
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Fig. 1 .  Data  compression  system. 

from  any of the  traditional waveform  coding techniques, 
such as predictive quantization.  Such plagiarized decoder sys- 
tems achieve improved performance  by replacing their  tradi- 
tional  encoders  by a tree  or trellis  search  algorithm. In  the 
literature, various other  methods  for selecting decoders have 
been  proposed.  For speech  sources, for  example,  attempts 
have been  made  at  the design of  tree  decoders based on pre- 
dictive quantizers  which  match  the average correlation  proper- 
ties  'of  speech [4]. Variational methods have been  proposed 
to improve decoders based on predictive quantizers  and  Linde 
and  Gray have used the  notion  of a fake process to suggest 
decoders  [5],  [24] . While most of these  codes based ' on 
traditional systems incorporate  structures similar to recursive 
digital filters  and  thus have such a large number  of  states  that 
they generate tree  codes, several investigators - have use'd 
decoders  incorporating  either transversal  digital filter  approx- 
imations  of recursive  filters or  decoders originally based on 
f in i te  impulse response models [23]. These decoders have a 
relatively small number of states  and,  therefore, a  trellis struc- 
ture. 

In this paper we describe  new algorithms  for  the design of 
trellis encoding  data compression  systems. The  main  algorithm 
uses a  training  sequence 'of  actual  data  from a  source to  im- 
prove an initial  trellis decoder. An additional  algorithm  ex- 
tends  the  constraint  length  .of a given decoder.  Combined, 
these  algorithms allow the  automatic design of  a  trellis encod- 
ing system  for a  particular  source. The  decoders designed 
with these techniques are  locally optimal  and, we. conjecture, 
globally optimal  for  certain sources [17].  The algorithms' 
effectiveness for  random  sources- is demonstrated  through 
performance comparison with  other source  coding systems 
and  with  theoretical  bounds.  The algorithms  are also applied 
to  the 'practical problem of the design of  trellis and  hybrid 
codes for  medium-to-low-rate speech  compression. Additional 
information, including  a Soundsheet  with  the  speech coding 
results, may be found in [34]. ' 

The goal of this paper is not  the  presentation  of particular 
coding results, but  the  presentation  of design methods  which 
offer the  potential of  improving the  performance of any  exist- 
ing trellis coder-or of constructing a new  coder  for a  source 
of entirely  unknown  character. 

0090-6778/82/0400-0702$00.75 0 1982 IEEE 

Case 3:06-cv-00019-MHP     Document 108-14      Filed 06/07/2007     Page 2 of 10



STEWART et  a1 : TRELLIS WAVEFORM  CODERS 703 

BLOCK SOURCE CODE DESIGN ALGORITHM 

As a step  towards  the  description of the trellis code design 
algorithms, we describe an  algorithm  for  the design of  block 
source codes,  or vector quantizers, based on a long training 
sequence of  symbols  from a  source.  This algorithm is a multi- 
dimensional version of  a quantizer design method of  Lloyd 
[25] and is more completely  reported  by Linde et  al. [22]. 

An N-level, k-dimensional quantizer is a function f that 
assigns to  each  input vector x a reproduction vector x' drawn 
from a finite  alphabet A = bi: i = 0, .-, N - l}. The  function 
f returns  the  index of the selected reproduction vector or 
codeword.  The  quantizer is described by  the  reproduction 
alphabet  and  an encoding  rule. For a  particular input (training) 
sequence {xi: j = 0, -., n - l}, the encoding  rule induces a 
partition,S = {Si: i  = 0, -,N - l}, of  the  input sequence into 
the disjoint  sets Si = { j :  f ( x i )  = y i }  of the time indexes  of 
those  input vectors  mapping into  the  ith  reproduction vector. 

The fidelity  of reproduction is measured by a  nonnegative 
distortion measure d(x, x'). Many distortion measures have 
been  proposed for various applications,  but  perhaps  the best 
known is the  squared-error measure 

k -  1 

d(x, x') = x ( X i  - x i y .  
i= 0 

An obvious  encoding  rule  maps each source  vector into  the 
reproduction vector giving minimum  distortion. A tie  break- 
ing rule is necessary but since ties are generally low  proba- 
bility  events,  nearly  any  rule will do. 

The initial conditions  for  the design algorithm are N ,  the 
desired number of reproduction vectors, A', an initial quan- 
tizer,  and {xi}, a  long  training  sequence of symbols from  the 
source.  The  algorithm  consists  of the  repetition  of  two steps: 
finding the best encoding of the training  sequence for a given 
set of  reproduction vectors, and finding the best  set  of repro- 
duction vectors for  the given encoding. 

Encode: Given A m ,  the  reproduction  alphabet of  genera- 
tion m, find the  minimum  distortion  partition Sm = p(Am)  by 
mapping  each element of the training  sequence to  the  minimum 
distortion  reproduction  vector: 

f(x) = i: d(x, y i )  < d(x,yi),  for all j 

with some  tie  breaking  rule. 
Update Reproduction Alphabet: Given a partition Sm , find 

the  minimum  distortion  reproduction  alphabet  for  generation 
m + 1, Am+' = A(Sm) = A(p(Am)), by  setting y i m + ' ,  the  ith 
reproduction  vector  of  the new alphabet,  to  the value giving 
the  minimum average distortion over the  training sequence vec- 
tors  indexed  by  elements  of Sirn. This value will be  the gen- 
eralized centroid,  or  center of gravity under  the  distortion 
measure, of  those  training sequence values which were repro- 
duced  by  the value y i m  . 

In  the case of  the  squared-error  distortion measure, this 
center  of gravity  calculation is just  the sample average over a 
partition: 

The new codeword is the average of those training  sequence 
samples encoded  by  the  old  codeword. 

Repeated application  of  these two  steps  must result  in 
decreasing, or at least  nonincreasing,  sample average distortion 
over the training  sequence. Since the average distortion is non- 
negative and decreasing, it  must eventually  reach  a limit. 
Although  the limit  may not be the global optimum,  it is at 
least  a  local optimum.  The  algorithm  may be stopped  either 
when  a  fixed point is reached  (when no changes occur  in  the 
reproduction vectors or  partitions),  or when the  reduction in 
average distortion per iteration falls below  some threshold. 

If the vector  source {xi} is ergodic and  stationary,  the 
quantizer designed by  this algorithm will work as well on  data 
from  outside  the training  sequence as from  the training se- 
quence itself.  However, operation of the design algorithm does 
not  depend  on  either  stationarity  or ergodicity. 

TRELLIS CODE DESIGN ALGORITHM 

The most general case of  a  trellis decoder consists  of  a 
finite-state machine driving a table-lookup  codebook. of de- 
coder  output values. Symbols arriving from  the  channel 
drive the  finite-state machine,  which  in turn selects reproduc- 
tion symbols from  the  codebook.  In  what follows, we special- 
ize the  finite-state machine to  the  tradional case of a shift 
register containing  the most recent k channel symbols (Fig. 
2). The  contents of the  shift register are used as a table  index 
to select the  decoder  output  codeword.  The trellis code  de- 
sign algorithm seeks to  fill in the  contents of the  codebook. 

Suppose that we have a table-lookup trellis decoder, a single 
symbol additive distortion measure, and an optimal  encoding 
(search) algorithm such as the  Viterbi algorithm  which will 
find  the trellis encoding  of  a  source  sequence giving the  low- 
est possible sample average distortion.  The symbols  of the 
channel  sequence,  or  path  map, chosen  by the encoding 
algorithm  associate the sequence  of  source  symbols with  the 
reproduction sequence  of  codewords.  This  association  can be 
used as the  partition  function in  a  trellis adaptation of the 
block quantizer design algorithm. (See Table I.) 

The initial conditions  for  the design algorithm are a finite- 
state  decoder  with initial codebook Co (such as the  shift 
register decoder described above), a single symbol  distortion 
measure  (such as squared-error), and {xi}, a  long  training se- 
quence  of symbols from  some source. The algorithm  consists 
of two key  steps:  finding the best encoding of the training 
sequence for a given codebook,  and finding the best codebook 
for  the given encoding. Executed  alternately, these steps  pro- 
vide an iterative design algorithm for improving the initial 
trellis decoder. 

Find Encoding: Given the trellis codebook  for  generation 
m, find  the  minimum average distortion encoding  of the  train- 
ing sequence.  This  encoding  induces  a partition  on  the  train- 
ing sequence so that  the  elements of the  partition cell corre- 
ponding  to a certain  codeword are the  time indexes  of those 
elements of the training  sequence  which  were reproduced  by 
that  codeword. 

Find Codebook: Given the  partition  for  generation m, find 
the  minimum  distortion  codebook  for  generation m + 1. The 
updated value for a certain  codeword will be the value giving 
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Shift  Register  Implementation  (constraint-length 9) 

output - (to D/A) 

Fig. 2. Shift  register  implementation  of  a  one  bit  per  symbol  trellis 
decoder. 

TABLE I 
TRELLIS  DECODER  DESIGN  ALGORITHM 

(0) Initialization:  Given  a  distortion  threshold t.+y 0, a  q-ary  noiseless 
channel, an  R  state  decoder,  an  initial  codebook Co with  cardinality 
I1 Co I1 = N = qR,  and  a  training  sequence {xi}  = {x j : j  = 0, -, n - 
I}, set m = 0. 

(1)  Given Cm = b i m : i =  0, ..., N - 1}, the  codebook  for  generation m ,  
find  the  minimum  distortion  trellis  encoding { i j : j  = 0, .-, n - I} of 
the  training  sequence.  This  encoding  induces  a  artition  on  the  train- 
ing  sequence { S i m : i = O , - . , N -  l}withSim = fIi:;i=yim}. Eachset 
Sim = P(Cm, { x i } )  contains  the  time  indexes  of  those  elements of the 
training  sequence  which  were  encoded  by  codeword  yim. 

(2) Compute  the average  distortion Am = n-lXi=On-l d(xi,  ;i). 
(3) If at least one full iteration  has  been  completed (m > 0) and  the  de- 

crease  in  distortion  has  fallen  below  the  threshold E ,  ( a m  - am-1)/ 
Am-1 < E ,  then  halt  with Cm as the  final  codebook.  Otherwisego 
to  step (4). 

(4) Find  the  optimal  codebook  Cm+l  for  generation m + 1 as Cm+l = 
C(P(Cm, {xi}))  with Cm+l = {yim+l:i= 0, . - , N  - 1) andyim+l = 

Y : E a i m d ( X i ,  Y) < Z i q m d ( x i ,  JJ'), for  ally'.  Replace m by m + 1 
and  go  to  step (1). 

the  minimum average distortion over those  elements of the 
training  sequence indexed  by  the  partition cell corresponding 
to  that  codeword. 

The encoding  function-the trellis search-does not neces- 
sarily map a  source symbol  into  the  minimum  distortion  code- 
word,  but  maps  the  entire training  sequence into  the  minimum 
average distortion sequence of codewords. 

Each  iteration of this  procedure  can  only result in decreas- 
ing, or  at least. nonincreasing, average distortion. Because the 
encoding  algorithm is optimal,  the  new  encoding can  result 
in distortion no worse than  the  distortion  due to using the 
old  path  with  the new  codewords-which, in  turn, is at least 
as good as the  distortion  due  to using the  old  path  with  the 
old codewords.  If the same path is chosen twice,  the  algorithm 
has reached  a fned  point  and will proceed no further. 

Each new codeword  has  the value which  minimizes the 
average distortion over its  partition cell. Each  codeword in 
generation m + 1 will be  the  centroid of those  elenients  of  the 
training sequence  which  were encoded  by  the  corresponding 
codeword  of  generation m .  Some rule must  be  adopted  to 
cover the case of  an  empty  partition cell. Some  approaches to 
this  problem are to  retain  the  old  codeword, to  copy  the value 
of another  codeword,  or  to use the  centroid  of  the  entire 
training sequence as the  new  codeword. 

If the  distortion measure is squared-error, d(x, X I )  = 
(x - then  the  centroid  computation  for  the  updated 
codewords is particularly simple: 

This  expression does  not  work when  a partition cell is empty. 
As mentioned,  there are many ways to  handle  this  situation; 
the goal of the  method selected must be to select  a value that 
will be used by  the  next pass of the  encoder. Once the  parti- 
tion cell is no longer empty,  the design algorithm will take care 
of  adjusting the value of the associated codeword. 

EXTENSION 

In this  section, we describe  a method of constructing a 
decoder based on a shift register of length k + 1 from a de- 
coder of length k. Our  method has the advantage  of construct- 
ing a decoder  with sample average distortion over the  training 
sequence at least as low as that  of  the  starting  (shorter) de- 
coder. We call this  method exlension because the  new, longer 
decoder is constructed  by  adding an additional stage to  the 
shift register of  the  starting  decoder. 

Again, the  decoder of  a  trellis encoding  system is imple- 
mented  by a shift register driving a table-lookup  codebook. 
Arriving channel symbols  are shifted  into  the least  significant 
end  of  the register and  the  contents of the register act  as  the 
table address or  codeword  index to generate the  decoder  out- 
put.  For a q-ary  channel  and  constraint-length k decoder,  let 
the register contents be r.  With the arrival of symbol u from 
the  channel,  the  new register contents will be (qr + u )  mod qk 
and  the  decoder will produce codewordy(,.,,.) mod q k .  Now 
suppose the  shift register is extended  by  one stage to  length 
k + 1; the  codebook  must increase  in size from qk entries to 
qk+' entries. We fill in  the new codeword values by  duplicat- 
ing the  old  codebook 4 times so that  the  symbol  stored  in 
the  new register stage does not  affect  the  decoder  output.  Let 
the old codebook  contain  codewords { y i :  i = 0,  .e., qk - 1); 
then  the  extended  codebook will contain  codewords y r :  

i = 0,  -, qk - I .  

This procedure  produces a decoder of constraint  length 
k + 1 whose  behavior is identical to  the behavior  of the 
original constraint-length k decoder. This  new decoder  can  be 
used as the initial guess for  the  decoder  improvement algo- 
rithm. 

From an  initial constraint-length 1 decoder,  alternate appli- 
cation of the  decoder  improvement algorithm and  the  exten- 
sion algorithm  permits  the design of successively longer codes 
(Table 11). 

Extension  can be illustrated  by considering its  application 
to  a one  bit per symbol (q = 2 )  system using squared error 
distortion. 

Let  the initial codebook  for  the  constraint-length 1 decoder 
include  codewords - . l  and +l. The trellis code design algo- 
rithm  for  this  constraint  length selects  a  locally optimal  two- 
level scalar quantizer  for  the  training sequence. Assuming that 
the mean of  the  training  data is 0, the  optimum  partition  for 
the final constraint-length 1 decoder collects all the samples 
in  the  training sequence with positive values in  one  partition 
cell and all the samples with negative values in  the  other. We 
have So = { j  Ixi > 0 )  and SI = { j  /xi < 0); ties  are broken  by 
assigning the associated  sample to  the first partition.  The  two 
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TABLE I1 
COMBINED  EXTENSION AND IMPROVEMENT ALGORITHM 

Let Ckm refer to a  constraint-length k codebook  at  the  mth  iteration of 
the  decoder  improvement  algorithm. 

(1) Design  an  initial  codebook CIO by  finding  a  good  q-level  quantizer 
for  the  training  sequence. 

(2) Given Cko, an  initial  code  of  a  certain  constraint  length,  use  the  trellis 
code  design  algorithm to  improve it. The  extent of  this  procedure  will 
be  governed  by the value  of E in the trellis  code  algorithm. 

(3) If the  constraint-length k is sufficiently  large,  or  the  distortion  pro- 
vided  by ckm sufficiently  low,  then  halt. 

(4)Use  the  extension  algorithm  to  produce  the  codebook ck+lo from 
Ckm and  return  to  step (2). 

codeword values will be  the means,  respectively,  of the posi- 
tive and negative training  sequence samples. The first exten- 
sion  of this decoder-to constraint  length 2-contains four 
codewords. The original partition is refined  in  a very intuitive 
way: the  partition cell containing  the positive valued samples 
of the training data is divided into  two cells containing, 
respectively, the positive samples  which were preceded  in the 
training data  by  other positive samples, and  those which were 
n o t . S o o = { j I x ~ > O , x ~ - ~ > O } a n d S l o = { j I x ~ > O , x ~ - l <  
0} are the  two subcells created  from So (using binary  notation 
for  the  partition cell indexes). 

CODING RANDOM SOURCES 
The basic trellis  code design algorithm  guarantees only  two 

things: it will eventually halt  and  the average distortion  ob- 
tained over the training data will be nonincreasing with each 
successive iteration. These guarantees are of considerable 
theoretical  interest,  but  the  algorithm  would be of little  practi- 
cal value if it  either failed to  produce improved  codes or 
converged slowly. In  practice,  its convergence is almost always 
extremely rapid-a few iterations usually suffice-and per- 
formance  improvements are  usually obtained. 

The Gaussian i.i.d. and Gauss-Markov (autoregressive) 
sources are common  yardsticks of  source  coding. In  this sec- 
tion,  one  bit per symbol trellis  codes designed by  the iterative 
algorithm are compared  with  the  fake process trellis codes  of 
Linde-Gray, with some recent results by  other researchers, 
and  with  the  rate  distortion  limits  [18]. Since existing tree 
and trellis  codes  already perform  quite close to  the  theoretical 
limits,  there is not a lot of room  for  improvement,  but  the 
design algorithm is able to  obtain 0.2-0.4 dB performance 
gains. Since the design may  be accomplished  off-line,  these 
gains are obtained  without  additional  operating  complexity. 

Rate-Distortion  Functions 

Lloyd-Max quantizer 
,380 

Scrambling  function  fake  process  decoder 

.rx) - Trained  decoders 

.280 - 

.m - Rate-distortion  bound 
I 

2 3 4 5 6 7 8 9  
4 0 16 3 64 12a 256 512 ~. _.. 

Constraint  length (L number  of  codewords 

Fig. 3. Performance  of  fake  process  codes  and  trained  random  codes 
on  the  memoryless Gaussian  source. 

whe1e.D is the average squared error  and R is the  information 
rat.qfn  bits per symbol.  In  this  formula, R is the  theoretical 
minimum  information rate  required for any data compression 
system  with average distortion  no greater than D [8]. 

Memoryless  Gaussian  Sources 
Fig. 3 compares  decoders designed by  the iterative design 

algorithm with  the  rate  distortion  bound,  with  the best one-bit 
scalar quantizer  (the Lloyd-Max quantizer  [31] ), and  with 
the Linde-Gray  scrambling function decoder [22]. Pearlman 
[32]  reports  squared  error  performance of 0.303 and 0.301 
for  length 9 and 10 decoders,  respectively, designed using a 
new theory  for source  coding with  constrained  alphabets. 
These results  are very close to ours. Pearlman’s decoders use 
only  four discrete codeword values, but a  fairly complex 
function is used to  map  the  decoder register contents to the 
four codewords. Fehn  and No11 [lo] have obtained similar 
results using randomly  populated trellis. 

The  trained  decoders of Fig. 3 were designed using the 
Viterbi  encoding  algorithm  for  ten  iterations  on a  training 
sequence of 20 000 samples. Table-lookup  shift register 
decoders with  random  codewords were used as the “initial 
guess” for  the design algorithm. The results  of Fig. 3 represent 
the  trained  decoder  performance  on  data  from  outside  the 
training  sequence. 

From  theory [8, ch. 41  we know  that  the  reproduction 
values of a data compression  system should have a distribution 
yielding the  appropriate  distortion-rate  function  (this  tech- 
nique is used in [ 101 ). Since we would eventually  like to use 
the trellis code design algorithm for sources with an unknown 
distribution, we may  not be able to calculate the best R-D 
distribution  for  the initial codebook.  For  this reason,  we have 
repeated  the  approach of [22]  and used initial codewords 
drawn  from  the sample distribution of the source, based on 
the training  sequence. 

A first-order Gauss-Markov source is the  output of  a 
first-order digital filter driven by Gaussian i.i.d. symbols: First-Order  Gauss-Markov 

Fig. 4 presents  performance results of  trained  decoders  for 

cients  between  0.35  and  0.95.  Shift register decoders  of  con- 
where w is distributed N(0, u2 ). For u2 = 1 and sufficiently straint  lengths 5 and 6 were designed by a combination of the 
small distortion,  the  Shannon lower bound  for  this source extension  algorithm  and  the  decoder  improvement  algorithm 
with squared  error. distortion is starting  from  initial  constraint-length 1 decoders  with  code- 

words  +1  and -1. The resulting decoders are compared  with 
R(D) = 3 lg - 9 D<- the  rate-distortion  function  and  with  the truncated  predictive 

x .  I ==ax. ! a l <  1.  the first-order Gauss-Markov source with  correlation coeffi- 

I -a2 1 -a 
D 1 + a  quantization decoders described in  [23].  The TPQD decoders 
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mse 

,200 - 

,150  - 

,100 - 

,050 - 

Original  TPQD  decoders 
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Fig. 4. Performance of TPQD codes and extension  codes on first-order 
Gauss-Markov  sources. 

are shift register trellis decoders  obtained  by  truncating  the 
impulse  response  of  a  predictive quantizer. When used with a 
trellis  search algorithm  as  the  encoder,  the TPQD system can 
outperform  ordinary predictive quantization. As demonstrated 
here,  the  iterative design algorithm  can  obtain still better per- 
formance. We note  that tree-searched  predictive quantizers 
[ 101 can  obtain similar results for highly correlated sources. 

Additional research of  Gray  and Linde for  one  bit per 
symbol  block  codes designed using the  block  code design algo- 
rithm yields  results comparable to  those  reported  here.  For 
a = 0.85, a 128  codeword block code  has  been designed which 
yields an average distortion of 0.101.  For a = 0.90, an average 
distortion of 0.073  has  been  obtained [ 181 . 

CODING SPEECH SOURCES 

In  this  section, we turn to the  problem of designing tree 
and trellis encoding  systems  for speech. ’We discuss trellis 
codes  for  the original speech  waveform,  trellis codes  for  the 
residual signal of  linear  predictive  coding systems,  and a tree 
encoding  system using a hybrid  decoder  for  the speech wave- 
form.  The results  of the  hybrid  tree  codes have been very 
encouraging, as these codes can  provide  a good  quality speech 
-at  rates  of  one  bit per  sample through an automatic design 
procedure. 

Previous Tree and Trellis  Codes for Speech 

The use of tree  and trellis techniques  for  speech  coding  has 
a long  ‘history. Most of the early work was in  the area  we have 
called plagiarized decoders-the application of  a tree search 
algorithm to  the  encoding  problem  in a standard  coding sys- 
tem. In the  literature,  this  technique is usually referred to  as 
delayed decision [7],  [35]. By using a tree  encoder, which 
delays the  encoding process by a number  of samples  in order 
to  observe the consequences of particular  encodings,  delayed 
decision systems are  able to  achieve improved performance. 
The general  consensus has  been  that  such  methods  can yield 
improvements in  signal-to-noise ratio,  but  that  the improve- 
ments are not usually audible  [12] . A  second class of ap- 
proaches to tree coding of  speech has been  the design of tree 
decoders based on  short-  or  long-term  correlation  functions  of 
speech [4],   [19],   [30].  Systems  both  with fixed and  with 
adaptive decoders have been  built [ lo],   [26],   [37].  More 
recently, a third  approach  has  been  the use of  an optimization 
algorithm to improve an initial decoder [SI. The  technique 
uses a  variational method  and a training sequence to adapt  the 

tap weights of a transversal filter. This approach is similar in 
spirit to the  techniques of this  paper,  but considers only linear 
decoder structures. 

Digital speech data sampled at 6500 Hz were made available 
by Signal Technology, Inc.  of Santa Barbara, CA. Since the 
residual excited  and  hybrid coding  systems discussed later are 
associated with linear  predictive  coding techniques, we will 
also refer to  the speech data as broken  into LPC frames  of 
128 samples  each-corresponding to  a rate of about 50 frames/s. 
The  code design efforts discussed below used two segments of 
600 frames  or  about  12 s each. One segment was used as the 
training  sequence for  the design algorithms. The  second seg- 
ment,  by a different  speaker, was used as a test  sequence to 
check the performance  of designed decoders  on  different  data. 
While the speech  segments were not  phonetically balanced or 
otherwise  selected,  they were carefully recorded  in a low noise 
environment  and  with good gain control. 

The speech coding systems discussed here use the M ,  L 
algorithm  for  both  decoder design and  code  operation.  The 
algorithm parameters were set so that  the  algorithm main- 
tained  20  path sequences as possible encodings with  an  en- 
coding  delay  of 31 symbols. It is widely  held [ 121,  [35]  that 
less intensive  search will achieve most of the  benefits of de- 
layed decision encoding,  but  our  primary purpose‘ was the 
design of  speech codes,  rather  than a  search for  the  most 
efficient  encoding algorithm. Trellis decoders were designed 
using the  extension  method  from small initial codebooks.  At 
each  constraint  length,  the design algorithm was run  for  at 
most six iterations  or  halted  when  the change  in  signal-to-noise 
ratio measured  in  decibels fell below  1 percent.  Decoders were 
designed for  data  rates of 1/2  bit/speech sample,  1 bit/sample, 
and 2  bits/sample. 

Speech Waveform Trellis Codes 

The simplest  way to  apply trellis encoding  to  speech is to  
build  a  trellis decoder  for  the original speech  waveform. 
3250  bits/s were required for  the  rate  1/2  code,  6500  bits/s 
were required  for  the  rate 1 code,  and 13 000 bits/s were 
required for  the 2  bits/sample code. 

Fig. 5 contains signal-to-noise ratios in  decibels for  the 
various speech waveform  trellis codes designed,  measured 
outside  the training sequence.  The  information is presented as 
a function  of  the base two  logarithm of the size of the  code- 
book. This value is equivalent to  the  number  of address bits 
required  by a memory  implementing  the  codebook. 

The decrease in  performance of both  the  rate  1/2  code  and 
the  rate 1 code  for large codebooks  outside  the  training se- 
quence  indicates  that  training sequence was of  insufficient 
length  for  the design of codebooks  with  more  than  about  512 
codewords. If the training  sequence is too  short,  the  decoder 
becomes specialized to  the particular  sequence rather  than  the 
properties  of  the source. Audibly, as might be  expected,  the 
3250  bit/s  system is very noisy,  although  it is intelligible. The 
rate 1 systems are an  improvement,  although still quite  noisy, 
and  the  rate 2 systems,  at 13 000 bits/s, are  still sufficiently 
noisy to be classed as “communications  quality”-not  quite  up 
to the  standards of long distance telephony. 
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Fig. 5.  Speech  waveform  trellis  code  performance.  Figures  are  decibel 

signal-to-noise  ratio.  Curve a is for  the 1/2 bit  per  sample  code  out- 
side the  training  sequence.  Curve b is for  the  rate 1 code,  and  curve 
c is for  the  2  bits  per  speech  sample  code.  Log N is the base-2 log- 
arithm  of  the  codebook size. 

Linear  Predictive  Coding  and Vector  Quantization 
Linear predictive  coding of speech has  been very successful 

[27].  The basic principle  of the  method is a decomposition of 
the speech signal into  an excitation function, e.g., the vocal 
cords,  and an all-pole  linear filter model  of  the vocal tract. 
LPC systems operate  by breaking up  the speech signal into 
segments or  frames,  estimating  the  filter and excitation param- 
eters  for  each  frame,  and  transmitting  quantized versions of 
the  parameters  to  the  decoder, which uses the values to  
operate a  synthesizer. The  length of  a  frame is typically 
10-50 ms.  While there  are  many  methods  for  estimating  the 
filter parameters, all seek to  minimize the power  of the  error 
or residual signal [14] . The speech residuals, the result of 
passing the original speech  waveform through  the LPC analysis 
filter A(z )  or A(z)/a,  play  a  role  in the various methods  for 
estimating  the  excitation  function  and are  sometimes them- 
selves quantized and transmitted. 

There  has been  much  work  done  on  the best  way to  encode 
the LPC parameters  for transmission [13] . Recent research 
into applications  of the  block  quantizer design algorithm has 
led to  vector  quantization  methods of encoding  the gain and 
model  parameters simultaneously [9],   [33].  This method 
is illustrated by Fig. 6. During the design phase of  the vector 
quantizer, a finite  collection of  gain/model combinations  typi- 
cal of  speech are selected by using the block code design algo- 
rithm  together  with a distortion measure between  the wave- 
form  segment  and  the filter  coefficients.  During operation, 
for each  frame  a parallel test of  each filter is made in  search 
for  the  one giving the  minimum residual energy. The index of 
the filter is then  transmitted. 

The most difficult part  of LPC encoding has been the esti- 
mation  of  the  excitation  parameters, which determine  whether 
a  speech frame is voiced or unvoiced and, if voiced, determine 
the  pitch. While there are  a plethora  of  methods,  none  has 
been  completely  satisfactory.  Part  of  the  difficulty is that 

Fig. 6 .  Vector  quantization  of  LPC. 

there are  some  speech sounds like “v” that are partly voiced 
and  partly unvoiced, and  part is due to  the desire that a  speech 
coding system  continue to  operate in  a  reasonable  manner in 
the presence of  nonspeech  background noise or  with multiple 
simultaneous speakers. 

In response to  the problems  of estimating  the  excitation 
part of the LPC decomposition, several systems have been 
proposed which encode  either  the  actual LPC residual signal 
or some associated signal. Adaptive  predictive  coding (APC), 
the voice excited vocoder (VEV),  and residual excited LPC 
(RELP)  systems all fall into  this category [6],   [7],   [36].  
The major difficulty in  each  of  these  systems lies in the  encod- 
ing of the spectrally flat residual signal while retaining  a  low 
transmission rate. A typical  method used is to  band limit  the 
residuals and  then  to use some form of  adaptive PCM to  trans- 
mit  the resulting signal. At  the receiver, a nonlinearity is used 
to  restore  some  energy to higher frequencies and  the resulting 
signal is used to  excite a standard LPC synthesis filter. Tree 
and trellis  encoding offers  the  potential of transmitting  the 
residual signal at low  rates without resorting to  these down- 
sampling and spectral extension techniques. 

LPC with Trellis Encoded  Residuals 

Transmission of  a coded  form of the residuals, combined 
with  the  model  or  model and gain portions of  an LPC system, 
should have several advantages. First, since standard LPC 
systems successfully use either  white noise or an  impulse 
train as excitation  functions,  it is evident that  errors  in  the 
details of  the residual  waveform or synthesizer driving process 
may not result  in much  perceptual  deterioration of the speech 
at  the synthesizer output.  Second, coding  of the actual re- 
siduals should tend  to reduce the  effects of  failures  of the 
voiced/unvoiced model and the  effects of  background  noise. 

For these systems, a vector  quantized LPC system was 
used, operating  with a codebook of 512  tenth-order filters for 
a rate of  9 bits per LPC frame or  about 450 bits/s. The LPC 
system  supplied combined gain and model, so that  the residual 
signal, generated  by passing the original speech through  the 
filter A(z)/o,  was normalized by  the LPC gain. The LPC filter 
set was designed by Rebolledo using the block code design 
algorithm and  the Itakura-Saito distortion measure [16] , 

Using 450 bits/s of side information  for  the gain and  model 
parameters  combined  with an original sampling rate  of  6500 
Hz, trellis RELP speech  coding  systems were produced  operat- 

1331. 
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ing at  3700  bits/s,  6950  bits/s,  and  13  450 bits/s for  the  1/2, 
1,  and 2 bits/symbol cases. As in  the case of the waveform 
coding experiments,  the trellis decoders for  the speech re- 
siduals were designed using the  extension  method, starting 
from  constraint-length 1  decoders. The  distortion measure 
used was the simple squared-error  measure. 

The  most evident artifact in the  RELP speech was a growl- 
like sound  at  the LPC frame  rate. In  our  judgment,  the  RELP 
system  offered'  improved quality over the waveform  coder of 
Fig. 5 at equivalent rate. 

Hybrid Tree Codes 

In  the trellis-coded RELP systems just discussed, the  rate- 
constrained residual signal is reproduced according to  the 
trellis code  distortion measure  (squared-error) without regard 
for  the eventual  waveform after  the receiver passes the de- 
coded residuals through  LPC'synthesis  filter.  It was with some 
surprise, therefore,  that we observed that  the  output waveform 
of the  RELP system was close to  that of the original speech 
signal. As a  result of this  observation, we decided to test a 
composite'  decoder consisting of the a/A(z) LPC synthesis 
filter combined  with a  trellis  decoder front  end. This  "hybrid 
tree code"  system is shown  in Fig. 7.  The  only difference 
between  the RELP  system and  this new  system is that  the 
hybrid system encoder seeks ' a  channel  sequence  which will, 
at  the  decoder  output,  match  the original speech  waveform 
while the  RELP system encoder seeks a  channel  sequence 
which will, at  the  output  of  the trellis decoder,  match  the 
speech residuals. 

As' before,  the LPC portion of the decoder  consists of one 
of 512  tenth-order  filters selected by a  vector quantizer.  The 
filter  selection is 'made independently  on  each frame of speech. 
The trellis portion  of  the  hybrid  decoder is in fact  the same 
decoder as 'was used in the  RELP systems-it was designed 
using the trellis code design algorithm on the speech residuals 
from  the training  sequence. 

Fig. 8 gives performance  data  for  hybrid  tree  encoding sys- 
tems  operating  at  1/2, 1, and 2  bits/sample for  the driving 
process,  plus 450  bits/s  for  the LPC portion of the system. As 
before,  the figure gives signal-to-noise ratios in decibels for  the 
entire 10 s speech  segment. The  combined  channel rates for 
these codes are 3700,' 6950,  or  13  450 bits/s. Although these 
rates are the same as for  the  RELP  system,  the  hybrid  tree 
system produces considerably better  perceptual  quality. 

In  the usual  predictive coding systems  (including  adaptive 
systems), the  prediction filter is driven by a variable step-size 
quantizer, which is not a particularly'good  model  of speech 
residuals. In  the  hybrid  tree  coder,  the trellis front  end  has 
been specifically designed for speech residuals. It makes 
intuitive sense that  the closer the driving process of  an APC- 
like  system is to residuals, the  better  the overall system will 
perform.  Although  the vector quantized LPC filters used 
in this paper  are different  from  those used in most APC SYS- 

tems,  the  predictor  from an APC system could be easily used. 
Descriptions of trellis implementations of otherwise  conven- 
tional APC systems  may be found in [ 101 . 

In  [30], a  collection of hybrid decoders  consisting of LPC 
filters  with a fixed trellis front  end are  used for universal cod- 
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Fig. 7. Hybrid  tree  coding  system. 
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Fig. 8. Hybrid  tree  code  performance.  Performance  figures  are in 
decibel SNR for  the  original  speech  waveform.  Curve u is for  the 1/2 
bit  per  sample  code  outside  the  training  sequence.  Curve b is for  the 
rate 1 code,  and  curve c is for  the  rate 2 code. 

ing of a  speech  waveform.  This  system  differs from  the  hybrid 
system  described in this  section in  two ways: only  16 LPC 
filters  are used,  rather  than  the  much larger set  of  512  filters 
considered here,  and a  fake  process  trellis decoder  matched to 
a  Laplacian distribution is used, rather  than a  trellis decoder 
designed explicitly  for speech residuals. Matsuyama and  Gray 
do suggest in  [30]  the use of a  spectral distortion measure for 
filter  selection  in place of universal coding and this approach is 
taken in [29].  The same encoding  method is used ?n [ l ]  , 
although  the  decoders considered do  not include  a  trellis com- 
ponent  and  the  encoder is a single path search such as in  stand- 
ard APC. In an informal subjective comparison,  the  hybrid 
tree encoding system  described  in  this section has, for a given 
channel rate, given speech quality significantly improved over 
that  of  the similar system of  [29]. 
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SUMMARY 

We have presented  algorithms  for  the design of  trellis 
encoding  data compression systems based on a  training se- 
quence of data.  The  algorithms have been  tested  on  random 
sources and applied to  the  problem of  speech  compression. 
The relatively poor  performance of the fixed-trellis (nonadap- 
tive) speech waveform coder,  together  with  the observed 
waveform tracking  ability of the RELP systems, suggest that 
it is advantageous t o  design a composite,  or  hybrid,  decoder 
which makes use of  knowledge about speech. In the  hybrid 
tree  system, a  spectral distortion measure is used on a  frame- 
by-frame basis to  select that  filter  from a finite  collection of 
LPC filters  which best  matches  the  short-term speech  spec- 
trum.  The chosen  filter is used together  with a  fixed  trellis 
decoder designed to  emulate speech residuals. The  combined 
decoder is used as the  code  generator  for a classic squared- 
error  tree  encoding system. 

The design methods presented  in this  paper have two main 
applications. First,  any existing  coding system whose decoder 
can be described at least  in part  by a  trellis structure can 
potentially be improved  by the algorithms. Second,  the algo- 
rithms  can  construct new  trellis decoders  from  scratch  for 
sources with  unknown characteristics. Most other  code  con- 
struction  methods  depend  upon special knowledge  of the 
source. 
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