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COMPLEXITY REDUCTION METHODS FOR VECTOR EXCITATION CODING 
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Abstract 

Vector Excitation Coding (VXC) is based on a new 
and general source-filter modeling technique in which the 
excitation signal for a speech production model is encoded 
at very low bit-rates using vector quantization. Various 
speech coder structures which fall into this class have 
recently been shown to reproduce speech with very high 
perceptual quality. 

The primary drawback of VXC is the large amount 
of computation required in the process of selecting an 
optimal excitation signal. We present several schemes in 
this paper which substantially reduce search computation 
in VXC coders while retaining their remarkably high 
reconstructed speech quality. 

1. INTRODUCTION 
Excitation Coding (XC) is a convenient name for a 

powerful new approach to speech coding at medium to low 
bit-rates and with very  high perceptual quality. XC is based 
on a source-filter synthesis model as in LPC but is dis- 
tinguished by the use of an analysis-by-synthesis technique 
and a perceptually weighted mean-square error measure for 
selecting the appropriate excitation (source) for each frame. 
The basic approach was introduced by Atal [l] and subse- 
quently led to Multi-Pulse LPC (MPLPC) [2]. 

A particularly effective form of  XC  upes vector quanti- 
zation to encode the excitation signal at very low bit-rates 
(typically 0.25 bits per sample). We refer generically to such 
coding techniques as Vector Excitation Coding (VXC). Two 
examples of VXC coders are [3] and [4]. In the latter paper, 
the term CELP has been used to describe the coding tech- 
nique which uses Gaussian random variables for the codevec- 
tor components. In the encoding process for VXC, high- 
dimensional excitation vectors from a codebook are input to 
the speech production model to generate a set of synthetic 
speech vectors. An optimal excitation vector is selected 
which produces minimal perceptually-weighted error between 
the synthetic and  input vectors. Nearly transparent synthetic 
speech is achieved at rates in the neighborhood of 5 kbits/s 
due in part to the spectral noise masking effect of the error 
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weighting mechanism. 
The primary disadvantage of VXC is the very  high com- 

putational complexity associated with the selection of an 
optimal excitation signal. In CELP, for example, an 
exhaustive search algorithm with a codebook of size 1024 
and dimension 40 requires more than 50,000 multiply/adds 
per input speech sample. This operation count is much 
higher than can be reasonably achieved by conventional 
implementations using today’s DSP chips or special-purpose 
VLSI processors. 

We have developed two techniques for reducing the 
complexity of VXC without sacrificing the perceptual quality 
of the reconstructed speech signal. Both of these new code- 
book search schemes streamline the procedure for selecting 
an optimal excitation codevector, and each results in a factor 
of approximately ten reduction in overall search computation 
compared to the CELP algorithm described in [4]. 

2. VECTOR EXCITATION CODING 
As a first step toward the goal of complexity reduction, 

we identify a VXC structure which is amenable to the incor- 
poration of codebook fast-search methods.  As a secondary 
advantage, this structure requires less computation than the 
original CELP structure even though it is conceptually 
equivalent to it. 

A block diagram of the VXC encoder we consider in 
this paper is presented in Figure 1. The original speech input 
s, is a vector with a nominal dimension of k = 40 samples. 
This vector is filtered by a time-varying perceptual weighting 
filter W(z) and then subtracted from each member of a set of 
N weighted synthetic speech vectors {S,}, J E {I,...&}. The 
set { S j }  is generated by filtering Gaussian-like codevectors cj 
with cascaded lo?g-term  and short-term weighted synthesis 
filters Hl(z) and HJz).  Each codevector is scaled by a gain 
Gj which is determined by minimizing the mean-squared 
error between S, and the weighted input speech vector. 

In an exhaustive search VXC coder of  this type, an 
excitation vector cj is selected which minimizes the squared 
Euclidean distance 1 1  Sj It2 between preprocessed s, vectors 
and every member of {Sj}. An index I, having logz N bits 
which identifies the optimal cj is transmitted for each input 
vector along with Gj and the synthesis filter parameters asso- 
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H I M  a p  
Figure 1. A VXC Structure 

ciated with the current input frame. 

filters i S ( z ) ,  Hz(z), and W(z)  are given by 
The transfer functions of the time-varying recursive 

P J 
where P(z)  = 1 + ai z f i ,  B(z)  = 1 + biz-L - i, the ai are 

LPC predictor coefficients obtained by the stabilized covari- 
i =  1 i = - J  

ance method [l] of order p ,  the bi are predictor coefficients 
of a long-term LPC covariance analysis of order q = 2.7 + 1, 
and the lag term L can roughly be described as the sample 
delay corresponding to one pitch period. The parameter y 
(0 < y c 1) determines the amount of perceptual weighting 
applied to the error signal. 

In Figure 1, we see that W(z)  has been  moved from its 
conventional location (at the output of the error subtraction 
operation) to both of its input branches. In this case, s, will 
be weighted only once by W(z)  (prior to the start of a code- 
book search). Another desirable effect of moving W(z)  is 
that its zeros cancel the poles of the conventional short-term 
LPC filter l /P ( z ) ,  producing the pth order weighted synthesis 
filter i S ( z ) .  This representation requires a factor of 3 less 
computation per codevector than the conventional approach 
since only k@ + q) multiply/adds are required for filtering a 
codevector instead of k(3p + q) when the synthesis and 
weighting filters are separate. 

Computation can be further reduced by removing the 
effect of the memory in fis(z) and Hl(z) on the selection of  an 
optimal excitation vector for the current frame. This is 
accomplished using a very low-complexity technique to 
preprocess the weighted input speech vector once prior to the 
subsequent codebook search. The result of this procedure is 

that the initial memory  in these filters can be set to zero 
when synthesizing {ij} without affecting the choice of the 
optimal codevector. Once the optimal codevector is deter- 
mined, the filter memory from the previous frame can be 
updated for use in the subsequent frame. This approach also 
allows us to efficiently express the speech synthesis operation 
as a matrix-vector product, as shown in Section 3.  

3. SPARSE VECTOR FAST-SEARCH 
The Sparse Vector Fast Search method is motivated by 

MPLPC.  In this method, we develop a  new formulation of 
the LPC synthesis filters and show how a suitable algebraic 
manipulation and an appropriate but modest constraint on the 
Gaussian-like codevectors leads to  an overall reduction in 
codebook search complexity by a factor of approximately ten. 
The complexity reduction factor can be increased by varying 
a parameter of the codebook design process. The result is 
that the performance versus complexity characteristic exhibits 
a threshold effect that allows a substantial complexity saving 
before any perceptual degradation in quality is incurred. A 
side-benefit of this technique is that memory storage for the 
excitation vectors is reduced by a factor of 7 or more. 

In Section 2, we noted that memory terms in the infinite 
impulse response (W) filters fis(z) and Hz(z) can be set to 
zero prior to synthesizing {ij}. This implies that the output 
of the W filters can be expressed as  a convolution of two 
finite sequences of length k 

$(m) = h(m) * cj(m), 

where $(m) is a sequence of weighted synthetic speech sam- 
ples, h(m) is the impulse response of the combined short-term 
and long-term filters, and ci(m) is a sequence of samples 
from the jth excitation vector. 

A matrix representation of the convolution in (2) may 
be given as: 

where H is a k X k lower triangular matrix whose elements 
are from h(m): 

h(2) h(1) h(0) . . . 
H = l  . . . . .  0 

[h(k-I) h(k-2) h(k-3) . . . * .  . . h(0) O I  

Now the weighted distortion from the jrh codevector can 
be expressed simply as 
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In general, the matrix computation to calculate .3j requires 
k(k + 1)/2 multiply/adds, versus k(p + q) for the conventional 
linear recursive filter realization. For our chosen set of  filter 
parameters (k = 40, p + q = 19), it would be slightly more 
expensive for an arbitrary cj to compute 1 1  5, using the 
matrix formulation since (k  + 1)/2 > p + q. However, if we 
suitably choose each cj to have only Np pulses per vector (the 
other components are zero), then (5) can be computed very 
efficiently. More specifically, if the matrix-vector product 
Hcj is calculated using: 

F o r m = O t o k - 1  
If c,(m) = 0, then 

Next m 
else 

F o r i = m t o k - 1  
ij(Q = ij(i) + cj(m) h(i) 

endif 

then the average computation for Hcj is Np(k + 1)/2 
multiply/adds, which is less than k@ + q) if Np < 37 (for the 
k, p ,  and q given previously). A very straightforward code- 
book design procedure exists which uses  an initial set of 
Gaussian vectors to construct a set of pulse excitation 
codevectors. The complexity reduction factor of this fast- 
search technique is adjusted by varying Np, a parameter of 
the codebook design process. 

Zeroing of selected codevector components is consistent 
with results obtained in MPLPC, since it has been shown that 
only about 8 pulses are required per pitch period (one pitch 
period is typically 5 112s for a female speaker) to synthesize 
natural-sounding speech [SI. Even more encouraging, our 
simulation results indicate that reconstructed speech quality 
does not start to deteriorate until the number of pulses per 
vector drops to 2 or 3 out of 40. Since, with the matrix for- 
mulation, computation decreases as the number of zero com- 
ponents increases, significant savings can be realized by 
using only 4 pulses per vector. In fact, when Np = 4 and k = 
40, filtering complexity reduction by a factor of ten is 
achieved. 

Figure 2 shows plots of segmental S N R  (SNR,) and 
overall codebook search complexity versus Np' Observe that 
a s ,  Np decreases, SNR, does not start to drop until Np 
reaches 2. In fact, informal listening tests show that the per- 
ceptual quality of the reconstructed speech signal actually 
improves slightly as Np is reduced from 40 to 4, and at the 
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same time the filtering computation drops significantly. 
As a final note, observe that the required amount of 

codebook memory can be greatly reduced by storing only Np 
pulse amplitudes and their associated positions instead of k 
amplitudes (most of which are zero in this scheme anyway). 
For example, memory storage reduction by  a factor of 7.3 is 
achieved when  k = 40, Np = 4, and each codevector com- 
ponent is represented by  a 16-bit word. 

4. SPECTRAL CLASSIFICATION 
The second simplification scheme, Spectral 

Classification, also reduces overall codebook search effort by 
a factor of approximately ten. It is based on the premise that 
it is possible to perform a precomputation of simple to 
moderate complexity using the input speech to eliminate a 
large percentage of excitation codevectors from consideration 
before an exhaustive search is performed. 

It has been shown [4] that for a given speech frame the 
number of excitation vectors from a codebook of size 1024 
which produce acceptably low distortion is small (approxi- 
mately 5). Our goal in this fast-search scheme, then, is to 
use  a quick but approximate procedure to find  a set of N, 
"good" candidate excitation vectors (N, << N) for subsequent 
use in a reduced exhaustive search. 

The N ,  surviving codevectors are selected as follows. A 
rough classification of the gain-normalized spectral shape of 
the current speech frame is made by quantizing its short-term 
predictor coefficients using a vector quantizer with M spectral 
shape codevectors (typically M = 4 to 8) and which uses the 
well-known Itakura-Saito distortion measure 16, 71. The 
classification operation is a gain-normalized version of the 
LPCVQ procedure introduced in [SI. In addition, it is  very 
low-complexity (less than .2% of the total codebook search 
effort), Associated with the ith spectral shape class is  a 
precomputed codebook containing vectors generated by shap- 
ing the original Gaussian-like excitation codevectors with the 
ith all-pole filter f is(z)  corresponding to that class. By calcu- 
lating the short-term filtered excitation vectors off-line, this 
computational expense is saved in the encoder (the short-term 
filtering and error weighting operation comprises 90% of the 
total codebook search computation in the original CELP 
structure). Now the candidate excitation vectors from the 
original Gaussian-like codebook can be selected simply by 
filtering the shaped vectors from the selected class with Hl(z), 
and retaining only those N, vectors which produce the lowest 

weighted distortion. The final exhaustive search is conducted 
using quantized values of the predictor coefficients deter- 
mined by LPC analysis of the current speech frame. 

Computer simulation results show that with M = 4, N, 
can be as low as 30 with no loss in perceptual quality of the 
reconstructed speech, and when N, = 10, only a  very slight 
degradation is noticeable. Figure 3 summarizes the results of 
these simulations by showing how SNR,,, and overall code- 
book search complexity change with N,. Note that the drop 
in SNR, as N, is reduced does not occur until after the knee 
of the complexity versus N, curve is passed. 
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Table I contains a comparative listing of the complete 
codebook search operation count (in MFlops) for each of the 
two fast-search methods introduced in this paper. For com- 
parison, the operation count for a CELP structure as 
described in [4] is also shown. Note that the overall factor 
of reduction for both fast-search methods  is approximately 
ten. 

Table H 

Codebook 
Search 
Computation 

;hart-Term/ 
Weight.  Filter 

L o n g - T e r m  
Filter 

Norm squared 

T o t a l  
of Z,i 

2 0 . 9  

* SVFS = Sparse Vector Fast-Search, 'Bg, = 4  
§e = Spectral Classification, M = 4, Wi, = 10 

In Table I, the operation count for long-term filtering in 
the Spectral Classification method is a very conservative esti- 
mate. It was derived assuming that the smallest value for the 
lag term L in H,(z) (L = 20) occurs every speech frame. In 
most instances, L is considerably greater than 20, so compu- 
tation will be much less than the 12.4 MFlop value given in 
Table I. For the case when L > k, filtering of the shaped 
codevectors with H,(z) is not necessary at all when conduct- 

ing the codebook search (recall that the Rlter  memory in 
HI@) is set to zero prior to use). For successive frames in 
which L > k, the total operation count for VXC with Spectral 
Classification is only 34.4 MFlops, as noted in parenthesis in 
Table I. 

5. CONCLUSIONS 
The sparse-vector and spectral classification fast code- 

book search techniques for VXC have each been shown to 
reduce complexity by an order of magnitude without incur- 
ring a loss in subjective quality of the reconsbucted speech 
signal. In the sparse-vector method, a matrix formulation of 
the LPC synthesis filters is presented which possesses distinct 
advantages over conventional all-pole recursive filter struc- 
tures. In spectral classification, we are able to eliminate 
approximately 93% of the excitation codevectors from the 
codebook search by using a crude identification of the spec- 
tral shape of the current frame. These two methods can be 
combined together or with other compatible fast-search 
schemes to achieve even greater reduction, thereby  bringing 
VXC-class coders within the realm of implementation using 
today's VLSI technology. 

A ~ ~ ~ ~ w ~ e ~ ~ e ~ ~ ~ ~  
The authors are grateful to Dr. Ioannis ~Ologlou f m  

helpful discussions of the Spectral classification fast-search 
method presented in this paper. 
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