## Exhibit 25

# ITU-T 

# TERMINAL EQUIPMENT AND PROTOCOLS FOR TELEMATIC SERVICES 

## FACSIMILE CODING SCHEMES AND CODING CONTROL FUNCTIONS FOR GROUP 4 FACSIMILE APPARATUS

## ITU-T Recommendation T. 6

(Extract from the Blue Book)

## NOTES

1 ITU-T Recommendation T. 6 was published in Fascicle VII. 3 of the Blue Book. This file is an extract from the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

## Recommendation T. 6

## FACSIMILE CODING SCHEMES AND CODING CONTROL FUNCTIONS FOR GROUP 4 FACSIMILE APPARATUS

(Malaga-Torremolinos, 1984; amended at Melbourne, 1988)

## 1 General

### 1.1 Scope

1.1.1 Recommendation T. 6 defines the facsimile coding schemes and their control functions to be used in the Group 4 facsimile.
1.1.2 This Recommendation should be read in conjunction with the following Recommendations:
T. 503 A document application profile for the interchange of Group 4 facsimile documents
T. 521 Communication application profile for document bulk transfer based on the session service (according to the rules defined in T. 62 bis)
T. 563 Terminal characteristics for Group 4 facsimile apparatus
T. 73 Document interchange protocol for the Telematic services
T. 62 Control procedures for Teletex and Group 4 facsimile services
T. 62 bis Control procedures for Teletex and Group 4 facsimile services based on Recommendations X.215/X. 225
T. 70 Network-independent basic transport service for Telematic services
F. 161 International Group 4 facsimile service

In addition, in the case of Group 4 Class II/III (Teletex or mixed mode of operation), the following Recommendations should also be read:
T. 60 Terminal equipment for use in the Teletex service
T. 61 Character repertoire and coded character sets for the international Teletex service
T. 72 Terminal capabilities for mixed mode of operation

### 1.2 Fundamental principles

### 1.2.1 Facsimile coding schemes and coding control functions

Facsimile coding schemes consist of the basic facsimile coding scheme and optional facsimile coding schemes. They are defined in $\S 2$ and $\S \S 3$ and 4 , respectively.

Facsimile coding schemes are specified assuming that transmission errors are corrected by control procedures at a lower level.

The basic facsimile coding scheme is the two-dimensional coding scheme which is in principle the same as the two-dimensional coding scheme of Group 3 facsimile specified in Recommendation T.4.

Optional facsimile coding schemes are specified not only for black and white images but also for grey scale images and colour images.

Facsimile coding control functions are used in facsimile user information in order to change facsimile parameters or to invoke the end of facsimile block. They are defined in $\S 2.4$.

## 2 Facsimile coding schemes and coding control functions for black and white images

### 2.1 General

This section specifies the facsimile coding schemes, and associated control functions for black and white images.

Facsimile coding schemes consist of the basic facsimile coding scheme and optional coding schemes.

The use of the optional facsimile coding schemes is subject to mutual agreement between terminals and shall be initiated by the appropriate procedural steps.

### 2.2 Basic facsimile coding scheme

### 2.2.1 Principle of the coding scheme

The coding scheme uses a two-dimensional line-by-line coding method in which the position of each changing picture element on the current coding line is coded with respect to the position of a corresponding reference element situated on either the coding line or the reference line which is immediately above the coding line. After the coding line has been coded, it becomes the reference line for the next coding line. The reference line for the first coding line in a page is an imaginary white line.

### 2.2.2 Definition of changing picture elements (see Figure 1 /T.6)

A changing element is defined as an element whose "colour" (i.e. black or white) is different from that of the previous element along the same scan line.

$a_{0}: \quad$ The reference or starting changing element on the coding line. At the start of the line $a_{0}$ is set on an imaginary white changing element situated just before the first element on the line. During the coding of the coding line, the position of $a_{0}$ is defined by the previous coding mode (see § 2.2.3).
$a_{1}$ : The next changing element to the right of $a_{0}$ on the coding line.
$a_{2}$ : The next changing element to the right of $a_{1}$ on the coding line.
$b_{1}$ : The first changing element on the reference line to the right of $a_{0}$ and of opposite colour to $a_{0}$.
$b_{2}$. The next changing element to the right of $b_{1}$ on the reference line.

FIGURE 1/T. 6

## Changing picture elements

### 2.2.3 Coding modes

One of the three coding modes are chosen according to the coding procedure described in $\S 2.2 .4$ to code the position of each changing element along the coding line. Examples of the three coding modes are given in Figure 2/T.6, 3/T. 6 and 4/T.6.

### 2.2.3.1 Pass mode

This mode is identified when the position of $b_{2}$ lies to the left of $a_{1}$. (See Figure 2/T.6.)
However, the state where $b_{2}$ occurs just above $a_{1}$ as shown in Figure $3 / T .6$ is not considered as a pass mode.

Reference line
Coding line


FIGURE 2/T. 6
Pass mode


FIGURE 3/T. 6
An example not corresponding to a Pass mode

### 2.2.3.2 Vertical mode

When this mode is identified, the position of $a_{1}$ is coded relative to the position of $b_{1}$. The relative distance $a_{1} b_{1}$ can take on one of seven values $V(0), V_{R}(1), V_{R}(2), V_{R}(3), V_{L}(1), V_{L}(2)$ and $V_{L}(3)$, each of which is represented by a separate code word. The subscripts $R$ and $L$ indicate that $a_{1}$ is to the right or left respectively of $b_{1}$, and the number in brackets indicates the value of the distance $a_{1} b_{1}$ (see Figure 4/T.6).


IIGURE 4/T. 6
Vertical mode and horizontal mode

### 2.2.3.3 Horizontal mode

When this mode is identified, both the run-lengths $\mathrm{a}_{0} \mathrm{a}_{1}$ and $\mathrm{a}_{1} \mathrm{a}_{2}$ are coded using the code words $\mathrm{H}+\mathrm{M}\left(\mathrm{a}_{0} \mathrm{a}_{1}\right)+$ $\mathrm{M}\left(\mathrm{a}_{1} \mathrm{a}_{2}\right) . \mathrm{H}$ is the flag code word 001 taken from the two-dimensional code table (Table 1/T.6). $\mathrm{M}\left(\mathrm{a}_{0} \mathrm{a}_{1}\right)$ and $\mathrm{M}\left(\mathrm{a}_{1} \mathrm{a}_{2}\right)$ are code words which represent the length and "colour" of the runs $a_{0} a_{1}$ and $a_{1} a_{2}$ respectively and are taken from the appropriate white or black run-length code tables (Tables 2/T. 6 and 3/T.6).

Code table

| Mode | Elements to be coded |  | Notation |
| :--- | :--- | :--- | :--- |
| Hass | $\mathrm{b}_{1}, \mathrm{~b}_{2}$ |  | Code word |
|  | $\mathrm{a}_{0} \mathrm{a}_{1}, \mathrm{a}_{1} \mathrm{a}_{2}$ |  | P |

Note - Code M( ) of the horizontal mode represents the code words in Tables 2/T. 6 and 3/T.6.

## Terminating codes

| White run length | Code word | Black run length | Code word |
| :---: | :---: | :---: | :---: |
| 0 | 00110101 | 0 | 0000110111 |
| 1 | 000111 | 1 | 010 |
| 2 | 0111 | 2 | 11 |
| 3 | 1000 | 3 | 10 |
| 4 | 1011 | 4 | 011 |
| 5 | 1100 | 5 | 0011 |
| 6 | 1110 | 6 | 0010 |
| 7 | 1111 | 7 | 00011 |
| 8 | 10011 | 8 | 000101 |
| 9 | 10100 | 9 | 000100 |
| 10 | 00111 | 10 | 0000100 |
| 11 | 01000 | 11 | 0000101 |
| 12 | 001000 | 12 | 0000111 |
| 13 | 000011 | 13 | 00000100 |
| 14 | 110100 | 14 | 00000111 |
| 15 | 110101 | 15 | 000011000 |
| 16 | 101010 | 16 | 0000010111 |
| 17 | 101011 | 17 | 0000011000 |
| 18 | 0100111 | 18 | 0000001000 |
| 19 | 0001100 | 19 | 00001100111 |
| 20 | 0001000 | 20 | 00001101000 |
| 21 | 0010111 | 21 | 00001101100 |
| 22 | 0000011 | 22 | 00000110111 |
| 23 | 0000100 | 23 | 00000101000 |
| 24 | 0101000 | 24 | 00000010111 |
| 25 | 0101011 | 25 | 00000011000 |
| 26 | 0010011 | 26 | 000011001010 |
| 27 | 0100100 | 27 | 000011001011 |
| 28 | 0011000 | 28 | 000011001100 |
| 29 | 00000010 | 29 | 000011001101 |
| 30 | 00000011 | 30 | 000001101000 |
| 31 | 00011010 | 31 | 000001101001 |
| 32 | 00011011 | 32 | 000001101010 |
| 33 | 00010010 | 33 | 000001101011 |
| 34 | 00010011 | 34 | 000011010010 |
| 35 | 00010100 | 35 | 000011010011 |
| 36 | 00010101 | 36 | 000011010100 |
| 37 | 00010110 | 37 | 000011010101 |
| 38 | 00010111 | 38 | 000011010110 |
| 39 | 00101000 | 39 | 000011010111 |
| 40 | 00101001 | 40 | 000001101100 |
| 41 | 00101010 | 41 | 000001101101 |
| 42 | 00101011 | 42 | 000011011010 |
| 43 | 00101100 | 43 | 000011011011 |
| 44 | 00101101 | 44 | 000001010100 |
| 45 | 00000100 | 45 | 000001010101 |
| 46 | 00000101 | 46 | 000001010110 |
| 47 | 00001010 | 47 | 000001010111 |
| 48 | 00001011 | 48 | 000001100100 |
| 49 | 01010010 | 49 | 000001100101 |
| 50 | 01010011 | 50 | 000001010010 |
| 51 | 01010100 | 51 | 000001010011 |
| 52 | 01010101 | 52 | 000000100100 |
| 53 | 00100100 | 53 | 000000110111 |
| 54 | 00100101 | 54 | 000000111000 |
| 55 | 01011000 | 55 | 000000100111 |
| 56 | 01011001 | 56 | 000000101000 |
| 57 | 01011010 | 57 | 000001011000 |
| 58 | 01011011 | 58 | 000001011001 |
| 59 | 01001010 | 59 | 000000101011 |
| 60 | 01001011 | 60 | 000000101100 |
| 61 | 00110010 | 61 | 000001011010 |
| 62 | 00110011 | 62 | 000001100110 |
| 63 | 00110100 | 63 | 000001100111 |

TABLE 3/T. 6

Make-up codes between 64 and 1728

| White run length | Code word | Black run length | Code word |
| :---: | :---: | :---: | :---: |
| 64 | 11011 | 64 | 0000001111 |
| 128 | 10010 | 128 | 000011001000 |
| 192 | 010111 | 192 | 000011001001 |
| 256 | 0110111 | 256 | 000001011011 |
| 320 | 00110110 | 320 | 000000110011 |
| 384 | 00110111 | 384 | 000000110100 |
| 448 | 01100100 | 448 | 000000110101 |
| 512 | 01100101 | 512 | 0000001101100 |
| 576 | 01101000 | 576 | 0000001101101 |
| 640 | 01100111 | 640 | 0000001001010 |
| 704 | 011001100 | 704 | 0000001001011 |
| 768 | 011001101 | 868 | 0000001001100 |
| 832 | 011010010 | 892 | 0000001001101 |
| 896 | 011010011 | 960 | 0000001110010 |
| 960 | 011010100 | 1024 | 0000001110011 |
| 1024 | 011010101 | 1088 | 0000001110100 |
| 1088 | 011010110 | 1152 | 0000001110101 |
| 1152 | 011010111 | 1216 | 0000001110110 |
| 1216 | 011011000 | 1280 | 0000001110111 |
| 1280 | 011011001 | 1344 | 0000001010010 |
| 1344 | 011011010 | 1408 | 0000001010011 |
| 1408 | 011011011 | 1472 | 0000001010100 |
| 1472 | 010011000 | 1536 | 0000001010101 |
| 1536 | 010011001 | 1600 | 0000001011010 |
| 1664 | 010011010 | 1664 | 0000001011011 |
| 1728 | 011000 | 1728 | 0000001100100 |
|  | 010011011 |  | 0000001100101 |
|  |  |  |  |

Make-up codes between 1792 and 2560

| Run length <br> (black and white) | Make-up codes |
| :---: | :---: |
| 1792 | 00000001000 |
| 1856 | 00000001100 |
| 1920 | 00000001101 |
| 1984 | 000000010010 |
| 2048 | 000000010011 |
| 2112 | 000000010100 |
| 2176 | 000000010101 |
| 2240 | 000000010110 |
| 2304 | 000000010111 |
| 2432 | 000000011100 |
| 2496 | 000000011101 |
| 2560 | 000000011110 |
|  | 000000011111 |

### 2.2.4 Coding procedure

The coding procedure identifies the coding mode that is to be used to code each changing element along the coding line. When one of the three coding modes has been identified according to Step 1 or Step 2 mentioned below, an appropriate code word is selected from the code table given in Table 1/T.6. The coding procedure is as shown in the flow diagram of Figure 5/T.6.


FIGURE 5/T. 6
Coding flow diagram

## Step 1

i) If a pass mode is identified, this is coded using the word 0001 (Table 1/T.6). After this processing, picture element $a_{0}$ just under $b_{2}$ is regarded as the new starting picture element $a_{0}$ for the next coding (see Figure 2/T.6).
ii) If a pass mode is not detected, then proceed to Step 2.

Note - It does not affect compatibility to restrict the use of pass mode in the encoder to a single pass mode. Variations of the algorithm which do not affect compatibility should be the subject of further study.

## Step 2

i) Determine the absolute value of the relative distance $a_{1} b_{1}$.
ii) If $\left|a_{1} b_{1}\right| \leq 3$, as shown in Table $1 / T .6, a_{1} b_{1}$ is coded by the vertical mode, after which position $a_{1}$ is regarded as the new starting picture element $\mathrm{a}_{0}$ for the next coding.
iii) If $\left|a_{1} b_{1}\right|>3$, as shown in Table $1 / T .6$, following horizontal mode code $001, a_{0} a_{1}$ and $a_{1} a_{2}$ are respectively coded by one-dimensional run length coding.

Run lengths in the range of 0 to 63 pels are encoded with their appropriate terminating code word of Table 2/T.6. Note that there is a different list of code words for black and white run lengths. Run lengths in the range of 64 to 2623 pels are encoded first by the make-up code word representing the run length which is nearest, not longer, to that required. This is then followed by the terminating code word representing the difference between the required run length and the run length represented by the make-up code. Run lengths in the range of lengths longer than or equal to 2624 pels are coded first by the make-up code of 2560. If the remaining part of the run (after the first make-up code of 2560) is 2560 pels or greater, additional make-up code(s) of 2560 are issued until the remaining part of the run becomes less than 2560 pels. Then the remaining part of the run is encoded by terminating code or by make-up code plus Terminating code according to the range as mentioned above.
After this processing, position $\mathrm{a}_{2}$ is regarded as the new starting picture element $\mathrm{a}_{0}$ for the next coding.
Note - Coding examples are given in Recommendation T.4, § 4.2.5.

### 2.2.5 Processing the first and last picture element in a line

### 2.2.5.1 Processing the first picture element

The first starting picture element $\mathrm{a}_{0}$ on each coding line is imaginarily set at a position just before the first picture element, and is regarded as a white picture element (see § 2.2.2).

The first run length on a line $a_{0} a_{1}$ is replaced by $a_{0} a_{1}-1$. Therefore, if the first actual run is black and is deemed to be coded by horizontal mode coding, then the first code word $M\left(a_{0} a_{1}\right)$ corresponds to an imaginary white run of zero length (see Figure 10/T.4).

### 2.2.5.2 Processing the last picture element

The coding of the coding line continues until the position of the imaginary changing element situated just after the last actual element has been coded. This may be coded as $a_{1}$ or $a_{2}$. Also, if $b_{1}$ and/or $b_{2}$ are not detected at any time during the coding of the line, they are positioned on the imaginary changing element situated just after the last actual picture element on the reference line.

### 2.3 Optional facsimile coding schemes for black and white images

### 2.3.1 Uncompressed mode

Uncompressed mode is an optional coding scheme associated to the basic facsimile coding scheme and is used to transmit the image information without data compression techniques as shown in Table 4/T.6.

The extension code in $\S 2.2 .4$ with the xxx bits set to 111 is used as an entrance code from the basic coding scheme in $\S 2.2$ to the uncompressed mode.

While using the uncompressed mode, the last picture elements of the end of the line and the first picture elements of the beginning of the following line are concatenated to one pattern.

TABLE 4/T. 6
Uncompressed mode code words

| Entrance code to <br> uncompressed mode | Basic coding scheme: 0000001111 |  |
| :--- | :--- | :--- |
|  | Image pattern | Code word |
|  |  |  |
|  | 1 | 1 |
| Uncompressed | 01 | 01 |
| mode code | 001 | 001 |
|  | 0001 | 0001 |
|  | 00001 | 00001 |
|  | 00000 | 000001 |
|  |  |  |
| Exit from | 0 | 0000001 T |
| uncompressed | 00 | 00000001 T |
| mode code | 000 | 000000001 T |
|  | 0000 | 0000000001 T |
|  |  | 00000000001 T |

T denotes a tag bit which tells the colour of the next run $($ black $=1$, white $=0)$.

### 2.4 Facsimile coding control functions

2.4.1 Control functions for basic facsimile coding scheme

### 2.4.1.1 End-of-facsimile block

The end-of-facsimile block (EOFB) code is added to the end of every coded facsimile block. The format of EOFB is as follows:

Format: 000000000001000000000001
24 bits

### 2.4.1.2 Pad bits

Pad bits may be used after the end-of-facsimile block code if it is necessary to align on octet boundaries or to a fixed block size. The format used is as follows.

Format: Variable length string of 0s.

### 2.4.1.3 Extension

Extension code is used to indicate the change from the current mode to another mode, e.g., another coding scheme.

Format: 0000001xxx,
where $\mathrm{xxx}=111$ indicates uncompressed mode which is specified in § 2.3.1.
Further study is needed to define other unspecified xxx bit assignments and their use for any further extensions.

3 Optional grey scale facsimile coding schemes and their coding control functions
For further study.

4 Optional colour facsimile coding schemes and their coding control functions
For further study.

