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This procedure, which computes P (  x 1 e”’ ) ,  is the one called 
by the extremization subroutine for each step in the extremization 
task. The process ends once the proposed precision for ?$), ?:’), 
. . .  , r p  is obtained and the values for 6 ? ) ,  6 y ) ,  . . . , 6;) and 
6*”) are calculated from (4) and ( 5 ) .  

It is well known that iterative extremization procedures (like 
quasi-Newton, etc.) perform much better if they are given good 
initial estimates. These initial estimates may be obtained from [ lo]  

- ( I )  

N 

The Toeplitz matrix f ” ) ,  with values of ?j” obtained from (7),  
may not be positive definite, and hence, the computation of 6”” 
from ( 5 )  may give a negative value for 6”” for I f(’)l; but if that 
is the case, we may force a positive value G 2 ” )  by giving an in- 
creased value to ?!’ (changing it to ?;(’:) so that the use o f f ( ’ )  in 
( 5 )  gives a positive value to S 2 ( ’ )  and I I’(’) 1 .  Once the iteration is 
close to the true ML value, this will not be a problem anymore. 

111. CONCLUSION 

In many cases, it is necessary to have a computationally efficient 
algorithm for obtaining an ML estimate of process parameters, and 
that may compensate for the fact that what is actually obtained is 
only an approximation to the true ML estimates. In other cases, it 
is desirable that the estimate be as near as possible to the true op- 
timal value even at the cost of a less efficient algorithm. In this 
correspondence we show that the true ML estimates of Gaussian 
zero-mean AR process parameters can be calculated and give the 
steps toward their obtainment using standard subroutines for cal- 
culating extrema. The function that is maximized is the exact like- 
lihood of the data in contrast to current approximate methods. If a 
fast approximation is needed, methods such as the one in [4] for 
good approximate ML can be used to begin with, and then this 
method can improve the estimate as much as necessary. 

We would like to thank an anonymous reviewer for his com- 
ments and suggestions. 
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Adaptive Silence Deletion for Speech Storage and 
Voice Mail Applications 

CHEONG K. GAN A N D  ROBERT W. DONALDSON 

Abstract-An algorithm which uses two adaptive amplitude thresh- 
olds and zero-crossing rate was used to delete nonspeech material from 
speech digitally encoded and then decoded using PCM, adaptive 
differential PCM, and adaptive delta modulation. Typically, compres- 
sion rates of 35 percent, resulted. Subject evaluations were used to 
assess reconstructed speech quality, which improved significantly when 
absolute silence on playback was replaced with prerecorded back- 
ground noise. 

I. INTRODUCTION 
A relatively simple algorithm has been developed to delete from 

speech waveforms the nonessential acoustic material loosely re- 
ferred to as “silence.” Classification of each I O  ms acoustic seg- 
ment is based on two adaptive amplitude thresholds, zero-crossing 
rate, and a minimum speech-segment-duration requirement. Ap- 
plications of our algorithm include storage/playback or packet 
transmission, where the objective is to delete as much acoustic ma- 
terial as possible subject to adequate reconstructed speech quality. 

Other work and applications related to but different from ours 
include: TASUDSI (time-assignment speech interpolation/digital 
speech interpolation) where percent silence deletion is limited by 
the need to avoid excessively high talkspurt frequencies [ l ] ,  [2]; 
speech recognition where precise delineation of speech/nonspeech 
boundaries is essential [3]; and synchronous transmission with 
buffering, where the instananeous speech sampling rate is dynam- 
ically adjusted in accordance with buffer space available, with the 
maximum buffer capacity chosen to balance reconstructed speech 
quality against excessive delay [4]. 

11. SILENCE DELETION ALGORITHM 
Speech data for our work were digitized at a sampling rate of 8 

kHz using 12-bit digital-to-analog conversion following prefilter- 
ing by a 75-3000 Hz Butterworth filter. Short-time amplitude mag- 
nitude sum A and zero-crossing rate Z were obtained every I O  ms 
(every 80 samples) using a 100-sample window width: 

( 1 )  

( 2 )  

1 
A = - c ( x , )  

100 I =  I 

100 

= c [ 1  - ( ~ , x ~ - l / l ~ , x ! - l l ) ] .  
I =  I 

Algorithm development was based on a 30 s speech sample, 
taken from the following cassette recording of a prepared lecture 
read by an American male: 

It is claimed that young children up to the age of about seven 
or eight years are incapable of grasping the abstract funda- 
mental that number and volume remain constant even through 
changes in the outward appearance of the object. For thirty 
years the work of Piaget and his colleagues in Geneva has 
profoundly influenced the education of the young child. 
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The sample included many weak fricatives and other weak conso- 
nants (which are difficult to differentiate from background noise) 
and silent intervals ranging from 10 ms for intraword silence to 2.5 
s for intersentence silence. The background noise level was rela- 
tively high. 

Amplitude level proved to be very useful in silence/speech dis- 
crimination, particularly when the threshold to detect silence-to- 
speech transitions exceeded the threshold for speech-to-silence 
transitions and when these thresholds adapted to local background 
noise level variations. However, like others [2], [3], we found that 
amplitude alone will not always distinguish speech from silence; 
we used the relatively high Z values of weak consonants to differ- 
entiate these from background noise. 

Our silence deletion algorithm appears in Fig. 1. The important 
parameters are: 1) ZSIL, the zero-crossing rate boundary between 
speech and silence; 2) MINSP, the minimum number of contiguous 
10 ms segments needed for any and each of these to be classified 
as speech; 3) AON, the amplitude threshold multiplier for detect- 
ing silence-to-speech transitions; and 4) AOFF, the amplitude 
threshold multiplier for identifying speech-to-silence transitions. 
To adapt to background noise level variations, the actual amplitude 
threshold is obtained by multiplying T (  T = AON or AOFF) by 
AVG, the local average of the 10 most recent silence-period A val- 
ues. Because some segments near the silence-to-speech transition 
can have A values up to twice the average and corrupt it, we al- 
lowed only segments for which A < ACRIT*AVG to update AVG, 
with ACRIT = 1.28. 

During initialization, AVG was selected such that AOFF*AVG 
= SO on a 0-2048 scale. Following classification of the first silence 
segment, AVG and all 10 AVG FIFO stack values were set this 
silence segment’s A value. Following subsequent silence segments, 
AVG was updated as explained in the previous paragraph. This 
initialization and first updating of AVG avoided the necessity of 
requiring that the first few acoustic segments be silence. 

Immediately after setting T = AON, the first segment with either 
A or Z above threshold was classified as speech only if A > 
AON*AVG or Z > ZSIL for each of the subsequent MINSP seg- 
ments. Short acoustic bursts otherwise classified as speech were 
thus deleted, without quality loss. Following classification of a 
segment as speech, T = AOFF was initiated or maintained. Setting 
T = AON immediately following a silence prior to a weak stop 
consonant can result in  the stop’s classification as silence, since 
AON > AOFF. Premature activation of AON is therefore avoided 
by requiring 6 contiguous silence segments (60 ms) before setting 
T = AON. 

We varied algorithm parameter values to obtain maximum si- 
lence deletion, subject to maintaining each of the following 12 
phrases as speech: “ch” and “ren” in children, “th” (the), “ge” 
(age), “se” (seven), “s” (years, abstract, constant), “ble” (in- 
capable), “ge” (Piaget), “ation” (education), and “ch” in child. 
Averaged over two different recording levels, we obtained 35 per- 
cent silence deletion with ZSIL = 36-38, AON = 2.60-3.02, 
AOFF = 1.80-2.57, and MINSP = 40 ms (4 segments). 

Our algorithm deleted silence from speech encoded, and subse- 
quently decoded using PCM, ADPCM (adaptive differential PCM), 
and CVSDM (continuously variable slope delta modulation). Un- 
likely codewords were used to mark the beginning, duration, and 
end of each silence interval, with less than 0.5 percent overhead. 
Our ADPCM codec used a fixed previous-sample predictor with 
gain 0.8. The uniform quantizer step size increased rapidly in re- 
sponse to slope-overload noise, but decayed more slowly in gran- 
ular noise. Third-order polynomial interpolation yielded 16, 24, 
and 32 kHz sampling for CVSD modulation, chosen for its sim- 
plicity, universality and IC availability. In  Fig. 2, a = 0.95, and 

otherwise, z ( n )  = 0.7 z ( n  - 1 )  + 0.6. These CVSDM parame- 
ters provide good waveform tracking at high signal levels, rather 
high SQNR (signal-to-quantizing noise ratio) at low signal levels, 
good syllabic adaptation, and moderate step size error recovery. 

z ( n )  = 0.7 z ( n  - 1 )  + 115.2 if ~ ( n )  = ~ ( n  - 1) = ~ ( n  - 2 ) ;  

.1 

4 

-1 

LOAD Pay, M F ,  
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CALCULATE A, 2 

A U U S T I C  S E M N T  
FOR CURRENT 4 

INPUT 8 UHZ 
AaWSTIC S M L E S  

YES r. 

TlACN 

T = M F  CLASSIFY 

5 I LENCE 
SAT1 SFIED 

UPDATE 

1 YES 

J 
T = M F  

c 

Fig. 1 .  Silence deletion algorithm 

I I I 

I t-+J-+J 
DECODER 

Fig. 2 .  CVSD modulation system (2-l denotes one-sample delay) 

Percent silence deletion increased with decreasing data rates, since 
low-level speech was increasingly decoded as silence. Typical per- 
cent silence values were: 37, 36, 35, and 42 for 12-bit uniform 
PCM, %bit, A-law, PCM, 6-bit ADPCM, and 24 kbit/s CVSDM, 
respectively. Restriction of the maximum playback silence interval 
to 2.56 s, and some temporary adaptation loss following silence 
was virtually unnoticeable. 

111. SUBJECTIVE EVALUATIONS 
As test materials we used the lecture tape described earlier 

(source A ) ,  a radio newscast read by a Canadian male (source B ) ,  
and a telephone conversation (recorded from an AM radio channel) 
between a Canadian male talkshow host and a male caller with a 
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1 - O r i g i n a l  Sample A 
2 - O r i g i n a l  Sample B 
3 - O r i g i n a l  Sample C 

andom O r d e r i n g  o f  
Processed Sampler 

22 - D u p l i c a t e  o f  3 1  

: +andom O r d e r i n g  o f  
. Processed Samples 

33 - D u p l i c a t e  o f  4  

34 - O r i g i n a l  Sample A 
35 - O r i g i n a l  Sample B 
36 - O r i g i n a l  Sample C 

andom O r d e r i n g  o f  
Processed Samples 

55 - D u p l i c a t e  o f  4  

: >andomOrder ing o f  . Processed Samples 
6 7  - D u p l i c a t e  o f  37 

strong European accent (source C ) .  From each source, a 10-s 12- 
bit sample was obtained. Each of these original samples was coded 
and subsequently decoded using A-law PCM with N = 2,  4 ,  or 6 
quantization levels, ADPCM with N = 3,  5, or 7 levels, and 
CVSDM at 16, 24, or 32 kbit/s. Twenty-seven distinct speech 
samples resulted, and each was processed using our silence dele- 
tion algorithm with ZSIL = 36, MINSP = 40, AON = 3,  and 
AOFF = 2.5. Deleted acoustic material was replaced on playback 
with absolute silence. These processed samples, together with the 
27 samples coded but not subject to silence deletion processing, 
constituted 54 test samples. To these were added three samples 
processed by our silence deletion algorithm, but with a copy of the 
sample’s own background noise (approximately 20 dB signal/noise 
ratio) replacing absolute silence on playback. These 57 samples 
were randomly ordered on a two-sided casette as indicated in Table 
I. Samples 1-3 and 34-36, inclusive, were the original 10-s 12-bit 
unprocessed samples, presented for listener orientation. Samples 4 
and 37 were presented three times during the test to provide a check 
on listener consistency. Each of 10 untrained subjects was given a 
Sony Walkman WM-4 cassette player, stereo headphones, a score 
sheet, and printed instructions as follows: 

Test Sample S u b j e c t  Number 
D e s c r i p t i o n  1  2  3 4  5 6 7 8  9 1 0  

O r i g i n a l  A 4  4  5 4  5 3 4  4  2  3  
c3; 4 4 5 4 3 4 4 4 2  4  

O r i g i n a l  B 5 4  5 4  5 4  4  5 3 3 
c3: 5 3 5 4 4 5 4 5 3  4  

O r i g i n a l  C 3 2  4  3 4  2  3 2  2  1  
c3: 5 4 4 3 2 3 3 4 2  2 

“The purpose of this subjective listening test is to assess the 
effect of silence deletion and the subsequent insertion on 
speech. Please state the degree of acceptability of test sam- 
ples as recorded messages, on a scale of 1 to 5 .  1 means that 
a sample is unacceptable and 5 denotes the highest degree of 
acceptance. Rate each sample on its own rather than by com- 
parison with other samples. The test consists of two 10-min- 
Ute segments recorded on sides 1 and 2 of the accompanying 
cassette. You are advised to take a 5-minute break between 
the two segments. There are 67, IO-second test samples re- 
corded and numbered in sequence with a slight pause after 
each for recording your score. For your information and ori- 
entation, the first 3 samples on each side of cassette are orig- 
inal speech samples; the remainder being a random ordering 
of various processed speech samples. 

Table I1 displays the subjects’ scores for each of the three orig- 
inal unprocessed samples, and for samples 4 and 37. The average 
scores of 3.63 for the originals is well below the maximum, with 
the radio conversation lowest at 2.9. The original recordings, while 
not of excellent quality, are representative. Table I1 indicates good 
listener group consistency based on average scores for the same 
samples. 

Table 111 enables determination of the subjective effects of si- 
lence deletion. There are two important conclusions: 1 )  averaged 
over all speech samples, replacement of deleted acoustic material 
with absolute silence on playback causes perceived quality to drop 
significantly, to an average of 2.44 from 3.51 without silence dele- 
tion; and 2) insertion of background noise in place of deleted 
acoustic material during playback tends to restore perceived speech 
quality toward its presilence-deletion values. The first conclusion 
follows from comparing the columns labeled “unedited” and “si- 
lence-edited” in Table 111, and the difference between these in the 
right-hand column. The second follows from comparing the differ- 

S u b j e c t i v e  Rat ings  

Mean Var i i n c e  

3.8 0 . 9  
3.8 0 . 1  

4 . 2  0.7 
4 . 2  0 .7  

2 .6  0.9 
3.2 1.0 

/Dupl icatesk!  1 2 3 1 3 3 2 1 2 3 1  1  3 2 4  1  2  2 3 2  1  

3 2 4 3 3 2 2 3 2  2  

I D u p l i c a t e s E ;  I 4 2 3 3 2 4 3 2 2  3  1  5 4  3 4  3 3 1  2  3 

3 2 4 2 2 1 3 3 2  3 
I 1 I 

TABLE 111 
SUBJECTIVE RATING COMPARISONS 

T e s t  S imple  
Class *Unedi t e d  

( 1 )  O v e r a l l  Average I 3.51 

( 2 )  Speech Sample 
O r i g i n  

Sample A 
Sample B 
Sample C 

I S )  Coding Scheme 

A-law PCN 
ADPCN 
CVSW 

3.59  
3 .92  
3.02 

3 . 5 3  
3 .33  
3 .61  

: 4 )  Noire-vs.-  
S i l e n c e - e d i t e d  

Sample A 
32 kbpr CVS’SDM 

Sample B 
7 - b i t  ADPCM 

Sample c 
6-bi t A-Law PCM 

4 . 0 0  
4 .00  

3 . 8 0  
3 .80  

3.00 
3.00 

S i l e n c e -  
e d i t e d  

2 .44  

2 .32  
2.67 
2 .32  

2 . 5 2  
2 .42  
2 . 3 1  

2 .30  

2 .90  

3.00 

Noise- 
c d i  tcd  

~~~ 

3.40  

3 . 4 0  

3 . 3 0  

S i  Iencc-minus 
N o i s e - e d i t e d  

- 1  .25 
-0 .70  I 
1 

-1.01 . 
-0.91 

-1 .70  
-0.60 

-0.90 
-0 .40  

0.00 
+0.30 

*Not subject to silence deletion processing. 

ence between the “silence-edited” and “noise-edited’’ columns in 
Table 111. 

By itself, digital coding/decoding using PCM, ADPCM, or 
CVSDM did not degrade the speech quality very much, on aver- 
age, as is seen by comparing the “unedited” column in Table I11 
to the “mean subjective rating” column for the three original sam- 
ples in Table 11. For example, compare Sample A’s 3.59 value in 
Table 111 to the average of 3 .8  for Original 12-bit Samples in Table 
11. Similar comparison involving Table I1 and the “unedited” col- 
umn area (4) of Table 111 shows minimal degradations for CVSDM, 
ADPCM, and A-law PCM coding at relatively high bit rates. 
Among the three coding schemes, degradation from deletion of 
acoustic material was highest CVSDM, probably because the pa- 
rameters were chosen for good waveform tracking rather than en- 
hanced SQNR. Among the three speech samples, degradation for 
silence-editing was largest for Sample A whose high background 
noise level contrasted most during transitions to and from silence 
during playback. 

Further details of this work appear elsewhere [ 5 ] .  
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A Note oh “Wigner Distribution for Finite Duration 
or Band-Limited Signals and Limiting Cases” 

F. HLAWATSCH 

Abstract-A recent paper by Cohen’ investigates the Wigner distri- 
bution of signals consisting of two finite-duration, nonoverlapping sig- 
nal components. In this note, we present an alternative analysis which 
is considerably simplified as compared to Cohen’s. 

I. INTRODUCTION 
The Wigner distribution (WD) [ l ]  is a time-frequency signal 

representation which has been shown to be useful for the analysis 
of time-varying and transient signals (see, e.g., [2] and [3]). Apart 
from being theoretically attractive, the WD is also the basis for 
practical time-frequency representations (like the pseudo-Wigner 
distribution or the well-known spectrogram) which meet, to a large 
extent, the requirements encountered in signal analysis applica- 
tions. 

The cross WD (CWD) of two signals x ( t ) ,  y ( t )  is defined by 

W x , y ( t , f )  = x ( t  + 7/2)  y * ( t  - 7/2)e-J2ufr d7, 
--m 

( 1 . 1 )  
where t andfdenote time and frequency, respectively. The CWD 
may also be expressed, in a similar way, using the signals’ spectra 

W x . r ( t , f )  = jm X ( f +  u/2) Y * ( f -  u / 2 ) e J 2 * ‘ ” d u .  

X(f), Y ( f ) ,  

-m 

( 1 . 2 )  
Because of this symmetry of time and frequency, all results derived 
for, e.g., the time domain apply in the frequency domain as well. 
We shall discuss afinite-support property of the CWD to illustrate 
this important symmetry; this property will also be used in the sub- 
sequent development. 

Suppose that the signals x ( t )  and y ( t )  are zero outside time in- 
tervals [ t x l ,  txz] and [ ty l ,  ty2], respectively. It is then easily verified 
that, for all 7, x ( t  + 7 / 2 )  y * ( t  - 7 /2 )  = 0 for t outside the 
interval [ T I ,  T2] ,  where 
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Inserting into ( l . l ) ,  it follows that also 

WX,,(t, f) = 0 for t outside [il,  i 2 1 .  ( 1 .4 )  

Now by virtue of CWD’s time-frequency symmetry, an analogous 
finite-support property exists with respect to the frequency domain: 
if the signals x(  t )  and y ( t )  are band-limited to frequency bands 
[ f x l , f x 2 1  and [fyl,fyzl, respectively, then 

W x , y ( t , f )  = 0 forfoutside [.7-,,&], (1 .5 )  

with 

L2 + f y 2  A=----- - Ll + f y l  

fi=,, 2 ‘  

In most applications, the WD of a single signal is of primary in- 
terest. The (auto) WD Wx(t, f )  of a single signal n ( ? )  is defined 
by letting y = x in ( l . l ) ,  so that 

W x ( t , f )  2 W x . x ( t , f ) .  (1 .7)  

Properties (1.4) and (1.5) then reduce to the well-known finite- 
support properties of the (auto) WD: if the signal x ( t )  is zero out- 
side a time intental [ t , ,  t2], then the WD of x ( t )  is zero outside 
the same interval (or, to be more precise, outside the corresponding 
strip in the ( t ,  f)-plane). An analogous result, of course, again 
exists with respect to the frequency domain. 

11. WICNER DISTRIBUTION OF TWO-BURST SIGNALS 
In a recent paper by Cohen,’ the WD of a signal z ( t )  consisting 

of two finite-duration, nonoverlapping signal segments (“bursts”) 
is considered. To be more specific, this “two-burst signal” is de- 
fined by 

--03 < t 5 tXl 

which is illustrated by Fig. 1 .  
The paper contains an exhaustive enumeration of 19 different 

cases which are distinguished by the relative positions of t x l ,  tx2 ,  
tylr and ty2. In each of these cases, different intervals of the time 
axis are distinguished, and on each of these intervals, the WD of 
~ ( t )  is expressed as (generally) a sum of at most three integrals 
which, in our framework, can be identified as WD’s of x ( t  ) or y ( t )  
and/or CWD’s of x(  t ) ,  y (  t )  or y ( t ) ,  x(  t).  

The present note is based on our belief that Cohen’s discussion 
is unnecessarily complicated and difficult to read. This is a direct 
consequence of the comparatively great number of different cases 
and time intervals which are discussed separately.  Moreover, the 
different cases are defined by multiple inequalities which are cum- 
bersome to interpret. As we show in the following, the WD of a 
two-burst signal (2.1) can be analyzed in a far simpler way by a 
general treatment which encompasses all cases, irrespective of the 
relative positions of the interval boundaries txl  through t y2 .  Our dis- 
cussion will be based on WD’s quadratic superposition principle 
(occurrence of WD interference terms) and the interference terms’ 
geometrical properties-characteristics of the WD which are of 
great consequence in practical WD applications and which are dis- 
cussed in more detail in [4] and [SI. 

We first note that the two-burst signal z ( t )  is restricted to the 
time interval [ t x l ,  ty2]. From WD’s finite-support property, it thus 
follows that the WD of z ( t )  is equally zero outside this interval. 
On the other hand, the WD is not identically zero in the gap [ f x 2 ,  

tvl ] between the two bursts. We shall now show that this is a con- 
sequence of WD’s interference property. 
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