10:08:261 10:08:302 10:08:34 3 10:08:434 10:08:475 10:08:496 10:08:547 10:08:55 8 10:08:599 10:09:041.0 10:09:0811 10:09:1112 10:09:1313 10:09:1714 10:09:2115 10:09:2816 10:09:4017 10:09:4418 10:09:4919 10:09:5320 10:09:5621 10:10:0022 10:10:0023 10:10:0224 10:10:0725
known to a person of ordinary skill at the relevant time that that person would have understood would allow you to store compressed video on a hard drive?
A. You mean the whole video? When you say "store compressed video," you're referring to the entire file?
Q. Well, let's say a full-motion video work, as construed by the Court.
A. Well, again, we have a bunch of variables here that are - come into play and are unknown, how long is the work, what is the compression algorithm and how big is the disk.
Q. Okay. And I'm asking you to make whatever reasonable assumptions you need there to answer the question.
A. We also have this issue of quality in the back of our mind, right? Clearly we don't want to represent every frame by a single number. So, compression algorithms existed; and certainly one could take video -- let's go with my three-minute length - or two-minute, whatever I did in the tutorial -- and compress it. And providing that the compressed -- combination of the compression algorithm in the hard disk size gave us a file that there was sufficient room to put it on the hard disk, then certainly it could be stored on the hard disk.
Q. Okay. And a person of ordinary skill would have understood that before Mr . Lang came up with his invention, right?

Page 71

10:10:071
$10: 10: 102$
10:10:13 3
10:10:14 4
10:10:155
10:10:176
10:10:227
10:10:25 8
10:10:28 9
$10: 10: 3310$
10:10:3411
10:10:3812
$10: 10: 4213$
10:10:4614
10:10:4915
10:10:5316
10:10:5617
10:10:5918 10:11:0219 10:11:0420 10:11:0821 10:11:1022 10:11:1323 $10: 11: 1824$ 10:11:1925
A. Well, I don't think that storing a file is part of the -- I mean, storing is certainly one of the -- the steps in the claims, but --
Q. I -- I'm not ask --
A. -- any file can be stored on a disk, right? I mean,
this is - you know, this happens to be a file where the bits represent compressed video. But, you know, this is simply storing a file on a disk. I mean, this was known starting whenever the first disks came out in the Fifties or Sixties.
Q. Well, and -. and the ability to store compressed video on a disk was known as soon as algorithms became available that allowed you to compress it to a reasonable size that would fit on then-available disks, right?
A. Well, the ability to store anything on a disk goes along with how big is the disk and how big is your thing. So, this is just one particular example of data.
Q. Okay. So, as long as it will fit on a disk, you can store any kind of digital information on a disk, right?
A. That's a bit broad, and I'm not sure I want to agree to that. But, you know, bits are bits, right? And what do disks do? They store bits so --
Q. Okay. So, I'd like to talk a little bit now about what computers are and what a person of ordinary skill in the art would have understood about computers in the mid Eighties. A person of ordinary skill in the mid Eighties would have

10:11:23 1 10:11:33 2 10:11:39 3

10:11:41 4
10:11:44 5
10:11:476
10:11:497
10:11:52 8
10:11:53 9
10:11:5410
10:11:5611
10:11:5612
10:11:5813
10:11:5814
10:12:0015
10:12:0216
10:12:0317
10:12:0418
10:12:0719
10:12:0720
10:12:1021
10:12:1122
10:12:1323
$10: 12: 1324$
10:12:1725
understood that typical, let's say, workstations had both disk drives -- well, had disk drives, right?
A. What is a typical workstation? Can you be a little bit more specific? Previously you mentioned a PC. So, I'm -I just want to make sure were talking about the --
Q. Well, you said that a PC might not be what a person of ordinary skill in the art would use to develop algorithms, for example.
A. Right.
Q. So, I'm talking about the kind of computer that a --
A. Okay.
Q. -- person of ordinary skill --
A. Okay.
Q. -- would use to develop algorithms. That would normally have had a disk drive, right?
A. You know, I don't actually know that it would have normally had a disk drive.
Q. If it didn't have a disk drive, how would it store files?
A. Oh, I'm sorry. You're referring to hard disk drive. Q. Yes.
A. Yes, I believe it would have had a - a hard disk drive.
Q. Or it might have had a - a Ethernet card and used a file server, right?

10:12:201
$10: 12: 242$
$10: 12: 28 \quad 3$
$10: 12: 314$
10:12:34 5
10:12:396
10:12:417
10:12:458
10:12:52 9
10:12:5510
10:12:5811
10:13:0112
10:13:0213
10:13:0514
10:13:0815
10:13:1116
10:13:1417
10:13:1918
10:13:2219
10:13:2220
10:13:2621
10:13:2822
$10: 13: 3023$
$10: 13: 3424$
10:13:3725
A. Then, I guess, we wouldn't call that a -- a --more likely, that workstation would be a little bit more akin to a dumb terminal that's running off of some large compute server.
Q. Well, certainly was commonplace to -- to use Ethernet to network Unix workstations in the mid Eighties, right?
A. Yes. But given the type of development that -- that these folks would be doing on -- even audio, still relatively large file sizes, I don't know that they would want to be constantly shuffling those files back and forth over the network as they processed them. I suspect that it would be slow for them, and it would be maddening for anybody else on the same network.
Q. Well, whether you do it when you're processing them or just to offload the disk space on to a file server somewhere, certainly it was something that people of ordinary skill in the art at the time would have understood as within the range of solutions available to them for working on compressed audio or video, right?

MR. PAYNE: Objection, form.
A. I sort of lost what the "it" was in that question.
Q. (By Mr. Stephens) Meaning transferring a file over a network to a disk drive on another machine.
A. There certainly were remote compute servers, yes. Q. I'm not asking about a compute server. I'm asking about a remote disk drive.

Merrill Legal Solutions
A. I don't know what the common configuration for those systems were.
Q. It certainly would have been known to one of ordinary
skill in the art that you could transfer a file, an audio
file, let's say, on one Unix workstation hard disk to a hard
disk residing on another machine on the same network, right?
MR. PAYNE: Objection, form.
A. I believe that was possible.
Q. (By Mr. Stephens) And with Ethernet, that transfer would have happened faster than real-time, correct?
A. Now, the Ethernet data rates were 1 to 10 megabit per second; but Ethernet is a shared resource. So, I think it depends on how much other traffic there is on the network as to whether that's a faster-than-real-time transfer or not.
Q. Okay. So, let's assume there's no one else using the network at the time.
A. I think it would be reasonable to expect that the transmission time for the audio file would be less than the playback time of the original file.
Q. And a person of ordinary skill in the art would have understood that if they were using a workstation to develop digital audio compression methods in the mid Eighties, right? MR. PAYNE: Objection, form.
A. I'm not sure that's something that occurred to them.

I think if -- if a genie showed up and asked them to, "Hey,

10:16:35 1 10:16:39 2
$10: 16: 433$
10:16:454
10:16:46 5
10:16:49 6
10:16:52 7
10:16:55 8
$10: 16: 579$
10:16:5910
10:17:0311
10:17:0912
10:17:1113
10:17:1514
10:17:1615
10:17:1816
10:17:2217
10:17:2518
10:17:2619
10:17:2920
10:17:3121
10:17:3322
10:17:3823
10:17:3924
10:17:4125
copy based on the length in minutes that it would take to listen to the performance, right, particularly for compressed?
A. You could, you could. As an engineer, you could certainly upper-bound it.
Q. I'm not asking about an upper bound. I'm asking --
A. No, no, no. Yeah, but this is how engineers think, right? You said you could not; and actually, the -- the --I think the engineer would say, "Well, first off, I know what the audio is. I mean, I know it's four hours or three minutes. And if it's compressed, then I have a range of what I expect it to be." So, you know, back-of-the-envelope calculations, one can actually - and - and similar back-of-the-envelope calculations for available bandwidth, if it's a shared resource or not.
Q. Okay. Now, if you're - if you're copying a file from one disk to another, you generally want that to happen quickly, right?

MR. PAYNE: Objection, form.
A. I -- I'm not sure that we really want anything to happen when we copy -- I mean, I -- I just --
Q. (By Mr. Stephens) Well, would you agree that the history of computer technology development has been one of ever-increasing speeds?
A. That is certainly true.
Q. And that applies both to I/O, to disk drives and to

Page 75

10:15:25 1
10:15:272
10:15:31 3
$10: 15: 314$
10:15:33 5
10:15:38 6
$10: 15: 427$
10:15:478
$10: 15: 539$
10:15:5610
10:15:5711
10:16:0012
10:16:0413
10:16:0814
10:16:0815
10:16:1016
10:16:1317
10:16:2018
10:16:2219
10:16:2520
10:16:2521
10:16:2522
10:16:2823
10:16:3024
10:16:3225
what is the bit rate of your audio and what is the bit rate of your Ethernet connection," they might say, "Gee, you're right."
Q. (By Mr. Stephens) Well, let me ask it a little differently. So, if I have a file on my disk inside my Unix workstation and I want to copy that to another disk, whether that's on the -- my same machine or across the network to another machine, there's no connection between that copying time and the amount of time required to play that file back, is there?
A. The data transfer time is solely a function of the available bandwidth and the file size, as we have discussed. So, the transfer is ignorant of whatever the bits represent.
Q. So, the --
A. Now, let's -- let me - I mean, there is a little bit of a connection. Clearly, if we have a four-hour Wagner opera, that is going to have a larger file than a three-minute Beetles tune.
Q. Well, bigger files take somewhat longer to --
A. Yes.
Q. - transmit?
A. Yes. So, I mean, I don't think we can completely decouple the two.
Q. Well, it's decoupled in the sense that there's -- you can't predict the amount of time required to make the file

10:17:46 1
10:17:50 2
10:17:53 3
10:17:564
10:17:595
10:18:036
10:18:077
10:18:118
10:18:14 9
10:18:1810
10:18:2311
$10: 18: 2712$
$10: 18: 3013$
$10: 18: 3114$
$10: 18: 3515$
10:18:3816
$10: 18: 4217$
10:18:4418
10:18:4519
10:18:5020
10:18:5121
10:18:5522
10:18:5823
10:19:0224
10:19:0425
transfers between the simple processing unit in RAM?
A. I think that internal bus speeds as well as
transistor switching speeds -- really, it's the transistor -let me just put in a little blurb here. This is all electrical engineers, nothing to do with computer scientists, in terms of increasing speed of computers. Certainly the -the Moore's Law and faster and faster transistors have driven all of -- all of the speed increases that you've discussed.
Q. Well, and it's also generally been desirable by users of computers to make them compute faster, right?
A. Well, users of computers and just about everything else that we deal with in daily life. Yeah, I think that's the case.
Q. And it's also been desirable to make the disk drives transfer data faster during that period of computer development, right?
A. Again, I don't know what desirable is. This is all natural evolution of the equipment.
Q. So, the natural evolution of computer systems has led to ever-faster disk drives, right?
A. To this point, yes.
Q. And that's partly because what you can do with a computer is limited by how fast you can move data around, right?
A. It depends on what you're trying to do.

10:19:051
10:19:08 2
10:19:08 3
10:19:114
10:19:155
10:19:176
10:19:197
10:19:238
10:19:249
10:19:2910
10:19:3211
10:19:3612
10:19:4013
10:19:4614
10:19:4715
10:19:5116
10:19:5517
10:19:5618
10:20:0019
10:20:0420
10:20:1021
10:20:1622
10:20:2323
10:20:3224
10:20:3725
Q. As a -- as a very general principle, that's true, right?
A. Well, in some applications, yes. It's the data movement, which is the bottleneck. In other applications, it may well be the -- the computing.
Q. Okay. But in many applications and particularly in many multimedia applications, it's how fast you can move data, right?
A. I think that multimedia has been also -- "hampered" is the wrong word. Multimedia has a lot of computational requirements, and I think that it's -- it's not fair to say it's solely data transfer speeds within the machine that that -- that have -- that are the issue for multimedia.
Q. Okay. But it's "an" issue for multimedia, right?
A. It is "an" issue for multimedia. But, again, as I mentioned, the driving data rate for MPEG was getting video off a CD .
Q. Okay. And, so, once I have a multimedia file on my hard drive and I want to copy it to another hard drive, what determines how fast that copy occurs?
A. Well, we have the -- the computer itself has to -operating system has to deal with issuing commands and causing the copy to occur at a higher level. The disk drives have I/O speeds, as you mentioned, which are caused by both the fundamental physical read/write data rate off the disk as well

10:21:561
10:21:572
10:21:573
10:21:594
10:22:025
10:22:056
10:22:087
10:22:148
10:22:179
10:22:2010
10:22:2311
10:22:2712
10:22:3113
10:22:3414
$10: 22: 3815$
10:22:4016
10:22:4517
10:22:4918
10:22:5119
10:22:5520
10:22:5521
10:23:0122
10:23:0423
10:23:0624
10:23:0825

10:23:151
$10: 23: 172$
10:23:173
$10: 23: 204$
10:23:245
$10: 23: 286$
10:23:317
10:23:32 8
10:23:339
$10: 23: 3610$
10:23:3711
10:23:3812
10:23:4013
10:23:4114
$10: 23: 4115$
$10: 23: 4116$
10:23:4117
10:23:4318
10:23:4519
10:23:4520
10:23:4521
10:23:4722
10:23:4823
$10: 23: 5124$
10:23:5425
the art.
MR. PAYNE: Objection, form.
A. Well, first off, I don't know that the term "multimedia file" even existed --
Q. (By Mr. Stephens) Well, let's say audio file.
A. -- in the 1988 time frame. So, however the audio was represented, it was simply bits. And as far as the file system is concerned, bits are bits and the bits will be moved from Point A to Point B and there's no reason to expect that the bits that happen to belong to an audio file would be treated any better or any worse than the bits that belong to, say, a -- a user's dissertation file.
Q. So, the computer doesn't know how long it would take to play that audio file back when it's moving it from one disk to another, right?
A. A generic, ignorant computer without prior programming or special features, certainly it has no way to know anything. The -- what the computer knows about the data is really just the file system structure and how big it is and where it is.
Q. So, the transfer time would not be limited to or restricted to the amount of time required to play that file back, right?

MR. PAYNE: Objection, form, incomplete hypothetical. Page 81
A. Sorry, I lost my train of thought. Can you repeat the question?
Q. (By Mr. Stephens) Sure. So, when you're copying an audio file from one disk to another disk in a Unix workstation in the mid Eighties, the time required to make that copy isn't restricted to the amount of time required to play that file back, right?

MR. PAYNE: Objection, form. Where -- what are you talking about, Unix-based workstations? That's not a declaration --

MR. STEPHENS: Make your objection. Stop -MR. PAYNE: I'm going to instruct her not to answer the question.

MR. STEPHENS: You're going to -- okay.
MR. PAYNE: It's beyond the declaration.
MR. STEPHENS: All right. You're going to instruct her not to answer?

MR. PAYNE: If you've got a specific prior art --

THE WITNESS: I'm sorry, could I take a break and --

MR. STEPHENS: No. There's a question pending.
MR. PAYNE: -- you've got specific prior art in the declaration. You're suggesting hypotheticals that assume facts not in evidence. And, so, I have no choice but to

	ge 82		$\text { fe } 84$
10:23:591	struct her not to answer	$10: 37: 581$	A. They were available; but they certainly did not have
10:24:002	phens) Are you going to follow y	10:38:012	,
01	nse	10	
10:24:024	A. Yes.	10:38:04	nk,
10:24:015	Q.	10:38:08	aps
10:24:026	THE WITNESS:	10:38:13	not so much to the general public.
10:24:047	break?	10:38:	Q. So, a person who had recently graduated with a
10:24:058	R. STEPHENS: Then we can take a break	10:38:20	engineering degree migh
10:24:079	All right. Ill be asking for another day of deposition with this witness after we move to compel on this point.	10:38:259	Macintosh, right?
10:24:0910		10:38:2610	hav
10:24:1011		10	may have used one, depending on what institution
10:24:1512	point. THE VIDEOGRAPHER: Off the record at $10: 24$.		they went to.
10:24:1713	MR. PAYNE: And the objection stand	313	kay. Well, they were commonly known at least,
14		10:38:361	ght?
10:35:2615	THE VIDEOGRAPHER: Beginning of Tape 3 to the	10:38:3615	A. Certainly after the commercial during the Super Bowl,
10:35:2816	deposition of Dr. Hemami. The time is $10: 35$. We're back on the record.	$10: 38: 3916$	I th
10:35:3317		10:38:4117	nd that was the Big Brother commercial you
10:35:3318	Q. (By Mr. Stephens) Okay. Dr. Hemami, let's see, we	0:38:4418	referring
10:35:3719	were still talking about a person of ordinary skill in the art in the mid Eighties. Now, it would have been known to such a	10:38:4519	Y
10:35:4020		10:38:4620	nd Apple Macintoshes had SCSI ports so that you
10:35:4421	person that analog-to-digital and digital-to-analog convertors	10:38:5021	could use an external disk drive; is that righ
10:35:5122	were things that were available to them, right	10:38:5322	A. I do not know if that's right or not. I do not
10:35:5623	A. Yes. The existence of A to D and D to A would have	10:38:552	was on
10:35:5924	been known	4	ell, certainly SCSI interfaces for external
10:36:0125	Q. And that's true both for audio and for video; is that	10:39:0125	computer drives
	Page 83		e 85
10:36:031	right?	10:39:04 1	A. I don't know that. I don't actuall
10:36:072	A. Yes. Although, the A-to-D conversion video were	10:39:06 2	don't remember what was sitting off the back of those units.
10:36:13 3	substantially more specialized and difficult to get; but they	10:39:093	kay. Fair enough. Amigas were another type of
10:36:16 4	would be aware that it was possible to do that	10:39:13	computer that was available at the time; is that right
10:36:195	Q. Okay. And I think we've already talked about the use	10:39:15 5	A. Amigas did exist,
10:36:296	of disk drives being well known at the time to store digital	10:39:29	Q. Now, for any given file representing audio, there is
10:36:357	data; is that righ	10:39:367	me rate at which it will be transferred faster than
10:36:36 8	A. Yes.	10:39:398	al-time, right
10:36:40 9	Q. Now, was it known to use external storage devices	10:39:449	A. I-- this question is a little bit vague. Perhaps
10:36:4310	like disk drives on a SCSI interface?	10:39:4810	you could be more specific for the -- what's going on.
10:36:5411	A. Storage external to a computer that contained the CPU unit was known, yes.	10:39:5011	Q. Okay. Fair enough. Sure. In your -- your tutorial,
10:37:0412		10:39:5212	ou talked about faster-than-real-time transmission being
10:37:1213	Q. And the Small Computer Systems Interface or SCSI	10:39:5713	determined by simply taking the amount of time it takes to
10:37:1414		10:40:0014	transmit a file and comparing that to the amount of time it
10:37:1815	A. I don't know what the time was on the SCSI interface.	10:40:0215	kes to play back that file and if it's -- if the time
10:37:2016	Q. Would you agree that, at least with respect to	10:40:0816	quired to transfer is less than the time required to play
10:37:2317	personal computers, the primary types of personal computers in	10:40:1117	ack, then you've transmitted faster than real-time. Do you
10:37:2718	the marketplace at the time were PCs and Apple Macintoshes?	10:40:1318	member that?
10:37:3219	A. I think we called them IBMs at the time	$10: 40: 1419$	A. Yes. That's - that's an accurate representation of
10:37:3420	Q. Okay.	10:40:1620	what I said in my tutorial
10:37:3621	A. Certainly the -- well, there were actually quite a Iot of computers. I had several Commodore computers. I think	10:40:1821	Q. Okay. So, for any given file, there's some
10:37:3822		10:40:2022	transmission rate at which it will be transmitted faster than
10:37:4423		10:40:2423	real-time, correct?
10:37:4924	And I think we -- we referred to IBMs and IBM clones.	10:40:2524	A. According to how I explained it, yes, that's correct.
10:37:5325	Q. Okay. And Apple Macintoshes were available?	10:40:3225	Q. And there's generally going to be at least an average

Merrill Legal Solutions
$10: 40 \cdot 351$
10:40:382 10:40:413 10:40:464 10:40:495 10:40:536 10:40:557 10:40:558 10:40:599 10:41:0210 10:41:0511 10:41:0912 10:41:1113 10:41:1414 10:41:1715 10:41:2016 10:41:2417 10:41:2518 10:41:2919 10:41:3920 10:41:4421 10:41:4822 10:41:5323 $10: 41: 5624$ 10:41:5725
bit rate associated with playback for a given file. I think that was also something else you explained; is that right?
A. Well, we can compute an average bit rate for any digital file that is played back by simply taking the number of bits in a file and dividing it by the length. Now, that may or may not be representative of any particular instant bit rate.
Q. Okay. But you can take that average bit rate and so long as the average transmission rate over the whole transmission period is higher than that average bit rate for playback, then, again, the transmission will be faster than real-time, right?
A. Well, this goes back to the same equation that we dealt with before. If we take the average rate of the audio file and simply multiply it by the length of the file, we then have our bits and we can, again, then do a computation.
Q. So, these are just simple mathematical manipulations of the same underlying numbers, right?
A. Yes.
Q. So, you would agree that you can take a given file and readily determine whether a given transmission channel, if you know the bit rate for that transmission channel, will be transmitted over that transmission channel faster than real-time, right?
A. Well, here you -- you've referred to a file. So, if

Page 87

10:42:01 1 10:42:072 10:42:13 3 10:42:164 10:42:205 10:42:276 10:42:307 10:42:378 10:42:419 $10: 42: 4510$ $10: 42: 4811$ 10:42:5112 10:43:0013 10:43:0414 10:43:0915 10:43:1316 10:43:1417 10:43:1918 10:43:2419 10:43:2520 10:43:2621 10:43:2922 10:43:3323 10:43:4024 10:43:5025
that file represents some type of information with a temporal duration, then we can certainly compare what we know about that file with the transmission bandwidth.
Q. So, for example, if you know the average bit rate for a DVI compressed file is less than 150 kilobytes per second because it can be played back from a CD-ROM, then you would know that if you store it to a hard disk over a -- a I/O channel that will allow you to write to that hard disk, say, at a megabyte per second, that it will be transferred to that hard disk faster than real-time, right?
A. Well, these are numerical comparisons; but, you know, the DVI system was not a system to install data on a hard drive. It was a system that was designed to produce multimedia products in the CD-ROMs. It was very explicit about being for training, teaching or sales. And that was a CD-ROM product.
Q. Let me just stop you for a moment. DVI was designed to output compressed digital video, correct?
A. No --

MR. PAYNE: Objection, form.
A. -- I don't think that's what DVI was designed to do at all. DVI was a system that was envisioned to allow -- to put -- for example, an example that is given in a tutorial textbook on DVI is to put that book on a CD-ROM. So, to today -- what we might call a multimedia presentation of the

10:43:531
10:43:59 2
10:44:03 3
10:44:074
$10: 44: 105$
10:44:136
10:44:147
10:44:198
10:44:22 9
10:44:2610
10:44:2611
10:44:2912
10:44:3313
10:44:3814
10:44:4715
10:44:5016
10:44:5417
10:44:5918
10:45:0219
10:45:0420
10:45:1021
10:45:1622
10:45:1823
10:45:2224
10:45:2625
book. So, it would contain the text. It might contain some images. It might contain some audio. That was the goal of DVI, was to produce these multimedia products. The goal of DVI was not to produce compressed video.
Q. (By Mr. Stephens) Are you confusing DVI with CDI?
A. No, I'm not.
Q. Okay. So, you're not aware that DVI was done at Samoff Laboratories specifically in order to compress motion video so that it could be played back from a CD-ROM? You're not aware of that?
A. Well, I think, perhaps, here, then, what I should ask is: When you say "DVI," if you could clarify what you mean by "DVI." Now, what I'm referring to is the DVI system that was marketed by Intel and seen as a hardware and software solution to putting multimedia on personal computers.
Q. Have you read about the demonstration that -- that was done by the people who developed DVI at Sarnoff to play back motion video from a CD-ROM in 1987?
A. I may have, but I do not recall.
Q. Okay. Are you aware of whether or not DVI was capable of outputting compressed digital video that could be played back from a CD-ROM?
A. The video compression in DVI that was part of --- let me say, the video compression that was performed off site -this is not something that a home computer user could do -- if

Page 89

10:45:31 1
10:45:40 2
10:45:47 3
10:45:514
$10: 45: 54 \quad 5$
10:45:58 6
10:46:02 7
10:46:06 8
10:46:10 9
10:46:1310
10:46:1611
$10: 46: 1812$
10:46:2413
$10: 46: 2814$
$10: 46: 2915$
$10: 46: 3016$
10:46:3817
10:46:3918
10:46:4019
10:46:4520
10:46:4821
10:46:5322
10:46:5323
10:45:5924
$10: 47: 0325$
a content creator sent the content to a central location,
which I believe was Intel, they would get it back on CD in a form that they could then incorporate into their product which was designed to be played back off the CD. So, just to back up just to how we got on the CD thing in the first place, this idea of copying these files from the CD to a hard drive was not something that was envisioned in the scope of DVI. It was not something that DVI, as the entire system with the software and the hardware, taught or even suggested that would be done.
Q. I'm not - I'm not asking about that for the moment.

I'm simply asking about whether or not what you got back from Intel when you sent them a video and they sent you back a CD-ROM with compressed video on it was capable of being played back from a CD-ROM?
A. My understanding is that it was.
Q. Okay. So, it had a bit rate for playback of 150
kilobytes per second or less, correct?
A. Yes.
Q. And, so, if you were able to copy that digital video content from the CD-ROM to a hard drive at a speed of 1 megabyte per second, that transfer would happen faster than real-time, correct?
A. Well, 1 could also put the CD in my car and drive a city block and as long as me driving the city block was less time than playing back the video, this transfer also occurred

Merrill Legal Solutions

10:47:061 10:47:10 2
10:47:14 3
10:47:164
10:47:18 5
10:47:206
10:47:237
10:47:268
10:47:30 9
10:47:4010
10:47:4311
10:47:4712
10:47:5213
10:47:5514
10:47:5815
10:48:0316
10:48:0717
10:48:0818
10:48:1119
10:48:1320
10:48:1421
10:48:1922
10:48:2223
10:48:2324
10:48:2325
faster than real-time. But this is not something that was envisioned or taught or even considered in the DVI system. It simply was outside of the scope of what was appropriate in terms of operation
Q. I'm not asking -- I'm not asking about whether it was taught or suggested or anything like that. I'm just asking about what would happen. If you were able to copy the video from the CD-ROM to a hard drive at a speed of 1 megabyte per second, would that copy happen faster than real-time?
A. 1 megabyte per second is 8 megabits per second. So, from a file transfer perspective, the time for the file to move, simply crunching the numbers would be less time than that file took to play back. But, again, this is not within the scope or what was envisioned at all for DVI.
Q. Do you know what format the CD-ROMs that Intel sent back to its customers used?
A. I'm not sure what you mean by "format."
Q. For example, ISO 9600 or something like that?
A. No, I don't know.
Q. Okay. So, you don't know whether or not what you got back as a CD-ROM was formatted as a file system that could be mounted and the contents copied to a hard drive; is that right?
A. I do not know.
Q. Okay. If it was, if it was a mountable CD-ROM that

10:49:44 1
10:49:46 2
10:49:49 3
10:49:53 4
10:49:56 5
10:49:58 6
10:49:59 7
10:50:00 8
10:50:02 9
10:50:0710
10:50:0911
10:50:1212
10:50:1413
10:50:1814
10:50:2015
10:50:2016
10:50:2417
10:50:2818
10:50:3119
10:50:3120
10:50:3321
10:50:3522
10:50:3623
10:50:3624
10:50:3925

Page 92
I -- I don't know that it would come back in --in a normal file system format. I mean, this was for the final production. These CDs would be burned or stamped or whatever the term is and then distributed or sold.
Q. You just don't know one way or another, though, what the format was, right?
A. I don't.
Q. In a normal CD-ROM format, a typical CD-ROM format would be mountable as a typical file system, right?
A. Again, what's a normal CD-ROM format?
Q. For example, ISO 9600.
A. So, when I stick a CD in a computer, it can be mounted as a file system. Whether that was the case at that time, with respect to ordinary file system activities, I don't know.
Q. A typical CD, in your experience -- excuse me, a typical CD-ROM as opposed to an audio CD, when you put it into your computer, it's automatically mounted as a file system, right?
A. Not my computers but maybe an ordinary computer, yes.
Q. Do you use a Unix machine?
A. I do.
Q. And it's --
A. Actually, I use three Unix machines that look just
like yours.

Page 91

10:48:271 $10: 48: 292$
$10: 48: 353$
$10: 48: 374$
10:48:395
10:48:41 6
10:48:437
10:48:478
10:48:51 9
10:48:5510
10:48:5711
10:49:0012
10:49:0113
10:49:0314
10:49:1015
10:49:1316
10:49:1617
10:49:2118
10:49:2519
10:49:2520
10:49:2821
$10: 49: 3122$
$10: 49: 3423$
10:49:3824
10:49:4025
could be mounted like a normal file system, then you could copy the video content like any other file, correct?
A. That's just not something that is even in the realm of DVI so --
Q. I'm not asking about whether it was taught. I'm asking about whether it -- that is something that would have
been possible. If you could mount the CD-ROM as an ordinary file system like a normal CD-ROM, then one of ordinary skill would be able to copy it to a hard drive, right?
A. I don't -- I don't know what the format was. So, I -- I don't know if that was possible or not.
Q. Okay.
A. Now, again, you know, they were very uptight about their proprietary compression algorithm. The point of that -the point of the off-site compression, they even built something into the PC system, which was essentially crummy compression for developers, so they could develop their multimedia product without having to constantly send stuff off and pay for it getting compressed and getting it back such that sort of at the end when they were satisfied with exactly how their system was going to work, they would ship the -- the video that they wanted in their final product off to Intel or whoever the compression house was, if I'm incorrect about Intel, get the compressed stuff back. Now, that was for the final product, which would then be manufactured. So, in fact,

10:50:391
10:50:432
10:50:453
10:50:464
10:50:485
10:50:496
10:50:527
10:50:528
10:50:579
10:51:1210
10:51:1511
10:51:1712
10:51:2313
10:51:2714
10:51:3015
10:51:3716
10:51:3917
10:51:4818
10:51:5819
10:52:0120
10:52:0421
10:52:1122
10:52:1723
10:52:2024
10:52:3225

Page 93
Q. Okay. And you can type "mount" and maybe dash "T ISO $9600^{\prime \prime}$ and mount it -..
A. And mount the system.
Q. -- as an ordinary file system, right?
A. Yes.
Q. Okay. Oh, incidentally, do you know what UUCP stands for?
A. Yes. It's Unix to Unix copy protocol.
Q. Okay. What did Mr. Lang invent?
A. What did Mr. Lang invent?
Q. Yeah, what's his invention?
A. Well, Mr. Lang - I think this is probably best
described and certainly more eloquently than what I'm going to
say here in the - what I think is the very last section of my claim construction report prior to the -- very close to the end of the -- prior to the -- the arguments about the constructions, in that based on an understanding that compression technology and communication technology -- let me just state something here. Let's remove "the based on" effect. Compression technology and communication technology to that point for audio and video information had been used to essentially provide digital broadcasting. And when I say "digital broadcasting," I'm using "broadcasting" in the sense of real-time delivery. What Mr. Lang understood that was unique was that the combination of having digital information

Merrill Legal Solutions

$10: 52: 381$	and high-speed communication actually allowed one to move
$10: 52: 422$	beyond the realm of simple real-time delivery to actually what
$10: 52: 473$	I think we would call today a fast download, that it was
$10: 52: 524$	possible to decouple, to some extent, as we've been
$10: 52: 575$	discussing, the transfer time of the information from the
$10: 53: 036$	playback time of the information.
$10: 53: 067$	So, then, Mr. Lang invented --I hate using
$10: 53: 108$	legal terms - an apparatus and a method to -- that
$10: 53: 159$	essentially provided the capability to do this. Now, of
$10: 53: 2010$	course, there's also a lot of other stuff in there. Editing
$10: 53: 2311$	of this information is one thing that comes to mind, other
$10: 53: 2912$	things which are facilitated, the -- the retransmission of the
$10: 53: 3513$	compressed information.
$10: 53: 4014$	Q. Okay. But putting the other things to one side for
$10: 53: 4315$	the moment, you would say his invention was -- the recognition
$10: 53: 4716$	that the combination of digital compression and fast
$10: 53: 5117$	transmission allowed you to decouple the transfer playback --
$10: 53: 5618$	transfer and playback time of an audio or video media file by
$10: 54: 0119$	sending it faster than real-time; is that right?
$10: 54: 0420$	MR. PAYNE: Objection, form.
$10: 54: 0521$	Q. (By Mr. Stephens) Did I miss something?
$10: 54: 0722$	A. Yes. And let me add to that that while -- all of
$10: 54: 1823$	this is being done in the context of units to whom this
$10: 54: 2524$	information is meaningful. Now, what I mean by that is the
$10: 54: 3525$	VCR-ET that is described in the specification has -- in the

Page 95

10:54:391 10:54:492 10:54:553 10:55:01 4 10:55:045 10:55:11 6 10:55:177 10:55:21 8 10:55:26 9 10:55:2910 10:55:3311 10:55:3712 10:55:4113 10:55:4414 10:55:4815 10:55:5216 10:56:0017 10:56:0318 10:56:0519 10:56:1020 10:56:1421 $10: 56: 1722$ $10: 56: 2123$
10:56:2724
10:56:3025
'995, has the hardware in it in order to not simply receive those bits and transmit them away faster than real-time but also to decompress and make available for, at the very least, viewing or - viewing in a broad sense, viewing or listening --by a user and, of course, also -- also editing. But as this - this device -- these bits have meaning to the device. It's not simply a --- let's contrast it with a satellite relay which can certainly receive the compressed -if -- if one is transmitting through a satellite, can certainly receive the bits faster than real-time and transmit them away and store them for some amount of time possibly, if we had a special satellite, and then transmit them away; but that satellite has no capability -- those bits are meaningless to that satellite. The bits may as well be, you know, some T1 line that is being routed through the - through the satellite system or, you know, some large corporation that is leasing -leasing their own satellite link for high-speed data
transmission between two points. Satellite doesn't care what the bits are. Mr. Lang's invention, the bits are meaningful. They're not simply files which may or may not represent any particular type of information.
Q. Let me just --I just want to make sure I've got your understanding correctly. So, what Mr. Lang invented was the combination of digital compression and fast transmission that allowed you to decouple the transfer and playback time so that

10:56:351
10:56:412
10:56:41 3
10:56:44 4
$10: 56: 485$
10:56:516
10:56:537
10:56:568
10:57:049
10:57:0710
10:57:1111
10:57:1412
10:57:1913
10:57:2414
10:57:3015
10:57:3216
10:57:3517
10:57:4118
10:57:4419
10:57:4620
10:57:5121
10:57:5722
10:57:5823
10:58:0024
10:58:0625

10:58:091
10:58:13 2
10:58:16 3
$10: 58: 224$
10:58:285
10:58:296
10:58:33 7
10:58:378
10:58:40 9
10:58:4210
10:58:5111
10:58:5312
10:58:5413
10:58:5714
10:58:5815
10:59:0016
10:59:0517
10:59:0618
10:59:0919
10:59:1320
10:59:1821
10:59:2122
10:59:2523
$10: 59: 2724$
10:59:2925
you could send an audio or video file faster than real-time; is that right?

MR. PAYNE: Objection, form.

A. I think that's accurate. The realization that one was no longer stuck with real-time delivery.
Q. (By Mr. Stephens) Okay.
A. And I think that was really the - you know, that -that was something that, I think, the community really did not foresee, audio and video information had been broadcast, "broadcast" meaning we got it over our television sets or over our radios and, you know, 6:00 news was at 6:00 and that's the way it was and it was this concept that -- that just because you went to digital, you actually could move away from this real-time transmission that I think is -- is an important feature.
Q. Okay. Now, you said something interesting a moment ago. You said you can also transfer a video in your car faster than real-time, right?
A. Ah, yes.
Q. So, you can take the tangible copy of a movie and walk out the door of a video store and get home in less than two hours, typically, right?
A. Not given my experience with Houston traffic but certainly in lthaca, yes, that is a possibility. Yeah, so, if we go by -- again, going back to my tutorial with the little

Page 96

Page 97
stopwatch, if you clock the time it takes you to walk or drive home from the video store and that comes in under the time that is printed on the disk in terms of the viewing time, then certainly you have moved that disk in less time than it takes to watch it.
Q. Okay. Otherwise, it would always take you 90 minutes to get home with a 90 -minute movie, right?
A. Some people are like that anyway, yes.
Q. What I'm getting at is that the very fact of making a tangible copy of a temporal media product decouples the time required to transfer it from the amount of time required to view it, correct?
A. I - I think I - with all the Ts at the beginning, I didn't quite follow you there.
Q. Okay. Would you agree that the simple fact of making a tangible embodiment of a -- of a video --
A. Having a physical copy of it.
Q. - having a physical copy of that, decouples the time it takes to transfer it from the time it takes to watch it?
A. Well, in a hypothetical situation, yes. With respect to what we're speaking about here in these patents, I don't think that physical transfer - I would include as anything that -- that falls into faster than real-time.
Q. I understand you're not saying that its transmission is required by this patent. I'm just simply asking, not -...

Merrill Legal Solutions

Page 98

10:59:33 1 10:59:36 2 10:59:39 3 10:59:454 10:59:485 10:59:51 6 10:59:567 11:00:008 11:00:02 9 11:00:0710 11:00:1111 11:00:1312 11:00:1613 11:00:2114 11:00:2415 11:00:2716 11:00:3217 11:00:3318 11:00:3719 11:00:4020 11:00:4321 11:00:4522 11:00:4723 11:00:5024 11:00:5325
not as a hypothetical matter but as a very practical, real matter, having a physical copy of a video on a tape decouples the amount of time required to transfer it from one place to another place from the amount of time required to watch it, right?
A. Well, you know, I -- I have to say that this -- this concept is -- is actually in a textbook that 1 had referred to earlier which starts off by saying: "You should never underestimate the bandwidth of a station wagon driving down the freeway that's filled with magnetic tapes in the back." And, you know, I think that this, again, this simply goes back to this concept of the communication link as an abstract entity. Again, I want to make completely clear I do not think that physical transfer has any relationship whatsoever with this particular group of - - of patents. But a communication link is bits per second and to get from -- from Point A to Point B.
Q. What's the name of that textbook?
A. That's the Sklar - I can't tell you what the name is, but the author is $\mathrm{S}-\mathrm{k}-\mathrm{I}-\mathrm{a}-\mathrm{r}$.
Q. And that's cited in one of your reports?
A. It's in the claim construction report, yeah.
Q. Okay. So, that was something that people of skill in the art understood, actually, that physical transfer of tapes is one way to have a high bandwidth transmission, correct?

11:02:33 1 11:02:372
11:02:40 3
11:02:43 4
11:02:44 5
11:02:47 6
11:02:52 7
11:03:00 8
11:03:05 9
11:03:0810
11:03:1311
11:03:1712
11:03:2013
11:03:2514
11:03:3315
11:03:3616
11:03:4317
11:03:5218
11:03:5719
11:04:0220
11:04:0221
11:04:0522
11:04:0723
11:04:0824
11:04:1225

Page 100
Q. Okay. So, when you're making a copy as opposed to broadcasting for somebody to view it, there really is no coupling of the amount of time required to make a copy to the amount of time required to view, right?
A. Well, make a copy how?
Q. Digitally from one hard drive to another.
A. Well, again, we have discussed transfer rates of drives and that these are independent of what is stored on the drive. So, from that perspective, moving a file from Point A to Point B is - is irrelevant as to what the file is. Now, again, you know, let me go back to emphasize with respect to this invention that, you know, I think an important feature is that these units that are receiving and transmitting away in the -- the Lang patents, the data has meaning to them and, in other words, these -- these units, the data could be played on them. A simple -- were - were a compressed audio file randomly sitting on some hard drive moved to some other random hard drive, those bits have no special meaning to the hard drive. Maybe this goes back to the decoupling. They're just bits.
Q. Okay. But that's not in the claims anywhere, right?
A. What's not in the claims?
Q. There's nothing in the claims that say that - that
bits have to have meaning to the devices; is that right?
A. That statement does not appear in the claims, but I

Page 99

11:00:581
11:01:01 2
11:01:03 3
11:01:094
11:01:115
11:01:16 6
11:01:197
11:01:218
11:01:249
11:01:3010
11:01:3411
11:01:3812
11:01:4013
11:01:4514
11:01:5015
11:01:5216
11:01:5717
11:02:0318
11:02:0819
11:02:1120
11:02:1321
11:02:1922
11:02:2423
11:02:2724
11:02:3125
A. Oh, I don't think that they would consider it a high bandwidth transmission. I think it's a matter of engineering efficiency. It's - you know, what -- what is simply the appropriate solution for what needs to happen? If somebody has, you know, in the magnetic -- in the magnetic tape example, you know, if you have to get all the information from Point A to Point B , never mind the communication link. Somebody has to physically insert all those tapes and take them out. So, whereas you may have no issues with the actual physical propagation media, be it - be it the RF or physical, you may have plenty of bandwidth. You just don't have somebody who's willing to sit there all day and exchange the tapes. So, you know, there are many factors which go into how do we try to get information from Point A to Point B.
Q. Okay. But you'd also agree that the simple fact of having a physical copy of a video on your hard drive decouples the amount of time required to transfer that video to another hard drive, electronically, from the time required to view it, right?
A. I'm not sure there's anything that has to be decoupled. I mean, you know, files are files; and whatever you do with them is a function of the application and the file and what you happen to be doing with your -- your computer at the time. So, you know, I'm not even sure there's a relationship here that was coupled that was then decoupled.

11:04:14 1
11:04:182
11:04:21 3
11:04:214
11:04:235
11:04:266
11:04:287
11:04:298
11:04:33 9
11:04:3710
11:04:3911
11:04:4012
11:04:4313
11:04:4814
11:04:5115
11:04:5316
11:04:5617
11:05:0018
11:05:0519
11:05:0820
11:05:1321
11:05:1522
11:05:2023
11:05:2224
11:05:3125
read the specification as a whole and I interpret the claims in light of what I read in the specification. I mean, this is a packaged deal.
Q. Okay. So, what is it? What specific language in the claims do you have in mind that means that bits have to have meaning to the device?
A. I don't have any specific language in mind. Although, I have to say I could go back and look at them. But in terms of reading the specification, the claims go with the specification, I'm considering this as a whole.
Q. All right. Well, considering it as a whole, is it your opinion that the claims require that the device that practices the claims has to be capable of playing back the audio/video source information?
A. I think that that is certainly a feature that is implied. Now, whether it becomes a rigid requirement or not, I don't know. I mean, I have a sense that moving data between two hard drives that just happen to be sitting somewhere is not in the spirit of the claims.
Q. Well, if - if we talk about the workstation that we were talking about before that you mentioned that a person of ordinary skill in the art might use to debug an algorithm or verify that it worked, that would be able, typically, to decode the audio file we're talking about, right?
A. So -- no, actually, I don't know that any arbitrary

	Page 102		age 104
11:05:341	workstation would be able to decode an audio file	11:08:161	between how long it would take to make the copy and the time
11:05:372	Q. My question is not about an arbitrary work station	11:08:192	required to listen, right?
11:05:393	My question is about the work station that the person of	11:08:22	A. That's very much a function of the copying -- the
11:05:404	ordinary skill in the art is using to verify a particula	11:08:24	cording technology and the copying technology. So, I mean,
11:05:43 5	algorithm.	11:08:27	hink it's a blanket statement. I don't think that's
11:05:446	A. I don't know what that workstation is, though. I	11:08:30	necessarily true. Certainly in several of the examples we've
11:05:457	don't know what's on it. I don't know what they're using.	11:08:33	discussed, it is.
11:05:488	I - I don't know.	11:08:348	Q. Okay. Well, and as a general matter, if your goal is
11:05:489	Q. Okay. Now, the decoupling that we were talking about	11:08:38	make a lot of copies, you want to do it faster, wouldn't
11:06:2610	with respect to making copies - actually, let me ask a	11:08:3910	you agree with that?
11:06:3011	different question. Have you ever listened to music on	11:08:4211	A. I don't know. I've not actually been in a position
11:06:3312	cassettes?	11:08:4412	where I've had to make a lot of copies of -- of many things.
11:06:3313	A. Yes.	11:08:4813	And actually, I could see a situation where the most important
11:06:3314	Q. Do you know how cassettes are manufactured	11:08:5	ing might be the -- the fidelity of the copies, the quality
11:06:3715	prerecorded cassettes?	11:08:5715	what was done so that speed may be one factor; but it
11:06:3916	A. No.	11:09:0116	rtainly would not necessarily, I think, be the only one.
11:06:4017	Q. Would it surprise you to learn that they are made by	11:09:0417	Q. Okay. There's always trade-offs in engineering,
11:06:4218	high-speed tape duplicators?	11:09:0618	right, almost always?
11:06:4619	A. No.	11:09:0819	A. Yes.
11:06:4720	Q. So, that's another example of where -- if what you're	11:09:0820	Q. Okay.
11:06:5021	doing is copying a medium or copying an audio representation	11:09:0921	A. If -- if they're not tradeoffs, then we have a bad
11:06:5522	from one medium to another, that you can decouple it from the	11:09:1222	design.
11:07:0023	amount of time required to listen to it, righ	11:09:1223	Q. But in mass production, it's typical to want to
11:07:0324	YNE	11:09:1624	produce things quickly, right?
11:07:0425	A. Again, I'm not sure what the decoupling is.	11:09:1825	A. I think a good capitalist would agree with you, yes.
	Page 103		Page 105
11:07:08 1	Q. (By Mr. Stephens) Well, it's the decoupling --	11:09:221	Q. Okay. So, if your goal is to make a lot of cassettes
11:07:10:2	A. Certainly, if you do a high-speed recording, meaning	11:09:262	distribute music, chances are you want to be able to copy
11:07:14 3	were one to listen to what was being played as the tape spun	11:09:293	tapes faster than real-time to do that, right?
11:07:20 4	about, it would come out sounding like the Chipmunks.	11:09:32 4	A. You know, I
11:07:24 5	Q. That's not what I'm asking about.	11:09:35 5	MR. PAYNE: Objection, form.
11:07:26 6	A. But that's certainly not the speed at which the	11:09:356	A. -- I'm not a recording house. So, I-I --I really
11:07:297	recording is intended to be listened to.	11:09:377	on't want to speculate on what they're trying to do or what
11:07:318	Q. Okay	11:09:418	ying to do when they're trying to make lots of
11:07:319	A. So, those two things are certainly unequal. Again,	11:09:439	es or not. You know, we -- we certainly see a plethora of
11:07:3410	decouple is -- is - I'm not quite sure what that means	11:09:4610	pies and all kinds of things that come out of China and -
11:07:3811	Q. Well, it was a phrase you used just a few minutes	11:09:4911	and I have no idea how these things are put together, but they
1	ago.	11:09:5212	certainly keep coming and are apparently being purchased.
11:07:4213	A. Yes. But in this context, you know, obviously a	11:09:5613	y Mr. Stephens) Well, would a person of skill in
11:07:4314	longer tape is still going to take longer to copy than a	11:09:5814	the art have understood that you could make copies faster than
11:07:5015	shorter tape. I mean, there is still going to be some	11:10:0215	real-time of audio?
11:07:5516	relationship there.	11:10:0516	A. What is "make copies" now? First we were talking
11:07:5517	Q. That's the same as a longer file taking longer to	11:10:0817	about -- I mean, we just talked about, I guess, mass
11:07:5818	copy than a shorter file, right?	11:10:1118	oduction. So, what -- what do you mean by making a copy,
11:08:0019	A. Yes.	11:10:1419	now?
11:08:0020	Q. That has nothing to do with what's in the file, just	11:10:1420	Q. Take one audio recording of any kind and then produce
11:08:0421	how big it is, right?	11:10:1921	an identical or nearly identical copy of it.
11:08:0622	A. Yes.	11:10:2622	A. I guess I -- I don't even know -- you know, the
11:08:0723	Q. Okay. So, I guess what I'm getting at is that as	11:10:2823	person of ordinary skill that I've described is not a
11:08:1024	long as you're making a copy and you're not listening to it as	11:10:3124	manufacturing engineer. This person is a -- a technical
11:08:1325	you're making the copy, there's really no necessary connection	11:10:3525	person who can develop and understand algorithms.

Merrill Legal Solutions

$11: 10: 401$	P. What --
$11: 10: 402$	A. So, you know, to just -- "copy" is a -- is a term
$11: 10: 44$	that is very broad at the very least.
$11: 10: 48$	4
$11: 10: 50$	Q. Okay. Well, let me ask you a different question,
$11: 10: 556$	then. Would a person of skill in the art have understood tape
$11: 11: 017$	A. "Tape duplication" meaning mass production or what --
$11: 11: 058$	Q. Meaning take a copy -- take a tape and make a copy of
$11: 11: 089$	it.
$11: 11: 1010$	A. Well, I - I think that we certainly had dual-deck
$11: 11: 1511$	tape drives at the time. So, I don't even think one of skill
$11: 11: 1712$	in the art would -- I mean, this was something that was known,
$11: 11: 2113$	I think, in general, consumer electronics, in 1988.
$11: 11: 2414$	Q. And, in fact, high-speed cassette duplicators were
$11: 11: 2915$	known in the art at the time, right?
$11: 11: 3116$	A. I don't know that.
$11: 11: 3217$	Q. Okay. You just don't know one way or the other?
$11: 11: 3318$	A. I'm not familiar with high-speed cassette
$11: 11: 3519$	duplicators.
$11: 11: 3720$	Q. Okay. In fact, the problem Mr. Lang was trying to
$11: 11: 4021$	solve, as set out in the '995 patent, was how to duplicate
$11: 11: 4522$	video cassettes, right --
$11: 11: 4623$	A. Yes.
$11: 11: 4624$	Q. -- one of the problems?
$11: 11: 4625$	A. Yes.

Page 107
$11: 11: 461$
11:11:482
11:11:51 3
11:11:554
$11: 11: 575$
11:12:006
11:12:037
$11: 12: 048$
$11: 12: 069$
11:12:0910
11:12:1311
11:12:2112
$11: 12: 2413$
$11: 12: 2714$
11:12:3215
$11: 12: 4316$
11:12:4617
$11: 12: 4818$
11:12:5119
11:12:5620
11:12:5921
11:13:0122
11:13:0223
11:13:0424
11:13:0825
Q. So, presumably, a person of ordinary skill in the art directing themselves to the same problem that Mr . Lang was attempting to solve would have had some familiarity with the process of making copies of tapes, correct?
A. A person of skill in the art who was directed to making copies of tapes certainly would be aware that this was a problem.
Q. Okay. Do you think that a person of skill in the art who was attempting to solve the same problem that Mr. Lang was trying to solve would have known about how cassettes were duplicated at the time for mass markets?
A. Well, okay. Again, let's clarify what we mean by "skill in the art" here. I looked at this from the standpoint of designing a system that was put in place. Now, one problem that was in there was this cassette duplication. Certainly people who were looking into cassette duplication, I think, yeah, are going to be aware that this was a -- this is a problem that they want to solve.
Q. So, a person looking into tape duplication would likely have been aware that you could duplicate tapes faster than real-time, right?

MR. PAYNE: Objection, form.
A. I just -I I don't know any such person. So, I just
don't know what the world of - - of tape duplication involved at the time. It's something I'm just not familiar with.

11:13:111 $11: 13: 132$ $11: 13: 163$

11:13:224
$11: 13: 265$
11:13:296
11:13:327
11:13:398
$11: 13: 429$
11:13:4710
11:13:4911
$11: 13: 5312$
$11: 13: 5513$
11:13:5814
11:14:0215
$11: 14: 0516$
11:14:0617
11:14:0818
11:14:3319
11:14:3720
11:14:4321
$11: 14: 4422$
11:14:4823
$11: 14: 4824$
11:14:4925

11:14:53 1
11:14:57 2
11:15:003
$11: 15: 014$
11:15:015
$11: 15: 036$
11:15:057
11:15:078
11:15:12 9
11:15:1810
11:15:2011
11:15:2712
$11: 15: 3513$
11:15:4014
11:15:4115
11:15:4516
11:15:4717
11:15:4818
11:15:5419
11:15:5820
11:16:0121
$11: 16: 0422$
11:16:1123
11:16:1724
$11: 16: 2125$
Q. (By Mr. Stephens) Okay. Have you looked at any of the tape duplication art in this case?
A. I have looked at everything that was in the file histories. Now, I may not have a memory of looking at it; but I looked at it. So, if there was tape duplication material in those file histories, then I read that.
Q. Okay. But you don't know what the state of the art was with respect to tape duplication at the time that invention of the '995 patent was conceived; is that right?
A. That's right. Beyond what is actually in the '995 patent and whatever I read in the - - if there is anything in the -- in the file histories, I don't know.
Q. Okay. So, you just can't say whether a person of ordinary skill in the art would have known that making copies faster than real-time was normal in the tape duplication art, right?
A. That's correct. I don't. I don't know.
Q. Okay. Now, you said earlier that Mr. Lang's invention was a combination of digital compression and fast transmission that allowed you to move an audio or video file faster than real-time.
A. I said maybe the realization that that combination allowed you to do that
Q. Okay. Mr. Lang was not the first person to have that realization, right?

Page 109
A. No, I think he was.
Q. Now, Walter -- you're familiar with the Walter patent, right?
A. Yes.
Q. You've expressed opinions about it in connection with the summary judgment proceedings, right?
A. Yes.
Q. Walter explicitly describes using digital compression and fast transmission to send a compressed digital video file faster than real-time, correct?
A. Walter does send the file - a file that has been compressed faster than real-time. Walter is missing key elements that we see in the - the Burst claims.
Q. Okay.
A. But I do agree, Walter certainly talks about sending a two-hour movie in 31 seconds.
Q. So, with respect to the realization that you could use compression and fast transmission to send an audio/video work faster than real-time, that is spelled out very clearly in Walter, correct?
A. No, I--I disagree with that. And I disagree with that because the Lang patents specifically describe how the compression might be done and provide for actually doing it. We have the compressor, decompressor. We have a system
diagram that is given that actually performs this. Walter

	Page 110
11:16:27 1	tells us that his video files are compressed, but he --I
11:16:392	should say his system does not actually perform that
11:16:44 3	compression.
$11: 16: 444$	Q. Okay. But his - his patent tells you how to do it,
11:16:50 5	right?
11:16:51 6	A. Tells you how to do it? Can you be more specific?
11:16:53 7	To do --
11:16:538	Q. Well, it describes to compress video. It describes
11:16:579	inter-frame differential, pulse code, compression, correct?
11:17:0310	A. Walter does mention that, yes.
11:17:0411	Q. Now, is that description enough to enable a person of
11:17:0812	ordinary skill to figure out how to do the kind of compression
11:17:1313	that's described?
11:17:1414	A. I think that that is certainly a sufficient
11:17:1715	description of the algorithm, but Walter teaches us that he or
11:17:2316	his system is not actually performing the compression.
11:17:2717	Q. Well, that's not true, is it? In fact, it uses files
11:17:3018	that he specifically says are compressed in that form. So,
11:17:3319	therefore, he teaches you that you need to compress them in
11:17:3620	that form, correct?
11:17:4021	MR. PAYNE: Objection, form.
11:17:4222	A. Actually, could I see the Walter patent?
11:17:4423	Q. (By Mr. Stephens) Yeah.
11:17:4524	A. And, also, if I could just have my second
11:17:4725	declaration, too --

Page 111

11:23:551
11:24:032
11:24:053
11:24:08 4
11:24:115
11:24:14 6
11:24:147
11:24:15 8
11:24:199
$11: 24: 2810$
11:24:3311
$11: 24: 3912$
11:24:4113
11:24:4214
11:24:4615
11:24:5416
11:25:0017
11:25:0718
$11: 25: 1319$
11:25:1720
11:25:1821
11:25:2022
11:25:2423
11:25:2824
$11: 25: 3025$
A. He does tell us that --. he mentions an inter-frame differential post-code modulation technique.
Q. Okay. And I think you mentioned that that description is enough that one of ordinary skill in the art would be able to figure out how to actually make that work, right?
A. Yes.
Q. So, then, the Walter patent, then, tells one of ordinary skill in the art back in 1985 that you could take video, compress it using inter-frame differential pulse-code modulation, store it in memory and transmit it faster than real-time, right?

MR. PAYNE: Objection, form.
A. So, I -- I think I would disagree slightly with how you phrased that. Walter does not perform the compression. What Walter tells us is that you can take stored, compressed video and transmit that from effectively a cable system head end faster than real-time to what he calls -- what did he call it -- data receiving station, which is essentially a set-top box.
Q. (By Mr. Stephens) Okay. But you can't store compressed information unless you compress it, right?
A. Well, I disagree with the statement as you have phrased it --
Q. Well, someone has to --

Page 113

11:17:491
11:17:492
11:17:52 3
11:17:554
5
11:18:006
11:18:017
$11: 18: 038$
11:18:059
11:18:0710
11:18:2311
11:19:0412
11:19:0613
11:19:0914
11:19:0915
16
17
11:23:2718
11:23:2819
$11: 23: 3420$
$11: 23: 3821$
11:23:4122
$11: 23: 4423$
11:23:5124
$11: 23: 5425$
Q. Sure.
A. -- so I don't waste time flipping around.
Q. All right. Let's mark your second declaration first. This will be Exhibit 248.
(Exh. 248 marked)
MR. STEPHENS: Do you need that, Les; or do you have one of those?

MR. PAYNE: I've got it. Thanks.
MR. STEPHENS: Sure. Let me just write on my copy so I don't lose track of the number. Sorry. Bear with me just a second here. These are labeled in a way that's very hard to understand.

MR. PAYNE: Can we just take a one-minute break?
MR. STEPHENS: Yeah, sure.
THE VIDEOGRAPHER: Off the record at 11:19.
(Exh. 249 marked)
(Recess taken)
THE VIDEOGRAPHER: Tape 4 to the deposition of Dr. Hemami. The time is $11: 23$. We're back on the record.
Q. (By Mr. Stephens) Okay. Dr. Hemami, I think before the break, we were talking about Walter, and I asked you whether or not Walter specifically teaches that the files that are being transmitted faster than real-time are compressed.
A. Yes
Q. And he tells you how to do that, right?
$11: 25: 301$
11:25:32 2
11:25:343
11:25:374
11:25:395
$11: 25: 416$
11:25:447
$11: 25: 498$
$11: 25: 529$
11:25:5610
11:25:5911
11:26:0512
11:26:0913
11:26:1414
11:26:1915
11:26:2016
11:26:2517
11:26:2718 11:26:3019
$11: 26: 3620$
11:26:3821
11:26:4022
11:26:4523
$11: 26: 4924$
11:26:5325
A. -- with the use of "you" --
Q. -- compress it. Fair enough.
A. Yes. The data must be compressed in order to have it stored in compressed form.
Q. Okay. So, a person of ordinary skill reading Walter would understand that in order to perform the methods that are described in the patent, you would have to -- someone would have to compress digital video, right?
A. I -- I think it's -- we can be a little bit stronger than that. I think one of ordinary skill reading the Walter patent would understand that that someone is not the cable that the -- get the name right here -- the central data station, that that compression occurs outside of the central data station, which is described in detail in the Walter specification.
Q. But it does have to be performed somewhere, right?
A. It does have to be performed somewhere by someone, which is -- that someone is -- is not -- now, it's someone -something. That something is not the central data station in the Walter specification.
Q. Okay. But Walter doesn't say you can't perform the compression at the same central data station where you perform other parts of the method, does it?
A. I would argue that Walter is very strong in teaching that the central data station does not perform the

Page 114

11:26:55 I compression, and --
11:26:572 2 . Where does --
11:26:58 3
11:26:59 4
11:27:055
11:27:176
11:27:237
11:27:28 8
11:27:34 9
11:27:4210
11:27:4511
11:27:5212
11:27:5813
11:28:0214
11:28:0815
11:28:1116
11:28:1217
11:28:1618
11:28:1919
11:28:2220
11:28:2421
11:28:2822
11:28:2823
11:28:3124
11:28:3325 station. in the specification --
A. --I think I've outlined that.
Q. Okay. Where does he say that?
A. Sorry. I just want to use the -- so, I think
probably the best -- we have extensive use of the term
"preprogrammed" throughout the Walter specification. Now,
I've made mention of that in my declaration, and we also have -- Walter gives us a very nice description of the invention, as I mentioned, in Item 40 in Column 2, lines 9 through 46. And in the combination of this continued use of "preprogrammed" in the memory modules and the -- the description of the unit in Column 2 and, for that matter, throughout the rest of the document makes it clear to me that the -- the compression is not performed in the central data
Q. Okay. But he never says that anywhere, does he? He never says: "Do not perform the compression in the central data station" or "you can't perform it in the central data station." There's not -- there's no language to that effect anywhere in the specification, is there?

MR. PAYNE: Objection, form.
A. Those two sentences that you just gave do not appear
Q. (By Mr. Stephens) And there's no language

Page 115

11:28:34 1
11:28:372
11:28:393
11:28:404
11:28:415
11:28:42 6
$11: 28: 457$
11:28:478
11:28:479
11:28:4810
11
11:29:0812
11:29:1113
11:29:1814
11:29:2615
11:29:3116
11:29:3817
11:29:4118
11:29:4519
11:29:4820
11:29:4821
11:29:4922
11:29:5223
11:29:5824
11:30:0025
specifically to that effect, even using different words, correct?

MR. PAYNE: I don't -- I don't know if she was finished with her answer.

MR. STEPHENS: I'm sure she's capable of telling me if she wasn't.
Q. (By Mr. Stephens) It was not my intention to cut you off.
A. So, what did I say? I said --

THE WITNESS: Can you read my answer, please? (The record was read as requested.)
A. Okay. So, let me continue to the end of that sentence. But "preprogrammed" throughout this and the very clear absence of description of any type of hardware to perform that compression does indicate that it's not in the central data station.
Q. (By Mr. Stephens) Again, though, there's no language anywhere that expressly says that it's not in the central data station; isn't that right?

MR. PAYNE: Objection, form.
Q. (By Mr. Stephens) Other than the fact that it's
pre -- that the modules are preprogrammed and that it doesn't, in your view, expressly describe hardware for performing compression, is there anything else you would point to as showing that it cannot be done or would not be done in the

11:30:031 11:30:082 $11: 30: 123$ $11: 30: 164$
11:30:215
11:30:246
11:30:317
11:30:368
11:30:39 9
11:30:4010
11:30:4111
11:30:4412
11:30:4613
11:30:4714
11:30:5215
11:30:5716
11:31:0017
11:31:0218
11:31:0419
11:31:0920
11:31:1321
11:31:1822
11:31:2223
11:31:2324
11:31:2625
central data station?
A. So, my arguments for why I feel very strongly that
there is no teaching and, in fact, a teaching away of the
compression being performed in the central data station are as I have outlined in Item 40 , the extensive use of "preprogrammed," the descriptions of the unit which completely omit any reference to compression apparatus or a compressor, decompressor and --
Q. Okay. Now --
A. Sorry, go --
Q. Are you finished? I didn't mean to cut you off.
A. Yeah.
Q. Now, you mentioned that one of ordinary skill would be able to implement the compression that Walter discloses. How would one of ordinary skill go about doing that?
A. Now, you're asking this question with respect to

Walter or in a vacuum?
Q. No, with somebody reading Walter in 1985. How would a person of ordinary skill reading Walter in 1985 have gone about implementing the compression that's described in Walter?
A. That depends on essentially their system design constraints. I mean, we need some constraints in order to put a system together.
Q. Okay. Assuming no other constraints besides what one of ordinary skill in the art would have known about and what's

11:31:291
11:31:32 2
11:31:33 3
$11: 31: 374$
11:31:40 5
11:31:446
11:31:48 7
11:31:55 8
11:31:579
11:32:0110
11:32:0411
$11: 32: 0712$
11:32:1513
11:32:1914
11:32:2215
11:32:2516
11:32:2817
11:32:3118
11:32:3219
11:32:3620
11:32:3921
$11: 32: 4322$
11:32:4623
11:32:5124
11:32:5425

Page 117
described in Walter, what's your view of how such a person would go about implementing that compression?
A. Well, I -- I can't - I can't really answer that question without having some kind of design constraints. I mean, there are many, many ways in which that compression inter-frame differential pulse-code modulation could be implemented; and the particular application is going to -- and the desires of the - - the customer, for lack of a better word, whoever the system is being designed for, are -- are really going to dictate how that would be done.
Q. Okay. Could it have been done with a general purpose computer?
A. I'm a little -- again, are we talking about inserting something into the data station or somebody just walks down the street and reads the Walter patent and goes back to their home and says, "Gee, I think I'll do inter-frame differential post-code modulation"?
Q. No. What I'm talking about is somebody at a-let's say a large sophisticated cable television organization and read Walter and said, "Hey, this looks pretty cool. Let's build it. Let's take a license from Walter, and let's build it. And let's also say that the boss who made that decision told his team of engineers: "Use a general purpose computer to do the compression that's described there." Is that possible?

Merrill Legal Solutions

MR. PAYNE: Objection, form.

A. Again, nearly -- nearly anything would be possible.

Whether it would be considered a even feasible solution at the
time would be another -- another matter. And Walter has given us inter-frame differential post-code modulation and also suggested a compressed data rate. So, with those two things, what an engineer is missing is design constraints that are essentially put in place by, again, the customer, how big does this equipment -- how big should it be, how big can it be, maybe, is a better word, how small would you like it to be, how much power would you like it to consume and how long would you -- what -- what is your upper bound on how long it should take in order to perform the desired operation? Probably in the -- you know, a corollary would be how long are the programs which you intend to run through the compression system, sort of consistent with how long do you want it to take. So, without really having design constraints, it's difficult to say that any particular solution would be a valid solution.
Q. (By Mr. Stephens) Okay. Well, let's say that your design constraints are that you only want to use it for 3 minute music videos and that you want to be able to compress one or two of those a day to put -- add to your library so that in the course of a few months, you can have a few dozen to be able to load into memory modules so that they could be

Page 119

11:34:531 11:34:562 11:35:02 3 $11: 35: 074$ 11:35:115 $11: 35: 146$ 11:35:167 $11: 35: 208$ 11:35:209 11:35:2310 11:35:2411 11:35:2912 $11: 35: 3113$ $11: 35: 3514$ $11: 35: 3815$ 11:35:4216 $11: 35: 4217$ 11:35:4518 11:35:4619 11:35:4920 11:35:5821 $11: 36: 0122$ $11: 36: 0223$ $11: 36: 0524$ 11:36:0925
transmitted over the system described in Walter. Would -could you do that on a general purpose computer in 1985 ?
A. So, I would need to actually get some specifications for general purpose computer in 1985 and do some computation. I don't want to answer that just off the top of my head.
Q. Okay. Fair enough. So, you can't say that it wouldn't, and you can't say that it would right now; is that right?
A. Yes. I -- j just -- you know, I -- I don't want to speculate on what particular rates were that I might be correct or incorrect. I'd rather do the correct calculation.
Q. Okay. Now, I just want to be clear. Now, you've said that Walter teaches away from actually putting the compressor into the central data station; but you haven't -- I think you've admitted that it does teach compression, though, right?
A. Walter certainly mentions that the digital data is compressed, yes.
Q. Okay. And then it also teaches storing that compressed digital video in memory, right?
A. The compressed digital video is in the memory modules, yes.
Q. Okay. And then it also discloses transmitting that compressed digital video that was stored in memory faster than real-time, right?

11:36:111
11:36:142
11:36:193
11:36:194
11:36:225
11:36:266
11:36:277
11:36:308
$11: 36: 339$
$11: 36: 3910$
11:36:3911
11:36:4412
11:36:4713
$11: 36: 5014$
$11: 36: 5515$
11:36:5916
11:37:0017
11:37:0018
11:37:0119
$11: 37: 0320$
11:37:0721
11:37:0722
11:37:1023
11:37:1524
$11: 37: 2225$
A. Walter doesn't use those words; but certainly

31 seconds for a 2 hour movie, we would call faster than real-time.
Q. Okay. And it also discloses receiving that compressed digital video transmission faster than real-time, correct?
A. The data receiving station receives the data, yes.
Q. Okay. And it discloses storing that compressed digital representation in memory after receiving it, correct?
A. Yes.
Q. Okay. So, all of those elements are present, right?
A. The elements that you have -- using the term
"elements" sort of to refer to -- again, l'm thinking back through the -- the claim terms. Walter, we have drawn on two separate locations or entities in order to go through those elements.
Q. Okay.
A. So --
Q. But -- hold on, before you -- I don't mean to cut you off, but -- but we've only drawn on one document; that's right?
A. We have only drawn on the Walter patent; but Walter teaches us a central data station, which I-I describe as a cable head end, and a data receiving station, which is the -what we would call today, I think, the user set-top box. And

11:37:251
11:37:322
11:37:373
11:37:414
11:37:455
11:37:496
11:37:517
11:37:548
11:37:599
$11: 38: 0210$
11:38:0411
$11: 38: 0812$
11:38:1113
11:38:1514
$11: 38: 2115$
11:38:2516
11:38:2717
11:38:3118
$11: 38: 3619$
11:38:4020
$11: 38: 4321$
$11: 38: 4822$
$11: 38: 5423$
11:38:5724
11:39:0025
the receiving and storing and, for that matter, playback as well occurs at the data receiving station, which is a separate location than the -- the central data station. I think I - I explained how these -- one of ordinary skill understands that these are two separate locations and would not be considered to be a single entity.
Q. Okay. Now, building out a system like this, at least if it covered more than a -- a hotel, let's say, if it covered several neighborhoods, would be very expensive, right?
A. I don't know.
Q. Well, running optical fibers to homes in several neighborhoods would be expensive, right?
A. So, I think that generally I can agree that this would not be a - it would incur some cost. You know, what the cost is clearly depends on who you hire to run the wire and -- and where you got the wire from and so on.
Q. Okay. So, if you were an engineer in 1985 tasked by your cable system customer to develop an actual working version of what's described in Walter, you would first build that in a prototype system, right? You wouldn't go out and pull the -- pull the fiber to dozens of houses before you'd made sure you had it working, correct?
A. I actually don't know that that's necessarily the case. You know, I'm not a marketing person; but I've seen plenty of examples where the job is sort of moved to the point

11:39:051
$11: 39: 072$
11:39:07 3
11:39:11 4
11:39:14 5
11:39:16 6
11:39:197
11:39:20 8
11:39:24 9
11:39:2510
11:39:2811
11:39:3012
11:39:3313
$11: 39: 3714$
11:39:3815
$11: 39: 3916$
11:39:4217
11:39:4318
11:39:4619
11:39:4920
11:39:5321
11:39:5522
11:39:5923
11:40:0124
11:40:0425
where it's beyond return: "Oh, we've invested so much" --
Q. I'm not asking about one --
A. -- "we can't possibly go back here." So, no, I don't
know that. I don't know that. I could see a scenario where somebody says: "You know, we really need to go practice running these optical fibers first and make sure that we can really do this because, after all, what a shame it would be spend all those engineering manhours on building a prototype when it turns out we can't actually get the optical fiber somewhere."
Q. I'm not following you. You -- you're saying you should go ahead and build out the system before you do a prototype because you're not sure you can get the fiber? I'm not following your example.
A. I'm -- I'm not saying you should. I'm saying that it -- it is not implausible that -- that somebody might do that.
Q. Okay. But certainly it's common engineering practice when building something you've never built before to build a prototype or a breadboard or a brass board, as they're sometimes referred to, to see if you can make it work before you build out a large investment?
A. Generally, I think we do have to prototype things before going into production of any sort.
Q. Okay.

Page 123

11:40:041 11:40:072 11:40:09 3 11:40:12 4 11:40:15 5 11:40:18 6 11:40:237

11:40:26 8
11:40:29 9
11:40:3010
$11: 40: 3511$
11:40:3912
11:40:3913
11: 40:4114
11:40:4415
11:40:4616
11:40:4917
11:40:5118
11:40:5419
11:40:5720
11:41:0121
11:41:0322
11:41:0723
11:41:1024
11:41:1325
A. Now, sometimes the prototype becomes the lone product.
Q. Okay. Now, if you're building a prototype, it's typical to do that in a laboratory, right?
A. I would say, no, it's not typical. Look at Hewlitt Packard and Apple, I mean, the famous garages, right, so --
Q. Well, but if you're a large company, you're normally going to have a place, a building where you do that kind of development work, maybe more than one, right?
A. I would agree that large companies may have development -- development facilities.
Q. Okay.
A. A lot of them farmed it out as well.
Q. Okay. Now, if you're going to prototype the system that's described in Walter, you have to have all the elements we talked about, right? You have to have compression of video. You have to have storage in memory. You have to transmission faster than real-time. You have to have receiving and storage in memory. You have to have all those things to make the system described in Walter work, right, somewhere?
A. You - well, you know, the question you asked sort of started off one way and ended up in an inconsistent way. So, first off, let me say, I don't know if anybody ever prototyped this. I have absolutely no idea. But secondly, so -- so,

11:41:171
11:41:21 2
11:41:25 3
11:41:274
11:41:275
$11: 41: 356$
11:41:397
11:41:428
11:41:489
11:41:5310
11:41:5611
11:42:0012
$11: 42: 0613$
$11: 42: 1214$
11:42:1915
11:42:2316
$11: 42: 2617$
11:42:3018
11:42:3419
11:42:3420
$11: 42: 3621$
11:42:4122
11:42:4523
11:42:5024
$11: 42: 5225$
having said that, I haven't the foggiest idea what -- what was done, if anything at all, in prototyping the Walter system.
Q. I'm not asking about your knowledge of what was actually done.
A. But let me also say that -- that, in fact -- you implied that in order to -- your question started off saying: If you were going to prototype this, you'd have to build absolutely everything. And, in fact, no, actually, prototypes -- a prototype is a flexible term. We -prototypes can have all of the components of a system. They can have three components. There might be fake things put in. In particular, let me just mention, that with respect to this system and the fact that the compression is off site, it is certainly -- would certainly be feasible to prototype substantial portions of this system. And depending on what the designers thought were the most difficult parts to design, they may well be exercising, really, hitting on what they think is the toughest thing with random data in the memory modules.
Q. Okay. You could do that. But if you wanted to prototype the system as described here, you'd have to have compressed digital video, right?
A. So, "prototype the system as described here" means --
Q. Means having all the elements that we see in

Figure 1.

11:43:011 11:43:052 11:43:173
$11: 43: 214$
11:43:275
11:43:306
11:43:337
11:43:368
11:43:399
$11: 43: 4110$
11:43:4411
11:43:4612
$11: 43: 4813$
11:43:5114
11:43:5915
11:44:0316
11:44:0817
11:44:1218
11:44:1419
11:44:1720
11:44:2121
$11: 44: 2522$
11:44:3023
11:44:3224
11:44:3625
A. If one wanted to play back video on one's prototype data receiving station that actually -- no, actually - having a working -- this system and any system, for that -- maybe I shouldn't say "any." Many systems can be completely exercised in prototype without actually ending up with a complete replica of exactly the system doing exactly what it wanted.
Q. I understand all kinds of things are possible. But I'm saying, if you want a prototype of what's shown in Figure 1, you'd need to put all those elements together, right, including the compression that we talked about, which is not shown in Figure 1 ?
A. No, no. It depends what does "prototype" mean, you know. Is -- it depends what we're prototyping. If -- if an engineer's concern is Communications Controller 64 and he or she thinks that, you know, everything else here, I've either already designed or I know of XYZ that I can go buy and put together, then maybe that's what -- that's what's done. mean, prototype is a -- you know --
Q. Okay. Well, let me ask a different question. Are you aware of any practical reason that would prevent you from building everything that's described in Figure 1 in a single, large room?

MR. PAYNE: Objection, form.
A. This is - other than the fact that this is just something that from a practical standpoint one typically would

11:44:391	not do. Certainly if a room were big enough, one could keep
11:44:472	inserting things in it until everything was there.
11:44:50 3	Q. (By Mr. Stephens) And that's also true for a cabinet,
11:44:54 4	right?
11:44:55 5	A. While true, one would have no motivation whatsoever
11:44:586	to put a data receiving station and a central data station in
11:45:027	the same cabinet or in the same room.
11:45:05	Q. Okay. Unless you were trying to mock up the entire
11:45:09	system and make -- see if you could make it work from end to
11:45:1110	end. That would be a motivation to do it, wouldn't it?
11:45:1511	A. Again, I - I even disagree that -- that mocking up
11:45:1612	the system, you would end up with exactly the whole thing put
11:45:1913	together. That's just -- you know --
11:45:2114	Q. Can you point to a specific reason why --
11:45:2415	A. Yes.
11:45:2416	Q. -- or a specific thing that would be missing, in your
11:45:2617	view?
11:45:2618	A. Well, there may be absolutely no reason to implement
11:45:3119	some of -- if -- if one is prototyping -- presumably there's
11:45:3920	for a reason that -- you know, as opposed to just
11:45:4021	recreational, let's get a patent and build something. And,
11:45:4622	you know, these are --people cost money. Equipment costs
11:45:5023	money. Time is valuable. Designs are put together in
11:45:5824	prototype so that people can either work out foreseen or
11:46:0225	unforeseen bugs or optimize options, parameters, be they

Page 127

11:46:091
11:46:132
$11: 46: 193$
11:46:22 4
11:46:265
11:46:28 6
11:46:337
11:46:378
11:46:459
$11: 46: 4810$
11:46:5011
$11: 46: 5312$
$11: 46: 5613$
$11: 46: 5914$
11:47:0115
$11: 47: 0316$
11:47:0617
11:47:0918
11:47:1219
11:47:1620
11:47:1921
11:47:2522
11:47:3223
11:47:3324
11:47:3425
hardware or software, control units, whatever, to get the -the system to work. Now, that could require building a full-blown system. It could also require complete emulation or simulation of substantial components of the system and zeroing in on only what's there.
Q. Okay. Is there any engineering problem with building the system described in Figure 1 and a device to - to compress the video all together in one room? I mean, putting aside whether you'd be motivated to do it, is there anything that would prevent you from doing it?
A. This is such an abstract question, 1 just don't -1 just don't even feel I can answer this. I mean, who is "you" and how much money does one have and what is the room and why is one doing this and when is this and where am I doing this?
Q. I'm not asking about motivations. I'm not asking about how much it costs. I'm asking about any engineering problems you can identify that would make it difficult or impossible - or more difficult or impossible to build what's described in Figure 1 together in a single room?
A. So, I think - I would have to think about that
before answering. I mean, I -- I --I don't want to give you
a knee-jerk reaction. Let me just say, I don't think I'm
prepared to answer that at this - this point.
Q. Okay.
A. I've certainly outlined why I don't feel that anybody
$11: 47: 371$
11:47:402
11:47:41 3
11:47:41 4
11:47:475
11:47:486
11:47:507
11: 47:548
$11: 47: 569$
11:47:5910
11:48:0111
11:48:0712
11:48:0913
11:48:1014
11:48:1315
11:48:1516
11:48:1717
11. $48: 2318$

11:48:2619
11:48:3020
11:48:3121
11:48:3522
11:48:4023
11:48:4424
11:48:4425

11:48:451
11:48:492
11:48:523
$11: 48: 584$
11:49:015
11:49:046
11:49:087
11:49:118
11:49:139
11:49:1610
11:49:1811
11:49:2212
11:49:2313
11:49:2614
$11: 49: 2915$
11:49:3116
11:49:3117
11:49:3218
11:49:3419
11:49:3720
11:49:4021
11:49:4022
$11: 49: 4423$
11:49:4724
$11: 49: 4825$
has any motivation to do that. I understand that your question is --
Q. Not that.
A. -- not addressing that. At the same time, that is something I just haven't thought about.
Q. Okay. Now, the system that's described in the Walter patent, at least as shown in Figure 1, is for transmitting video in one direction only, right?
A. That's right. The video goes from the central data station to the data receiving station.
Q. Okay. Sort of like an FM radio station, only sends audio in one direction, right, you can't send it back to the station over --
A. Actually, FM sends it in all directions, right, even down into the ground. I think we would say it's a -- it's a one-way transfer.
Q. Okay. Now, taking two one-way systems and putting them together and pointing in opposite directions is something that's been done in electrical engineering in the past, right?
A. Can you give me an example?
Q. Yeah. Radio, I picked that specifically with this in mind. So, you can take radios and put a transmitter in one place and a receiver in another; and that's a one-way system, right?
A. Yes.

Page 129
Page 128
Q. Okay. And you can add a transmitter to the place you have a transmitter and make it a two-way system, right?
A. Well, with some design and engineering.
Q. Or -- or none at all, right? You can take the -- a
duplicate of the system that you created in the first place and simply put the ends in the opposite places and you end up with a two-way system, right?
A. No. If you're both transmitting on the same frequency, that's not really going to work very well.
Q. Fair enough. You might have to change the crystal to modify the frequency?
A. So, we have a little bit of design and -- and various other -- you know, there's also, maybe, a -- a power issue on swapping out signals so --
Q. Okay.
A. There -- you know, I disagree, that you can't just turn something around and say: "Presto. Let's go."
Q. Well, with a physical media, you might be able to, right? You just pull another wire, and suddenly it's two ways?
A. Well, I think we discussed that just pulling another wire sounds good in theory, but in practice --
Q. Unless youre in a single room.
A. Well, or unless you're dealing with a cable that is

Page 130

1:49:50 1	a -- I mean, there are various examples but --
11:49:53	Q. Okay. But certainly taking a one-way
11:49:573	transmitter/receiver pair and building a two-way system from
11:50:014	those is something that was stock and trade for electrical
11:50:045	engineers for a century, right?
11:50:076	MR. PAYNE: Objection, form.
11:50:08	A. I really don't -- can you give me another example
11:50:11	besides FM and pulling another wire?
11:50:13	Q. (By Mr. Stephens) Sure. Ethernet.
11:50:2210	A. How?
11:50:2311	Q. You have the ability to put a moduled signal on to
11:50:2812	the medium, the -- the wire; and you have an ability to listen
11:50:3213	to that -- listen for that on the other end.
11:50:3614	A. But it was designed that way from day one.
11:50:3815	Q. Okay.
11:50:3816	A. It wasn't a one-way system where somebody just said,
11:50:4117	"Woo hoo, let's now" -- whatever.
11:50:4318	Q. Okay. Well, certainly the same principles, though,
11:50:4719	apply, right? I mean, you can --
11:50:4920	A. No. I disagree. I disagree. I think that if a
11:50:5321	system is being inherently designed for two-way communication
11:50:5722	or -- let's say multi because you brought up Ethernet --
11:51:0323	multiple use --
11:51:0324	Q. So, okay, you think --
11:51:0425	A. There are -- there are very different issues. I

$11: 52: 221$
$11: 52: 272$
11:52:293
11:52:32 4
11:52:355
$11: 52: 406$
11:52:437
11:52:458
11:52:469
$11: 52: 5010$
11:52:5011
11:52:5112
11:52:5313
11:52:5514
11:52:5715
11:52:5816
11:52:5817
11:52:5918
11:53:0419
11:53:0620
11:53:0921
11:53:1122
$11: 53: 1323$
11:53:1724
11:53:2325
these are all situations where -- you know, I wouldn't not say it's trivial just to grab a bunch of one-way systems and stick it together and have it -- have it function.
Q. But it was something that was frequently done, right.

Taking one-way systems and building two-way systems from them is something that's frequently been done in the course of electrical engineering history, right?

MR. PAYNE: Objection, form.
A. I honestly don't know that, and I would not agree to that. I mean, certainly --
Q. (By Mr. Stephens) Okay. Fair enough.
A. -- if you would like to prepare a document and I can read it, you could convince me, perhaps; but I just don't have enough --
Q. Okay.
A. I don't think I believe that.
Q. Fair enough. But you would agree that electrical engineers, as a matter of their normal practice, take existing solutions and combine those in different ways to solve problems, right, that's what electrical engineers do?

MR. PAYNE: Objection, form.
A. I think the nature of engineering is -- is --
considering what's available, how it can be used creatively and what additional stuff, material, as a result of a creative process, either -- and the creative process could be a

Page 133

11:53:271
$11: 53: 282$
11:53:31 3
$11: 53: 374$
$11: 53: 395$
$11: 53: 436$
$11: 53: 467$
11:53:498
$11: 53: 539$
$11: 53: 5310$
11:53:5811
$11: 54: 0412$
11:54:0713
11:54:1014
$11: 54: 1315$
11:54:1616
11:54:1817
11:54:1818
11:54:1919
11:54:3420
11:54:3821
$11: 54: 3922$
11:54:4023
$11: 54: 4324$
$11: 54: 4525$

11:51:061
11:51:09 2
11:51:13 3
11:51:16 4
11:51:205
11:51:24 6
11:51:277
11:51:32 8
11:51:35 9
11:51:3510
11:51:3811
11:51:4012
11:51:4313
$11: 51: 4514$
11:51:5015
11:51:5516
11:51:5717
11:52:0218
11:52:0219
11:52:0220
11:52:0821
11:52:1222
11:52:1623
11:52:1724
11:52:1925
mean, the whole - you know, an issue with Ethernet is -- is: How do all of these users share the carrier? That is a substantial portion of Ethernet and -- and for that matter, many, many other multiple -- any system that -- that has multiple users, you need -- the system must be designed to deal with that. I mean, I can think back to the radio from the start, Aloha Radio, where the algorithm was -- everybody just talks at once and, well, if you collide, you keep trying again. And believe it or not, this --
Q. That's the way Ethernet works today?
A. -- this works. Yes, yes, exactly, it works. It's not particularly efficient, but there are better -- there are better techniques for -- I mean, this carrier sends multi-access, which is what we have in Ethernet. So, I think that - that, you know, two-way communication is -- is different from one way. I don't think it's fair to say, well, you can just reverse something and all of a sudden you get two-way.
Q. Well, I guess the Aloha network is a pretty good example for that, right? I mean, they use conventional transmitter pairs on radio. You can, anyway, and add to that a little bit of logic to figure out if the channel is already in use.
A. Right, add to that a little bit of logic. I mean, that's not, oh, let's take these things and rum. I mean,

12:28:56 1 12:29:002 12:29:02 3 12:29:084 12:29:125 12:29:16 6 12:29:187 12:29:21 8 12:29:25 9 12:29:2710 12:29:3011 12:29:3412 12:29:3813 12:29:4114 12:29:4515 12:29:4616 12:29:4817 12:29:5218 12:29:5319 12:29:5720 12:30:0221 12:30:0522 12:30:1023
12:30:1624
12:30:1825

	age 134
11:54:471	THE VIDEOGRAPHER: We're off the record at
11:54:472	11:54.
3	(Luncheon recess)
12:27:294	THE VIDEOGRAPHER: Tape 5 of the deposition of
12:27:30 5	Dr. Hemami. The time is $12: 27$. We're back on the record.
12:27:386	Q. (By Mr. Stephens) Dr. Hemami, did computers in 1985
12:27:407	generally have RAM?
12:27:478	MR. PAYNE: Objection, form.
12:27:489	A. I feel like I'm speculating answering this question,
12:27:5110	but I believe the answer is yes.
12:27:5211	Q. (By Mr. Stephens) Okay. And what does "RAM" stand
12:27:5612	for?
12:27:5713	A. Random access memory.
12:27:5814	Q. What does the "random access" part of that mean?
12:28:0415	A. Now, let me clarify. My interpretation of your
12:28:0816	question, you've asked me if computers have RAM. And in
12:28:1217	particular, computers in 1985 had RAM. My answer I'm thinking
12:28:1718	of, I'm answering with respect to semiconductor random access
12:28:2119	memory, might be called DRAM, dynamic RAM; or SRAM, static
12:28:2320	RAM. These semiconductor random access memories provided
12:28:2921	storage locations where a location might be a byte or two
12:28:3522	bytes in a word where each individual memory location, the
12:28:4223	5 th byte, the 8th byte, the 19th byte, could be addressed,
12:28:4724	meaning one could ask the memory to deliver on its output
12:28:5225	lines precisely the data word, whatever the size of the word

Page 135
THE VIDEOGRAPHER: We're off the record at
(Luncheon recess)

Dr. Hemami. The time is $12: 27$. We're back on the record. Q. (By Mr. Stephens) Dr. Hemami, did computers in 1985 MR. PAYNE: Objection, form.
A. I feel like I'm speculating answering this question, but I believe the answer is yes.
Q. (By Mr. Stephens) Okay. And what does "RAM" stand for?
A. Random access memory.
Q. What does the "random access" part of that mean?

Now, let me clarify. My interpretation of you particular, computers in 1985 had RAM. My answer I'm thinking of, I'm answering with respect to semiconductor random access memory, might be called DRAM, dynamic RAM; or SRAM, static RAM. These semiconductor random access memories provided storage locations where a location might be a byte or two bytes in a word where each individual memory location, the 5 th byte, the 8 th byte, the 19 th byte, could be addressed, lines precisely the data word, whatever the size of the word
was, that was stored at the particular location that was requested.
Q. And it also meant that that memory location -.. the data stored in that memory location would be presented in a very predictable amount of time, right?
A. I'm not sure what you mean by "predictable."
Q. Well, so, for example, a tape would not be random access memory, right?
A. A tape is serial access.
Q. Okay. And, yet, you can, using many different utilities, request a specific tape block from a tape and retrieve that information, right?
A. If we're talking about digital magnetic tapes which were used as backup devices, particular blocks could be accessed.
Q. Okay. So, it's not just a matter of being able to present an address and get back a particular set of addressable data?
A. Oh, I'm sorry. I understand what you're saying.

Yes, not only could you access each independent location but these chips typically came with criteria for the maximum read time or write time which applied equally to all locations.
Q. Okay. And -- and generally the systems were clocked so that the data would actually be read out of the memory in the same amount of time, regardless of which address was being

12:30:22 1 12:30:23 2 12:30:28 3 12:30:304 $12: 30: 345$ 12:30:36 6 12:30:38 7 12:30:40 8 12:30:44 9 $12: 30: 4610$
12:30:5011
12:30:5212
12:30:5513
12:30:5514
12:30:5915
12:31:0216
12:31:0717
12:31:1118
12:31:1219
12:31:1620
12:31:1721
12:31:2222
12:31:2723
12:31:2924
12:31:3325
presented, right?
A. I'm not aware of any asynchronous memories, but that didn't mean that they existed. A clocked memory, we would have a read -- some number of cycles for read and some number of cycles for write.
Q. And that's generally fixed, right?
A. I don't know what generally --I -- I don't know. I
haven't reviewed data sheets from RAM in 1985.
Q. Well, regardless of -- of what the data sheet says,
the system that it's put into usually would have a fixed
amount of time that it would expect the data to become available after, from the time you presented the address, right?
A. I -- I -- I'm not sure I understand the question.
Q. All I'm getting at is that part of the -- part of what it means to be random access is that you get the contents back in the same amount of time regardless of which address you present.
A. Colloquially, yeah. I think, uh, sure, we can say the same amount of time. We would -- we would certainly expect the device to behave. But whether I accessed the first or the 80 th location, that that data would appear in the same number of clock cycles on the output lines.
Q. Okay. Now, general purpose computers are capable of performing any algorithm subject only to constraints on
$12: 31: 391$
12:31:452
$12: 31: 463$
12:31:504
$12: 31: 525$
$12: 31: 586$
12:32:027
12:32:088
$12: 32: 119$
$12: 32: 1110$
12:32:1611
$12: 32: 1612$
$12: 32: 1613$
12:32:1814
12:32:2215
$12: 32: 2416$
$12: 32: 2817$
$12: 32: 3018$
12:32:3719
$12: 32: 4320$
12:32:4621
12:32:4822
12:32:4923
$12: 32: 5224$
$12: 32: 5625$
storage space, right, and time?
A. So, this is a very broad question; but I would not agree with that. So, let's start off with what is a general purpose computer and in what time frame.
Q. 1985. Why would you not agree with that?
A. So, you said any -- any algorithm -- let me make sure I get all the pieces right - any algorithm - and there were some more things there, independent of time, something along those lines.
Q. Allow -- if you don't have time constraints or space constraints.
A. Okay.
Q. Right? So, it's just a matter of adding more memory and waiting long enough for the output to become available. Part of what it means to be a general purpose computer is that it can perform any algorithm, right?
A. I don't think - for one, there - there's certainly analog computers. There are a lot of turbulent style airflow, water flow simulations that are better solved using analog techniques. The Air Force maintained analog computers for many times in designing aerodynamics and wings and so on. And, so, I think any --
Q. Let's restrict ourselves to digital algorithms.
A. You know, that's such a broad statement. I - I -

I'm not sure that that's actually correct. Certainly I -- it

Merrill Legal Solutions

12:33:02 1 12:33:082 12: $33: 13$ 3 12:33:174 12:33:21 5 12:33:25 6 12:33:307 12:33:348 12:33:39 9 12:33:4310 12:33:4811 12:33:5112 12:33:5213 12:33:5514 12:34:0915 12:34:1316 12:34:1617 12:34:1918 12:34:2119 12:34:2420 12:34:2521 12:34:2722 12:34:2823 12:34:3024 12: 34:3325
-
is easy to envision scenarios where the data that you're processing might have a dynamic range that exceeds the capacity of the computer or the computer simply cannot perform calculations on the data that you're doing without substantially causing problems. Actually, there's an entire field of computer science algorithm design that has to do with solving problems that - of algorithms that can be written down on paper, but when one goes -- and even here, I'm talking about numerical algorithms -- when one goes to implement them on a computer, the finite precision arithmetic really - - they can't be done. It's a -- it's a -- you know, you can run the algorithm; but the output is meaningless and -- and -- and doesn't - doesn't mean anything.
Q. Okay. Now, I asked you before about whether or not the algorithm described in Walter could be performed on a general purpose computer and you asked for constraints and then I gave you some and you said you wouldn't be able to answer without doing the calculations and the like, right?
A. So, here, you're referring to - to the compression algorithm that was mentioned?
Q. That's right.
A. Yes.
Q. Now, if you had enough memory and enough disk space and you weren't concerned about how quickly you were able to perform that algorithm, you would be able to perform that

12:36:131 $12: 36: 152$ $12: 36: 193$ 12: $36: 234$ $12: 36: 275$ $12: 36: 316$ $12: 36: 367$ $12: 36: 398$ 12:36:43 9 12:36:4710 12:36:4811 12:36:4912 12:36:5013 12:36:5514 12:37:0215 12:37:0816 12:37:1617 12:37:3418 12:37:3719 12:37:4020 $12: 37: 4321$ 12:37:4522 12:37:4823 12:37:4924 12:37:5425

You know, I -- I just don't -- I just don't know.
Q. Okay. So, is it fair to say that it's - it may be possible, you're just not sure, whether the host computer, what's shown as 20 in Figure 1 on Walter, was capable of performing the inter-frame differential post-code modulation compression algorithm described in the Walter patent?
A. So, I don't believe that Walter really gives us any description whatsoever as to what that host computer is. If you have a - to save time, do -- do you have a particular point --
Q. No, I don't.
A. Okay. Okay. So, actually, let's see $-\cdots$ so, see, just in Column 4, already, we have two paragraphs that refer to host computer. Now, Column 3, preferred embodiment, starts off and mentions host computer; but it doesn't tell us anything about it. So, starting around line 27 , we see host computer. Well, host computer is certainly connected to a lot of things, isn't it? We see that a lot.

I'll tell you what I'm looking for. I'm looking for to get an understanding of what host computer did besides being connected to all these lines.
Q. Well, I don't -- I'm not aware - well, go ahead. I'm sorry.
A. Well, I - I thought that host computer involved directing the instructions as to what the -- a data receiving

Page 141

12:38:001
12:38:08 2
12:38:09 3
12:38:124
12:38:15 5
12:38:216
12:38:267
12:38:30 8
12:38:33 9
12:38:3510
$12: 38: 3811$
12:38:4112
$12: 38: 4513$
12:38:4814
$12: 38: 5315$
12:38:5716
12:39:0217
12:39:0618
12:39:1319
$12: 39: 2220$
12:39:3121
12:39:3822
12:39:4223
12:39:4824
12:39:5225
station has requested, but I -- I would prefer to find that than rely on my memory.
Q. Oh, no. I think you're right, that there are places where it's described as, for example, directing the memory to - and the switching system to connect the memory to the optic fibers -- well, to connect the memory to the laser diodes and then transfer the data over the optical fibers. So, it does describe that sort of thing. I'm just wondering whether you --
A. Well, so, that's -- that's all we're told about host computer, if, indeed, that is all -.. I think, hopefully, we agree on that; but I'm not really missing some - so, if all we're told that that host computer does is -- following a command from host computer. I'm sorry. I see now, line 30 of Column 4, "Communications controller assumes control of fiber optic lines." So -- so, in reading -- finding this and in reading the specification, you know, my understanding of host computer is that host computer is simply a controller for the overall operation of the system. And as such, it may or may not be able to perform the functions that one would expect to be required to run a inter-frame differential pulse-code modulation. So, just to give you an example, it could be a very, very simple microprocessor or even something that we might call a microcontroller, which is a simpler-type unit which is somewhat programmable and can execute various tasks;

