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Robert M. Gray 

A vector  quantizer is a system for mapping  a sequence of 
continuous or discrete  vectors into a digital sequence suitable 
for  communication  over  or storage in a digital channel. The 
goal of such a system i s  data compression: to reduce  the bit 
rate so as to  minimize  communication channel  capacity  or 
digital storage memory  requirements while  maintaining the 
necessary fidelity  of  the data.  The mapping for each vector 
may or may not have memory in the sense of  depending on 
past actions of the coder, just as in  well established  scalar 
techniques  such as PCM, which has no memory,  and pre- 
dictive  quantization, which does,  Even though  information 
theory  implies  that  one can  always obtain  better  performance 
by coding  vectors  instead of scalars,  scalar quantizers have 
remained by far  the most common  data compression  system 
because of  their  simplicity and  good  performance  when 
the  communication  rate is sufficiently large. In addition, 
relatively  few  design  techniques  have  existed  for  vector 
quantizers. 

During the past few years  several  design algorithms have 
been developed  for  a  variety  of  vector  quantizers and the 
performance of these  codes has been  studied for speech 
waveforms,  speech linear  predictive  parameter vectors, 
images, and  several simulated  random processes. It is the 
purpose of  this article to survey  some of these  design tech- 
niques  and their  applications. 

ATA compression is the conversion  of a stream of analog 
or very high rate discrete data into a stream of relatively 

low rate  data for  communication  over a digital  communica- 
tion  link  or storage in a digital  memory. As digital  communi- 
cation and  secure communication have become increasingly 
important, the  theory and  practice of data compression have 
received increased attention.  While it is  true that in many 
systems bandwidth is relatively inexpensive,  e.g., fiber  optic 
and cable n/ links, in  most systems the  growing  amount  of 
information  that users wish to communicate or store necessi- 
tates  some form of compression for efficient, secure,  and 
reliable,use of the  communication  or storage medium. 

A prime example  arises with image  data, where  simple 
schemes require bit rates too large for many communicatipn 
links or storage  devices. Another  example  where  com- 
pression is required results from  the fact that if speech is  
digitized  using a simple PCM  system consisting  of a sampler 
followed  by scalar quantization, the  resulting signal will  no 
longer have a small enough  bandwidth to  fit  on ordinary 
telephone channels.  That is, digitization  (which may be  de- 
sirable for security or reliability) causes bandwidth expan- 

sion. Hence  data compression will be  required  if  the  original 
communication  channel is to  be used. 

The two examples of image compression  and speech com- 
pression or, as they are often called, image coding and 
speech coding, are probably the currently  most  important 
applications of data  compression.  They  are  also among the 
most interesting  for study  because  experience has shown 
that both types of data exhibit  sufficient  structure to per- 
mit considerable  compression with  sufficiently  sophisti- 
cated  codes. 

Such conversion of relatively high rate data to  lower rate 
data virtually always entails a loss of  fidelity  or an  increase in 
distortion. Hence a fundamental goal of data  compression 
is  to obtain  the best possible fidelity  for  the given rate 
or, equivalently, to minimize  the rate required  for a given 
fidelity. If a system has a sufficiently  high rate constraint, then 
good  fidelity is relatively easy to achieve  and techniques such 
as PCM, transform  coding,  predictive  coding, and  adaptive 
versions of these techniques have become quite  popular  be- 
cause of their  simplicity and good  performance t1,2,31. All  of 
these techniques share a fundamental  property: The  actual 
quantization or  coding  or conversion of continuous  quanti- 
ties into discrete quantities is done on scalars,  e.g., on  indi- 
vidual real-valued samples of waveforms or pixels of images. 
PCM  does this in a memoryless fashion; that is, each  succes- 
sive input is encoded  using a rule  that does not depend on 
any  past inputs or  outputs of the  encoder. Transform coding 
does it by  first  taking  block  transforms of a vector and then 
scalar coding  the  coordinates of the  transformed vector. Pre- 
dictive  coding does it by  quantizing an error  term  formed as 
the  difference  between  the  new sample  and a prediction  of 
the new sample  based on past coded  outputs. 

~ A fundamental  result of Shannon's rate-distortion theory, 
the  branch  of  information  theory  devoted to  data com- 
pression, is that  better  performance can  always be achieved 
by  coding vectors instead of scalars,  even if  the data  source 
is memoryless,  e.g.,  consists of a sequence of  independent 
random variables, or if the data compression system  can  have 
memory, i.e., the action of an encoder at each time is  permit- 
ted  to depend on past encoder  inputs or  outputs [4,5,6,7,8]. 
While some traditional  compression schemes  such as trans- 
form  coding operate on vectors and  achieve significant im- 
provement over  PCM, the  quantization is  sti l l  accomplished 
on scalars  and  hence  these  systems  are, in a Shannon sense, 
inherently  suboptimal:  better  performance is always  achiev- 
able in theory by  coding vectors instead of scalars,  even if the 
scalars  have been  produced  by  preprocessing  the  original 
input data so as to make them  uncorrelated or  independent! 
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This theory  had  a  limited  impact  on actual  system  design 
because I )  the  Shannon  theory  does  not  provide  con- 
structive  design  techniques for  vector  coders,  and 
2) traditional scalar coders often  yield satisfactory per- 
formance  with  enough  adaptation  and  fine  tuning. As a 
result, few design  techniques  for  vector  quantizers  were 
considered  in  the  literature  prior  to  the  late 1970’s when it 
was found  that  a  simple  algorithm of Lloyd [91 for  the 
iterative  design of scalar quantization or PCM  systems  ex- 
tended  in a  straightforward way to  the design of  memory- 
less vector  quantizers,  that is, of vector  quantizers which 
encode successive input  vectors  in a  manner  not  de- 
pending  on  previous  encoder  input  vectors  or  their  coded 
outputs.  Variations  of  the basic algorithm have  since 
proved  useful  for  the  design  of  vector  quantizers  with  and 
without  memory  for a  variety  of  data  sources including 
speech  waveforms,  speech  parameter  vectors,  images, 
and  several random process  models, the  latter  being 
useful for  gauging  the  performance of the  resulting 
codes with  the  optimal  performance  bounds  of  informa- 
tion theory. 

This  paper is intended as a  survey of  the basic  design 
algorithm  and  many  of  its  variations  and  applications. We 
begin  with  the  simplest  example  of  a  memoryless  vector 
quantizer,  a  vector  generalization  of  PCM. For con- 
venience we use the  shorthand  VQ  for  both  vector  quan- 
tization  and  vector  quantizer. Necessary properties  of 
optimal  quantizers  are  described  and an algorithm  given 
which uses these  properties  to  iteratively  improve  a  code. 
For concreteness, we focus on  two examples of  distortion 
measures: the  ubiquitous mean-squared  error  and  the 
Itakura-Saito  distortion.  The  first  example,  which is popu- 
lar in  waveform  coding  applications,  provides  a  geometric 
flavor to  the  development;  the second  example, which is 
useful  in  voice  coding  applications,  helps to demonstrate 
the  generality  and  power  of  the  technique. 

Next,  various  techniques  are  described for  designing 
the  initial codes required  by  the  algorithm. These tech- 
niques also indicate  some  useful  structure  that can be 
imposed on vector  quantizers  to  make  them  more  imple- 
mentable. Several variations of  the basic VQ are  de- 
scribed which  permit  reduced  complexity  or  memory  or 
both at the expense of a hopefully  tolerable loss of  per- 
formance. These include  tree-searched codes, product 
codes,  and multistep  codes. 

We then  turn  from memoryless  vector  quantizers to 
those  with  memory:  feedback  vector  quantizers such as 
vector  predictive  quantizers  and  finite-state  vector  quan- 
tizers.  These  codes  are not  yet  well  understood,  but  they 
possess a  structure  highly  suited  to VLSl implementation 
and  initial  studies suggest that  they  offer  significant  per- 
formance gains. 

For comparison,  we also briefly  describe  trellis  en- 
coding systems or  “lookahead”  or  ”delayed decision’’ or 
”multipath search”  codes which use the same decoder as 
a feedback  vector  quantizer but  which  permit  the  encoder 
to base i ts decision on a  longer  input data  sequence. 

A final  general  code  structure is described  which uses 

vector  quantization  to adapt  a waveform  coder,  which may 
be another  VQ. 

We next  present  a  variety  of  simulation  results  de- 
scribing  the  performance  of  various  VQ systems on vari- 
ous  data  sources. Examples of all of the above VQ varieties 
are  tested for  waveform  coding  applications  on  two 
common data  sources:  a Gauss Markov source  and  real 
sampled  speech. One  bit  per sample  coders for these 
sources  are compared on  the basis of  performance, 
memory  requirements,  and c o m m i o n a l  complexity. 
Both  memoryless  and  simple  feedback  Sector  quantizers 
are studied  for  voice  coding  applications at a rate  of 
0.062 bits/sample  and less and  for  image  coding at a  rate 
of 0.5 bit  per sample. One example is given of a  simple 
adaptive  predictive  vector  quanfizer  for speech  wave- 
form  coding. 

By studying a variety of  coding systems on  common data 
sources, the results yield  some  general  comparisons  and 
trends  among the various  vector  quantization  techniques. 
The  reader should,  however,  keep two caveats in  mind 
when  interpreting  such  quantitative  results: First, the  em- 
phasis here is on  low  bit rate  systems,  e.g.,  speech  coders 
using 1 bit  per sample  or less and  image  coders 1/2 bit  per 
pixel.  Comparisons  favoring  certain systems  at such low 
rates  may not  be  valid for the same systems at higher rates. 
Second, the  numbers  reported  here are intended  to  pro- 
vide  comparisons for  different systems  used on  common 
data  sources; they can be  compared  with  other  numbers 
reported  in  the  literature  only  with great  care: the  input 
data  and the system  design  parameters  such as sampling 
rate  and pre-  or  post-filtering may be  quite  different. 

Applications  of  vector  quantization  to real  data  sources 
such as sampled  speech  waveforms  and  images  are still 
young  and  the  algorithms  do  not  yet  incorporate  the so- 
phisticated  ”bells  and  whistles’’  of  many  well-established 
scalar quantization schemes.  The preliminary  experiments 
described  here,  using  fairly  simple  vector  quantizers with 
and without memory,  demonstrate  that  the  general ap- 
proach  holds  considerable  promise  for  some  applications. 
For example, good  qualityvocoding systems using  VQ  and 
the  Itakura-Saito  distortion  have  been  developed at 
800 bits  per  second,  a  significant  reduction in  the  bit rate 
previously  required  for  comparable  quality [IO]. While  the 
compression  achieved so far in  waveform  coding  and  im- 
age coding  applications  using  the  squared-error  distor- 
tion has not  yet  been as significant, we believe  that it has 
yielded  comparable  or  better  performance at low rates 
than  traditional scalar schemes of greater  complexity. The 
quality  of  the lh bit  per  pixel images shown  here is prom- 
ising  given  the  simplicity  of  the  coding scheme  used. 

We attempt  to use the  minimum of mathematics  and  a 
maximum  of English in  the  presentation so as to focus on 
the  intuitive ideas underlying  the  design  and  operation  of 
vector  quantizers.  The  detailed  descriptions  of  the  vari- 
ous algorithms can be  found  in  the  cited references.  The 
reader is also referred  to a  recent  tutorial  by  Gersho  and 
Cuperman [Ill which  presents a brief  overview  of 
VQ  applied  to speech waveform  coding. 
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MEMORYLESS VECTOR QUANTIZERS 

In  this  section  we  introduce  the basic definition  of 
memoryless  vector  quantizers,  their  properties,  and an 
algorithm  for  their  design. 

Quantization 

Mathematically,  a  k-dimensional  memoryless  vector 
quantizer or,  simply,  a V Q  (without  modifying adjectives) 
consists of  two  mappings: an encoder y which assigns to 
each input  vector x = (xo,xl, , x ~ - ~ )  a  channel  symbol 
y ( x )  in some  channel  symbol set M, and  a  decoder p as- 
signing  to each  chanFel  symbol u in M a  value in a  re- 
production alphabet A. The  channel  symbol set is often 
assumed to  be a space of  binary  vectors  for  convenience, 
e.g., M may be  the set of all 2R binary  R-dimensional  vec- 
tors. The reproduction  alphabet may or may not  be  the 
same as the  input  vector space; in particular, it may  consist 
of real  vectors of a  different  dimension. 

If M has M elements, then  the  quantity R = logz M is 
called the rate of  the  quantizer  in  bits  per  vector  and 
r = R/k is the  rate in bits  per  symbol  or,  when  the  input is 
a  sampled  waveform,  bits  per  sample. 

The application  of  a  quantizer  to data compression is 
depicted  in  the  standard Fig. 1. The input data  vectors 
might  be  consecutive samples of a  waveform,  consecutive 
parameter  vectors  in a voice  coding system, or  con- 
secutive  rasters or subrasters in an image coding system. 
For integer values of R it is useful  to  think  of  the  channel 
symbols,  the  encoded  input  vectors, as binary R- 
dimensional  vectors. As is commonly  done  in  informa- 
tion  and  communication  theory, we, assume that  the  chan- 
nel is noiseless, that is, that U ,  = U,. While real  channels 
are  rarely  noiseless,  the joint source  and  channel  coding 
theorem  of  information  theory  implies  that a good data 
compression system designed  for  a noiseless channel can 
be  combined  with a good  error  correction  coding system 
for a  noisy  channel  in  order  to  produce  a  complete system. 
In  other  words,  the  assumption of a  noiseless channel is 
made  simply to  focus on  the  problem of data compression 
system  design  and not  to reflect any  practical  model. 

CHANNEL 

Figure 1. Data Compression  System. The data or in- 
formation  source {Xn; n = 0,1, , . . } is a  sequence of 
random vectors. The encoder  produces  a  seqyence of 
cbannel  symbols {&: n = 0,1,2,, . . }, The sequence 
{U,,; n = 0, 1,2, . . . }  is  delivered to  the receiver by the 
digital channel.  The decoder  then  maps this sequence 
in-to the  f inal  reproduction  sequence o f  vec to rs  
{Xn: n = 0, 1,2, . . , }. 

Observe  that  unlike scalar quantization,  general V Q  
permits  fractional rates in bits  per sample. For example, 
scalar PCM must. have  a bit rate of at least 1 bit  per sample 
while  a k dimensional V Q  can have  a bit rate of only I l k  
bits  per  sample  by  having  only  a  single  binary  channel 
symbol for  k-dimensional  input  vectors. 

The  goal  of  such  a  quantization  system is to  produce  the 
"best"  possible reproduction sequence for a  given  rate R. 
To quantify  this idea, to  define  the  performance  of a  quan- 
tizer,  and to  complete  the  definition  of a  quantizer,  we 
require  the  idea  of  a  distortion measure. 

Distortion 

A distortion measure d is  an assignment  of  a  cost d(x,N 
of  reproducing any input  vector x as a reproduction 
vector 1. Given such  a distortion measure, we can quantify 
the  performance  of  a system by an average distortion 
€d(X,X) between  the  input  and  the  final  reproduction: A 
system will  be  good  if it yields  a  small  average  distortion. 
In practice,  the  important average is the  long  term sample 
average or  time average 

4 "-1 

l im L.2' d(Xi,.Xi) 
n-- n ,=O 

provided, of course,  that the  limit makes sense. If the vec- 
tor process is stationaryand  ergodic,  then,  with  probability 
one, the  limit exists and equals an expectation €(d(X,X)). 
For the  moment  we will assume that  such  conditions are 
met  and  that  such long  term sample averages are  given  by 
expectations.  Later  remarks will focus on  the general as- 
sumptions  required  and  their  implications  for  practice. 

Ideally  a  distortion  measure  should  be  tractable  to 
permit analysis, computable so that it can be evaluated in 
real time  and used in  minimum  distortion systems, and 
subjectively  meaningful so that large or small  quantitative 
distortion measures correlate  with  bad  and  good  subjec- 
tive  quality.  Here  we  do  not  consider  the  difficult  and 
controversial issues of  selecting  a  distortion measure; we 
assume that  one has been  selected  and  consider means of 
designing systems which  yield small  average distortion. 
For simplicity  and  to ease exposition,  we  focus on two 
important  specific  examples: 

(1) The squared  error  distortion measure: Here  the  in- 
put  and  reproduction spaces are k-dimensional Euclidean 
space 

d(x,9) = IIX - k(12 = x ( X i  - 2 i ) 2 ,  

k - l  

i = O  

the square of the Euclidean  distance between  the vectors. 
This i s  the  simplest  distortion  measure  and  the  most 
common  for  waveform  coding.  While  not  subjectively 
meaningful  in many cases, generalizations  permitting 
input-dependent  weighting have proved  useful  and  only 
slightly  more  complicated. For the  squared-error dis- 
tortion  it is common practice to measure the  performance 
of a  system by  the  signal-to-noise  ratio  (or  signal-to- 
quantization-noise  ratio) 
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This corresponds  to  normalizing  the average distortion 
by  the average energy  and  plotting  it  on a logarithmic 
scale:  Large (small) SNR corresponds  to  small  (large) 
average distortion. 

(2) The (modified)  Itakura-Saito  distortion: This distor- 
tion measure i s  useful  in  voice  coding  applications  where 
the  receiver is sent a linear  model  of  the  underlying  voice 
production  process.  The  distortion  measure i s  based on 
the  ”error  matching  measure”  developed  in  the  pio- 
neering  work  of  ltakura  and Saito on  the PARCOR or LPC 
approach to  voice  coding [12]. More  generally,  this  dis- 
tortion  measure is a special case of a minimum  relative 
entropy  or  discrimination measure; VQ  using such  dis- 
tortion measures can be  viewed as an application  of  the 
minimum  relative  entropy  pattern  classification  technique 
introduced  by  Kullback [I31 as an application  of  infor- 
mation  theory  to statistical  pattern  classification. (See 
also [14,15].) 

We  here  introduce  a  minimum  of  notation  to  present a 
definition  of  the  ltakura-Saito  distortion  measure. Details 
and  generalizations may be  found  in [16,17,14,15]. Here 
the  input  vector can again be  considered as a collection of 
consecutive  waveform  samples.  Now,  however,  the 
output  vectors have the  form 9 = (a, al,  a2, +, ap), where 
a is  a positive  gain  or  residual  energy  term  and  where  the 
ai with a. = 1 are inverse  filter  coefficients  in  the sense 
that  if 

P 

A(z) = aiz-‘ 

then  the  all-pole  filter  with  z-transform I/A(z) is a stable 
filter.  Here  the  reproduction  vectors may be  thought  of 
as all-pole  models  for  synthesizing  the  reproduction at 
the  receiver  using a locally  generated  noise  or  periodic 
source, in  other  words, as the  filter  portion  of a linear 
predictive  coding (LPC) model  in  a  vocoding  (voice 
coding) system.  The ltakura-Saito  distortion  between  the 
input  vector  and  the  model can be  defined  in  the  time 
domain as 

i = O  

d(x.91 = - - In - - 1. afR(x)a a,,(x) 
\ ,  , a a 

where af = ( I , + ,  * - . , a p ) ,  R(x) is the (p + 1) X (p + 1 )  
sample autocorrelation  matrix  of  the  input  vector x, and 
where aJx) is an input  gain  (residual  energy)  term  defined 
as the  minimum  value  of brR(x)b, where  the  minimum is 
taken  over all vectors b with  first  component  equal  to 1 .  
There are many  equivalent  forms  of  the  distortion mea- 
sure, some useful  for  theory  and some for  computation. 
Frequency  domain  forms  show  that  minimizing  the  above 
distortion can be  interpreted as trying  to  match  the  sample 
spectrum  of  the  input  vector  to  the  power spectral density 
of  the  linear  all-pole  model  formed  by  driving  the  filter 
with  z-transform I/A(z) by  white  noise  with  constant 

power spectral density G, 
The above  formula  for  the  distortion is one of the  sim- 

plest, yet  it  demonstrates  that  the  distortion measure is 
indeed  complicated-it is not a simple  function  of an 
error  vector,  it is not  symmetric  in its input  and  output 
arguments,  and it is not a metric  or  distance. Because of 
the  intimate  connection  of  this  distortion measure with 
LPC vocoding  techniques,  we  will  refer  to  VQ‘s  designed 
using  this  distortion  measure as  LPC VQ‘s. 

Average distortion 
As the average distortion  quantifies  the  performance of 

a system and  since  we will  be  trying  to  minimize this  quan- 
tity  using  good  codes, we  pause to  consider  what  the 
average means in  theory  and  in  practice. 

As previously  noted,  in  practice  it is the  long  term 
sample average of ( I )  that  we  actually measure  and which 
we  would  like  to  be small. If the process is stationary and 
ergodic,  then  this  limiting  time average is the same as 
the  mathematical  expectation. The mathematical  expec- 
tation is useful  for  developing  information  theoretic  per- 
formance  bounds,  but  it is often  impossible  to  calculate  in 
practice because the  required probabilitydistributions are 
not  known,  e.g.,  there are no  noncontroversial  generally 
accepted  accurate  probability  distributions  for real  speech 
and  image data. Hence a pragmatic  approach  to system 
design is to  take  long sequences of  training data, estimate 
the  “true”  but  unknown  expected  distortion  by  the sample 
average, and  attempt  to  design a code  that  minimizes  the 
sample average distortion  for  the  training  sequence. If the 
input source is indeed  stationary  and  ergodic,  the  re- 
sulting  sample average should  be  nearly  the  expected 
value  and  the same code  used on  future  data  should  yield 
approximately  the same  averages [181. 

The  above  motivates a training  sequence based design 
for  stationary  and  ergodic data sources. In fact, even if the 
“true”  probability  distributions are known as in  the case of 
a Gauss Markov  source,  the  training  sequence  approach 
reduces to a standard Monte  Carlo  approach. 

An  immediate  objection  to  the  above  approach,  how- 
ever, is whether  or  not  it makes sense for real  sources 
which may be  neither  stationary  nor  ergodic. The  answer 
is an emphatic  “yes”  in  the  following sense: The desired 
property is that  if  we  design a code based on a sufficiently 
long  training  sequence  and  then use the  code  on  future 
data produced  by  the same source,  then  the  performance 
of  the  code  on  the  new  data  should  be  roughly  that 
achieved on  the  training data. The theoretical issue is to 
provide  conditions  under  which  this  statement can be 
made rigorous. For reasonable  distortion measures, a 
sufficient  condition  for  this  to  be  true  for  memoryless 
VQ  design i s  that  the  source  be  asymptotically mean 
stationary, it need  not  be  either  stationary  nor  ergodic 
[19,20,21,22,23]. Asymptotically mean stationary sources 
include all stationary sources, block  (or  cyclo)  stationary 
sources, and  asymptotically  stationary  sources. Processes 
such as speech which  exhibit  distinct  short  term  and  long 
term  stationarity  properties are well  modeled  by asymp- 
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totically mean stationary  sources [211. 
The key point  here is that  the  general  design  approach 

using  long  training  sequences does not  require  either 
ergodicity  nor  stationarity  to have a solid  mathematical 
foundation.  In fact, the  mathematics  suggest  the  follow- 
ing  pragmatic  approach:  Try  to  design 'a code  which 
minimizes  the  sample average distortion  for a very long 
training  sequence.  Then use the  code on test  sequences 
produced  by  the same source, but  not  in  the  training se- 
quence.  lf  the  performance is reasonably  close to  the 
design values, then  one can have a certain  amount  of 
confidence  that  the  code  will  continue  to  yield  roughly  the 
same performance  in  the  future. If the  training  and test 
performance are significantly  different,  then  probably  the 
training  sequence is not  sufficiently  long.  In  other  words, 
do  not  try  to  prove  mathematically  that a source is asymp- 
totically  mean  stationary,  instead try  to  design codes for  it 
and  then see if they  work  on  new data. 

Henceforth  for  brevity  we  will  write  expectations  with 
the  assumption  that  they are to  be  interpreted as short- 
hand  for  long  term  sample averages.  (A sample average 
L- l  d(Xi,k) is, in fact, an expectation  with  respect  to 
the  sample  distribution  which assigns a probability  of 1 / L  
to each vector  in  the  training  sequence.) 

Properties of optimal quantizers 

A VQ is optimal  if  it  minimizes an  average distortion 
Ed{X,/3[y(X)]}. Two necessary conditions  for a VQ  to  be 
optimal  follow easily using  the same logic as in Lloyd's [9] 

b ( i )  = bin 
of 

Figure 2. VQ Encoder. The distortion  between  the input 
vector and each stored codeword  is  computed. The en- 
coded output is then  the binary representation of the 
index of the minimum distortion codeword. 

classical development  for  optimal PCM with  a  mean- 
squared  error  distortion measure.  The following  defini- 
tion is useful  for  stating  these  properties: The collection  of 
possible  reproduction  vectors C = {all y : y = p(u), some 
u in M} is  called  the  reproduction  codebook or,  simply, 
codebook of  the  quantizer  and  its  members  called 
codewords  (or  templates). The encoder  knows  the  struc- 
ture of the  decoder  and  hence all of  the  possible  final 
output  codewords. 

Property 7: Given  the  goal  of  minimizing  the average 
distortion  and  given a specific  decoder p, no memoryless 
quantizer  encoder can do  better  than select the  codeword 
u in M that  will  yield  the  minimum  possible  distortion at 
the  output,  that is, to select the  channel  symbol u yielding 
the  minimum 

d{x,PCy(x)l} = min d[x,.P(v)l = min  d(x,y). (2) 
vEM YEC 

That is, for  a  given'decoder  in a memoryless  vector  quan- 
tizer  the  best  encoder is a  minimum  distortion  or nearest 
neighbor  mapping 

y(x) = min-'  d[x,p(u)], (3) 
,vEM 

where  the  inverse  minimum  notation means that we  select 
the u giving  the  minimum of (2). 

Gersho [24] calls a quantizer  with  a  minimum  distortion 
encoder,a  Voronoi  quantizer  since  the  Voronoi  regions 
about a set of  points  in a space correspond  to a partition 
of  that space according  to  the  nearest-neighbor  rule. The 
word  quantizer,  however, is practically always associated 
with  such a minimum  distortion  mapping.  We  observe 
that such a  vector  quantizer  with  such a minimum  dis- 
tortion  encoder is exactly  the  Shannon  model  for a block 
source  code  subject to  a  fidelity  criterion  which is used in 
information  theory  to  develop  optimal  performance 
bounds  for  data  compression systems. 

An encoder y can be thought  of as a  partition  of  the 
input space into cells where all input  vectors  yielding  a 
common  reproduction are grouped  together. Such a 
partition  according  to a minimum  distortion  rule is called 
a  Voronoi  or  Dirichlet  partition.  A  general  minimum 
distance  VQ  encoder is depicted  In Fig. 2. 

A  simple  example of  such a partition  and  hence  of an 
encoder is depicted  in Fig. 3 (a more  interesting  example 
follows  shortly).  Observe  that  this  vector  quantizer is just 
two uses of a scalar quantizer  in  disguise. 

As the  minimum  distortion  rule  optimizes  the  encoder 
of a memoryless  VQ  for  a  decoder,  we can also optimize 
the  decoder  for a given  encoder. 
Property 2: Given an encoder y, then  no  decoder can do 
better  than  that  which assigns to each channel  symbol u 
the  generalized  centroid  (or  center of gravity  or  bary- 
center) of  all source  vectors  encoded  into u, that is, 

p(u) = cent(u) = min- l  f(d(X,f) I y(X) = u), (4) 
E,& 
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Figure 3 .  Two-Dimensional   Minimum  Distort ion 
Partition. The four  circles  are  the  codewords  of  a 
two-dimensional codebook. The Voronoi  regions  are the 
quadrants  containing the  circles. The x’s were  produced 
by a training  sequence  of  twelve  two-dimensional 
Gaussian vectors. Each  input  vector  is mapped into 
the  nearest-neighbor  codeword, that is,  the  circle in the 
same quadrant. 

that is, p(v) i s  the  vector  yielding  the  minimum  conditional 
average distortion given  that the  input  vector was mapped 
into v, 

While  minimizing  such a condit ional average  may 
be  quite  difficult  for an arbitrary  random  process  and 
distortion measure, it is often easy to find  for  a sample 
distribution  and  a  nice  distortion measure. For example, 
the  centroid  in  the case of  a  sample distribution and a 
squared-error  distortion measure is simply  the  ordinary 
Euclidean centroid  or  the  vector sum of all input vectors 
encoded  into  the  given  channel  symbol,  that is, given the 
sample  distribution  defined  by  a  training  sequence 
{xi; i = 0,1,. . . , L - I}, then 

I 
cent(v) = - C. x i ,  

where i(v) i s  the  number  of  indices i for  which $x i )  = V .  

i(v) x,:r(x,)=v 

The Euclidean centroids  of  the example  of Fig. 3 are  de- 
picted  in Fig. 4. (The  numerical values  may be  found  in 
[251.) The new  codewords  better  represent  the  training 
vectors mapping  into  the  old  codewords,  but  they  yield  a 
different  minimum  distortion  partition of the  input alpha- 
bet, as indicated  by  the  broken  line  in Fig. 3. This is the key 
of the  algorithm:  iteratively  optimize  the  codebook  for  the 
old  encoder  and  then use a  minimum  distortion  encoder 
for  the  new  codebook. 

The  Itakura-Saito  distortion  example i s  somewhat 
more  complicated,  but  st i l l   easi ly  computable. As 
with  the squared  error  distortion,  one  groups all input 
vectors  yielding  a  common  channel  symbol.  Instead  of 
averaging the  vectors,  however,  the sample autocorre- 
lation  matrices for all of  the vectors  are  averaged.  The 
centroid is then  given  by  the  standard LPC all-pole  model 
for  this average autocorrelation,  that is, the  centroid 
is  found  by  a  standard Levinson’s recursion  run  on  the 
average autocorrelation. 
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Figure 4. Centroids of Figure 3. The new centroids of 
the old  Voronoi regions  of Fig. 3 are  drawn as circles. 
Note that  the  centroid  computation has  moved the code- 
words t o  better represent  the input vectors which yielded 
those  codewords, that  is,  if one used the same encoder 
[as in Fig. 33, but replaced the  reproduction codewords 
produced a t  the decoder by these new centroids,  the 
average distortion would decrease. The broken line  delin- 
eates  the new  Voronoi regions for  these codewords. s 
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The generalized Lloyd algorithm 

The  fact  that  the  encoder can be  optimized  for  the 
decoder  and  vice versa formed  the basis of Lloyd’s origi- 
nal optimal PCM  design  algorithm  for a scalar random 
variable with a known  probability  density  function and a 
squared  error  distortion.  The  general  VQ  design  algo- 
rithms  considered  here are  based on  the  simple  obser- 
vation  that Lloyd’s  basic development i s  valid  for  vectors, 
for sample distributions,  and  for  a  variety  of  distortion 
measures.  The only  requirement  on  the  distortion mea- 
sure is that  one can compute  the  centroids. The  basic 
algorithm is the  following: 

Step 0. Given: A training  sequence  and an initial 
decoder. 

Step 1. Encode the  training sequence into a  sequence 
of  channel  symbols  using  the  given  decoder 
minimum  distortion  rule.  If  the average  dis- 
tortion is small enough,  quit. 

Step 2. Replace the  old  reproduction  codeword  of 
the  decoder  for each channel  symbol u by  the 
centroid  of all training  vectors  which  mapped 
into u in Step 1. Go to Step 1. 

Means of  generating  initial  decoders  will  be  considered 
in  the next  section. Each step of  the  algorithm  must  either 
reduce average distortion  or leave it unchanged.  The 
algorithm is  usually  stopped when  the relative  distortion 
decrease falls below some  small threshold. The algorithm 
was developed  for  vector  quantizers,  training sequences, 
and  general distortion measures by  Linde, BUZO, and  Gray 
[25] and it is sometimes  referred  to as the LBG algorithm. 
Previously  Lloyd’s  algorithm had been  considered  for vec- 
tors  and  difference  distortion measures in cluster analysis 
and  pattern  recognition  problems (e.g., MacQueen [261 
and  Diday  and  Simon  [27])  and  in  two-dimensional 
quantization (e.g., Chen [28] and  Adoul et a/ .  [291). Only 
recently,  however, has it been  extensively  studied  for 
vector  quantization  applications  using several different 
distortion measures. 

Before  continuing, it should  be  emphasized  that such 
iterative  improvement  algorithms  need  not  in  general 
yield  truly  optimum  codes. It is known  that  subject  to 
some  mathematical  conditions  the  algorithm  will  yield 
locally optimum quantizers, but  in general  there may be 
numerous  such  codes  and  many may yield  poor  per- 
formance. (See, e.g., [30].) It is often useful,  therefore,  to 
enhance the  algorithm’s  potential  by  providing  it  with 
good  initial  codebooks  and  perhaps  by  trying it on several 
different  initial  codebooks. 

INITIAL CODEBOOKS 

The  basic-design algorithm  of  the  previous  section is an 
iterative  improvement  algorithm  and  requires an initial 
code to  improve. Two  basic  approaches  have been  devel- 
oped:  One can  start with some  simple  codebook  of  the 
correct size or  one can start with a  simple small codebook 
and  recursively  construct  larger  ones. 

1 0 IEEE  ASSP  MAGAZINE  APRIL 1984 

NRandomN codes 

Perhaps the  simplest  example of the  first  technique is 
that used in  the  k-means  variation  of  the  algorithm [261: 
Use the  first 2R vectors in  the  training sequence as the 
initial  codebook.  An  obvious  modification  more  natural 
for  highly  correlated data is to select  several widely spaced 
words  from  the  training  sequence. This  approach is some- 
times  called  random  code  generation, but  we  avoid  this 
nomenclature because of i t s  confusion  with  the  random 
code  techniques  of  information  theory  which are  used to 
prove  the  performance  bounds. 

Product codes 

Another  example of  the  first  approach is  to use  a scalar 
code  such as a uniform  quantizer k times  in succession 
and then  prune  the  resulting vector  codebook  down  to 
the  correct size.  The  mathematical model  for such  a  code 
is a product code, which  we pause to  define  for  current 
and  later  use: Say we have  a collection  of  codebooks Ci, 
i = 0 ,1 , .  . . ,m - 1, each consisting  of Mi vectors of  di- 
mension ki and  having  rate Ri = logz Mi bits  per  vector. 
Then the  product  codebook C is  defined as the  collection 
of all M = HiMi  possible  concatenations  of rn words  drawn 
successively from  the m codebooks Ci .  The  dimension  of 
the  product  codebook is  k = Et;’ ki,  the sum of the  di- 
mensions of  the  component  codebooks. The product 
code is denoted  mathematically as a  Cartesian product: 

C = X Ci = {al l  vectors of the form (ko ,%;** ,k , , , -d ;  
m-7 

i=O 

k i i n  Ci; i =  O,l,.,.,m - I }  

Thus, for  example,  using  a scalar quantizer  with rate R/k 
k times in succession  yields a product  k-dimensional vec- 
tor  quantizer  of  rate R bits  per  vector, This product  code 
can be used as an initial  code  for  the  design  algorithm. The 
scalar quantizers may be  identical  uniform  quantizers  with 
a range  selected to  match  the  source,  or  they may be 
different, e.g.,  a positive  codebook  for a gain  and uniform 
quantizers  for  [-1,1]  for  reflection  coefficients  in an 
LPC VQ system. 

In  waveform  coding  applications  where  the  reproduc- 
tion and input alphabets  are the  same-k-dimensional 
Euclidean  space-an  alternative product  code  provides 
a  means of  growing  better  initial guesses from smaller 
dimensional codes [31]. Begin with a scalar quantizer Co 
and use a  two-dimensional  product  code Co X Co as an 
initial guess for  designing  a  two-dimensional  VQ. O n  com- 
pletion  of  the  design  we have  a two-dimensional  code, say 
C2. Form an initial guess for  a  three  dimensional  code as 
all possible  pairs from C2 and scalars from Ca, that is, use 
the  product  code Cz x Co as an initial guess. Continuing  in 
this way, given  a  good k - 1 dimensional  VQ  described  by 
a  codebook Ck- l ,  an initial guess for a  k-dimensional  code 
design is the  product  code Ck-’ x Co. One can  also use 
such product code  constructions with a  different  initial 
scalar code Co, such as those  produced  by  the scalar ver- 
sion  of  the  next  algorithm. 
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Figure 5. Splitting. A large code is defined in stages: at 
each stage each codeword of a small  code is split  into two 
new codewords, giving an initial codebook of twice  the 
size. The algorithm is  run t o  get a new better codebook. 
tal Rate 0: The centroid of the  entire  training sequence. 
[bl Initial Rate  1: The  one codeword is split t o  form an 
initial guess for  a  two  word code. [cl Final Rate 1: The 
algorithm  produces  a good code with  two  words. The 
dotted line indicates  the  Voronoi  regions, [d l  Initial 
Rate 2: The two words are split to  form an initial guess for 
a four  word  code. [e l  Final Rate 2: The algorithm  is run t o  
produce a final four  word  code. 

Splitting 

Instead  of  constructing  long  codes  from  smaller  dimen- 
sional  codes, we can construct  a  sequence  of  bigger codes 
having  a  fixed  dimension  using  a  “splitting”  technique 
[25,16]. This method can be used for any fixed  dimension, 
including scalar codes. Here  one  first  finds  the  optimum 0 
rate  code-the  centroid  of  the  entire  training sequence, 
as depicted in Fig. 5a for  a  two-dimensional  input  alpha- 
bet. This  single  codeword is  then  split  to  form  two  code- 
words (Fig. 5b). For example,  the  energy can be  perturbed 
slightly  to  form  a  second  distinct  word  or  one  might  pur- 
posefullyfind  aword distant from  the  first.  It i s  convenient 
to have the  original  codeword a member  of  the  new  pair 
to ensure  that  the  distortion  will  not increase.  The  algo- 
rithm is then  run  to get a good rate 1 bit  per  vector  code 
as indicated in Fig. 5c.  The  design continues  in  this way in 
stages as shown:  the  final  code  of  one stage is split  to  form 
an initial  code  for  the  next. 

VARIATIONS OF MEMORYLESS  VECTOR  QUANTIZERS 

In  this  section  we  consider  some of the variations of 
memoryless  vector  quantization  aimed at reducing  the 
computation  or  memory  requirements  of a full search 
memoryless VQ. 

Tree-searched V Q  
Tree-searched vector  quantizers  were  first  proposed  by 

Buzo et a/. [I61 and  are a  natural  byproduct  of  the  splitting 
algorithm  for  generating  initial  code guesses. We  focus on 
the case of  a  binary  tree  for  simplicity,  but  more general 
trees will  provide  better  performance  while  retaining a 
significant  reduction in complexity. 

Say that  we have a  good rate 1 code as in Fig. 5c and  we 
form  a  new rate two  code  by  splitting  the  two  codewords 
as in Fig. 5d.  Instead of  running  a  full search VQ design on 
the  resulting  4-word  codebook,  however,  we  divide  the 
training  sequence  into  two pieces, collecting  together all 
those  vectors  encoded  into a common  word  in  the 1 bit 
codebook,  that is, all of  the  training  sequence  vectors  in 
a common  cell  of  the  Voronoi  partition. For each of  these 
subsequences of  training  vectors,  we  then  find  a  good 
I -b i t  code  using  the  algorithm. The final  codebook (so far) 
consists of  the  four  codewords  in  the  two  I-bit  codebooks 
designed  for  the  two  subsequences. A tree-searched  en- 
coder  selects one of the  words  not  by an ordinary  full 
search of  this  codebook,  but  instead it uses the  first  one 
bit  codebook  designed  on  the  whole sequence to select a 
second  code  and it then  picks  the  best  word  in  the second 
code.  This  encoder  can  then be used to  further  subdivide 
the  training  sequence  and  construct even better  code- 
books  for  the  subsequences. The encoder  operation can 
be  depicted as a  tree  in Fig. 6. 

The tree is designed  one layer at a time; each new layer 
being  designed so that  the  new  codebook available from 
each node is good  for  the vectors  encoded into  the  node. 
Observe  that  there are 2R possible  reproduction  vectors as 
in  the  full search VQ,  but  now R binary searches are  made 
instead of  a  single 2’?-ary search. In  addition,  the  encoder 
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code book 
Figure 6. Tree-Searched VCI. A binary encoder tree is 
shown for a three-dimensional  one bit per sample VQ. The 
encoder makes a succession of R minimum distortion 
choices from binary codebooks, where  the available  code- 
book at each  level consists of labels of the nodes  in the 
next level.  The labels of the nodes of the final layer are the 
actual  reproduction  codewords. A t  each node the en- 
coder  chooses the minimum distortion available  label  and, 
if  the new index is a 0 (1 3 ,  sends  a  channel  symbol of 0 [I I 
and  advances  up  [down) to  the  next node. After R binary 
selections the complete channel codeword  has been sent 
and the  reproduction codeword  specified to  the decoder. 

storage requirements have doubled.  The  encoder is  no 
longer  optimal  for  the  decoder in the sense of  Property 1 
since it no  longer can perform an  exhaustive search of the 
codebook.  The search, however, is much  more  efficient if 
done  sequentiallythan is a full search. Thus one may trade 
performance  for  efficiency  of  implementation. 

12 IEEE ASSP  MAGAZINE  APRIL 1984 

Nonbinary  trees can also be used  where at the i th layer 
codebooks  of rate Ri are  used  and the overall  rate is  then 
ZjRi .  For example, a depth  three  tree  for  VQ  of LPC pa- 
rameter vectors using successive  rates of 4, 4, and 2 bits per 
vector yields performance nearly as good as a full search VQ 
of the same total rate of 10 bits  per vector, yet for  the tree 
search one  need  only  compute 24 + 24 + z2 = 36 distortions 
instead of 2’’ = 1028 distortions [IO]. 

Other techniques can be used to design  tree-searched 
codes.  For  example, Adoul et a/ .  [32]  use a separating hyper- 
plane  approach. Another approach is  to begin with a full 
search codebook and to design a tree-search into  the code- 
book.  One  technique  for  accomplishing  this is to first  group 
the  codewords into close disjoint pairs  and then  form  the 
centroids of the pairs as the  node label of  the immediate 
ancestor of the pair. One  then  works backwards through  the 
tree,  always grouping close  pairs. Ideally, one  would  like a 
general  design technique  for  obtaining a tree search into an 
arbitrary  VQ  codebook with  only a small loss of average 
distortion. Gersho  and Cheng [33]  have reported  preliminary 
results for designing a variable-length  tree search for an arbi- 
trary codebook and  have demonstrated its implementability 
for several  small dimensional examples. 

Multistep VQ 

A multistep VQ is a tree-searched VQ  where  only a single 
small codebook is  stored for each  layer of  the  tree instead of 
a different  codebook  for each node  of each  layer.  Such  codes 
provide  the  computation  reduction of tree-searched  codes 
while  reducing  the storage requirements  below that of even 
ordinary VQ‘s.  The first example of such a code was the 
multistage codebook [34].  For simplicity  we again confine 
interest to codes which make a sequence of  binary decisions. 
The first layer binary  code is designed as in the tree-searched 
case.  This codebook is  used to encode  the  training sequence 
and then a training sequence of  error  or residual vectors is 
formed. For  waveform coding  applications  the  error vectors 
are  simply the  difference  of  the input vectors and their  code- 
words. For vocoding  applications,  the  error  vectors are 
residuals formed by  passing the  input waveform  through  the 
inverse filter A(z) /a .  The algorithm is  then  run  to design a 
binary VQ  for this vector training sequence of  coding errors. 
The reconstruction for these two  bits i s  then  formed by 
combining  the  two  codewords: For waveform  coding  this is  
accomplished  by  adding the first codeword  to  the  error 
codeword. For voice  coding  this is  accomplished by using the 
cascade of  two all-pole  filters  for synthesis.  This reproduction 
can then  be used to  form a “finer”  error vector and a code 
designed for it. Thus an input vector is encoded in stages as 
with  the tree-searched  code, but  now  only R binary code- 
books and  hence 2R total  codewords  need to be stored. 
Observe that there are still 2R possible final  codewords, but 
we have not needed this  much storage  because the  code can 
be  constructed  by  adding  different  combinations of a smaller 
set of words. A multistage VQ is depicted in Fig. 7. 

Product codes 

Another  useful  structure  for a memoryless VQ is  a prod- 

Case 3:06-cv-00019-MHP     Document 108-7      Filed 06/07/2007     Page 10 of 12



ENCODER 

DECODER 

Figure 7 .  Multistage VQ with 2 Stages. The input 
vector  is first encoded by  one VQ and  an error vector is 
formed. The second VQ then  encodes the error vector. 
The two channel  symbols from  the  two VQ’s together 
form  the complete channel  symbol for  the  entire encoder. 
The decoder  adds  together  the  corresponding re -  
production  vectors. 

uct  code, In one extreme, multiple use of scalar quantizers 
is equivalent  to  product VQ’s and are obviously  simple  to 
implement.  More general product VQ‘s, however,  may 
permit  one  to take  advantage of  the  performance achiev- 
able  by VQ’s while st i l l  being  able  to  achieve  the  higher 
rates required  for  good  fidelity.  In  addition, such  codes 
may yield a smaller  computational  complexity  than an or- 
dinary  VQ  of  the same rate  and  performance  (but  different 
dimension). The  basic technique is useful  when  there are 
differing aspects of  the  input  vector  that  one  might  wish  to 
code separately  because of  different effects,  e.g., on  dy- 
namic  range or  finite  word  length  implementation. 

Gainlshape VQ 

One example of  a  product  code is  a  gainishape VQ 
where separate, but  interdependent,  codes are  used to 
code  the  “shape”  and  ”gain”  of  the  waveform,  where  the 
”shape” is defined as the  original  input  vector  normalized 
by removal of a  “gain”  term  such as energy in  a  waveform 
coder  or LPC residual  energy  in  a  vocoder.  Gainishape 
encoders  were introduced  by  Buzo et a/ .  [I61 and  were 
subsequently  extended  and  optimized  by Sabin and 
Gray [35,36]. A gain/shape VQ for  waveform  coding  with 
a  squared-error  distortion is illustrated  in Fig. 8. 

Figure 8 sketches the  surprising fact that  for  the  squared 
error case considered, the two-step  selection of the 
product  codeword is an optimal  encoding  for  the  given 
product  codebook. We  emphasize  that  here  the  encoder 
is optimal  for  the  given  product  codebook  or  decoder, but 
the  codebook  itself is in general  suboptimal because of 
the  constrained  product  form. A similar  property  holds 
for  the  Itakura-Saito  distortion  gainhhape VQ. Thus in  this 
case if  one  devotes R, bits to  the shape and R, bits to  the 
gain, where R, + R, = R, then  one  need  only  compute 2RS 
vector  distortions  and an  easy  scalar quantization. The 
full search encoder  would  require 2R vector  distortions, 
yet both  encoders  yield  the same minimum  distortion 
codeword! 

ENCODER 

DECODER 

Figure 8. GainiShape VQ. First  a  unit energy shape 
vector  is chosen to  match  the input vector by  maximizing 
the inner product  over  the  codewords. Given the  resulting 
shape vector,  a  scalar gain codeword  is  selected so as t o  
minimize the indicated  quantity. The encoder yields the 
product  codeword aiyi with  the minimum possible  squared 
error distortion  from  the  input  vector. Thus this  multistep 
encoder is optimum for  the  product codebook. 
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Variations of  the basic VQ  algorithm can be used to 
iteratively  improve a gain  shape code  by  alternately opti- 
mizing  the shape for  the gain  and  vice versa. The resulting 
conditional  centroids are easy to  compute. The  centroid 
updates  can be  made  either  simultaneously  or  alternately. 
after  each  iteration [36]. 

One can experimentally  determine  the  optimal  bit  allo- 
cation  between  the  gain  and  the shape codebooks. 

Separating  mean V Q  
Another  example of a multistep  product  code is the 

separating  mean VQ  where  a sample  mean  instead of an 
energy  term i s  removed [37]. Define  the sample  mean (x) 
of a k-dimensional  vector  by k-’ XFIi xi .  In  a separated 
mean VQ one  first uses a scalar quantizer to  code  the 
sample  mean of a vector, then  the  coded sample  mean is 
subtracted from all of  the  components  of  the  input  vector 
to  form  a  new  vector  with  approximately  zero sample 
mean.  This  new  vector is then  vector  quantized. Such a 
system is depicted  in Fig. 9. The  basic motivation  here is 
that in image coding  the sample  mean of  pixel  intensities 
in a small  rectangular  block  represents a relatively  slowly 
varying average background  value  of  pixel  intensity 
around  which  there are  variations. 

To design  such  a  VQ,  first use the  algorithm  to  design  a 
scalar quantizer  for  the  sample  mean  sequence (x,), 
j = 0,1 , .  . ., L - 1. Let $(x)) denote  the  reproduction  for 
(x) using  the  quantizer.  Then use the  vector  training se- 
quence x, - q ( ( x j } ) l ,  where 1 = (1, l f . .  . , I ) ,  to design  a 
VQ  for  the  difference.  Like  the  gainishape VQ, a  product 
codebook and a  multistep  encoder are  used, but  unlike 
the gainishape VQ it can be  shown  that  .the  multistep 
encoder  here does not select the best possible mean, 
shape  pair,  that is, the  multistep  encoder is not  equivalent 
to a full search  encoder. 

Lattice VQ 

A  final  VQ  structure  capable  of  efficient searches  and 
memory usage is  the  lattice  quantizer,  a  k-dimensional 
generalization  of  the scalar uniform quantizer.  A lattice in 
k-dimensional space is a  collection of all  vectors  of  the 
form y = E;=-; aiei, where n I k ,  where eo,.  . . e,-1 are a 
set of linearly  independent  vectors  in Rk, and  where  the ai 
are arbitrary  integers. A lattice  quantizer is a  quantizer 
whose  codewords  form  a subset of  a  lattice.  Lattice  quan- 
tizers  were  introduced  by  Gersho [38] and  the  per- 
formance and efficient  coding  algorithms  were  developed 
for  many  particular  lattices  by  Conway  and  Sloane 
[39,40f41] and Barnes and  Sloane [42]. The  disadvantage 
of  lattice  quantizers is that  they  cannot  be  improved  by a 
variation  of  the  Lloyd  algorithm  without  losing  their  struc- 
ture and  good  quantizers  produced  by  the  Lloyd  algorithm 
cannot  generally  be  well  approximated  by  lattices. Lattice 
codes can work  well  on source  distributions  that are ap- 
proximately  uniform over a  bounded  region  of space. In 
fact,  lattices  that  are  asymptotically  optimal in  the  limit  of 
large  rate  are known  for  this case in two and  three  dimen- 
sions  and good lattices are known  for  dimensions  up  to 16. 
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Ideaily, one  would  like  to  take  a  full search, uncon- 
strained VQ and find some fast means of encoding  having 
complexity  more  like  the above techniques  than  that  of 
the  full  search.  For  example,  some  form of mul t i -  
dimensional  companding  followed  by  a  lattice  quantizer 
as suggested by  Gersho [24] would  provide  both  good 
performanceand  efficient  implementation.  Unfortunately, 
however, no design  methods  accomplishing  this  goal have 
yet  been  found. 

FEEDBACK VECTOR QUANTIZERS 

Memory can be  incorporated  into  a  vector  quantizer  in 
a simple  manner by  using  different  codebooks for each 
input vector,  where  the  codebooks are  chosen  based on 
past input vectors.  The  decoder  must know  which  code- 
book is being used by  the  encoder  in  order  to  decode 
the  channel  symbols.  This can be  accomplished  in  two 
ways: 1)  The encoder can use a  codebook  selection  proce- 
dure  that  depends  only  on past encoder  outputs  and 
hence  the codebook  sequence can be  tracked  by  the 
decoder. 2) The  decoder is informed  of  the  selected  code- 
book via a special low-rate  side  channel. The first ap- 
proach is called  feedback  vector  quantization  and is the 

t 
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Figure 9. Separating  Mean VQ. The sample  mean of the 
input vector is computed,  scalar  quantized, and then sub- 
t rac ted  from each  component of the input vector. The 
resulting  vector  with approximately  zero sample  mean is 
then  vector quantized. The decoder  adds the coded 
sample  mean t o  all components of the coded  shape vector. 
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