
topic  of  this  section. The  name  follows because the  en- 
coder  output is "fed  back"  for use in  selecting  the  new 
codebook.  A  feedback  vector  quantizer can be  viewed as 
the  vector  extension  of a scalar adaptive  quantizer  with 
backward  estimation  (AQB) [31. The  second  approach is 
the  vector  extension  of  a scalar adaptive  quantizer  with 
forward  estimation  (AQF)  and is called  simply  adaptive 
vector  quantization.  Adaptive VQ  will  be  considered  in  a 

ENCODER 

DECODER 
Figure 10. Feedback VQ. A t  time n both encoder and 
decoder are in a common state S,, The encoder  uses a 
state VGI ys, t o  encode the input vector and then  selects 
a new state  for  the  next input vector. Knowing the VQ 
used and the  resulting channel  symbol, the decoder can 
produce the correct  reproduction.  Note  that  the  state 
VQ's may  be computed at each  time from some rule or, if 
they  are small  in number, simply stored separately. 

later  section.  Observe  that  systems can combine  the  two 
techniques  and use both feedback  and  side  information. 
We  also point  out  that  unlike  most scalar AQB  and  AQF 
systems, the  vector analogs considered  here  involve no 
explicit  estimation  of  the  underlying  densities. 

It  should be  emphasized  that  the  results of  information 
theory  imply  that  VQ's  with  memory can do  no  better  than 
memoryless  VQ's in  the sense of minimizing average 
distortion  for  a  given  rate  constraint.  In fact, the basic 
mathematical model  for  a data  compression system in 
information  theory is exactly a memoryless  VQ  and such 
codes  can perform  arbitrarily  close  to  the  optimal  per- 
formance  achievable  using  any  data  compression  system. 
The exponential  growth  of  computation  and  memory  with 
rate,  however,  may  result in  nonimplementable  VQ's.  A 
VQ  with  memory may yield  the  desired  distortion  with 
practicable  complexity. 

A  general  feedback VQ can be  described as follows [221: 
Suppose now  that  we have a space S whose  members  we 
shall call states and  that  for each  state s in S we have a 
separate quantizer: an encoder ys, decoder ps, and code- 
book C,. The channel  codeword space M is  assumed to 
be the same for all of  the VQ's. Consider a data com- 
pression  system  consisting  of  a  sequential  machine  such 
that  if  the  machine is in state s, then it uses the  quantizer 
with  encoder ys and  decoder pS. It then selects i ts  next 
state by a mapping  called  a  next-state  function  or state- 
transition  function f such that  given  a  state s and  a  channel 
symbol u, then f(v,s)  is  the  new state of  the  machine. 
More  precisely,  given  a  sequence of input  vectors 
{x,,; n = 0 , 1 , 2 , .  . . }  and an initial state so, then  the  sub- 
sequent  state  sequence s,,, channel  symbol  sequence v,, 
and reproduction sequence 2,, are defined  recursively  for 
n = 0 , 1 , 2 , .  . . as 

un = 3/s,,(Xn), 2 n  = ps, (vn) ,  sn+1 = f ( u n , s n ) .  ( 5 )  

Since the  next state depends  only  on  the  current state  and 
the  channel  codeword,  the  decoder can track  the state if 
it knows  the  initial state  and the  channel  sequence.  A 
general  feedback  vector  quantizer is  depicted  in Fig. IO. 
The freedom  to use different quantizers  based on  the past 
without  increasing  the rate should  permit  the  code to per- 
form  better  than  a  memoryless  quantizer  of  the same di- 
mension  and  rate. 

An  important  drawback of all feedback  quantizers is  that 
channel  errors can accumulate  and  cause  disastrous 
reconstruction  errors. As with scalar feedback  quantizer 
systems, this  must  be  handled  by  periodic  resetting  or  by 
error  control  or  by  a  combination of the  two. 

If  the state space is  finite,  then  we shall call the  resulting 
system a  finite-state  vector  quantizer  or FSVQ.  For  an 
FSVQ, all of  the  codebooks  and  the  next-state  transition 
table can  all be  stored in ROM, making  the  general FSVQ 
structure  amenable  to LSI or VLSl implementation [43]. 

Observe  that  a  memoryless  vector  quantizer is simply  a 
feedback  vector  quantizer or  finite-state  vector  quantizer 
with  only  a  single state.  The  general FSVQ is a special case 
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of  a  tracking  finite state  source coding system [441 where 
the  encoder is  a  minimum  distortion  mapping. 

Three  design  algorithms  for  feedback  vector  quantizers 
using  variations on  the  generalized  Lloyd  algorithm have 
been  recently  developed. The remainder  of  this  section is 
devoted  to  brief  descriptions  of  these  techniques. 

Vector  predictive quantization 

Cuperman  and  Gersho [45,46] proposed  a  vector  pre- 
dictive  coder  or  vector  predictive  quantizer  (VPQ)  which is 
a  vector  generalization  of  DPCM or  predictive  quanti- 
zation. A VPQ is sketched  in Fig. 11, For a  fixed  predictor, 
the  VQ design  algorithm is  used to design  a VQ  for  the 
prediction  error  sequence.  Cuperman  and  Gersho  consid- 
ered several  variations on  the basic algorithm, some of 
which  will  be later  mentioned. 

Chang [471 developed an extension  to  Cuperman and 

I I E ;  

R" + 1 

ENCODER 

DECODER 

Figure 1 ' i .  Vector  Predictive  Quantization. A linear 
vector  predictor for the  next input vector of a process 
given the previous  input vector  is applied t o  the previous 
reproduction of the input vector. The resulting  prediction 
is  subtracted from the  current input vector t o  form an 
error vector which is vector quantized. The decoder  uses 
a copy of the encoder and the received encoded error 
vectors to  construct  the reproduction, 

Gersho's algorithm  which  begins  with  their system  and 
then uses a stochastic gradient  algorithm  to  iteratively  im- 
prove  the  vector  linear  predictor  coefficients,  that is, to 
better  match  the  predictor  to  the  quantizer. The  stochastic 
gradient  algorithm is  used only  in  the design of  the sys- 
tem, not as an on  line  adaptation  mechanism as in  the 
adaptive  gradient  algorithms  of,  e.g.,  Gibson  et a/. [481 
and  Dunn [49]. A scalar version  of  this  algorithm  for  im- 
proving  the  predictor  for  the  quantizer was developed in 
unpublished  work  of Y. Linde. 

Productlmultistep FVQ 

A second basic approach  for  designing  feedback  vector 
quantizers which is quite  simple  and  works  quite  well is  to 
use a product  multistep  VQ such as the  gainishape  VQ  or 
the separating  mean VQ and  use a  simple  feedback  quan- 
tizer on  the scalar portion and an ordinary  memoryless  VQ 
on  the  remaining  vector. This  approach was developed  in 
[IO] for gainishape VQ  of LPC parameters  and in [37] for 
separating  mean VQ  of images. Both  efforts used simple 
scalar predictive  quantization  for  the  feedback  quan- 
tization  of  the scalar terms. 

FS V Q  

The first  general  design  technique  for  finite-state  vector 
quantizers was reported  by Foster  and  Gray [50,51]. There 
are two  principal  design  components: 1, Design an initial 
set of state codebooks  and  a  next-state  function  using an 
ad hoc algorithm. 2. Given  the  next-state  function, use a 
variation of  the basic algorithm  to  attempt  to  improve  the 
state codebooks. The  second  component is accomplished 
by a slight  extension  of  the basic algorithm  that is similar 
to  the  extension  of [52] for  the  design  of  trellis  encoders: 
Encode the data using  the FSVQ and  then  replace all of  the 
reproduction  vectors  by  the  centroids  of  the  training vec- 
tors which map into  those  vectors;  now,  however,  the 
centroids are conditioned  on  both  the channel  symbol 
and the state. While such conditional averages are likely 
impossible to  compute analytically, they are  easily com- 
puted  for a training  sequence. For example, in  the case of 
a squared  error  distance  one  simply  forms  the Euclidean 
centroid  of all input  vectors  which  correspond  to  the 
state s and  channel  symbol v i n  an encoding of the 
training  sequence. 

As with  ordinary  VQ,  replacing  the  old  decoder  or  code- 
book  by  centroids  cannot  yield a code  with  larger dis- 
tortion.  Unlike  memoryless  VQ,  however,  replacing  the 
old  encoder  by  a  minimum  distortion  rule  for  the  new 
decoder can in  principal cause  an increase in  distortion 
and hence now  the  iteration is  somewhat  different: Re- 
place the  old  encoder  (which is a  minimum  distortion  rule 
for  the  old  decoder) by a  minimum  distortion  rule  for  the 
new  decoder.  If  the  distortion goes down,  then  continue 
the  iteration  and  find  the  new  centroids. If the  distortion 
goes up, then  quit  with  the  encoder  being  a  quantizer  for 
the  previous  codebook  and  the  decoder  being  the  cen- 
troids  for  the  encoder. By construction  this  algorithm can 
only  improve  performance. It turns  out,  however,  that  in 
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practice it is a  good  idea  to  not  stop  the  algorithm  if  the 
distortion increases  slightly, but  to  let it continue: it will 
almost always eventually  drop  back  down in distortion and 
converge to  something  better. 

The first  design  component is more  complicated. We 
here  describe  one  of  the  more  promising approaches of 
[511 called the  omniscient  design  approach. Say that  we 
wish to  design an  FSVQ with K states and  rate R bits  per 
vector. For simplicity  we  label  the states as 0 through K-I. 
First use the  training  sequence  to  design  a  memoryless  VQ 
with K codewords,  one  for each  state.  We  shall call these 
codewords state  labels  and this VQ the state quantizer. We 
call the  output of the state VQ  the  “ideal  next state” in- 
stead of  a  channel  symbol.  Next  break up  the  training 
sequence into subsequences as follows: Encode the  train- 
ing sequence using  the state VQ and  for each  state s col- 
lect all of  training  vectors  which follow the  occurrence of 
this state  label.  Thus  for s the  corresponding  training  sub- 
sequence  consists of all input vectors  that  occur  when  the 
current ideal  state is s. Use the basic algorithm  to design 
a rate R codebook C, for  the  corresponding  training se- 
quence  for each s. 

The  resulting state VQ and the  collection  of  codebooks 
for each  state  have been  designed  to  yield  good  per- 
formance in  the  following  communication system:  The 
encoder is in an ideal state s chosen by  using  the state VQ 
on  the last input vector.  The  encoder uses the  correspond- 
ing  VQ  encoder ys described  by  the  codebook C,. The 
output  of y, i s  the  channel  symbol.  In  order  to  decode  the 
channel  symbol,  the  decoder  must also know  the ideal 
state. Unfortunately,  however,  this  ideal state cannot  be 
determined  from  knowledge  of  the  initial state  and all of 
the received  channel  symbols.  Thus the decoder  must  be 
omniscient  in  the sense of knowing  this  additional side 
information  in  order  to  be  able  to  decode.  In  particular, 
this system is not an  FSVQ by  our  definition. We can  use 
the state quantizer  and  the  various  codebooks,  however, 
to  construct an FSVQ by  approximating  the  omniscient 
system:  Instead  of forming  the ideal  next  state  by  using 
the state VQ  on  the actual input  vector (as we  did  in  the 
design  procedure), use the state VQ  on  the  current re- 
production  vector  in  order  to  choose  the  next state.  This 
will  yield  a state  sequence  depending  only on encoder 
outputs and the  original state  and hence will be trackable 
by  the  decoder. This is  analogous to  the scalar practice  of 
building a predictive  coder  and  choosing  the  predictor as 
if it knew  the past inputs,  but  in  fact  applying it to past 
reproductions. 

Combining  the  previously  described steps of (I)  initial 
(state  label) codebook  design, (2) state codebooks  and 
next-state function design,  and (3) iterative  improvement 
of code  for  given  next-state  function,  provides  a  complete 
design  algorithm. 

In  addition  to  the above  design  approach,  techniques 
have been  developed  for  iterating  on (2) and (3) above in 
the sense of  optimizing  the  next-state  function  for  a  given 
collection  of  codebooks. These algorithms,  however, are 
more  complicated  and  require ideas from  the  theory  of 

adaptive  stochastic  automata.  The  reader is referred  to [531 
for  a  discussion of these  improvement  algorithms. 

VECTOR TREE AND TRELLIS ENCODERS 

As with scalar feedback  quantizers,  the  actions of  the 
decoder  of a feedback VQ can be  depicted as a  directed 
graph  or  tree. A simple  example is depicted  in Fig.  12, 
where  a  merged  tree  or  trellis can be  drawn  since  the 
feedback VQ has only  a  finite  number  of states. 

Instead of  using  the  ordinary  VQ  encoder  which is only 
permitted  to  look at the  current  input  vector  in  order 
to  decide  on  a  channel  symbol,  one  could use algo- 
rithms  such as the  Viterbi  algorithm,  M-algorithm  or 
M,L-algorithm, Fano algorithm,  or stack algorithm  for  a 
minimum cost search through a directed  graph  and search 
several  levels  ahead into  the  tree  or  trellis  before  choosing 
a  channel  symbol.  This  introduces an additional delay into 
the  encoding  of several  vectors, but it ensures better  long 
run average distortion  behavior. This technique is called 
tree  or  trellis  encoding  and is also referred to as look- 
ahead coding,  delayed  decision  coding,  and  multipath 
search coding. (See, e.g.,  [54,52] for surveys.)  We point 
out  that  a  tree  encoding system uses a  tree  to  denote  the -F (01-1) 

(-1, -1)  I 

(a) DECQDER (b) NEXT-STATE 
FUNCTION 

STAT E 
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STATE CHANNEL STATE 
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Figure 12. Decoder  trellis  for a two  state 1 bit  per 
vector two  dimensional  waveform  coder. The trellis 
depicts the possible state  transitions  for  the given next- 
state  function. The transitions are labeled by the corre- 
sponding decoder output [in parentheses1 and  channel 
symbol produced by the encoder. 
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operation on successive  vectors by  the  decoder at  succes- 
sive times while  a  tree-searched  VQ uses a  tree  to  con- 
struct  a fast  search for a single  vector at a  single  time. 

A  natural  variation of the basic algorithm  for  designing 
FSVQ’s can be used to design  trellis  encoding systems: 
Simply  replace  the FSVQ encoder  which  finds  the  mini- 
mum  distortion  reproduction  for  a single input  vector by 
a  Viterbi  or  other search algorithm  which searches the 
decoder  trellis to some  fixed  depth  to  find  a  good  long 
term  minimum  distortion  path. The centroid  computation 
is accomplished exactly as with an FSVQ:  each branch  or 
transition  label is replaced  by  the  centroid  of all training 
vectors  causing  that  transition,  that is, the  centroid  condi- 
tioned  on  the  decoder state  and channel  symbol. Scalar 
and  simple  two  dimensional  vector  trellis  encoding sys- 
tems were  designed in [52]  using  this  approach. 

Trellis encoding systems  are not really  vector  quan- 
tization systems as we have defined  them since the  en- 
coder is  permitted  to search  ahead to determine  the  effect 
on  the  decoder  output  of several input vectors  while a 
vector  quantizer is  restricted to search only  a  single  vector 
ahead.  The two systems are  intimately  related,  how- 
ever, and  a  trellis  encoder can always be  used to  im- 
prove  the  performance  of  a  feedback  vector  quantizer. 
Very l itt le  work has yet  been  done  on  vector  trellis 
encoding systems. 

X ”  - 

ENCODER 

Figure 13. A d a ~ t i ~ ~  UB. The model VQ uses  the  Itakura- 
Saito distortion t o  select an LPG model t o  fit the  input 
frame ef many  sample vectors. This selection in turn de- 
termines  the  waveform  coder  used t o  digitize the sample 
vectors. A side  channel then  informs  the receiver  which 
decoder t o  use on the channel  symbols produced by the 
waveform coder. 

ADAPTIVE VQ 
As a  final class of  VQ  we  consider systems that use one 

VQ  to adapt a  waveform  coder,  which  might  be  another 
VQ. The  adaptation information is communicated to the 
receiver  via  a low rate  side information  channel. 

The  various  forms of vector  quantization  using  the 
Itakura-Saito  family of  distortion measures  can be  consid- 
ered as model classifiers, that is, they  fit an all-pole  model 
to an observed  sequence of sampled  speech. When used 
alone in an LPC VQ system, the  model is used, to  syn- 
thesize  the speech at the  receiver.  Alternatively,  one  could 
use the  model  selected  to  choose a waveform  coder  de- 
signed to  be  good  for  sampled  waveforms  that  produce 
that  model. For example,  analogous to the  omniscient 
design of FSVQ one  could  design separate  VQ‘s for the 
subsequences  of the  training  sequence  encoding  into 
common  models.  Both  the  model  index  and  the  waveform 
coding  index are then sent to  the receiver.  Thus LPC VQ 
can be  used to adapt a waveform  coder,  possibly also a  VQ 
or related  system.  This will  yield  a system typically  of  much 
higher rate, but  potentially  of  much  better  quality since 
the  codebooks can be  matched  to  local  behavior  of  the 
data.  The  general structure is shown  in Fig. 13. The model 
VQ  typically  operates on a much  larger  vector  of samples 
and at a  much  lower  rate in bits  per sample than  does  the 
waveform  coder and hence  the  bits  spent on specifying 
the  model  through  the  side  channel are typically  much 
fewer  than  those  devoted  to  the  waveform  coder. 

There  are  a  variety of such  possible systems since both 
the  model  quantizer  and  the  waveform  quantizer can take 
on many of the  structures so far considered. In addition, 
as in  speech  recognition  applications [ 5 5 ]  the  gain- 
independent  variations of the  Itakura-Saito  distortion 
measure which  either  normalize  or  optimize  gain may be 
better  suited  for  the  model  quantization  than  the usual 
form. Few such systems have yet  been  studied  in  detail. 
We here  briefly  describe  some systems of this  type  that 
have appeared in  the  literature  to  exemplify some typical 
combinations.  All of them use  some form of  memoryless 
VQ  for  the  model  quantization,  but a variety of  waveform 
coders  are  used. 

The first  application  of  VQ  to  adaptive  coding was by 
Adoul,  Debray,  and  Dalle [32] who used an  LPC VQ to 
choose a predictor  for use in a scalar predictive  waveform 
coder.  Vector quantization was used only  for  the adap- 
tation  and  not  for  the  waveform  coding.  An  adaptive 
VQ  generalization of this system was later  developed  by 
Cuperman  and  Gersho [45,461 who used an alternative 
classification  technique to  pick  one  of  three  vector  predic- 
tors  and  then  used  those  predictors  in a predictive  vector 
quantizer.  The  predictive  vector  quantizer  design  algo- 
rithm  previously  described was used,  except now  the 
training  sequence was broken  up  into subsequences cor- 
responding  to  the  selected  predictor  and a quantizer was 
designed  for each resulting  error  sequence.  Chang t471 
used a  similar  scheme with an ordinary LPC VQ as the 
classifier  and with  a stochastic  gradient  algorithm  run on 
each of  the  vector  predictive  quantizers  in  order  to  im- 
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Figure 14. RELP VQ. An  LPC VQ is used for model  se- 
lection and a single VQ t o  waveform encode the residuals 
formed by passing the original  waveform  through the in- 
verse filter A/*, The side information  specifies t o  the 
decoder which of the model filters */A should  be used 
for synthesis. 

prove  the  prediction  coefficienrs  for  the  corresponding 
codebooks. 

Rebolledo et a/.  [561 and  Adoul  and  Mabilleau [571 de- 
veloped  vector  residual  excited  linear  predictive (RELP) 
systems. (See Fig. 14.) A  similar  system  employing  either a 
scalar or a simple  vector  trellis  encoder  for  the  waveform 
coder wa.s developed  by Stewart et a/ .  [52]. Both  of these 
systems used  the basic algorithm  to  design  both  the  model 
VQ  and  the  waveform  coders. 

The RELP VQ systems yielded  disappointingly  poor  per- 
formance at low  bit rates. Significantly  better  performance 
was achieved by  using  the  residual  codebooks  produced 
in  the RELP design to  construct  codebooks  for  the  original 
waveform,  that is, instead of  coding  the  model and  the 
residual,  code  the  model  and use the selected  model  to 
construct  a  waveform  coder  for  the  original  waveform as 
depicted  in Fig. 15 [521. For lack of  a  better name, this 
system might  be  called an inverted RELP because it uses 
residual  codebooks to drive an inverse model  filter  in  or- 
der to get a  codebook  for  the  original  waveform. 

Yet another use of LPC VQ  to adapt a waveform  coder 
was reported  by  Heron,  Crochiere,  and Cox 1581 who used 

a  subbanditransform  coder  for  the  waveform  coding and 
used the side information  to adapt the  bit  allocation  for 
the scalar parameter  quantizers. 

Many  other  variations on  the general  theme are  possible 
and  the  structure is a  promising  one for processes  such as 
speech that  exhibit  local  stationarity,  that is, slowly  varying 
short  term statistical behavior. The  use of  one  VQ  to  par- 
tition  a  training sequence in  order  to design good codes 
for  the  resulting  distinct subsequences is  an intuitive ap- 
proach to the  computer-aided  design of adaptive  data 
compression systems. 

EXAMPLES 

We  next  consider  the  performance  of  various  forms  of 
vector  quantizers on  three  popular  guinea  pigs: Gauss 
Markov sources,  speech  waveforms,  and  images.  For 
the speech coding example  we  consider both  waveform 
coders  using the squared  error  distortion measure  and 
vocoders  using  the  Itakura-Saito  distortion. The caveats 
of  the  introduction  should  be  kept  in  mind  when  inter- 
preting  the results. 

ENCODER 

I CODEBOOK 

DECODER 

Figure 15. Inverted  RELP. An LPG VQ is  used t o  select 
a model filter u/A. A  waveform codebook is  then  formec 
by driving  the model filter  with all possible  residual code- 
words  from a RELP VQ design.  Thus, unlike a RELP sys- 
tem,  the  original  waveform  [and  not  a residual1 is  matched 
by possible  reproduction  codewords. 
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The performance  of  the systems  are  given by SNR’s for 
squared  error  and  by an analogous  quantity  for  the 
Itakura-Saito distortion:  In  both cases we measure nor- 
malized  average distortion  on a  logarithmic scale, where 
the  normalization is by  the average distortion  of  the  opti- 
mum  zero rate  code-the average distortion  between  the 
input sequence  and the  centroid  of  the  entire  input se- 
quence. This quantity  reduces  to an SNR in  the squared 
error case and  provides  a  useful  dimensionless  normal- 
ized average distortion  in  general. We call this  quantity 
the SNR in  both cases, The SNR is given in tables  instead 
of graphs in  order  to facilitate  quantitative  comparisons 
among  the  coding schemes. 

Gauss Markov sources 

We first  consider  the  popular  guinea  pig  of a Gauss 
Markov  source. This  source is useful as a  mathematical 
model  for  some  real data  sources and its information  the- 
oretic  optimal  performance  bounds as described  by 
the  distortion-rate  function are known. For this  example 
we  consider only  the squared  error  distortion. A Gauss 
Markov  source  or a first  order Gauss autoregressive 
source (X,} i s  def ined  by  the  d i f ference  equat ion 
Xn+l  = ax,, + W n ,  where {W,} is  a  zero mean, unit vari- 
ance, independent  and  identically  distributed Gaussian 
source.  We  here  consider the  highly  correlated case of 
a = 0.9 and  vector  quantizers  of 1 bit/sample. The  maxi- 
mum achievable SNRas given  by Shannon’s distortion-rate 
function  for  this  source  and  rate is 13.2 dB [7]. 

Various  design algorithms  were used to design  vector 
quantizers  for several dimensions  for  this  source. Table I 
describes the  results  of  designing several  memoryless  vec- 

TABLE I 
MEMORYLESS VQ FOR A  GAUSS  MARKOV  SOURCE. 

VQ TSVQ MVQ W V Q  
k SNR n M SNR n M SNR n M SNR n M 
1 4.4 2 2 4.4 2 2 4.4 2 2 
2 7.9 4  8 7.9 4  12 7.6 4 8 7.9 1  3 
3 9.2 8 24 9.2 6 42 8.6 6 18 9.3 1 5 
4 10.2 16 64 10.2 8 120 8.4  8 32  9.4 2  10 
5 10.6 32 160 10.4 10 310 9.3 10 50 9.8 3  17 
6  10.9 64 384 10.7  12 756 9.1 12 72 9.9  4 26 
7 11.2 128 896 11.0 14 1778 9.4 14 98 10.2 4 31 
8 9.9 16 128 10.6 5 43 
9 10.9 6 57 

Signal t o  Noise  Ratios  [SNRI, number  of multiplications  per 
sample [nl, and storage  requirements of memoryless  vec- 
tor quantizers: full search  memoryless  VQ IVQI, binary 
tree-searched  [TSVQI,  binary  multistage VQ [MVQI, and 
gainishape VQ (G/SVQI. Rate = 1 bit/sample. k = vec- 
to r  dimension. Training Sequence = 60000 samples from 
a Gauss Markov  Source with  correlation  coefficient 0.9, 
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TABLE I I  
FEEDBACK VQ OF A  GAUSS  MARKOV SOURCE, 

FSVQI FSVQ2  VPQ 

k SNR K n M SNR K n M SNR n M 
1 10.0 64 2 64 9.5 16 2 16 10.0 2 2 

3  11.4 512 8 1536 11.1 64 8 192 11.6 8 24 
2 10.8 256 4 512 10.8 32 4 64 11.2 4 a 

4 12.1 5-12 16 2048 11.3 128 16 5-12 11.6  16 64 

Signal t o  Noise Ratios  (SNR),  number of states (K), 
number  of multiplications  per sample (nl, and storage 
[MI  for feedback quantizers:  FSVQ with number of states 
increased until negligible  change lFSVQl1, FSVQ with 
fewer  states  [FSVQ21, VPQ.  Rate = 1 bit/sample, 
k = vector  dimension.  Training  Sequence = 60000 
samples from  a Gauss Markov  Source with  correlation 
coefficient 0.9, 

tor quantizers for a  training  sequence  of 60,000 samples. 
Given  are the design SNR (code  performance on the  train- 
ing  sequence),  the  number  of  multiplications  per sample 
required  by  the  encoder,  and  the  number of real scalars 
that  must  be  stored  for  the  encoder  codebook. The num- 
ber  of  multiplications is  used as a  measure of.  encoder 
complexity because it is usually the  dominant  compu- 
tation  and because the  number  of  additions  required is 
usually  comparable. It is given by n = (the  number  of 
codewords  searched) X (dimension)/(dimension) = the 
number of codewords searched.  The  actual  storage  re- 
quired  depends on  the  number  of bytes  used to  store each 
floating  point  number.  Many  (but  not  all)  of  the  final  codes 
were  subsequently  tested on  different test  sequences of 
60,000 samples. In all cases the  open test SNR’s were  with- 
in -25 dB of the  design  distortion. The systems considered 
are full search  VQ’s [251, binary  tree-searched VQ‘s [591, 
binary  multistage VQ’s [47], and  gainishape VQ‘s [36]. The 
gain  and codebook sizes for  the  gainishape  codes  were 
experimentally  optimized. 

As expected, the  full search VQ  yields  the  best  per- 
formance  for each dimension,  but  the  tree-searched  VQ is 
not  much  worse  and has a  much  lower  complexity. The 
multistage VQ is  noticeably  inferior,  losing  more  than 1 dB 
at the  higher  dimensions,  but i t s  memory  requirements 
are  small.  The  gainishape VQ compares poorly  on  the 
basis of  performance vs. rate  for  a  fixed  dimension,  but it 
is the  best  code in  the sense of providing  the  minimum 
distortion  for  a  fixed  complexity  and rate. 

For larger rates and lower  distortion  the  relative  merits 
may  be quite  different. For example, the  multistage  VQ is 
then capable of  better  performance  relative  to  the  ordi- 
nary VQ since  the  quantization  errors  in  the  various stages 
do  not accumulate so rapidly. (See,  e.g., [341.) Thus in this 
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TABLE I l l  
MEMORYLESS VQ DF SAMPLED  SPEECH. 

k SNRin  SNRout  n M SNRin  SNRout  n M 
’ 

1 2.0 2.1 2 2 2.0 2.1 2 2  
2 5.2 5.3 4 8 5.1 5.1 4 12 
3 6.1 6.0 8 24 5.5 5.5 6 42 
4 7.1 7.0 16 64 6.4 6.4 8 120 
5 7.9 7.6 32 160 7.1 6.9 10 310 
6 8.5 8.1 64 384 7.9 7.5 12 756 
7 9.1 8.4 128 896 8.3 7.8 14 1778 
8 9.7 8.8 256 2048 8.9 8.0 16 4080 

MVQ W V Q  
k SNRin SNRout n M SNRin  SNRout  n M 
1 2.0 2.1 2 2  
2 4.3 4.4 4 8 
3 4.3  4.4 6 18 4.5  4.6 4 14 
4 4.4 4.5 8 32 6.0 6.1 4 20 
5 5.0 5.0 10 50 7.2 6.9 8 4 4  
6 5.0 4.9 12 72 7.7 7.4 16 100 
7 5.3 5.1 14 98 8.2 7.7 16 120 
8 5.6 5.5 16  128  8.8 8.1 32  264 
9 9.3 8.5 64  584 
IO 9.8 8.9 128 1288 
11 10.4 9.3 256  2824 

Signal t o  Noise  Ratios  inside  training sequence  ISNRin3 of 
640000 speech  samples, Signal to  Noise  Ratios  outside 
training sequence [SNRoutI of 76800 speech  samples, 
number of multiplications  per sample [nl, and storage re- 
quirements of memoryless vector quantizers: full search 
memoryless VQ [VQI, binary  tree-searched [TSVQI, 
binary  multistage VQ [MVQI,  and gain/shape VQ 
(G/SVQI.  Rate = 1 bit/sample. k = vector dimension, 

case multistage VQ may be far better because if i ts much 
smaller  computational  requirements. 

Table II presents  results for  three  feedback VQ’s for  the 
same source. In  .addition  to  the  parameters  of Table I, 
the  number  of states for  the FSVQ‘s are given. The first 
FSVQ and  the VPQ were  designed  for  the same training 
sequence of 60,000 samples. Because of  the extensive 
computation  required  and  the  shortness  of  the  training 
sequence  for  a  feedback  quantizer,  only  dimensions 
1 through 4 were  considered. The first FSVQ  was designed 
using  the  omniscient  design  approach  for 1 bit  per 
sample, dimensions 1 through 4, and  a  variety  of  numbers 
of states. For the  first example, the  number  of states  was 
chosen  by  designing FSVQ‘s for  more  and  more states 
until  firther increases yielded  negligible  improvements 
[SI]. It was found,  however,  that  the  performance  outside 

of  the  training sequence for these  codes was significantly 
inferior,  by 1 to 2 dB for  the  larger  dimensions. From the 
discussion of average distortion,  this suggests that  the 
training sequence was too short.  Hence  the  second FSVQ 
design (FSVQ2)  was run  with a  larger  training sequence of 
128,000 samples  and fewer states. The  test  sequence for 
these  codes always yielded  performance  within .3 dB of 
the  design value.  The VPQ test  performance  with  within 
.I dB of  the design  performance. The scalar predictive 
quantizer  performance  and  the  codebook  for  the  predic- 
tion  error  quantizer are the same as the  analytically  opti- 
mized  predictive  quantization system of Arnstein [60] run 
on  the same data. 

Observe  that the scalar  FSVQ in  the  first  experiment 
with 64 states yielded  performance  quite  close to that  of 
the scalar  VPQ, which does not have  a finite  number  of 
states. Intuitively  the FSVQ is trying  to  approximate  the 
infinite state machine  by  using  a large number of states. 
The VPQ, however, i s  less complex  and  requires less 
memory  and  hence  for  this  application is superior. 

For comparison,  the  best I bit/sample scalar trellis  en- 
coding system for  this  source  yields 11.25 dB for  this 
source [52]. The  trellis  encoding system uses a block 
Viterbi  algorithm  with  a search depth  of 1000 samples for 
the  encoder. It is perhaps  surprising  that in this  example 
the VPQ and the FSVQ with  the  short delay of  only 4 sam- 
ples  can outperform a  Viterbi  algorithm  with  a delay of 
1000 samples. It points  out,  however,  two advantages of 
feedback VQ  over scalar trellis  encoding systems: 1.  The 
decoder is  permitted  to  be  a  more  general  form  of  finite- 
state machine  than the  shift-register based nonlinear  filter 
usually  used in  trellis  encoding systems; and 2. the  en- 
coder  performs a  single  full  search  of  a  small  vector 
codebook  instead of a  Viterbi  algorithm  consisting  of  a 
tree search of a  sequence of scalar codebooks.  In  other 
words,  single  short  vector  searches  may  yield  better  per- 
formance  than  a  “look  ahead”  sequence  of searches of 
scalar codebooks. 

Speech waveform coding 

The  second set of results  considers  a  training sequence 
of 640,000 samples of  ordinary speech from  four  different 
male  speakers  sampled at 6.5 kHz. The  reader is reminded 
that  squared  error is not generally  a  subjectively  good 
distortion measure for speech.  Better  subjective  quality 
may be obtained  by  using  more  complicated  distortion 
measures  such as the general  quadratic  distortion mea- 
sures with  input  dependent  weighting such as the  arith- 
metic  segmented  distortions. The VQ design  techniques 
extend  to such distortion measures, but  the  centroid  com- 
putations are more  complicated. (See [301 for  the  theory 
and [45,461 for  the  application  of  input-weighted  quadratic 
distortion measures,) 

Tables Ill and  IV are the  counterparts of Tables I and I I  
for  this  source. Now,  however,  the SNR’s of  the  codes  on 
test  sequences of samples outside  of  the  training se- 
quence  (and by  a different  speaker) are presented  for 
comparison.  In  addition,  some  larger  dimensions are con- 
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FEEDBACK VQ OF SAMPLED  SPEECH. 

I SNRin  SNRout K n M SNRin  SNRout  n M 
I 2.0 2.0 2  2  2 2.1  2.6 2  2 
! 7.8  7.5  32 4 64  6.4  6.2 4  8 
! 9.0  8.3  64 10 192  7.3  6.8 8 24 
I 10.9 9.4  512 16 2048 , 8.0  7.6 16 64 
; 12.2 10.8 512  32  2560 

Signal t o  Noise  Ratios inside training sequence [SNRinI 
of 640000 speech  samples,  Signal t o  Noise Ratios  out- 
side training sequence  [SNRouel  of 76800 speech  sam- 
ples, number of states (Kl, number of multiplications  per 
sample (nl, and storage [MI for feedback  quantizers: 
Rate = 1 bit/sample. k = vector dimension, 

idered because the  longer  training  sequence  made  them 
more  trustworthy.  Again  for  comparison,  the  best  known 
(nonadaptive) scalar trellis  encoding  system  for this 
source  yields  a  performance of 9  dB [521. Here  the  trellis 
encoder uses the  M-algorithm  with a  search depth  of 
31 samples. The  general  comparisons  are  similar to  those 
of the  previous  source,  but  there are several differences. 
The  tree-searched VQ is now  more  degraded in com- 
parison  to  the  full search VQ and  the  multistage VQ is 
even  worse, about 3 dB below  the  full search at the largest 

TABLE V 
LPC VQ AND FSVQ WITH  AND  WITHOUT  NEXT  STATE 

FUNCTION  IMPROVEMENT. 

VQ  FSVQl FSVQZ 
R r SNRin  SNRout  SNRin  SNRout  SNRin  SNRout K 
1 .008  3.7  2.9 
2 .016  6.1 5.2 7.2  4.3  7.5 6.1 1 6  
3 ,023  7.3  6.2 8.4 5.9  9.0  7.5 16 
4 .031  8.8 7.9 9.5  7.8  9.6  8.7 4 
5 .039 9.7  8.8  10.6  8.9  10.7  9.3 4 
6 ,047  10.5  9.5 
7 .055  11.6 10.1 
8 ,062  12.6  10.7 

Signal to  Noise  Ratios inside training sequence  [SNRin) 
of 5000 vectors of 128 samples  each,  Signal t o  Noise 
Ratios  outside  training sequence [SNRoutl of 600 vec- 
tors of 128 samples  each: memoryless  VQ,  omniscient 
FSVQ  design [FSVQI I, and for omnisicient  FSVQ design 
with  next-state  function improvement  [FSVQ2). K = num- 
ber of states in FSVQ, R = rate in bits/vector, r = rate 
in bits/sample.  Itakura-Saito  distortion measure. 

dimension  in  comparison  to  about I dB for  the Gauss 
Markov case. The  complexity  and storage requirements 
are the same except for  the shapeigain VQ where  different 
optimum selections  of gain and shape codebook size yield 
different  complexity  and  storage  requirements.  The VPQ 
of  dimension 4 is inferior to the  trellis  encoder  and  the 
FSVQ of the same dimension.  The  four  dimensional FSVQ, 
however, still outperforms  the scalar trellis  encoder. 

Observe  that an FSVQ of dimension 4 provides  better 
performance  inside  and  outside  the  training  sequence 
than  does a full search memoryless  vector  quantizer  of 
dimension 8, achieving  better  performance with 16 
4-dimensional  distort ion  evaluations  than  with 512 
8-dimensional  distortion  computations.  The cost, of 
course, is a  large  increase in memory. This,  however, is a 
basic point  of FSVQ design-to use more  memory  but 
less computation. 

LPC VQ (vocoding) 
Table V presents  a  comparison of VQ and FSVQ for vec- 

tor  quantization  of  speech using the ltakura-Saito dis- 
tortion measure or, equivalently,  vector  quantization of 
LPC speech models [16,14,53]. The  training  sequence  and 

TABLE VI 
ADAPTIVE  VPQ. 

VPQ 
k SNRin SNRout 

1 4.12 4.34 
2 7.47 7.17 
3 8.10 7.67 
4 8.87 8.30 

Signal t o  Noise  Ratios inside training sequence [SNRinI 
of 5000 vectors, and Signal t o  Noise  Ratios in tes t  
sequence [SNRoutl of 600 vectors,  rate = 1.023  bits/ 
sample. 

test  sequence  are as above, but  now  the input dimension 
is 128 samples and  the  output vectors  are  10th  order  all- 
pole  models.  The  training  sequence i s  now effectively 
shorter since it contains  only 5000 input vectors of this 
dimension. As a  result the test  results  are  noticeablydiffer- 
ent  than  the  design results. Because of  the shortness of 
the  training sequence, only FSVQ’s of small  dimension 
and  few states were  considered. 

The  table  summarizes  memoryless VQ and two FSVQ 
designs: the  first FSVQ design  used was a straightforward 
application  of  the  design  technique  outlined  previously 
and  the  second used the stochastic iteration  next-state 
improvement  algorithm  of [53]. Observe  that  the  next- 
state function  improvement  yields  codes  that  perform  bet- 
ter  outside of the  training  sequence  then  do  the  ordinary 
FSVQ codes. 
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Figure 16. Image  Training Sequence. The training se- 
quence consisted of the sequence  of 3 x 4 subblocks of 
the five 256 x 256 images shown. 

Gainishape VQ's for  this  application are developed  in 
[I61 and [361. Tree-searched LPC VQ is considered  for bi- 
nary  and nonbinary trees in  combination  with gain/shape 
codes in [I61 and [IO]. 

Adaptive coding 

Table VI  presents  the  results  of  a  simple  example of an 
adaptive VQ, here  consisting of an  LPC  VQ with 8  code- 
words  every 128 samples  combined  wi th  VPQs of 
dimensions 1-4. Each' of-the 8 VPQs is designed  for  the 
subsequence of  training  vectors  mapping  into  the  corre- 
sponding LPG VQ model  [47]. The  rate of this system is 
1 f 3/128 = 1.023 bits/sample.  The  performance is  sig- 
nificantly  worse  than  the 10 dB achieved  by  a  hybrid scalar 
trellis  encoder of the same rate [ 5 2 ] ,  but it improves on  the 
nonadaptive VPQ by  about 3/4 dB.  Adaptive  vector  quan- 
tizers  are still quite new,  however,  and  relatively little  work 
on the  wide  variety  of  possible systems has yet  been  done. 

Image coding 
In 1980-1982 four separate groups  developed success- 

ful applications  of VQ techniques to  image  coding [61,  62, 
63,64,65,66,67,371. The only real difference  from wave- 
form  coding is that now  the VQ operates on small  rec- 
tangular  blocks of from 9 to 16 pixels,  that is, the  vectors 
are  really  2-dimensional  subblocks of images, typically 
squares with 3  Or4  pixels  on  a  side  or  3  by4  rectangles. We 
here  consider  both  the basic technique  and  one  variation. 
We consider only small  codebooks of 6 bits  per  4 X 3 
block  of 12 pixels for  purposes  of  demonstration.  Better 
quality  pictures  could  be  obtained at the same rate of 1h bit 
per  pixel  by  using  larger  block sizes and  hence  larger rates 
of, say, 8 to 10 bits  per  block.  Better  quality  could also 
likely  be  achieved  with  more  complicated  distortion 
measures than  the  simple  squared  error used. 

Fig. 16 gives the  training  sequence  of  five  images. 
Fig. 17a shows  a  small portion  of  the  fifth image, an  eye, 
magnified. Fig. 17b is a  picture  of  the 26 = 64 codewords. 
Fig. 17c shows the  decoded eye. Fig. 18 shows the  origi- 
nal, decoded image,  and error  image  for  the  complete 
picture. The error  image is useful  for  highlighting  the 
problems  encountered  with  the  ordinary  memoryless  VQ. 
In  particular,  edges  are poorly  reproduced  and  the  code- 
word edges  make the  picture appear "blocky." This prob- 
lem was attacked  by  Ramamurthi  and  Gersho [62,671 by 
constructing  segmented  (or  union  or  composite)  codes- 
separate codebooks  for  the  edge  information  and  the 
texture  information  where  a  simple classifier was used 
to  distinguish  the  two  in design. In [371 a feedback  vector 
quantizer was developed  by  using a separating  mean  VQ 
with a  predictive scalar quantizer  to  track  the mean. Fig. 19 
shows the  original eye, ordinary VQ, and the feedback 
VQ. The improved  ability  to  track edges is clearly  discern- 
ible. Fig. 20 shows the  full  decoded  image for feedback 
VQ together  with  the  error  pattern. 

Although  image  coding  using VQ is still in i ts infancy, 

APRIL 1984 IEEE ASSP MAGAZINE 23 

Case 3:06-cv-00019-MHP     Document 108-8      Filed 06/07/2007     Page 9 of 15



a3 

b l  

C I  

‘igure 17. Basic Image V&l Example a t  1/2 bit  per pixel. 
a1 Original Eye Magnified [bl 6 bit codebook VQ code- 
look for 4 x 3 blocks [GI Decoded Image. 

these preliminary  experiments  using  only  fairly  simple 
memoryless  and  feedback V Q  techniques  with small 
codebooks  demonstrate  that  the  general  approach  holds 
considerable  promise  for  such  applications. 

COMMENTS 

We  have described Lloyd’s  basic iterative  algorithm  and 
how it can be used to improve  the  performance of a  variety 
of  vector  quantization systems, ranging  from  the  funda- 
mental  memoryless full search VQ that serves as the basic 
model  for data compression  in  information  theory  to a 
variety of feedback  and  adaptive systems that can be 
viewed as vector  extensions of popular scalar com- 
pression  systems. By a  variety  of  examples of systems  and 
code  design  simulations  we  have tried to illustrate some of 

the  tradeoffs  among  performance, rate,  complexity,  and 
storage for these  codes. 

The  basic structure  of  all of the V Q  systems is well  suited 
to VLSl implementation:  a  minimum  distortion search al- 
gorithm  on a chip  communicating  with  off-board storage 
for  codebooks  and  next-state-transition  functions. As new 
and better  design  algorithms  are  developed,  the  chips can 
be  updated  by  simply  reburning  the  codebook  and  transi- 
tion ROM’s. 

The  basic  approach  can  also be  incorporated  into  the 
design  of  some  traditional scalar data  compression 
schemes, an approach  which  Gersho calls “imbedded 

bJ 

cl 

Figure 18. Full Image for Basic Example (a3 Original 
[bl Decoded  Image [cl Error Image. 
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C l  

Figure 19. VQ vs. Separating  Mean VQ at Rate V2 bit 
per pixel (a1 Original Eye Magnified [b l  VQ Decoded 
Image [cl Separating  Mean VQ with  DPCM Mean Coding 
Decoded  Image. 

1 

a1 

b l  

Figure 20. Full Image for  Separating  Mean Example 
(a) Decoded  Image  using  Separating  Mean VQ with 
DPCM  Mean Coding [bl Error Image. 

VQ" [Il l .  Such  schemes typically  enforce  additional  struc- 
ture  on  the  code such as preprocessing,  transforming, 
splitting  into subbands, and scalar quantization,  however, 
and  hence  the  algorithms may not have the  freedom to 
do as well as the  more  unconstrained  structures  consid- 
ered  here. Even if  the  traditional schemes prove  more 
useful  because of  existing DSP chips or intuitive  variations 
well  matched to particular  data  sources,  the  vector 
quantization systems  can prove  a  useful  benchmark 
for  comparison. 

Recently VQ has  also been successfully  used in isolated 
word  recognition systems without  dynamic  time  warping 
by  using  either separate codebooks  for each utterance or 
by  mapping  trajectories  through  one or more  codebooks 
[68,69,70,71,55,721. Vector  quantization has also been 
used as a  front  end  acoustic  processor  to  isolated  utter- 
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ance  and continuous speech recognition systems which 
then  do  approximately  maximum  likelihood  linguistic  de- 
coding based on  probabilities estimated  using ”hidden 
Markov’’  models for  the  VQ  output data. [73,74,751. 

Variations of  the basic VQ design  algorithm have  been 
tried  for  several  distortion  measures,  including  the 
squared  error, weighted  squared  error,  the  ltakura-Saito 
distortion, and an (arithmetic)  segmented signal to noise 
ratio. (See,  e.g., [30,45,461). Other  distortion measures 
are currently  under  study. 

The algorithm has not yet  been  extended  to some of  the 
more  complicated  distortion measures implicit  in noise 
masking  techniques  for  enhancing  the  subjective  per- 
formance  of scalar quantization speech coding systems. 
Whether scalar systems designed  by  sophisticated  tech- 
niques  matched  to  subjective  distortion measures will 
sound or look  better  than  vector systems designed  for 
mathematically  tractable  distortion measures  remains to 
be seen. Whenever  the  subjective  distortion measures  can 
be quantified and  a  means found  to  compute centroids, 
however,  the  vector systems will  yield  better  quantitative 
performance.  Since  the  centroid  computation is only 
done  in design  and not  in  implementation, it can be quite 
complicated and still yield  useful  results. 

The  generalized  Lloyd  algorithm is essentially  a  clus- 
tering  algorithm  and  we have attempted  to  demonstrate i ts  
applicability  to  the  design  of  a  variety  of data compression 
systems. Other  clustering  algorithms may yield  better 
codes in some  applications. For example,  Freeman [76] 
proposed  a  design  algorithm  for scalar trellis  encoding 
systems using  the  squared  error  distortion measure which 
replaced the  Lloyd  procedure  by  a  conjugate  gradient  pro- 
cedure  for  minimizing  the average distortion  for  a  long 
training  sequence. He  found  that  for a  memoryless  Gaus- 
sian source the  resulting codes were  superior  to  those 
obtained  by  the  Lloyd  procedure. It would  be  interesting 
to characterize the reasons for  this  superiority, e.g., the 
procedure may find a  better  local  minimum  or  it may  sim- 
ply  be  numerically  better  suited  for  finding  a  continuous 
local minimum  on a  digital  computer. It would also be 
interesting  to  consider  variatiqns of this  approach for  the 
design of some of  the  other systems considered  here. 

A  survey article  with  many  topics  cannot  provide  com- 
plete  descriptions  or  exhaustive  studies  of any of systems 
sketched. It i s  hoped,  however,  that  these  examples 
impart  the  flavor  of  vector  quantizer  design  algorithms 
and that  they may interest  some readers to  further  delve 
into  the  recent  and  current  work  in  the area. 
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