

12:39:56 1 12:40:022 12:40:08 3 12:40:124 12:40:16 6 12:40:207 12:40:218 12:40:25 9
12:40:2710
12:40:3011 12:40:3612 12: 40:4314 12:40:5015 12:41:0017 12:41:0318 12:41:0619 12:41:0720 12:41:0821 12:41:1022 12:41:1223 12:41:1925
but it's not akin to what we would consider to be the computational heart of either a - a personal computer or a --higher-end scientific computation work station.
Q. But it -- it doesn't say that it's a microcontroller,
A. All it tells us is that it is host computer so --
Q. Okay. And you can't say from that description whether or not it's capable of performing the video compression described, correct?
A. From -- from what's described here, I do not know, is.
Q. Okay. Is it your -- okay. Never mind.

Now, again, looking at Figure 1, I think your
declaration says that the memory modules, $24,26,28$, et
A. Yeah. And if I can just take a small -- I just want mound a typo yesterday, and I would like to just
Q. Okay.
A. I was a little bit overeager in my use of the term
"memory module."
A. This is the second one
Q. Which paragraph?

Page 143

12:42:55 1
12:42:59 2
12:43:01 3
12:43:03 4
12:43:075
12:43:076
12:43:117
12:43:148
12:43:159
12:43:1710
12:43:2011
12:43:2212
$12: 43: 2613$
12:43:2814
12:43:2915
12:43:3316
12:43:3517
12:43:3818
12:43:4319
12:43:4620
12:43:4721
12:43:4722
12:43:5023
12: 43:5524
$12: 43: 5825$

I'm a little uncomfortable making a definitive statement as to what RAID does or doesn't do.
Q. Okay. So, again, though, the question was: The memory modules are removable, you say, right, in the central data station?
A. Sorry, I'm still back on RAID. Let me say, I'm definitely not sure what RAID does. Let's just leave it at that. Now, I'm sorry, if you could repeat your question.
Q. Okay. But RAID uses that term "striping"?
A. I -- I don't remember. So, I was trying to sort out what did I remember, what do I not remember. And what I remember about RAID is often having an error-correcting disk.
Q. Where did you come with you the word "striping" in your declaration?
A. This is a term I'm familiar with from my history as an electrical engineer. I don't think I drew on any - you know, at some point in my life, I learned and understood what striping data across multiple storage entities, for lack of a better word, meant. And --
Q. And that's where you borrowed it?
A. --. that's where it came from, yes. Now, that -- what did I -- that may well have come from my interaction with RAID at some point in my career. I just don't remember its origin.
Q. Okay. So, again, memory modules in the central data station are removable, right?

12:44:01 1
12:44:01 2
12:44:04 3
12:44:06 4
12:44:08 5
12:44:12 6
12:44:16 7
12:44:19 8
12:44:22 9
12:44:2810
12:44:3611
12:44:4012
$12: 44: 4013$
12:44:4314
12:44:4515
12:44:5116
12:44:5317
12:44:5618
12:45:0019
12:45:0120
12:45:0221
12:45:0522
12:45:0823
12:45:1124
12:45:1125

Page 145
A. Yes.
Q. And -I I mean, at least that's what you say. I don't see that anywhere in the patent. Is that fair to say?
A. Yes. And you - you clarified that. And, yes, let me follow that up. But my -- my reading of the patent with the extensive use of the term "preprogrammed," as we have discussed, says to me that these are -- these are removable modules. And let me just add that, also, given that Walter doesn't teach any mechanism by which the central data station would receive content, that I-I took as support of the fact that these modules themselves could be removed and -- and programmed.
Q. So, you -- from the word "preprogrammed" and from the fact that it doesn't describe how you load the information into the modules, you took it to mean that you received them by FedEx or something like that?
A. That would be one option. They - you know, courier, somebody could walk them. We don't know where the compression occurs.
Q. Okay.
A. I am very confident that the compression doesn't
occur here. But other than saying it doesn't occur in the central data station, I - I don't know where it occurs.
Q. Okay.
A. So, FedEx may not be necessary.

Merrill Legal Solutions

12:45:171 12:45:202 $12: 45: 23 \quad 3$ $12: 45: 274$ 12:45:345 12:45:396 12: 45:457 12:45:54 8 12:45:579 12:46:0110 12:46:0711 12:46:1012 12:46:1413 12:46:1714 12:46:2015 12:46:2516 12:46:2917

12:46:3218 12:46:3719 12:46:4020 12:46:4621 12: 46:5322 12:46:5623 12:46:5924 12:47:0525
Q. Okay. Now, is there any reason why "preprogram" doesn't simply mean programming before you make the content available for download?
A. In the context of the Walter patent, given that there was no mechanism described to get the information on to the central data station or no video jukebox or anything of the sort, that is how I interpreted that "preprogrammed" in this case, in the specification. The way it gets used implies that these are removable. And, you know, I think that -- the way I looked at this was -- "preprogrammed" is -- it's quite a verb. Contrast it with "stored." All right. From the standpoint, I think, of describing the operation of the Walter unit to somebody sitting on the bus next to me, I would say, "Well, see these things? They store the video." But, in fact, Walter does not use that term. Walter specifically uses "preprogrammed" over and over to describe those modules.
Q. Well, and he might have been using that to indicate that they're dedicated to a particular program, right?
A. Well, from the standpoint that he doesn't give us any mechanism to alter them using a central data station and he also tells us that a single module has a single program, I think that we could call that dedicated.
Q. Okay. Well, he does, in fact, give us a way to -- to alter the memory modules in the data receiving station, right? A. The -- the memory modules in the data receiving

12:48:101
12:48:112
12:48:13 3
$12: 48: 164$
12:48:21 5
12:48:256
12:48:297
12:48:35 8
12:48:40 9
12:48:4410
$12: 48: 4811$
12:48:5312
12:48:5513
12:49:0414
12:49:0715
12:49:1116
12:49:1717
12:49:2118
12:49:2519
12:49:2720
12:49:3121
12:49:3322
12:49:3823
12:49:4024
12:49:4125

Page 148
Q. Okay.
A. Now, you know, I would like to add that the data receiving station -- again, we'll colloquially use a term for today, a "set top box" -- this is a piece of consumer electronics equipment. One can reasonably anticipate that this piece of equipment is going to sit in some reasonably sized cabinet and that the -- the operator, the customer, is not going to be taking pieces in and out. But I suspect that as today, the -- the companies get somewhat upset if you try to mess around with the inside of your box.

On the other hand, the central data station is at the cable head end or certainly at a location which is operated by presumably the cable company; and they have an interest, I think, in -- in providing more than one set of programs for the rest of eternity. So, from the standpoint of these things being preprogrammed elsewhere, this is the mechanism by which they can change their programming. Otherwise we have sort of a video-on-demand system which is a video-to-exhaust system.
Q. Is -- is there any engineering obstacle or anything unpredictable about making a memory module in the receiving station removable?
A. I'm sorry, the second part was unpredictable. The first part was --
Q. Let me just use the word "unpredictable" instead.
station are the local storage. So, certainly
Q. And it's your opinion, I think you said in your declaration, that that memory module is of the same type that's in the central data station, right?
A. I believe that the Walter patent explicitly makes that statement.
Q. Okay. Is the memory module in the data receiving station also removable?
A. I do not expect that the memory module in the data receiving station is removable.
Q. But the patent doesn't say one way or another about any of the memory modules, right, being removable?

MR. PAYNE: Objection, form.

A. Well, again, upon reading the specification, looking
at the preprogramming, the extensive use of the
"preprogramming" term --
Q. (By Mr. Stephens) Let me just be clear. I'm not -I'm not asking whether or not you concluded based on what it does say, that they're removable. I understand you did. I'm asking about whether it says they're removable anywhere.
A. There is no sentence in the patent that says this memory module is removable.
Q. Okay. And that's true for both the data receiving station and the central data station, right?
A. It is.

Page 149

12:49:44
12:49:48 2
12:49:52 3
12:49:554
12:49:55 5
$12: 49: 596$
12:50:007
12:50:038
12:50:079
12:50:1110
12:50:1411
$12: 50: 1712$
12:50:2013
12:50:2114
12:50:2515
12:50:3016
12:50:3117
12:50:3418
12:50:3619
12:50:3720
12:50:4021
12:50:4022
12:50:4323
12:50:4924
12:50:5025

So, is there anything unpredictable about changing the data receiving station to make the memory module there removable as you say the ones in the central data station are?

MR. PAYNE: Objection, form.
A. I'm sorry, I'm still getting a little hung up on this question. Can lask you to repeat it one more time?
Q. Yeah. Is there any reason why you would not be able to or would expect any unusual engineering difficulties that would make it unpredictable or lead to an unpredictable result if you were to modify the data receiving station to make the memory module removable?

MR. PAYNE: Objection, form
A. I don't know what unpredictable mean -- can -- can -let me ask you this. And I'm not trying to be difficult. Maybe it's just the metabolism is kicking in after lunch.

Can I ask you to start the question again and pause before you get to the predictable part because I digest the question, and then all of a sudden we're on predictable and I don't know what predictable means and I get hung up and then I've forgotten what the beginning part of the question is. So --
Q. (By Mr. Stephens) Okay. Could you modify the data receiving station to make the memory module removable?

MR. PAYNE: Objection, form.
A. So, I don't know. I mean, for one, I don't know why
$12: 50: 521$
$12: 50: 542$
$12: 50: 553$
$12: 50: 574$
$12: 50: 595$
$12: 51: 026$
$12: 51: 057$
$12: 51: 108$
$12: 51: 119$
$12: 51: 1410$
$12: 51: 1711$
$12: 51: 2212$
$12: 51: 2513$
$12: 51: 2814$
$12: 51: 3315$
$12: 51: 4016$
$12: 51: 4517$
$12: 51: 4918$
$12: 51: 5519$
$12: 51: 5620$
$12: 51: 5921$
$12: 52: 0322$
$12: 52: 1023$
$12: 52: 1024$
$12: 52: 1425$
anybody would want to do such a thing.
Q. (By Mr. Stephens) Well, we'll get to that in a second; but if you wanted to, is there any particular engineering difficulty in doing that?
A. I don't know. I don't know. That depends on how the system is designed.
Q. Okay. Well, if it was designed so that they fit in the same kinds of sockets that they did in the central data station, presumably it would be doable, right?
A. Well, actually, we already have a very different setup from simply looking at the memory modules. I mean, I -I believe -- and I think I said this and I hope I'm not misspeaking when I say that Walter tells us that the memory module is of the same type, but the memory module as shown in Figure 1 in 102 has both inputs and an output and also a little computer control input. The memory modules in the central data station that we see in the upper left-hand comer have one - single arrows coming out of them. We don't see input data going into those.

So, this already, even though the memory module itself may be of the same type, says to me that these are integrated into their respective positions in a different manner.
Q. Do you have any reason to believe that it would be anything other than a straightforward exercise to make the

12:52:16 1 12:52:21 2 12:52:24 3 12:52:264 12:52:31 5 12:52:35 6 12:52:397 12:52:41 8 12:52:42 9 12:52:4310 12:52:4511 $12: 52: 4812$ $12: 52: 5213$ 12:52:5514 12:53:0015 12:53:0216 12:53:0217 12:53:0518 12:53:0519 12:53:0720 12:53:1621 12:53:1822 12:53:2023
12:53:2224
12:53:2425

Page 151
memory modules the data receiving station removable?
A. What is a straightforward exercise?
Q. Simple matter of ordinary day-to-day engineering judgment, not involving the exercises of unusual creativity.
A. I think it would involve the exercise of unusual creativity to make the memory module in the data receiving station removable.
Q. I'm not -
A. I see absolutely no reason --
Q. Again, I'm specifically asking you not to answer about motivation. I'm asking you, if you were asked to do so, if you were asked to make it removable, do you have any reason to believe that it would require anything other than ordinary day-to-day engineering activities to do that?
A. What are -

MR. PAYNE: Objection, form.
A. -- ordinary engineering day-to-day activities? I
mean, I can envision --
Q. (By Mr. Stephens) Saying: I'm going to put a socket on this board instead of soldering it to the board. Is anything else required?
A. One needs a socket, one needs to understand why would one want to --
Q. I'm not asking about motivation.
A. -- increase the cost, increase the complexity --

12:53:24 1
12:53:26 2
12:53:29 3
12:53:314
12:53:355
12:53:386
12:53:417
12:53:418
12:53:42 9
12:53:4310
12:53:4511
12:53:4712
12:53:4813
12:53:5014
12:53:5115
12:53:5416
12:53:5917
12:53:5918
12:54:0219
12:54:0620
12:54:1021
12:54:1122
12:54:1123
12:54:1324
$12: 54: 1325$
Q. I'm not asking -- I'm specifically not asking about motivation. I'm asking about doing it. If you're instructed to do it, all you have to do is say: I'm going to put a socket on there instead of soldering it to the board, fight?

MR. PAYNE: Objection, form.
A. I don't even know if a socket exists for these things.
Q. (By Mr. Stephens) Do you know what they were?
A. So, I-- that is a potential -
Q. Do you know what these memory chips are?
A. And we are told that they are recirculating shift registers.
Q. And what is that? Is that a chip that you could go out and buy?
A. Well, Walter has not given us a specific part; and I do not know if there were integrated units of these things available.
Q. Okay. But you could fabricate one using DRAM, correct?
A. No. I don't think one would fabricate one using DRAM.
Q. I'm not asking whether you would.
A. No. I don't --
Q. I'm saying you could.
A. No.

Page 153

12:54:141
12:54:15 2
12:54:23 3
12:54:274
12:54:305
12:54:316
12:54:327
12:54:348
12:54:34 9
12:54:4010
12:54:4111
12:54:4412
12:54:4713
12:54:5214
12:54:5415
12:54:5416
12:54:5717
12:55:0118
12:55:0519
12:55:1020
12:55:1321
12:55:1822
12:55:1923
12:55:2624
12:55:2625
Q. Why not?
A. Because DRAM is a random access memory technique -technology. As we discussed or as I mentioned specifically when I was talking about semiconductor RAM, each individual piece --
Q. Okay. Go ahead.
A. -- location needs to be addressed.
Q. Okay.
A. Now, if I start off with a DRAM and I want to make this a recirculating shift register --
Q. No, I'm not asking you to change the DRAM into a recirculating shift register. I'm saying it's pretty simple to design a circuit that functions as a recirculating shift register using DRAM as the storage component, correct?
A. I disagree that it's simple.
Q. Well, let me -- let me give you a very specific example. So, if you create a address generator that simply makes the address change by one location with every clock pulse that you apply and use that to change the place where memory is stored and retrieved from, you can generate - you can turn a DRAM into a recirculating shift register in function by doing that, right?
A. You used the word "simply," and I completely disagree that this is a simple operation.
Q. Okay. I --

Merrill Legal Solutions

Page 154

12:55:261 12:55:282 12:55:32 3 12:55:364 12:55:405 12:55:436 12:55:467 12:55:50 8 12:55:56 9 12:56:0210 12:56:0211 12:56:0212 12:56:0613 12:56:0914 12:56:0915 12:56:1116 12:56:1417 12:56:1618 12:56:1919 12:56:2020 12:56:2321 12:56:3022 12:56:3023 12:56:3324 $12: 56: 3425$
A. For one, one of ordinary skill would never, would not do this. This is starting off with a system that is overly complex for what is needed and then having to design logic that sits on top of it or in conjunction with it.
Q. Is a counter -- is a counter a complex circuit?
A. Given that the recirculating shift register does not require the random access, the DRAM already has all of the write and read lines and apparatus on it to do the access We're essentially, then, designing more circuitry to bypass that --
Q. Look --
A. -- and on top of it, then, I have to actually route the output of my DRAM to the input.
Q. Okay. Sorry to interrupt --
A. Now I have capacitance issues.
Q. You keep changing my question. I'm not asking you about motivation. I'm asking you about whether it's something that's easy to do if you're instructed to do it.
A. I don't think it's easy.
Q. So, it's not easy to make a counter that would increment the address with each clock pulse; is that right? Is that your testimony?
A. Im starting off with a recirculating shift register.
Q. No. I'm not. I'm starting out -I'm asking you whether --

12:57:131
$12: 57: 182$
$12: 57: 233$
12:57:264
12:57:305
12:57:32 6
12:57:357
12:57:36 8
12:57:389
12:57:4210
12:57:4611
12:57:4812
12:57:4813
12:57:4914
12:57:5115
12:57:5216
12:57:5517
12:57:5618
12:58:0019
12:58:0420
12:58:1021
12:58:1222
12:58:1523
12:58:2024
12:58:2625

12:58:29 1
12:58:30 2
$12: 58: 33 \quad 3$
12:58:39 4
12:58:42 5
12:58:476
12:58:517
12:58:55 8
12:58:58 9
12:59:0710
12:59:1111
12:59:1912
12:59:2613
12:59:2914
12:59:3215
$12: 59: 3316$
12:59:3317
12:59:3518
12:59:3919
$12: 59: 4020$
12:59:4121
12:59:4422
$12: 59: 4923$
12:59:5024
12:59:5325
long -- long answers to simple questions, if you can avoid it.
I -- I'm not -- I'm not questioning whether you're intending to do it the way it's done. I'm not saying that because I don't believe that you are. I'm simply saying we don't have much time and I have a lot of material to cover so I'm asking you, please, to answer the question I'm asking and not give me long answers.
A. Just so you know, as I told Les, this is the relaxing part the day because I have to fly later. So...
Q. Okay. I fly a hundred thousand miles a year. I can definitely relate to that. Well, no, l've flown a hundred
thousand miles --
A. I'm sorry.
Q. -- as of last month.
A. I'm sorry.
Q. Okay. So, is it a difficult thing to design a counter?
A. In the abstract, designing a counter --well, it depends who you're speaking to. To one of ordinary skill as described in my various reports, I think designing a counter is easy.
Q. Okay. And you could use a counter to make a DRAM function as a recirculating shift register from the outside, right? In other words, it would look like a recirculating shift register to the circuits that interface with it; is that

Page 157

right?

A. I would say that while one of ordinary skill would not do that - and I'll cease the pontificating for the rest of it .- certainly we could put a recirculating shift register in a black box and have another black box with DRAM and associated circuitry and wiring and potential other stuff to deal with excess capacitance. And to the outside observer, the inputs and the outputs would be identical.
Q. Okay. Now, if you were tasked with replacing the -replacing FedEx for distributing video to central data stations, you could simply use the system described in Figure 1, right? In other words, you could -- at the place you compressed the video --
A. I have to ask you to start over. I'm completely lost.
Q. Okay.
A. So, first off, let me say that I didn't say that FedEx was -- I said that was one option
Q. I think you said courier or -- well --
A. Courier could be foot or bicycle, too.
Q. Okay. So, if you were out to replace the manual delivery of the chips, you could use the system described in Figure 1 to do that, right?
A. I do not see how that would happen. I'm not
following you.

Merrill Legal Solutions
Q. Well, if my point is to get video from Point A to

Point B, I can use the system in Figure 1 to do that, right?
A. A courier could deliver video from -- let's just stick to, you know, Figure 1. So, suppose that we have some other location which either requires a FedEx courier or some type of mechanical transport. To use the system in Figure 1 would require that first the central data station have receiving capabilities which it doesn't have; and secondly, the origin, the location of the compression would need to have transmission facilities. And we don't know anything about the location that does the compression. So, even writing that off, our central data station does not have reception capabilities. We're not -- that's lacking as described in the specification.
Q. Okay. So, I just want to go back to the courier for a moment. So, the manual delivery of the chips that you described was intended to --
A. Module.
Q. I'm sorry, modules, memory modules - was intended to transport compressed video from the place it's compressed to the central data station, right?
A. Yes. We could call the compression location where that preprogramming occurs, yes.
Q. Okay. So, the reason for using that courier is to
move the video, the compressed video, from the place where

13:03:161
13:03:18 2
13:03:20 3
13:03:25 4
13:03:285
13:03:316
13:03:367
13:03:388
13:03:41 9
13:03:4410
13:03:4811
13:03:4812
13:03:5513
13:03:5814
13:04:0315
13:04:1216
13:04:1817
13:04:2518
13:04:3019
13:04:3420
13:04:3721
13:04:4022
13:04:4123
13:04:4324
13:04:4425
from another level of servers
Q. Look, I'm not asking about that. I'm simply asking about whether you could use the system designed in Figure 1 to transport video from the place where compression occurs to the central data station?
A. I -- I don't know that the place where compression occurs would have such a system.
Q. But if they didn't, this is one way to solve the problem of getting video from the central data -- from the place where compression occurs to the central data station, right?
A. This is a video-on-demand cable system, video-on-demand system for use -- it's called a cable provider. The problem that this addresses is very, very different from the problem of a location needing to transfer or transmit all of what it's producing to a single location.
Q. But it could be used for that, right? And, in fact, all that's shown in Figure 1 is transporting it to a single location, right?
A. All that's shown as opposed to --
Q. Well, there's only one receiving station shown in Figure 1, right?
A. So, you're contrasting that with having multiple receiving stations?
Q. Yeah.

Page 161
A. I guess I don't see how that's relevant to --
Q. Well, you said it's -- it's designed to solve a different problem, but what's shown in Figure 1 is transporting video from one location to one other location, right?
A. Walter teaches us a system for use in a video-on-demand scenario. The point of, for example, the call-back line is so that different users can request whatever video they want, that being the purpose of video-on-demand. You watch Shrek, and I watch Monsters, Inc. To say that this is simply a point-to-point delivery system because Figure 1 only shows one data receiving station, I think, is a misrepresentation of what is -- what this patent addresses.
Q. I'm not asking about whether that -- that it's limited to a point-to-point transmission system. It could be used for a point-to-point transmission system, correct?
A. It's extreme overkill, at best, for a point-to-point transmission system.
Q. Okay. Well, it could also be used for broader distribution, right? And I think that's your point, that it is, in fact, designed for broader distribution of compressed video, right?
A. What's described is a central data station that can serve a variety of users. This is not the same scenario as a single compression location needing to transmit this

Merrill Legal Solutions

Page 162
13:06:22 1 13:06:25 2 13:06:30 3 13:06:324 13:06:355 13:06:396 13:06:437 13:06:46 8 13:06:49 9 13:06:5210 13:06:5911 13:07:0412 13:07:0813 13:07:0814 13:07:1215 13:07:1516 13:07:1617
13:07:1718
13:07:1819
13:07:2020
13:07:2221
13:07:2222
13:07:2623
13:07:2824
13:07:3125

13:07:31 1
13:07:36 2
13:07:37 3
13:07:42 4
13:07:465
13:07:576
13:08:017
13:08:068
13:08:099
13:08:1410
13:08:1611
13:08:2112
13:08:2313
13:08:2714
13:08:2815
13:08:3016
13:08:3317
13:08:3418
13:08:3819
13:08:4720
13:08:4921.
13:08:5922
13:09:0323
13:09:0724
13:09:1125
information to a single end point.
Q. Now, you said that the central data station is like a cable head end, right?
A. Im using this colloquially so...
Q. But most cable systems have lots of head ends, right?
A. Well, it depends what we call the "head end" so...
Q. Most cable systems have lots of things that those cable systems refer to as the head end, right?
A. Yeah. And let me -- you know, what I have in mind is the single Time Warner unit address, really, building in Ithaca. Yeah, the central data station is at some - - some location that can access many users so that many users can access it.
Q. And most cable systems in the Eighties have multiple communities that they served and each community had its own cable head end, right?
A. That, I don't know. I don't know how cable systems were configured in the Eighties.
Q. It's certainly true today, right?
A. I don't actually know how cable systems are configured today.
Q. Okay. So, you just pulled the cable head end idea out of your head -- I'm just trying to understand how you decided that the central data station would be located in the cable head end.

Page 163
A. Well, because colloquially, I - I would like to delineate between using these as -- okay.

When I write these declarations in my reports, I
am attempting, I hope, to write these things in a manner that
people who are not tremendously technical can understand; and
let me just clarify something here. And my understanding of
cable head end, which I think is a general person's
understanding of cable head end, is a location which can branch out and serve multiple users.
Q. Okay. And are those often connected to other locations? So, just, for example, cable head ends often will have satellite down link, right?
A. Cable head ends, yes, I would agree with that. They do receive information, yes.
Q. And they receive it so that they can retransmit it to their subscribers, right?
A. Yes.
Q. And a typical cable operator like Time Warner will possess many head ends, right?
A. I was not using the term head end as one or many.

I'm -- I'm using that term from the standpoint of from a -let's use Walter's term -- data receiving station, that data is going to come from some central location where there are -there is equipment located designed to appropriately get the material to the data receiving station.

13:09:14 1 13:09:192 13:09:22 3
13:09:264
13:09:295
13:09:34 6
13:09:387
13:09:388
13:09:40 9
13:09:4410
13:09:4911
13:09:5012
13:09:5313
13:09:5314
13:09:5515
13:09:561.6
13:09:5917
13:10:0518
13:10:0719
13:10:1220
13:10:1521
13:10:1522
$13: 10: 2023$
13:10:2224
13:10:2625
Q. And those places, those central data stations have to get their content from somewhere, right?
A. Well, in the case of Walter, we see the central data station has these memory modules which are installed in the case of, for example, the -- the Time Wamer building in Ithaca, they certainly have cable receivers.
Q. Okay.
A. I'm sorry, satellite receivers.
Q. So, the normal way to do it is electronically rather than sending things by courier to the cable head end, right?

MR. PAYNE: Objection, form.
A. I don't know what's normal in distribution these days.
Q. (By Mr. Stephens) Okay. And you don't know what was normal in 1985 , right?
A. In terms of cable head ends, that's correct.
Q. Okay. So, you don't know whether a cable operator would have been motivated to use the same kind of system that we see in Walter to distribute video to its cable head ends, right?

MR. PAYNE: Objection, form.
A. So, I would like to see, I guess, a diagram of the type of cable system that you're referring to with what's called head end in order to answer that.
Q. (By Mr. Stephens) So, you just don't know without

Page 165

13:10:27 1
13:10:29 2
13:10:473
$13: 10: 504$
13:10:52 5
$13: 10: 556$
13:10:597
13:10:59 8
13:11:02 9
13:11:0510
13:11:0811
13:11:0912
13:11:1213
13:11:1514
13:11:1515
13:11:1916
13:11:2417
13:11:3318
13:11:3819
13:11:4220
13:11:4621
13:11:5322
13:12:0123
13:12:0524
13:12:0725
having more information; is that right?
A. Yes.
Q. Okay. Would a person of ordinary skill in the Eighties have understood that you could use a disk drive in place of the memory modules in Walter?
A. I missed the very begimning verb. Did you say "would $\mathrm{a}^{\prime \prime}$?
Q. Would a person of ordinary skill in the art in 1985 have understood that you could use a disk drive in place of the memory module described in Walter?
A. I think that one of ordinary skill would have understood that you would not use a disk drive in place of the memory modules.
Q. Why?
A. So, first off, Walter has explicitly taught us that those are recirculating shift registers. But outside of that, those units had particular speed requirements in order to get the data out at the speeds required for the - the transmission. And, in fact, Walter specifically talks about doing the setup of the data cells to somewhat reduce those rates a little bit. And I do not believe that that data could have been accessed quickly enough using hard drives with the speeds that they had available in the Eighties.
Q. But you -- in other words you might not be able with a single magnetic disk drive to get it out fast enough to send

13:13:55 1
13:13:59 2
13:14:08 3
13:14:104
13:14:145
13:14:14 6
13:14:177
13:14:18 8
13:14:22 9
13:14:2510
13:14:2811
$13: 14: 3212$
13:14:3713
13:14:4214
13:14:4715
13:14:5016
13:14:5317
13:14:5718
13:14:5819
13:15:0120
13:15:0321
13:15:0422
$13: 15: 0823$
13:15:1324
13:15:1925
Page 166
$13: 12: 111$
$13: 12: 132$$\quad$ A two-hour movie in 31 seconds, is that right? \quad, a single magnetic disk drive is certainly not a

Page 167
a two-hour movie in 31 seconds; is that right?
A. Well, a single magnetic disk drive is certainly not a recirculating shift register.

But yes recirculating shift register with a disk drive.
A. If you replaced a recirculating shift register with a disk drive - first off, let me note that Walter states that the compressed data rate is, if I remember correctly, 44 megabits per second. So, we see that on Column 7 around line 39. So, given the size of single disk drives in the Eighties, which I don't have on the tip of my tongue, but I am certain would not be able to store more than several seconds of video -- so, from the standpoint that were -- Walter is would understand that.
Q. So, you -- it's your testimony that disk drives weren't big enough to store a two-hour movie at that data rate; is that right?
A. Well, at 44 megabits per second, two hours is 7,200 seconds. And actually, we can do the multiplication here, 31 seconds times 10,400 megabits per second. So, this gives us 300-300 megabits, and I don't believe in the mid Eighties there were 300 megabit single magnetic drives.
Q. Okay. But you could stripe disk drives together in a RAID array to get that size, right?
A. Can you give me a little bit more details about what you mean by RAID? I think I mentioned --
Q. Redundant -
A. Yeah, I understand what Redundant Arrays of -- I'll let you finish that
Q. I think it's variously called Inexpensive Disks or something else, which I don't remember.
A. So, my familiarity with RAD also came from when I worked on video on demand, which was in 1994. So, all the nuances involved in - in something specific known as RAID, I don't -- I'm uncomfortable answering. I would agree that one could assemble a large group of disk drives such that the sum of the capacity was 300 megabits.
Q. And it was known that you could stripe data across them and to increase the I / O, the data rate, at which you could read them, right?
A. I don't know for a fact that that was known in the mid Eighties, but I think it's reasonable to expect that it was.
Q. Okay. And if your only concern was to send it quickly but maybe not send it in 31 seconds, you could use a RAID array of disks in 1985 to store digital video and send it faster than real-time over the optical network described in

13:17:441
13:17:492
13:17:53 3
13:17:574
13:18:005
13:18:046
13:18:087
13:18:13 8
13:18:14 9
$13: 18: 1410$
13:18:1811
13:18:2412
13:18:2713
$13: 18: 3214$
13:18:3315
13:18:3616
13:18:4117
13:18:4418
13:18:4919
$13: 18: 5320$
$13: 18: 5421$
13:18:5622
13:19:0023
13:19:0424
13:19:0825
$13: 15: 21$ $13: 15: 252$
$13: 15: 313$
13:15:364
13:15:395
13:15:42 6
$13: 15: 467$
13:15:498
13:15:53 9
13:15:5710
13:16:0011
13:16:0412
$13: 16: 1213$
$13: 16: 1714$
13:16:2315
13:16:2816
13:16:3517
13:17:0918
13:17:1219
13:17:1820
13:17:2221
13:17:2822
13:17:2823
$13: 17: 2824$
13:17:4025
13:15:25:2
$13: 15: 313$

$$
r
$$ my tongue right now. So, I'd rather not do some hypothetical calculation which may or may not. But I am confident that it calculation which may or may not. But I am confident that it

wo double digit and possibly even over a hundred. So, having said that, the data could certainly be stored. One could have the fiber optic lines, but there's still a matter of getting the data off and coordinating it, for lack of a better way to put it, in such a manner that it can be appropriately multiplexed and packaged for transmission over the fiber optic links as taught.
Q. Now, earlier today we were talking about audio compression and you said that a person of ordinary skill in the art would have been aware of statistical characteristics of audio and the way human ear processes audio information, right?
A. Yes.
Q. Now, humans hear audio in a way that makes them more sensitive to lower frequencies across the human hearing range;
A. I don't know that that would be possible in that one would have a substantial issue in coordinating what I expect to be a fairly large number of drives. I mean, we're not talking, like, five drives here to get 300 megabits.
Q. Do you know how many drives would be required?
A. I am sure it would be at least double digit; but, again, I just don't have those disk capacities on the tip of

Walter, right?

Page 169
is that right? Or maybe I should say more finely able to distinguish between tones at lower frequencies?
A. That's very well put. Yes. We essentially have a filter bank in our ears, and the bandwidths of the lower frequency channels are narrower. So, therefore, if we have two tones that are some distance apart, they may fall into separate channels and we can delineate that. Where if we move them up to higher frequencies, they may fall within a single filter bandwidth.
Q. And that's reflected in the way musical instruments are configured in octaves, right?
A. I think that's a philosophical question. I don't -I don't know even what configured for a musical instrument means.
Q. Well, for example, you've referred to the keys on a piano keyboard as being in different octaves, right?
A. Yes, but that -- okay.
Q. And an octave in ordinary acoustical meaning refers to doubling frequency. If you move up one octave, you double the frequency?
A. Oh, okay. Now I understand what you're saying. So, I would say that, yeah, our - as humans, our representation of music or acoustical information is tied in with -- with our hearing sensitivity, yeah. That statement, I -- that I just said, I would -- I would agree with.

13:19:101 13:19:142 $13: 19: 183$ 13:19:234 13:19:295 $13: 19: 346$ 13:19:407 $13: 19: 438$ 13:19:479 13:19:5110 $13: 19: 5411$ 13:20:0012 13:20:0113 13:20:0414 13:20:0715 $13: 20: 1016$ 13:20:1617 13:20:2118 $13: 20: 2419$ 13:20:2620 $13: 20: 3021$ $13: 20: 3322$ $13: 20: 3523$ 13:20:3624 13:20:3925
Q. Okay. And, so, the entire human hearing frequency range from 10,000 hertz to 20,000 hertz is really just the top octave; is that right?
A. Now, let's delineate -- octaves are terms that we use as humans to describe music. With respect to the ear, we refer to what are called critical bands. And the critical bands are effectively -- there's no one single answer for exactly where the edges of the critical bands are. I think there's sort of general agreement, but specifically people can move them around a little bit - is the critical bands that we refer to that actually serve as the frequency delineations in the ear. Now --
Q. How many critical bands are there?
A. I don't know how many critical bands there are, but to map the critical band back to your question or the area that you talked about between 10,000 and 20,000 , I do not know whether there are critical boundaries, critical band boundaries in that range or not.
Q. Do you know approximately how many critical bands there are?
A. They're on the order of tens -- "tens" meaning order of magnitude so --
Q. But not a hundred, right?
A. Not a hundred, no.
Q. Do you know offhand statistically how much musical

13:22:051
$13: 22: 102$ $13 \cdot 22 \cdot 143$
$13: 22: 184$
$13: 22: 225$
13:22:256
13:22:297
$13: 22: 358$
13:22:389
$13: 22: 4310$
$13: 22: 4311$
13:22:4612
$13: 22: 5213$
$13: 22: 5614$
$13: 23: 0215$
$13: 23: 0816$
$13: 23: 1317$
$13: 23: 1518$
13:23:1919
13:23:2420
13:23:2921
$13: 23: 3322$
13:23:3423
13:23:3724
13:23:4225
A. You know, I have to say that I have no idea what unit you have, how it is computing, how much it should light up of those, what type of preprocessing or signal conditioning they're doing, whether that is reflecting what your graphic equalizer settings are or not. So, I - I would not like to make any type of guess based on what you've just told me.
Q. Do you have any reason to believe that it -- do you have any reason to disbelieve the proposition that I'm making that there is relatively little musical content above 13 kilohertz?
A. Well, I'll make two comments. One is I don't know what "relatively little" is; and secondly, I do believe that the standard that exists for digitizing audio for compact disks was designed by smart people and it is a reasonable standard and the fact that they sample at 44.1 kilohertz, which would be twice of the highest frequency of 22.05 , I believe that decision was made on sound engineering principles. And if they really believed that, indeed, we needed to -- we could get away with cutting off at 13.5 or 15 or 17 , that we would have that because the end result means that we would -- this goes back to our storage. We would have more data on a compact disk.
Q. Is it fair to say, though, that that decision does not mean that information is uniformly distributed across the audio spectrum?
information is represented in a band from 10,000 to 20,000 hertz?
A. So, can you clarify what you mean by "statistically" and how much --
Q. If you take a large sample of popular music, how much information content, how much power relative to the entire signal is being delivered in that band from 10 to 20 kilohertz.
A. Okay. So, now we've, okay, clarified with respect to power.

So, were we to take, say, eight FM radio stations, hopefully one of which would include classical music, and average out, essentially do a histogram for power across various frequency bands, I don't know what that histogram would look like at -- let me just emphasize that it is important to average. We can't take a single piece of music and say that it's -- or any audio content, a symbol crash, and say that it's representative for the symbol class as a whole.
Q. Well, let me just give you an example of personal experience. I have a rather elaborate stereo system that has, in part, a sort of frequency analyzer display which I can watch while I'm listening to music; and I see very little content above 13 kilohertz ever -- do you have any reason to disagree with that -- over the type of music that I listen to.
$13: 23: 441$ $13: 23: 472$
13:23:52 3
13:23:554
13:23:575
13:24:056
13:24:087
13:24:12 8
13:24:159
13:24:1910
13:24:2511
13:24:2912
$13: 24: 3313$
13:24:3414
13:24:3715
13:24:3916
13:24:4217
13:24:4418
13:24:4519

13:27:0021
13:27:2222
13:27:2723
13:27:2924
13:27:3325

Page 173
A. Information is certainly not, in the content of any type of audio with the exception of white noise, uniformly distributed across the audio spectrum.
Q. Okay. And in fact, it is concentrated in the bands in which human speech is also concentrated, right?
A. I have a particular plot in mind from one of my lectures, but I honestly don't remember the axes so well. So, I'm a little hesitant to nail it down to that, but I will say that certainly in terms of our sensitivity, we have -- on a \log / \log plot, we have a peak that goes up at frequencies below 10 kilohertz and then falls off. And I'll just add, we have an extreme sensitivity at a high frequency range which is where babies scream. It's true.
Q. And what is that frequency?
A. I think that's around 7,000 hertz, but it's very, very clear on the plot.
Q. We need to change the tape. So, let's take a very brief break.

THE VIDEOGRAPHER: Off the record at $1: 24$. (Recess taken) THE VIDEOGRAPHER: This is the deposition of Dr. Hemami. The time is $1: 27$. We're back on the record.
Q. (By Mr. Stephens) Dr. Hemami, if you were to take Claim 1 of the ' 995 patent completely apart from the disclosure of the specification or the drawings --
$13: 27: 38$
$13: 27: 40$
$13: 27: 50$
$13: 28: 04$
$13: 28: 13$
13
$13: 28: 13$
$13: 28: 14$
$13: 28: 15$
$13: 28: 16$
$13: 28: 17$
10
$13: 28: 2111$
$13: 28: 2512$
$13: 28: 2813$
$13: 28: 3014$
$13: 28: 3315$
$13: 28: 3316$
$13: 28: 4017$
$13: 28: 4118$
$13: 28: 4119$
$13: 28: 4520$
$13: 28: 4821$
$13: 28: 5122$
$13: 28: 5623$
$13: 28: 5924$
$13: 29: 0225$ 13:29:0225
A. Could I just see the patent? I don't want to go on my memory of the claim.
Q. All right. Just a second.

This has previously been marked as Exhibit 1.
MR. STEPHENS: Les, I'm assuming you've got that?

MR. PAYNE: Yeah, thanks.
A. Okay.
Q. (By Mr. Stephens) If you took Claim 1, would you be able to build that -- a person of ordinary skill in the art, would they have been able to build that just based on what they knew as a person of ordinary skill in the art?

MR. PAYNE: Wait, this is a -- is this an enablement question?

MR. STEPHENS: No. It's actually about Walter; so, bear with me.

MR. PAYNE: Can you repeat --
Q. (By Mr. Stephens) So, let me -- let me just ask the question differently. Would a person of ordinary skill in the art in 1985, if they were presented with Claim 1 of the '995 patent and the disclosure of Walter been able to build what's claimed?
A. Okay. I'm going to repeat this to make sure I understand this. This person has Walter.
Q. Yes.

Page 175

13:29:03 1
13:29:09 2
13:29:11 3
13:29:20 4
$13: 29: 255$
13:29:296
13:29:33 7
13:29:378
13:29:38 9
13:29:4110
13:29:4311
13:29:4412
13:29:4513
13:29:4614
13:29:4815
13:29:5016
13:29:5017
13:29:5218
13:29:5319
13:29:5620
13:30:0021
13:30:0422
13:30:2623
13:30:2824
13:30:3225
A. And this person has just the text of Claim 1 from the '995 patent?
Q. That's right.
A. Well, my first off-the-cuff remark is that Walter hasn't given us any compression means.
Q. Okay. So, let me ask it slightly differently then.

Let's look only at the functions for the means-plus-function claims.
A. Let me also add, we don't have any random access storage means. So -- okay. So, you would like me to look just at what's going on --
Q. Right.
A. -- not the thing itself.
Q. Right. I'm not asking you to perform the 112
analysis. If you'd just look at the functions that are recited.
A. I don't know what that means.
Q. Fair enough. If you just look at the - the
functions that are recited and you take a person of ordinary skill in the art that has that list of functions in Claim 1 and Walter, would they have enough information to build Claim 1?
A. I guess I'm not exactly --I mentioned that Walter doesn't give us any compression mechanism. Walter doesn't teach us that anything in Figure 1 is a compressor, and --
$13: 30: 431$
13:30:45 2
$13: 30: 483$
13:30:49 4
13:30:50 5
13:30:536
$13: 30: 557$
13:30:568
13:31:00 9
13:31:0310
13:31:0511
13:31:0912
13:31:1213
13:31:1514
13:31:2215
13:31:2816
13:31:3517
13:31:4218
13:31:4719
13:31:5120
$13: 31: 5521$
13:31:5622
13:31:5923
13:32:0224
13:32:0625

13:32:10 1
$13: 32: 112$
$13: 32: 163$
13:32:20 4
$13: 32: 275$
13:32:316
$13: 32: 367$
$13: 32: 368$
$13: 32: 409$
$13: 32: 4510$
13:32:5011
$13: 32: 5312$
$13: 32: 5413$
13:33:0014
13:33:0015
13:33:1116
13:33:1317
13:33:1618
13:33:1919
13:33:2320
13:33:3221
13:33:3422
13:33:3723
$13: 33: 4224$
$13: 33: 4825$
Q. Looks like --
A. -- I've mentioned that --
Q. Okay. Go ahead.
A. I don't know what the host - I I don't know enough about the host computer to say whether it was capable of doing that or not.
Q. I think your misapprehending my question a little bit. I'm not asking whether all the elements in Claim I are present in Walter. I'm asking whether if you had the information in Walter, would you be able to build what's in Claim 1 if you were looking at Claim 1 so it tells you you need something to do compression and it tells you you need random access memory. With that and the knowledge of a person of ordinary skill in the art and Walter, would you be able to build what's in Claim 1 ?
A. I-I-I genuinely do not understand the question.
Q. Well, so, for example, when it talks about a means
for compressing audio/video source information, Walter describes an algorithm for doing that, right?
A. Walter mentions an algorithm for compression of video.
Q. Okay. And random access stotage means is something that people of ordinary skill in the art were very familiar with in the mid Eighties, right?
A. Random access storage would have been known to one of

Page 177

skill.
Q. Okay. And Walter describes a way of outputting audio/video information over an optical fiber faster than real-time, right?
A. Walter describes -- in fact, most of the stuff in the central data station is to get the data onto the fiber optic lines.
Q. Okay. So, is there anything that's in Claim I that you would not be able to figure out how to do if you had Claim 1 and the disclosure of Walter?

THE REPORTER: I'm sorry, "disclosure of" -MR. STEPHENS: Of Walter in 1985.
A. Well, Claim 1 also requires an input means.
Q. (By Mr. Stephens) Okay.
A. And I look at Walter and we've discussed that our central data station does not have an input means.
Q. But the receiving station does, right?
A. The receiving station does receive.
Q. So, if you need an input means, the -- the structures for creating one are described in Walter, right?
A. Walter -- there are two other things here, and I
think I'm still not exactly understanding what it is you're asking me. Claim 1 starts off with an audio/video transceiver apparatus. So, we have an apparatus, not two apparatii or --
Q. Okay.

Merrill Legal Solutions

Page 178

A. -- or two central -- two separate locations.
Q. So, you're looking at Claim 1; and it tells you, you want them both in a transceiver, you're trying to build a transceiver. Walter has both a transmitter and a receiver. Now, according to you, it doesn't disclose or suggest putting them together into one box, but Claim 1 does, right? So, if you had Claim 1 and the disclosure of Walter, you'd have a transmitter and you'd have a receiver and you could combine them in a way to make a transceiver, right?
A. So, at the risk of sounding as if I'm trying to agitate you -- and I'm truly not; this is a genuine legal question -- isn't this a classical case of hindsight? I have ingredients in a box -- --
Q. It absolutely is, yes.
A. -- that I didn't intent to --
Q. I'm saying, you have the claim.
A. -- put together and --
Q. So, I'm asking you, if you have that hindsight, if you have the claim, do you have all the technology that you need to build it? So, yes, I agree with you. This is hindsight I'm asking you to engage in.
A. Well, again, we don't -- we don't have -- Walter has given us a compression algorithm. Walter -- Walter has said the data is compressed using this algorithm. Walter has not given us any mechanism by which --

13:36:10 1
$13: 36: 142$
$13: 36: 153$
$13: 36: 164$
13:36:205
13:36:24 6
13:36:24 7
$13: 36: 258$
13:36:279
13:36:3110
13:36:3311
$13: 36: 3512$
$13: 36: 3713$
13:36:3814
13:36:4315
13:36:4716
13:36:5217
13:36:5818
13:37:0419
13:37:0720
13:37:1021
13:37:1622
13:37:2023
$13: 37: 2324$
13:37:2925

Page 179
Q. Now, you told the Court --
A. -- that could be done.
Q. -- in the -- in the tutorial that a system designer
wouldn't be so concerned with the details of that because the
system designer would understand that there were a variety of ways to implement a compression algorithm once you had it, right?
A. Yes.
Q. You mentioned, like, an ASIC and a -- maybe you mentioned a field programmable gate array. I forget, but you mentioned a number of different approaches?
A. Yes, that's correct.
Q. Okay. So, a person of ordinary skill looking at Claim 1 and looking at Walter would understand those ways would be available to them to implement the algorithm described in Walter, right?
A. I think in the -- in the -- this goes back to could we do this on a computer. In the abstract, an algorithm, provided that it can be implemented, is -- one has options to do that, yes, that's certainly true.
Q. And those options were understood to persons of ordinary skill, right?
A. One would hope, yes.
Q. Okay. So, is there anything in Claim 1 that would not be enabled by Walter, if -- again, if you had the benefit
$13: 38: 4325$
of hindsight and you were looking at the claim?
A. Well -- --

MR. PAYNE: Objection, form.
A. -- I feel like Im still missing something; but let me say, I look at Walter. First off, I want a single apparatus.
Q. (By Mr. Stephens) Okay. And the claim tells you that, single apparatus?
A. And I don't see that in Walter. The --
Q. But - but could you build it, given the disclosure of Walter and the suggestion from the claim?
A. Well, let me work through the four elements.
Q. Okay.
A. So, okay, we have our apparatus requirement. Input means: So, I look at Walter and Walter as a data receiving station certainly has input means. The signal gets on it through the fiber optic. Compression means: Now, I think I'm still confused about what's going on here, but one of ordinary skill certaintily understands -- would understand, as we just discussed, that this thing could be implemented in a variety of ways, which doesn't really pertain to what Walter provides us with other than a single -- an algorithm.
Q. But that algorithm would be enough to create the compression means of the claim, right?
A. I feel like that might be a legal question, and I
Page
don't know how to answer that.
Q. Okay. I'm just talking about the function.
A. So --
Q. So, there is an algorithm that is present in Walter for compressing audio/video source information; and one of ordinary skill would be able to built it based on the disclosure in Walter. I think you've already said that, right?
A. Okay. Yeah, let's not use the word "means" there. Q. Okay.
A. Okay. Random access storage means: Walter does not -- not only does Walter not have random access but, as I have mentioned in my declaration, I believe that Walter actually gives us a specific alternative. The system is designed around using these recirculating shift registers. We talked a little bit, had a disagreement as to whether one would want to create such a thing from a DRAM or a random access. So, while random access storage would be known to one of skill, I think looking at Walter, random access storage is not something that one of skill would understand would be appropriate given the system, so, just simply looking at what we have available in Walter.
Q. Okay. But, again, a person of ordinary skill in the art would know about RAM, right, so when they read it in the claim, they'd know what it is?
$13: 38: 441$
$13: 38: 462$
$13: 38: 47$
$13: 38: 49$
$13: 38: 525$
$13: 38: 56$
$13: 38: 59$
$13: 39: 018$
$13: 39: 029$
$13: 39: 0510$
$13: 39: 0811$
$13: 39: 1212$
$13: 39: 1613$
$13: 39: 1914$
$13: 39: 2215$
$13: 39: 2416$
$13: 39: 2617$
$13: 39: 3218$
$13: 39: 3519$
$13: 39: 3620$
$13: 39: 3621$
$13: 39: 3722$
$13: 39: 3823$
$13: 39: 3924$
$13: 39: 4225$

13:38:441
$13: 38: 462$ $13: 38: 473$ $13: 38: 494$ $13: 38: 525$ 13:38:597 13:39:018 13:39:029 13:39:0510 13:39:0811 13:39:1212 $13: 39: 1613$ 13:39:1914 $13: 39: 2215$ $13: 39: 2416$ $13: 39: 3218$ $13: 39: 3519$ 13:39:3620 13:39:3621 $13: 39: 3722$ $13: 39: 3823$ $13: 39: 4225$
A. They would certainly have an understanding of what random access referred to.
Q. And they would know that you could store video, compressed video in random access memory, right?
A. I don't know if compressed video was stored in random access memory at that time. I -- I don't know.
Q. Certainly it was done in the process of compressing it on a computer, correct?
A. Well, actually, I don't know that either. I mean, for one, what do we call compressed video? Is it a portion of a bit stream? Is it the whole thing? If we are using the RAM as a buffer, do we call that storage or do we call it a buffer? I think one of skill would not necessarily say that passing through a buffer would be storage.
Q. Okay. So, I just -- I just need an answer. Would a person of ordinary still, then, looking at the claim and having Walter available be enabled to store video in random access memory by that combination?
A. Okay. So, I think that be enabled has a legal meaning --
Q. Oh --
A. -- and In a little bit uncomfortable with that --
Q. -- forget -- forget about the word "enabled."

Would they have enough knowledge at their
disposal in 1985 to do what the claim requires with respect to

13:41:051
13:41:092
$13: 41: 123$
13:41:154
$13: 41: 165$
$13: 41: 246$
13:41:267
13:41:298
13:41:329
13:41:3710
13:41:4111
13:41:4812
13:41:5013
$13: 41: 5414$
13:41:5715
13:42:0116
13:42:0617
13:42:1018
13:42:1419
$13: 42: 1720$
$13: 42: 2021$
$13: 42: 2322$
13:42:2723
$13: 42: 3124$
$13: 42: 3125$
random access memory, is there anything else that you would need in order to be able to do it; or is the suggestion enough?
A. I'm not sure what you mean by --
Q. Do what the claim requires. In other words --
A. I'm still not sure I understand what you're asking.
Q. -- random access storage coupled to compression for storing a time compressed representation. So, would a person of ordinary skill in 1985 who had that suggestion along with the rest of the claim be able to build a random access storage means that stored the compressed video as we've talked about?
A. Okay. Can you repeat that again?
Q. Yes. Would a person in 1985 looking at the claim language that talks about a random access storage coupled to the compression for storing a time compressed representation, would they be able to build such a random access storage device?
A. Well, I think certainly they could go with a bunch of chips and set them off. Now, again, you know, Walter doesn't give us any compression means. So, this is all very nebulous, right? We've got some way that some system designer is going to implement the compression means. Can that be interfaced to random access storage means? I guess that depends on how they implement the compression means.
Q. Okay. But if you were -- if your boss handed you

13:39:451
13:39:482
13:39:51 3
13:39:554
$13: 40: 005$
13:40:046
$13: 40: 057$
13:40:098
random access storage?
A. They would understand what random access storage was, and certainly the claim is suggesting that the compressed video be put in the random access storage. So, from that standpoint, they at least have the planting of an idea.
Q. And is there any -- anything else they would need in order to be able to actually build something that did that?
A. Well, yeah. Let me -- were still on -
Q. Okay. Keep going.
A. - I think I have -- output means is right because I think that --
Q. No, you're right.
A. -- we did random access.

Okay. So, output means. So, again, looking at Walter, we see that the central data station does provide a mechanism by which the stored video in the memory modules, which are not random access, can be transmitted from the central data station to the data receiving station.
Q. Okay. And that can be done faster than real-time so that you're compressed representation would have an associated time period shorter than the time period associated with real-time representation, right?
A. That's what Walter -- Walter tells us that we have 31 seconds to get a two-hour movie.
Q. Okay. So, given the suggestion in the patent about

13:42:341
$13: 42: 38 \quad 2$
$13: 42: 423$
13:42:504
13:42:545
13:42:586
13:43:007
13:43:02 8
13:43:09 9
13:43:1110
13:43:1611
13:43:2212
$13: 43: 2513$
13:43:3214
13:43:3615
13:43:4016
$13: 43: 4317$
13:43:4318
13:43:4319
13:43:4620
13:43:4921
13:43:5122
13:43:5523
$13: 43: 5724$
13:44:0225

Page 185
Claim 1 and said "Go implement it " and here's a piece of known technology, Walter, in 1985, you'd be able to do that, right?
You, meaning a person of ordinary skill in the art.
A. I think that -I I don't know, would be able to do that, given Walter. It's not clear to me that Walter would be the only thing that one would need --
Q. Well, no. You'd have the other resources that a person of ordinary skill would have at the time.
A. And it's not clear to me that there would not necessarily have to be some creativity in getting everything to work. I mean, let's face it. If building things was so easy, wed have a lot more engineers in the world and probably a lot better design systems around us. What I'm trying to -what l'm trying to say here is, I don't think that if one had all of these units in a box, legal box, one could just pull them out and interconnect and in the course of an afternoon be done.
Q. No --
A. And then say, "Well, okay. So, I also have to do a compression means and a random access storage means." I think that it would - you know, it would require some work. This is a nontrivial operation. And it may require some -- some unique design elements which, you know, I don't think I could foresee, given the ten minutes we've been talking about this but --

13:44:021 13:44:05 2 $13: 44: 083$ 13:44:114 13:44:165 13:44:196 $13: 44: 247$ 13:44:28 8 13:44:32 9 $13: 44: 3610$ 13:44:3711 13:44:3812 $13: 44: 3913$ 13:44:4114 13:44:4315 13:44:4416 13:44:4717 13:44:4918 13:44:5119 13:44:5320 13:44:5721 13:45:0122 13:45:0523 13:45:0924 $13: 45: 1225$

Page 186
Q. So, there's nothing you could point to that you would say, "Ah, I see a problem here that, you know, really takes something from the disclosure in Lang to solve"?
A. Well, I don't see anything immediately, but my experience, which I don't think is unique, is that sometimes we get -- we have to get into a problem a little bit to truly understand that -- what the issues are. And certainly from experience, the issue that arise are more often than not not the ones that were anticipated at the beginning of a design process.
Q. And sometimes you don't find that so you try and build it, right?
A. That's right. That's right.
Q. Okay. But sitting here now, you can't identify anything, right?
A. Certainly not in the short time period, you know. I'm sure that on the plane something will smack me upside the face.
Q. Okay. Now, I'd like to move on a little bit since we don't have much time and there's a whole lot more in your declarations. Now, one thing I noticed in your declarations is that you don't anywhere say that Kramer fails to disclose transmitting audio data faster than real-time. Is that right? Is that your recollection?
A. I have not made that statement, but I firmly believe
$13: 45: 511$ 13:45:55 2 $13: 45: 583$ $13: 45: 594$ 13:46:055 13:46:086 13:46:097 13:46:118 13:46:16 9 13:46:2010 $13: 46: 2611$ 13:46:2912 $13: 46: 3313$
13:46:3414
13:46:3515
$13: 46: 3916$
$13: 46: 3917$
13:46:4118
13:46:4419
13:47:0320
13:47:0421.
13:47:2722
13:47:2823
13:47:2924
$13: 47: 3325$

Page 188
Q. (By Mr. Stephens) Why, Dr. Hemami, do you believe that Kramer does not disclose transmitting audio information faster than real-time?
A. So, I read Allen Gersho's explanation, and I believe that to be completely correct.
Q. So, you believe that it has a hundred subband decoders; is that right?
A. I believe that Mr. Kramer did not necessarily understand subband coding very well, that he used four decoders in the figures and that he believed that he needed a large number of subband decoders for the implementation.
Q. But he doesn't anywhere disclose a large number of subband decoders, right?
A. He mentions a hundred.
Q. No, he does not anywhere. If you can identify it, tell me.
A. The number 100 is in the specification.
Q. Yeah. It says that -- that - and I'll read it to
you. Bear with me one moment here. Dig through this stack of papers here
A. You're going to find your lost exhibit tags.
Q. I know.

It says: "This output will be at a speed much faster, at least 100 times, than that required for actual sound reproduction." Okay. And then later it says that "the

Page 187

13:45:15 1 13:45:17 2 13:45:20 3
13:45:214
13:45:255
13:45:276
13:45:297
13:45:32 8
13:45:32 9
13: 45:3510
13:45:3711
13:45:3812
13:45:3913
13:45:4114
13:45:4115
13:45:4116
13:45:4217
$13: 45: 4218$
13:45:4219
13:45:4320
13:45:4521
$13: 45: 4522$
$13: 45: 4623$
13:45:4824
13:45:5025
that to be true.
Q. Okay. And why do you believe that?

MR. PAYNE: Hold on a second. You're outside the scope of the declaration by your own admission.

MR. STEPHENS: She opined about Kramer. If you're going to direct her not to answer questions about Kramer, you go right ahead. Are you going to do that?

MR. PAYNE: That question, she's not going to
answer. Your - by your own admission, you're beyond the scope of the declaration.

MR. STEPHENS: That is -- her -- the scope of her declaration includes Kramer which she admits she's studied. If you're going to -- you're directing her not to answer?

MR. PAYNE: I tell you what, if you're going to --

MR. STEPHENS: Les, this is simple. Are you going to --

MR. PAYNE: Go ahead.
MR. STEPHENS: Okay. Then I'm going to go ahead.

MR. PAYNE: If you want to do that --
MR. STEPHENS: All right. So, stop wasting my time. Make your objection. I'm going to keep using the precious time that I have.

13:47:391
13:47:44 2
$13: 47: 48 \quad 3$
$13: 47: 504$
13:47:54 5
13:47:596
13:48:04 7
13:48:05 8
13:48:09 9
13:48:1210
13:48:1511
13:48:1512
$13: 48: 2713$
13:48:3214
$13: 48: 3515$
16
13:48:3717
13:48:3918
13:48:4419
13:49:2120
13:49:2521
13:49:2922
$13: 49: 3423$
13:49:3524
13:49:3525
decoder can read the data at the required slower reproduction rate by taking, for example, only one out of every 100 bits of information presented to it at a time."

Those are the only two times that the number 100 appears with respect to the transmission of data; and there are only four decoders, subband decoders shown.
A. Yes.
Q. So, when it says: "This output will be at a speed much faster than that required for actual sound reproduction, it's your testimony that that's just wrong; is that right?
A. Yes.
Q. Okay. Now, in Kepley, Kepley also discloses sending voicemail messages faster than real-time, right?
A. Can I -- can I have a copy of Kepley, please?
Q. Yeah. Here's Exhibit 250.
(Exh. 250 marked)
MR. STEPHENS: Do you have that, Les?
MR. PAYNE: Yes. Thanks. Objection to form.
Q. (By Mr. Stephens) And you'll see in here in the summary invention in Column 2 , line 63 , it says that the wideband transmission facility of this computer data file transmission can be executed faster than a real-time voice message transmission. Do you see that?

MR. PAYNE: Where -- where -- what column? Do you - what line?

Merrill Legal Solutions

13:50:41 1
$13: 50: 462$
13:50:493 $13: 50: 544$ $13: 50: 585$ $13: 51: 016$ $13: 51: 067$ 13:51:078 13:51:10 9 $13: 51: 1310$ 13:51:1911 13:51:2012 13:51:2513 13:51:3114 $13: 51: 3815$ 13:51:4016 $13: 51: 4317$ $13: 51: 4518$ 13:51:5019 13:51:5120 $13: 51: 5521$ 13:52:0122 $13: 52: 0523$
$13: 52: 0624$
$13: 52: 0725$

	Page 190
13:49:351	MR. STEPHENS: Column 2, line 63.
13:49:382	A. Yes.
13:49:383	Q. (By Mr. Stephens) It talking about transferring a
$13: 49: 404$	data file containing voicemail messages, right?
13:49:445	A. It's not clear to me that single data file has
13:49:486	messages, but --
13:49:487	Q. Well, it says the "message transfer capability
13:49:518	includes the transmission of an in-depth header, containing
$13: 49: 559$	for example the name of the message... and the telephone
13:49:5710	number of the message sender and the message recipient, along
13:50:0111	with the recorded message."
13:50:0212	A. Right. So, I think that's a single message.
13:50:0513	Q. Okay. I see. I -- I understand. Then it says, the
13:50:0814	"intermessage service system communication efficiently uses
13:50:1315	transmission capacity by performing the message transfer as a
13:50:1516	computer-to-computer data file transfer over high speed data
13:50:2017	lines which provides error correction capability." Then it
13:50:2318	says: "If a wideband transmission facility is available, this
13:50:2819	computer data file transmission can be executed faster than a
13:50:3120	realtime voice message transmission."
13:50:3521	A. Yes.
13:50:3522	Q. Right?
13:50:3623	Now, that explicitly describes sending a
13:50:3824	voicemail message in less time than it takes to listen to it,
13:50:4125	right?

Page 191

MR. STEPHENS: Column 2, line 63.

A. Yes.
Q. (By Mr. Stephens) It talking about transferring a

A It's not clear to me that single data file has essages, but -
Q. Well, it says the "message transfer capability for example the name of the message... and the telephone number of the message sender and the message recipient, along with the recorded message."
A. Right. So, I think that's a single message.
Q. Okay. I see. I -- I understand. Then it says, the 'intermessage service system communication efficiently uses rransmission capacity by performing the message transfer as a computer-to-computer data file transfer over high speed data hnes wich provides eror correcion capabily. Thenit computer data file transmission can be executed faster than a
A. Yes.
Q. Right?

Now, that explicitly describes sending a
right?
A. I think it gives a hypothetical. If a wideband transmission facility is available, then this is possible.
Q. Okay. So -- so, it does suggest doing it, right?
A. I guess if that's a suggestion, then yes. It
certainly poses a hypothetical that if A , then B .
Q. Now, AT\&T is the assignce of this patent, right?
A. Yes.
Q. And AT\&T was in the business of providing wideband transmission facilities at the time, right?
A. So, providing to who? What -- can you --
Q. To business customers.
A. And how are you defining wideband?
Q. Lots of bits per second.
A. So, wideband actually has some meaning which did
refer to some things and didn't refer to others. So, that's why f asked what wideband is.
Q. Okay. Well, let's assume for the moment that it means a primary rate interface ISDN connection.
A. Okay.
Q. Now, a primary rate interface ISDN connection had enough capacity to send the compressed voice message described in the portion we were just reading faster than real-time,
right?
A. Yes.
Q. And that's also true for the D channel of the primary

13:52:111 $13: 52: 152$
$13: 52: 163$
$13: 52: 184$
$13: 52: 205$
$13: 52: 216$
$13: 52: 247$
$13: 52: 248$
$13: 52: 289$
$13: 52: 3310$
$13: 52: 3611$
$13: 52: 4212$
$13: 52: 4813$
$13: 52: 5214$
13:53:0015
13:53:0116
13:53:0317
13:53:0318
13:53:0719
$13: 53: 0920$
13:53:0921
13:53:1122
$13: 53: 1423$
$13: 53: 1924$
$13: 53: 2225$

13:54:32 1
$13: 54: 352$
13:54:38 3
13:54:414
13:54:445
13:54:46 6
13:54:527
13:54:55 8
13:54:559
13:54:5910
13:55:0411
13:55:0712
13:55:0913
13:55:1114
13:55:1415
$13: 55: 1616$
13:55:2017
13:55:2518
13:55:2919
13:55:3020
13:55:3221
13:55:3522
$13: 55: 3923$
13:55:3924
13:55:4125
rate interface, ISDN connection, right?
MR. PAYNE: Objection, form
rate interface, ISDN connection, right?
MR. PAYNE: Objection, form.
A. No, I don't think that's correct
Q. (By Mr. Stephens) It was 64 kilobits per second, you testified earlier?
A. The D channel was 64 kilobit per second.
Q. Okay.
A. But the D channel is a signaling channel for use by the provider, and those D channels, both in basic rate interface and in primary RAM interface, regardless of the D chamnel bandwidth, did provide the capability for a data link. So, essentially the provider in this case, AT\&T, could steal some of their signaling bandwidth for a data capability; but the default rate of that data capability was 9.6 kilobits per second.
Q. In basic rate.
A. In both.
Q. Okay. And is it your testimony that the document you cited in connection with your declaration says that about both?
A. Yes.
Q. Okay. That specific portion that you cited also says that the default profile includes rate negotiation, right?
A. Now, for that, I would like to see the document.
Q. Okay. Bear with me a second

Page 193 - Page 193

Well, rather than search through my documents which I've had trouble having well organized because of the weekend, would you agree that if - and I'm asking you to assume for the moment that it does -- the basic profile in the document you cited specifies the rate negotiation is a part of the profile, that you would not be limited to the 9600 bits per second in the D channel that you described in your declaration?
A. So, I don't know what the rate negotiation -- what that refers to; and I would -- I would prefer to go read some of the standards documents in greater detail to understand exactly what that refers to.
Q. Okay. But -- so, sitting here now, you don't know whether you, in fact, would be limited in that default profile to 9600 bits per second?
A. The default profile is 9600 bits per second, and Kepley teaches us to use an LAPD profile and gives us -- gives me no reason to believe that there should be any deviation from that.
Q. Well, he does give you reason to believe it because he says that the transmission is faster than real-time; and according to you, that means it has to be more than 9600 bits per second, right?
A. He didn't say it was faster than real-time. He says, if a wideband transmission facility is available, it can be

Merrill Legal Solutions

	Page 194		Page 196
13:55:461	ted faster than real-time.	13:58:321	various message formats."
13:55:532	ding the specification and trying	13:58:36	has -- what I'm looking for
13:56:00 3	was not an accident that 9.6 was mentioned in Column	13:58	in the specification
13:56:064	k that we -- we all agree that	1	protocols which I think is -- is done quite nicely. I --
13:56:145		13:58:525	PAYNE: Garland, we're going to have to wrap
13:56:186	certainly this 9.6 is a little bit of a strange number to show	1	
13:56:237	up here in Column	1	MR. STEPHENS: All right.
13:56:25 8	Q. Unless the silence compression actually worked to	13:58:568	A. Just give me --
13	reduce the 16 to 9.6 rather than not working at all as you	13:58:599	Q. (By Mr. Stephens) Well, let me just withdraw the
13:56:3210			question because I don't want to waste the last two minutes on
13:56:3311	A.	13:59:0411	we clearly don
13:56:3612	educe	13:59:0712	have enough time that we need to.
13:56:3913	Q. Now, AT\&T was the world leader in voice compression,	13:59:0813	A. Isn't it amazing how the material always disappears
13:56:4514	us	13:59:111	when you need it most?
13:56:4715	A.	13:59:1215	UUCP
13:56:4816	Q. And the --some of the documents that you cited as	13:59:1516	transfer the voice messages, right?
13:56:5117	ho	13:59:1817	UCP as one
13:56:5418	studies, right?	13:59:2118	Q. Okay, Now, the fact that there is a protocol header
13:56:5519	A.	13:59:2519	suggests that the message format could be used for different
13:56:5720	citing then	13	protocols, right?
13:56:5921	Q	13	tio
13:57:0122	c	13:59:3422	't need to specify the protocol
13:57:0423	A. I do believe that there were people there who would		ssage unless you sometimes used other protocols, right?
1		13:59:4324	MR. PAYNE: Objection, form.
13:57:0825	Q. Okay.	13:59:4425	A. I think we are miscommunicating. I - I don't
	age 195		197
13:57:091	A	13:59:51 1	believe that Kepley puts the protocol header -- I'm sorry,
13:57:11	y	13:59:5	epley includes information about the
13	ociation with any of the sp	13:59:59 3	otocol in the message, if I'm interpreting what you asked
13:57:17	co	14:00:03 4	e-
13:57:19	Q. So, AT\&T, had they wanted to, in their -- in the	14:00:03 5	Q. (By Mr. Stephens) Ok
$13: 57: 24$	system	14:00:036	- - correct
13:57:27	prop	14:00:047	our testimony, then
13:57:32		14:00:068	information required by the protocol, not something
13:57:36		14:00:1	ecifying the protocol; is that right?
13:57:3710	A	14:00:1210	A. Yes, yes. Now I understand. Yes. It's my testimony
13:57:3811	Q. (By Mr. Stephens) To the user of the system described	14:00:1511	-- this is header information associated with the
13:57:4012	in the	14:00:1912	rotocols. We can think of it as -- as wrapping the message
13:57:4513	A	14:00:2213	various envelopes where the - each envelope is a different
13:57:4614	pr	14:00:271	ing on who is going to carry it from one point to
13:57:4715	Q. Why did --. why was there a protocol header included	14:00:3015	e next p
13:57:5016	in the	14:00:3016	Q. And that's part of the OSI protocol stack, righ
13:58:0117		14:00:3417	A.
13:58	the message --	14:00:3418	ery much like the TCP proto -- IP protocol stack,
13:58:0519		14:00:3619	right?
13:58:0820	portion of the message that specifies the protocols involved?	14:00:3820	A. Yes.
13:58:1121	A. So, Figure 6-- let me not make up words. Let n	14:00:3821	Q. And that protocol stack is designed so that you can't
13:58:1522	read what Kepley has said because I think the description is	14:00:4122	ange the protocol at a particular layer without affecting
13:58:2023	very n	14:00:4523	the protocols above or below it in some cases, right?
13:58:2524	Q.	14:00:4924	A. I don't know that that's why OSI put these -- I'm not
13:58:2825	drawings in Column 4, it says, "Figures 4 to 6 illustrate	14:00:5525	ure I agree with that statement, that that's why these things

Merrill Legal Solutions

Merrill Legal Solutions

I declare under penalty of perjury that the foregoing is true and correct.

SHEILA HEMAMI

SUBSCRIBED AND SWORN TO BEFORE ME, the undersigned authority, by the witness, SHEILA HEMAML, on this the
\qquad
\qquad -.

NOTARY PUBLIC IN AND FOR
THE STATE OF \qquad

My Commission Expires: \qquad

Page 203
STATE OF TEXAS COUNTY OF HARRIS

REPORTER'S CERTIFICATE
I, Dana Richardson, a Certified Shorthand Reporter in and for the State of Texas, do certify that this deposition transcript is a true record of the testimony given by the witness named herein, after said witness was duly sworn by me. The witness was requested to review the deposition,

I further cettify that I am neither attomey or counsel for, related to, nor employed by any parties to the action in which this testimony is taken and, further, that 1 am not a relative or employee of any counsel employed by the parties hereto or financially interested in theaction.

I further certify that the amount of time used by each party at the deposition is as follows:

Mr. Garland T Stephens - 04:42
SUBSCRIBED AND SWORN $T O$ under my hand and seal of office on this the \qquad -
\qquad

STATE OF TEXAS

COUNTY OF HARRIS

REPORTER'S CERTIFICATE

I, Dana Richardson, a Certified Shorthand Reporter in and for the state of Texas, do certify that this deposition transcript is a true record of the testimony given by the witness named herein, after said witness was duly sworn by me. The witness was requested to review the deposition.

I further certify that I am neither attorney or counsel form related to, nor employed by any parties to the action in which this testimony is taken and, further, that I am not a relative or employee of any counsel employed by the parties hereto or financially interested in the action.

I further certify that the amount of time used by each party at the deposition is as follows:

Mr. Garland T. Stephens - 04:42

SUBSCRIBED AND SWORN TO under my hand and seal of office on this the 0 day of September 2007
r($) /$ a Ca/vendan
Dana Richardson, CSR
Texas CSR 5386
Expiration: 12/31/07
Merrill Legal Solutions, Firm No. 210
315 Capitol, Suite 100
Houston, Texas 77002
Phone (713) 426-0400
Fax (713) 426-0600

