In The Matter Of:

APPLE COMPUTER v. BURST.COM

SHEILA HEMAMI
November 14, 2006

FINK \& CARNEY REPORTING AND VIDEO SERVICES 39 WEST 37TH STREET NEW YORK, NY USA 10018 (212) 869-1500 or (800) 692-3465

Original File CH1114.TXT, 323 Pages
Min-U-Script® File ID: 1708445396

Word Index included with this Min-U-Script

[1]
[2] representing Apple Computer.
[20]
[13] MR. PAYNE: I caution the
[14] witness not to go into any
[15] communications with counsel which I
[16]. understand, according to the
[17] protective order, are not discoverable
[18] but if you want to answer the question
[19] "yes" or "no," that's fine.
MR. BROWN: I think to
[21] clarify, Les, at least statements made
${ }^{[22]}$ by counsel that were relied upon in
[23] any way by the witness -
[24] MR. PAYNE: Fair enough.
[25] MR. BROWN: - are
Page 5

Hemami

Q: And are you working on behalf of

A: I am.
Q: Have you had your deposition taken before?

Q: And when was that?

Page 4
${ }^{[2]}$ discoverable and I think, I don't want
${ }^{[3]}$ to agree with your characterization of
${ }^{[4]}$ the protective order but for the
[5] moment I'm happy with a "yes" or "no."
Q: Did you prepare for your deposition
円 today?
A: Yes.
Q: And who did you meet with to
10] prepare?
A: I prepared myself. I reviewed the
[3] materials in the reports. I guess that all
constitutes the materials.
Q: Okay. Did you meet with anyone to
${ }^{151}$ prepare?
[16] A: No.
[17] Q: Okay. I'm going to go over the
${ }^{[18]}$ basic ground rules of a deposition since it's been
[19) a little while since you've last done one, but the
${ }^{[20]}$ fundamental rule is that I ask questions, you
${ }^{211}$ provide answers and the court reporter records
both the questions and the answers.
[23] Do you understand that that's
happening?
[25] A: Yes.

Q: So it's helpful to the court
reporter and the record if I try not to speak over
you when you're talking and you pay me the same
courtesy. Do you understand that?
A: Yes.
Q: If at any point you don't understand
8] a question I'm asking, please ask me for
olarification. Do you understand that?
A: Yes.
Q: And will you do that?
A: Yes.
Q: Okay. From time to time your, well,
Burst's attorney, who is not your attorney, may
interpose objections. Unless he instructs you not
6] to answer a question, you still have to answer the
question. Do you understand that?
A: Yes.
Q: If you have any questions at any
${ }^{20]}$ point about what's happening or the proceedings,
[21] feel free to ask me and I will try to explain
2] what's happening to you. Okay?
A: Okay.
[24] Q: Let's just talk briefly about the
[25] work that you've done in the case so far.

Page 8		Page 10
[1] Hemami	[1] Hemami	
[2] Have you met with Burst attorneys	[2] I didn't have any meetings with	
${ }^{\text {[3] }}$ during the course of this case?	${ }_{[3]}$ anybody while I prepared the report.	
[4] A: Yes.	[4] Q: Okay. What was the time frame	
[5] Q: Who?	${ }^{51}$ during which you prepared Exhibit 78, your report	
${ }^{\text {[6] }}$ A: I have met with Les Payne, Floyd	${ }_{[6]}$] in this case?	
[] Chorush and Michael Heim, Heim, right, with an M.	(7) A: It was, it was about, it was	
${ }^{\text {88] }}$] Q: Have you met with any other Burst	${ }_{\text {[8] }}$ September through October 20th.	
[9] attorneys?	[9] Q : And when were you first retained in	
[10] A: I guess I'm not sure.	[10] this case?	
${ }^{[11]}$ Q: Okay. Have you met with other	[11] A: Okay. I know I'm not supposed to	
${ }^{12}$ people?	${ }^{[12]}$ ask you questions, but what constitutes	
${ }_{\text {[13] }}$ A: Yes.	[13] "retained"?	
[14] Q: Who else have you met with?	[14] Q: Well, why don't we break it down?	
[15] A: Well, there was an attorney, Micah	[15] How did you first hear about this	
[16] Howe at Heim Payne \& Chorush. I don't know if	[16] case?	
[17] he - I don't know what makes somebody someone's	[17] A: I was, I was contacted by a Susman	
[18] attorney.	[19] attorney.	
[19] Q: Fair enough. Besides - do you	[19] Q: Do you remember approximately when?	
${ }^{[20]}$ understand that Micah Howe is an attorney?	${ }^{20]}$ A: That I don't remember, no.	
[21] A: I do understand that, yes.	[21] Q: And in that conversation, did he	
[22] Q: Okay.And you understand he works	${ }^{[22]}$ tell you about the case?	
[23] with the Heim Payne law firm?	[23] MR. PAYNE: Well, let's hold	
${ }^{24]} \quad$ A: I do understand that, yes.	${ }^{24]}$ on. I'm going to object.	
[25] Q: Okay. Have you met with anybody	[25] Nick, I understand your	
Page 9		Page 11
[1] Hemami	[1] Hemami	
[2] else in connection with this case?	${ }_{[2]}$ interpretation of the protective	
[3] A: No.	[3] order. Maybe we need to get on the	
[4] Q: In preparing the - well, you have	[4] same page here. I think we probably	
[5] Exhibit, I believe it's 78, in front of you?	[5] have the same understanding, but the	
${ }^{66}$ A: Yes.	${ }_{[6]}$ way I read the protective order,	
त \quad Q: Is that a copy of the expert report	\square communications between counsel and	
${ }^{[8]}$ you prepared in this case?	${ }^{\text {[8] }}$ Dr. Hemami are not discoverable unless	
${ }_{\text {[9] }}$ A: It sure looks like it, yes.	${ }_{[9]}$ she relies on them in terms of	
${ }_{[10]}$ Q: Well, why don't you flip through it	[10] preparing her opinion, opinions.	
$[11]$ and confirm that that is, in fact, the report in	[11] Is that how you interpret the	
${ }_{[12]}$ this case?	${ }^{[12]}$ protective order?	
${ }_{[13]} \quad$ A: Yes, I think it is.	${ }^{[13]}$ MR. BROWN: Well, I'd have to	
[14] Q: Okay.	[14] look at it again because I don't want	
[45] MR. PAYNE: We'll stipulate.	[15] to interpret it without -	
${ }_{[6]}$] THE WITNESS: Thank you. I	[16] MR. PAYNE: Well, I've got it	
[77] would not like to read it again.	[17] right here, but it seems like you're	
[18] MR. BROWN: Neither would I.	[18] asking her, you know, about a	
${ }_{[19]} \mathbf{Q}$: Who, if anyone, did you meet with in	[19] conversation she had with an attorney	
${ }_{[20]}$ preparing this report other than the attorneys	$\left.{ }^{20}\right]$ for Burst and I just don't think -	
[21] that you've listed?	$\left.{ }^{211}\right] \quad$ MR. BROWN: And I don't need	
${ }^{22]}$ A: I did not meet with anyone in the	$\left.{ }^{[2]}\right]$ to get into the conversation for	
${ }^{23]}$ preparing of this report. I did not meet with	${ }^{[23]}$ purposes here. I'm trying to figure	
${ }^{24]}$ anybody other than attorneys during the time	${ }^{[24]}$ out when she was retained and what the	
${ }^{25]}$ period which - actually, is that true?	[25] timeline is.	

[1] Pemami
[1] MR. PAYNE: That's fine.
[2]
[3] MR. BROWN: I think you agree
[4] we can do that.
[5] MR. PAYNE: That's fine.
[6] Q: So -
[7] A: Well, perhaps then I can provide you
[8] with information without having all this back and
[9] forth.
[10] MR. PAYNE: Well, no. Let's
[11] let him ask the question and you
[12] answer the question and if I need to
[13] object, I will object.
[14] MR. BROWN: I think I have a
[15] question that might solve the problem.
[16] Q: Can you give me your understanding
[17] of how you came to be employed by Susman or Burst
[18] or whoever you understand yourself to be employed
[19] by in this case?
[20] A: I was contacted like the day before
[21] I went to Greece in August and when I returned, we
[22] executed, I guess executed the paperwork to, what,
[23] I don't know, formally retain me. I don't know
[24] what the right way to word that is. I signed up.
[25] How's that?

[^0]

Hemami

MR. PAYNE: Okay.
[3] Q: I can tell you that except in ${ }^{4]}$ extremely odd circumstances the complaints that ${ }^{[5]}$ are filed in a court are public documents. That's [6] not always true in some very rare circumstances, 77 but what I'm asking you is what the case was ${ }^{[8]}$ about. That's very likely to have been in the [9] complaint.
[10] A: Okay.
[11] Q: So I'm fairly confident, regardless
[12] of the confidentiality agreement you had in the
[13] case, you can talk about the general nature of the
[14] case.
[15] A: Okay. And I apologize for not
[16] having a better understanding.
[17] Q: But having said that, let me ask you [18] a question. Did you sign a confidentiality [19] agreement in that case?
[20] A: I'm sure I did, though I don't have [21] a direct recollection of doing such a thing.
[22] \mathbf{Q} : Okay. Well, why don't you tell me [23] the general nature of the case.
[24] A: The satellites were jointly owned
[25] but operated by one of the parties. The owners

Hemami

who were not operating the satellites claimed that they could be operated in a different manner and
the operator of the satellite claimed that they
[5] could not be operated in that different manner.
[6] $\quad \mathbf{Q}$: And the case was about whether that was true?

A: Yes.
Q: Or at least your involvement was
about that?
[11] A: Yes. I believe there were many
${ }^{[12]}$ Other pieces to the case but my involvement
${ }^{[13]}$ pertained to how the satellites could or could not
[14] be operated.
[15] Q: Did you work in a case involving
${ }^{[16]}$ patents on the JPEG standard?
A: I did.
[18] Q : Who were you retained by in that
[19] case?
[20] A: In that case, I was retained by
[21] Forgent.
[22] Q : And who were the attorneys that you
[23] worked with in that case?
[24] A: Initially, the firm was Godwin
${ }^{[25]}$ Gruber. Then their name changed to Godwin Pappas
Page 19

Hemami

[2] and perhaps one other name associated with them.
${ }_{[3]}$ And then Susman Godfrey, I guess, took over. I'm
${ }^{14]}$ not sure what the - somehow assumed the case.
Q: Which Susman Godfrey attorneys if
[6] any did you work with in connection with that (7) case?
[8] A: Steve Susman, Max Tribble and Tibor (9) Nagy.
[10] \quad : Did you provide an expert report in
${ }_{[11]}$ that case?
[12] A: I did.
[13] Q: What was the subject matter
[14] addressed in the report?
[15] A: The report was a, a claim
[16] construction report.
[17] Q: So you've provided a claim
${ }^{[18]}$ construction expert report in this case and in the
[19] Forgent case. Is that true?
[20] A: That's true.
[21] Q: Have you provided a claim
[22] construction report in any other case?
[23] A: I have not.
[24] Q : Have you provided an expert
[25] report - well, let me ask you about the Pegasus

		Page 20
[1]	Hemami	
	case listed on your CV.	
[3]	Did you provide an expert report in	
	that case?	
	A: Yes.	
	Q: Were you deposed in that case?	
\square	A: Yes.	
	Q: I take it you were not deposed in	
	the Forgent case. Is that correct?	
	A: That's correct.	
	Q: Other than this case, the Pegasus	
	case and the Forgent case, have you provided	
	expert reports in any cases?	
	A: No.	
	Q: Have you been retained in any cases	
	other than those three cases?	
	A: Yes.	
	Q: Which cases?	
	A: I was retained in a case, I was	
	retained by RealNetworks in a case where some	
	individuals were alleging patent infringement	
	against RealNetworks and I was also retained in a	
	case, another case involving Forgent and I was	
	retained by Forgent.	
	Q: Was the other case involving Forgent	

[1]

Hemami

2) a patent case?
[3]
[4]
[5]
[6]
(7) is - and now that I say that I have to question.
${ }^{[8]}$ It could be EchoStar but let me say could be. I
[9] don't want to rely on my memory right now for
[10] that.
[11] Q: Okay. Do you keep a record of the
${ }_{[12]}$ expert witness work that you have done?
[13] A: Do I keep a record?
[14] Q: Right.
[15] A: No.
[16] Q: You said you didn't want to rely on
[17] your memory. Was there something else that you
[18] could rely on?
[19] A: For that case, no. No.
[20] Q: So we now have Pegasus, two cases
${ }_{[21]}$ for Forgent, RealNetworks and the current case.
[22] A: Yes.
[23] Q: Are there any other cases in which [24] you've been retained as an expert witness?
[25] A: No.
in the Past 4 Years," you only list the Pegasus
case and not those other cases that we just
discussed?
A: The RealNetworks case was not in the
past four years and my understanding of this
category was it involved giving testimony and
that's the only case in which I gave any
testimony.
Q: So the, what you meant by this
heading was other expert witness testimony in the
past four years. Is that right?
A: I think that what you have stated is
more correct.
Q: Do you have a copy of the expert
[21] report that you provided in the Forgent case?
A: Yes.
MR. BROWN: Les, I'd like to
get a copy of that report if that's
possible.

Hemami

MR. PAYNE: Let me check into
confidentiality issues and I'll ask
] the same of Mr. Halpern's reports -
MR. BROWN: That's fine.
MR. PAYNE: - to get those.
MR. BROWN: We'll check the
8) same thing.

Q: I'd like to ask you to turn to page
(0] 26 of your expert report.There's a heading there
${ }^{[11]}$ which reads, "The Level of Ordinary Skill in the
[12] Art." Do you see that?
A: Yes.
[14] Q: Actually, before we keep going, I
want you, if you need to in the course of
6 answering my questions, to read whatever you need
[17] to read to answer the question. I'll try to
8] direct you to the part that I'm asking you
[19] questions about and right now, I'm going to ask
[20] you some questions about ordinary skill.
[21] So please feel free to read whatever
[22] you need to read in order to answer my questions
[23] as accurately as possible. Will you do that?
[24] A: Okay. Do you want me to do that now
[25] or whenever?

Page 31
[1] Hemami
[2] patents without a formal technical degree if one
[3] had sufficient experience?
[4] A: Yes.
(1) Q: Can you describe the nature of the 6] experience that you think would be required in 1 that case?
B] A: So I have in mind a, somebody of the Iol nature of experience in, I guess, what we would ${ }^{[10]}$ generally call video engineering, so perhaps [11] somebody who's experienced in broadcasting or ${ }^{121}$ developing, say, videoconferencing material.
[13] Another example might be worked at 4] NASA. NASA did a tremendous amount of 5 transmitting, not audio - well, let me not say ${ }^{6]}$ not audio, I don't know that, but certainly visual $[17$ information over great distances. And you know, [18] clearly in 1988 the, shall we say the digital [19] revolution was, was coming and had arrived for ${ }_{[20]}$ much of certainly audio and video and visual [21] information.
${ }^{[22]}$ So for the technically curious, as a
[23] word for nerdy or geeky video engineer, they would
[24] certainly stay on top of these developments and be [25] following them with great interest.

Hemami
Q: Can you give me a rough number about

Page 33

Hemami

person of ordinary skill in the art or perhaps I
should say at least ordinary skill in the art under the definition you provided here. Is that right?

A: Yes.
Q: Okay. You were present at the
deposition of Mr. Halpern yesterday, correct?
A: Yes.
Q : And you were present when he
testified about his experience and qualifications,
correct?
A: Yes.
Q: And you'll recall that he has a
Bachelor's degree in mathematics, correct?
A: Yes.
Q: And then he has work experience
following that, correct?
A: Yes.
Q: If you - would you agree that he
has a specialty in digital communications?
A: No.
Q: Okay. Why not?
A: Based on what he described - or how
can I put this? Based on the responses and
[1]

Hemami

explanations that I heard him state yesterday, as
[3] well as what is in his report, I believe that I
[4] would label him as more of a networking expert as
[5] opposed to a digital communications expert.
Q: And what's the difference in your
mind between networking and digital
communications?
A: Digital communications classically is, it's a larger topic and includes what we would say, in communications parlance, the physical layer and multiple access techniques.

The physical layer includes, for
example, if one is posed with the problem of
wanting to get digital information from your
office here to your office in Palo Alto, how would
[17] you physically do that. You know, one option is
[18] for you to carry a CD-ROM back with you on the
${ }_{[19]}$ airplane but there are other mechanisms by which
[20] you could transmit over a certain frequency range
[21] to a satellite. You could transmit over specific
[22] cables, electrical versus electromagnetic
${ }^{[23]}$ signalling.
[24] What are the characteristics of
[25] those various signalling media? If we choose to
Page 35
[1]
[2] transmit your information by relaying it through a
[3] satellite, how error-prone is it going to be, what
[4] are the delays going to be, is the propagation
[5] delay an issue.
[6] I view networking as sitting up from
m the physical layer. The networking does not
${ }_{8]}$ necessarily care how the bits get from point A to
(9) point B, whether you routed them through a
satellite or through a copper wire.
What it does care about is what
[12] protocols were used to enable that communication,
[13] how did you deal with the delays, was there
[14] traffic. A network is generally interconnection
[15] of entities, perhaps even interconnection of many
[16] networks and networking addresses how the
[17] operation of that unit, above the physical layer,
${ }^{[18]}$ not so much what particular circuit is toggling
[19] whatever signal on the, the channel is being
[20] sensed at the other end. It's beyond that.
[21] It doesn't care how the bit got from
${ }^{[22]}$ point A to point B. It just needs to know that
[23] the bit got there with its, whatever assorted
[24] information it had to come with.
[25] Q: So as I understand what you said,

Page 36		Page 38
[1] Hemami	[1] Hemami	
${ }^{\text {2] }}$ there's a physical layer and there's a networking	${ }^{[2]}$ person in this area could be specialized in	
${ }^{3} 3$ layer at a higher level of abstraction than the	${ }^{[3]}$ digital communications, having a familiarity with	
${ }^{4]}$ physical layer. Is that right?	${ }^{[4]}$ compression technology."	
${ }_{5]}$ A: I think that's an accurate	[5] When you wrote that, did you, were	
${ }^{66]}$ description of what I had just said.	[6] you trying to exclude someone with a specialty in	
[7] Q: Okay. You used the phrase "digital	[7. only networking or exclude someone with a	
${ }^{\text {8] }}$ communications" here.	${ }^{88}$ specialty in only the physical layer?	
${ }^{19}$ A: Yes.	[9] A: I don't believe so.	
[10] Q: Does digital communications, as you	[10] Q: So if you have experience in at	
${ }^{[11]}$ used it, include both the physical layer and the	[11] least networking or at least the physical layer	
${ }^{112]}$ networking layer or one or what?	[12] for digital communication, that would qualify,	
[13] A: That depends on whose perspective we	[13] either one of those would qualify under what you	
[14] are -	[14] wrote here as digital communications. Is that	
${ }^{[15] ~ Q: ~ O k a y . ~ I ~ w a n t ~ t o ~-~ I ~ d o n ' t ~ m e a n ~ t o ~}$	[15] right?	
[16] interrupt you, but I want to try to keep us on	[16] A: Well, in conjunction with the	
[17] track.	[17] compression knowledge -	
[18] So what I'm concerned is the area of	[18] Q: Sure.	
[19] the Burst patents and you've testified that the	[19] A: - yes.	
${ }_{[20]}$ areas of the Burst patents is, as you've set forth	[20] Q: So the next part of your sentence	
${ }^{[21]}$ here, digital communication of audio/video source	[21] says, "having a familiarity with compression	
${ }^{[22]}$ information.	[22] technology," right?	
[23] So the perspective I'm interested in	[23] A: Yes.	
${ }^{[24]}$ is what's included in digital communication when	[24] Q: And that's what you were referring	
${ }^{[25]}$ you're using that phrase to describe the field of	[25] to?	
Page 37		Page 39
[1] Hemami	[1] Hemami	
${ }^{\text {[2] }}$ the Burst patents?	[2] A: Yes.	
${ }^{\text {[3] }}$ A: Okay. Excellent question and I	[3] Q: But for the part where you say	
${ }^{[4]}$ understand your question.	[4] "specialized in digital communications," that	
[5] With respect to the field of the	[5] would include either what you described as the	
[6] Burst patents, digital communications and	[6] networking layer or the physical layer?	
[7] networking can simply be lumped into the - let me	円 A: Right. A digital communications	
${ }^{[8]}$ select my word here - the mechanism by which the	${ }^{\text {8] }}$ person understands that bits go from point A to	
${ }_{[9]}$ material is transmitted. So the Burst patents, we	${ }^{\text {[9] }}$ point B and they deal with one aspect of the bits,	
[0] see transmission away, discussion of transmission	[10] what we would consider a lower layer than the	
${ }_{[11]}$ between units or relayed through, through a	[11] networking person.	
${ }^{[12]}$ satellite.	[12] The networking person also deals	
[13] As far as the Burst patents are	[13] with getting information from one point to	
${ }^{[14]}$ concerned, I guess going back to my layered	[14] another, also bits from one point to another,	
${ }_{[5]}$ hierarchy, this unit sits very high up in the view	[15] typically in larger chunks than an individual bit	
[16] of what's - it doesn't care so much what's going	[16] but in both cases, they have an understanding that	
$\left.{ }^{[17}\right]$ on, the mechanisms, the nitty gritty issues of	[17] they live in the area where they are simply	
${ }^{[18]}$ what's going on underneath it.	[18] delivering information around and with the	
[19] As far as the unit is concerned, the	[19] understanding that they are delivering	
${ }^{[20]}$ bits are just bits that it can transmit out and	[20] information, they are then to some extent enabled	
[21] receive in. How they got from point A to point B,	[21] to question, well, what can I do with the	
[22] in terms of the physical layer, the network,	[22] delivery.	
[23] whether there was a multiple access technique	[23] Q: Having said all that, do you believe	
[24] involved, is irrelevant.	[24] that Mr. Halpern is a person of ordinary skill in	
[25] Q: You wrote here in your report, "A	$[25]$ the art within your definition?	

Hemami

A: He's certainly, we could - we could [3] pair up his expertise as he described it with ${ }^{[4]}$ respect to the, his, his networking understanding.

[5] I believe that his level of

${ }^{[6]}$ familiarity with compression is perhaps a bit on 7] the low side but I, I didn't get to ask questions ${ }_{[8]}$ so I can't make a judgment as to my comfort with his combined knowledge on the two topics.

Q: Okay. If I understood you
correctly, you were saying, you said that his level of knowledge of the networking piece of digital communications was sufficient but that you weren't sure about whether he had sufficient familiarity with the compression technology piece. Is that correct?

A: Yes, although I guess I would like to add something -

Q: Go ahead.
A: - which is perhaps I felt that, perhaps his networking understanding was a bit narrow within the networking layer. Now, given his background, I can understand that. He certainly didn't study physical layer communication with, with a math

Page 41
Hemami
${ }^{[1]}$ [2] degree and that's fine. We don't expect people to
${ }^{[3]}$ do that.
${ }^{[4]}$ Q: You said that you think his
${ }^{[5]}$ experience was narrow. What do you mean by
[6] "narrow"?
[7] A: So I have described without giving a
[8] very formal definition of what I mean by these
[9] layers and we have the physical layer which simply
[10] sends material, digital material from one point to
[11] another. We have the networking layer which
[12] includes, it doesn't care about the physical
[13] transmission media but addresses how the bits get
[44] from point A to point B.
[15] I guess my understanding of such a
[16] person as I described is that the physical person
[17] would have some knowledge of the networking layer
[18] and the networking person would also have some
[19] knowledge of the physical layer and simply because
[20] I most commonly interact with people who know both
[21] layers, as an electrical engineer.And with that,
[22] I suppose I would have to rethink or think, think
[23] through in greater detail if somebody solely
[24] focuses on the network issue, the networking layer
[25] alone, without any consideration of the physical

Hemami

[2] layer, the implications of that with respect to
$[3]$ interpreting the patents.
${ }^{[4]}$ Q: So you don't have an opinion about
${ }^{[5]}$ that one way or the other?
A: Could you restate that?
Q: Sure. I -
A: Just remind me of what "that" is.
Q: You just said that - all right,
(10] well, maybe not "just" since you've been
11] explaining something for a while but at one point,
${ }^{12]}$ we talked about the networking layer and the
[13] physical layer and you said that it was your view
[14] that the familiarity with digital communications
${ }^{15]}$ that you require in your report could be satisfied
(16] by either.
17] It sounds like you just said that
you might want to rethink that. Is that right?
A: I, I did just say that, however, I,
[20] I think what I would like to say is I would really
${ }^{211}$ have to reconsider the entire issue.
[22] I have always understood networking
[23] people to understand something about the physical
[24] layer and physical layer people to understand [25] something about the network layer.

Hemami

[2] I guess what I'm really looking for 3] is somebody who's able to think flexibly and
${ }^{[4]}$ understand that they are delivering digital
[5] information and that there are multiple layers and
${ }^{[6]}$ that they may sit at one layer but other things go万 on at other layers.
8] Q: Are you capable of making a judgment 9] right now about whether Mr. Halpern has ordinary ol skill in the art under your definition?
[11] A: Ordinary skill in the art here, you
[12] are referring to both items, the digital
[13] communication technology and the compression
[14] techniques?
[15] Q: Correct.
[16] A: And, again, I would like to go back
[17] to what I said.
[18] I am, based on what I read in his
[19] report and what I heard during the deposition, I
[20] am unsure of the depth of his knowledge on the
[21] compression techniques.
[22] Q: So does that mean that your, the
[23] answer to my question is yes, you're not capable
[24] of making a judgment right now?
[25] A: I think that's accurate.

Hemami
[1]
[2] \quad Were the paper to describe video
[3] coding using this coder, I would expect the paper
[4] to describe things that are not here.
[5] Q: Like what?
[6] A: So the hardware configuration, what
[7] did they use, how did they interconnect things,
[8] did they design custom circuitry, was the
[9] circuitry discrete or integrated, how long did it
[10] take, how many man-hours, did they do subjective
[11] tests on the video.
[12] Furthermore, the entire results
[13] section presents results for still images. All
[14] they have done with this sentence is applied the
[15] number, 0.4 bits per pixel, to the digitized pixel
[16] rate of NTSC video. Video has so many pixels per
[17] second.
[18] They state in the abstract that they
[19] get good results at . 4 bits per pixel. So it's a
[20] simple matter to multiply . 4 bits per pixel times
[21] the number of pixels per second that one gets for
[22] digitizing NTSC TV to compute that 1.5 megabits
[23] per channel.
[24] Q: Is it accurate to say that in your
[25] view this article does not contain sufficient

Page 49

[1]

[2] disclosure of video coding to tell one of ordinary
${ }^{31}$ skill in the art that this is how to do video
coding? Is that right?
A: One of ordinary skill in the art
[6] would understand that any technique that could be
7 applied to a single image could be applied to
${ }^{8]}$ digitized images which were obtained from NTSC
(9) video or PAL or any other format of video. So to
${ }_{[10]}$ some extent, there's nothing to disclose there.
[11] This is a coder that operates on a
[12] single image and we can certainly consider video
[13] to be a very special case of particular sequence
[14] of images. And that sentence in the summary is
[15] essentially doing that, saying, well, if we take
${ }_{[16]}$ images as produced by digitizing a standard video
[17] signal, the resulting data rate is the following.
${ }_{[18]} \quad$ Q: Okay. But what I'm trying to
[19] understand is whether this paper, in your view,
[20] discloses video compression to a person of
[21] ordinary skill in the art?
[22] A: This paper describes an intra-frame [23] coding technique, sorry, a single frame or image [24] compression technique which one of ordinary skill ${ }^{[25]}$ would understand could be applied to frames in
[1]
Hemami
sequence from digitizing a standard analog video
[3] signal.
[4] Q: And this paper says expressly that
$[5]$ that can be done, correct?
A: It, it states that, that it computes
a number based on the assumption. I mean, they do
not state in order to apply this to video, first
digitize the video, then take each frame."
They don't give us a block diagram,
for example, but one of the ordinary skill would
understand even without John's paper that coding individual frames independently is a valid
[14] technique for compressing or coding video.
[15] Q: You said before that this paper
[16] didn't disclose things that you would expect it to
[17] disclose if it was going to actually describe
[18] video compression and you listed a variety of
[19] things that you would expect to be disclosed,
[20] including the hardware configuration and the
[21] circuitry that they used.
[22] A: Based on the sentence in the [23] summary, that is what I stated.
[24] Q: Now, so your view is that this paper [25] doesn't disclose the hardware configuration and it

Page 51

Hemami

doesn't disclose the circuitry and, therefore, it
doesn't disclose video compression to a person of
ordinary skill in the art. Is that right?
MR. PAYNE: Objection. Form.
Q: And if that's not right, explain 7 why.

MR. PAYNE: Objection to form.
A: So my objection with calling this a
[10] video compression paper is that it describes a
${ }_{[11]}$ still image compression technique and simply gives
${ }^{[12]}$ a computation of the resulting bit rate that would
${ }_{[13]}$ occur if one applied this to video.
[14] Q : And in your mind, that's not enough
[15] to make it a paper about video compression. Is (16] that right?
[17] A: I think, I would say that is correct
${ }^{[18]}$ in that when I look, when a person of ordinary
[19] skill looks for a paper about video compression,
[20] it's not enough to simply look for the word
[21] "video" to appear because just because "video"
[22] appears doesn't necessarily mean it is about video
[23] to start with.
[24] And secondly, to take an intra, a
[25] still image coder and simply provide the rate that

Hemami

[2] one would achieve at a particular input rate, ${ }^{[3]}$ intra-frame coding was well understood so there's [4] nothing new here.

Q: In your view, there's nothing new in this paper, "Scene Adaptive Coder," as Exhibit 79?

A: If we consider video compression -
${ }^{[8]}$ the still image compression technique in this ${ }^{[9]}$ paper was clearly judged worthy of publication by
${ }_{[10]}$ the IEEE but due to, presumably, its novel
[11] technical content.
[12]
[13] involves coding still images. They simply state
${ }_{[14]}$ that when applied at a certain rate, this could be
[15] applied to video. That was not the novel part of
[16] the paper.
Q: When did you first see this paper?
A: Oh, when I was in graduate school, many years ago.

Q: In what context did you see it in
graduate school?
A: Well, I studied image and video compression and transmission in graduate school and to the extent that this was a, I wouldn't say ${ }^{[25]}$ it was classical at the time because it was not
[2] that old at the time, but this was a well-known,
3] well-written paper by the time I got around to reading it.

Q: When was that?
A: It was on its way to being classical. How's that?

Q: As of today, would you call this a classical paper?

A: I would.
Q: What do you mean by a classical 2] paper?

A: A classical paper is a paper that ${ }^{4]}$ is, that we sort of cite frequently as the [beginning of perhaps a - there are going to be 6] several items here so don't take the order in 7 which I give them as necessarily indicative of how 8] important something is.

A classical paper either indicates, perhaps, a paradigm shift in how problems were 1] addressed. They may, typically are well written.
[22] Obviously, if a paper is not well written, even if
[23] the ideas are new, dissemination doesn't work very [24] well.
[25] Also, sometimes I think we can say

Page 52

Page 53

Hemami

[1]
that classical papers are sort of the, the paper
[3] on which many, many subsequent incremental but
[4] important improvements or modifications are made.
[5] Q : And this paper qualifies under that
[6] standard?
A: I believe that if you talk to an
image compression person and ask them if this were
[9] a classical paper, they would say yes.
[10] Q: Are you an image compression person?
11] A: I am.
Q: And you think this is a classical
paper?
A: I do.
MR. PAYNE: Nick, are you at a
good stopping point or do you have
if] some questions on something else?
[18] MR. BROWN: I would be happy
[19] to take a break now if that's what you
[20] would like to do.
MR. PAYNE: Five minutes?
MR. BROWN: That's fine.
THE VIDEOGRAPHER: The time is
${ }^{24]}$ now $10: 25$. Off the record.
[25] (Recess taken)
Hemami
[1] \quad Page 55
[2] \quad THE VIDEOGRAPHER: The time is
[3] now 10:32. On the record.
[4] MR. BROWN:
[5] Q: Dr. Hemami, can you take your expert
[6] report and turn to the materials considered list
[7] at the end? Do you have that?
[8] A: Yes.
[9] Q: Will you turn and look at number
[10] 26, please?
[11] A: Yes.
[12] Q: Do you see it says there, "The claim
[13] construction disclosures of Burst and those of
[14] Apple as well as the references cited in each"?
[15] Do you see that?
[16] A: Yes.
[17] Q: If you turn to the binder that's in
[18] front of you, which is Exhibit 71 and go to tab U,
[19] please.
[20] A: Okay.
[21] Q: If you turn past the page that has
[22] the U on it, do you see that this is a document
[23] filed with the court entitled, "Patent Local Rule
[24] 43 Claim Construction and Pre-Statement"? Do you
[25] see that?

	Page 56		Page 58
[1]	Hemami	[1] Hemami	
	A: Yes.	[2] right?	
	Q: Why don't you flip through that	[3] A: That's right.	
	document until you get to the tables that follow	[4] Q: And did you review each of the	
[5]		[5] references listed in those two columns?	
	A: Okay.	[6] A: I tried my very best to do every	
	Q: Have you seen those tables before?	(7) single one.	
	A: I don't know if I've seen them from	${ }^{\text {[8] }}$ (Q: So, for example, you looked in the	
	this document, but I certainly have seen claim	[9] Modern Dictionary of Electronics. Is that true?	
	construction tables which are rectangular and long	[10] A: I did.	
	like the ones that Les has.	[11] MR. BROWN: I'm going to mark	
	Q: Okay. Going back to your report,	[12] as Exhibit 80 a copy of a few pages of	
	number 26 which reads, "The claim construction	${ }^{[13]}$ The Modern Dictionary of Electronics.	
	disclosures of Burst and Apple," does that include	[14] It's only got one page from the actual	
	the tables that are rectangular and long that you	[15] content of the dictionary, production	
	are referring to?	[16] numbers APBU414957 through 959.	
	A: Yes.	[17] (Documents bearing Bates Nos.	
	Q: You state in your expert report the	${ }^{[18]}$ APBU00414957 through 959 was marked as	
	references cited in each. Do you see that?	[19] Deposition Exhibit No. 80 for	
	A: Yes.	${ }^{[20]}$ identification, as of this date.)	
	Q: Do you see how there are two columns	[21] Q : And you see on the face of	
	in there? One is labeled "Burst's Evidence" and	${ }^{[22]}$ Exhibit 80 is The Modern Dictionary of	
	one is labeled "Apple's Evidence." Do you see	[23] Electronics, 6th Edition. Do you see that?	
	that?	[24] A: Yes.	
[25]	A: Yes.	[25] Q: That's the dictionary that's	
	Page 57		Page 59
[4]	Hemami	[1] Hemami	
[2]	Q: And do you see that in those columns	[2] referred to in the "Burst's Evidence" column of	
	there are various references cited at various	${ }_{[3]}$ the chart that you were looking at, correct?	
	places?	[4] A: Yes.	
	For example, on the second page in	[5] Q: I'd like you to look at the third	
	the "Burst's Evidence" column, The Modern	${ }^{[6]}$ page of Exhibit 80, which is one page from the	
	Dictionary of Electronics, 6th Edition, 1984 is	[7] dictionary.	
	cited. Do you see that?	${ }^{88}$ A: Yes.	
[9]	A: Yes.	${ }^{\text {[9] }}$ Q: On the right-hand side there's a	
	Q: Are those the references, is that an	${ }^{\text {[10] }}$ definition of "burst transmission." Do you see	
	example of one of the references that you were	[11] that?	
	referring to?	[12] A: Yes.	
	A: Yes.	[13] Q: I don't believe that this dictionary	
	Q: When you wrote in your expert report	[14] was cited by Burst in relationship with the term	
	number 26, "the references cited in each," did you	[15] "burst transmission" in the chart.	
	mean anything other than what is cited in the	[16] Did you read or consider this	
	"Burst's Evidence" and "Apple's Evidence" columns?	[17] definition before writing your expert report?	
	A: That item in the reference list	[18] A: I did.	
	refers to the materials that were listed in these	[19] Q: Were you familiar with this	
	columns so I don't remember if your question was	${ }^{20]}$ definition prior to seeing it in this dictionary?	
	1 phrased as a positive or a negative, but -	[21] A: No.	
	Q: Okay. When you wrote in your expert	[22] Q: Do you believe this definition is	
	report, "the references cited in each," what you	[23] accurate?	
	meant is the references contained in the "Burst's	[24] A: In the context of the way that	
	Evidence" and "Apple's Evidence" columns. Is that	[25] "burst transmission" is used in the Burst patents,	

Q: This definition expressly refers to radio transmissions, correct?

A: It does.
Q: Do you believe that this definition is accurate in the context of radio transmissions?

A: I believe that this definition
describes analog radio transmissions.
Q: Is the reason that you believe this
${ }^{[11]}$ is not accurate in the context of the Burst
[12] patents that in your view, the Burst patents
${ }_{\text {[13] }}$ pertain to digital data transmissions?
[14] A: Yes.
[15] Q: Is there another reason?
[16] A: Not that I can think of now but
[17] that's certainly the largest one that looms in my
${ }_{[18]}$ mind and that is exactly what my reaction was when
${ }_{[19]}$ I read this definition the first time.
[20] I should say this is transmission of [21] analog information.

Q: How is that different in your mind
from what you said before?
A: Well, I said analog radio
transmission which to me means transmission of
[1]

Hemami

${ }^{2]}$ analog signals but I wanted to clarify because,
${ }^{33}$ forgive me, I don't think you're an electrical
${ }^{4}$] engineer. I wanted to clarify that it was the
delineation between digital signals being
transmitted and analog signals being transmitted.
Q: Earlier you were talking about the
physical layer. Do you recall that?
A: I do.
[10] \quad : Typically that physical layer uses
[11] analog transmission to convey digital information, [12] correct?
[13] A: Yes.
[14] $\quad \mathbf{Q}$: In fact, I believe that's always the
[15] case, correct?
[16] A: One could make an argument
[17] differently for switching bits on a copper wire
[18] but I think what, generally speaking, what you've
[19] said, yes.
[20] Q : So, generally, digital information
${ }^{[21]}$ is conveyed using analog signals?
[22] A: Yes.
[23] MR. PAYNE: Objection to form.
[24] A: Perhaps - yes, let me correct
[25] myself.
Page 61
[8] Q: You're modulating an analog
[9] waveform, correct?
A: Yes.
[11] Q: And you're doing that in order to
convey digital information, correct?
(13] A: Yes.
[14] Q: I think the word "signal" may be [15] confusing things but if you want to transmit ${ }^{[16]}$ digital information from one point to another, [17] generally you need to do that by modulating an [18] analog waveform. Is that true?
[19] A: That is true.
[20] Q: One type of analog waveform that can
[21] be modulated in order to convey digital
information is a radio wave, correct?
23] A: That is correct.
Q: You can also modulate a microwave,
24] Q: You
25] correct?

Hemami

Digital signals are transmitted
using analog modulation techniques.
Q: Analog modulation techniques of an
analog signal?
A: No.The signal that is being

Hemami
A: A microwave is a radio wave.
Q: It's a subcategory of a radio wave, (4) correct?

A: Yes, I would agree with that.
Q: Let's talk briefly about microwaves
since we're on the topic.
Microwave transmission is described
9] in the Burst patents, correct?
A: Yes.
1] Q : And the Burst patents describe using
(2] satellites, correct?
A: Yes.
4] \mathbf{Q} : And they also describe using
5] point-to-point microwave transmitters, correct?
A: Yes.
Q: Are those two the same thing?
A: Are they the same thing? Can you be
19] more specific in your question?
Q: Sure.
[21] Both microwave, point-to-point
[22] microwave transmitters and satellites use the
[23] microwave band to transmit information, correct?
[24] A: Yes.
[25] Q: They both modulate microwaves,

Page 64 November 14, 2006

	Page 64
[1] Hemami	
[2] correct?	
${ }^{\text {[3] }}$ A: Yes.	
${ }^{4]}$ Q: What are the differences at a high	
${ }_{[5]}$ level between point-to-point microwave	
${ }_{[6]}$ transmission and satellite transmission?	
Π Actually, let me withdraw that question. I'm	
${ }^{[8]}$ going to ask it slightly differently.	
${ }^{\text {9] }}$ Satellite transmission is generally	
${ }_{[10]}$ not point to point, correct?	
[11] A: The satellite is used as a relay	
${ }_{[12]}$ between the two points. So, yes, we would not	
[13] call satellite, we would not call satellite	
${ }_{[14]}$ transmission point to point.	
[15] Q: Are the structures that are used to	
${ }_{[16]}$ do the transmission the same in point-to-point	
[17] microwave transmission and satellite microwave	
[18] transmission?	
[19] A: Which structures are you referring	
[20] to?	
[21] Q: Let's start with the structure which	
${ }_{[22]}$ actually transmits the signal.	
[23] Is it true that in a satellite, the	
${ }^{[24]}$ structure that transmits the signal transmits it	
[25] over a wide directional area?	

Satellite transmission is generally
not point to point, correct?
A: The satellite is used as a relay between the two points. So, yes, we would not
call satellite, we would not call satellite transmission point to point.

Q: Are the structures that are used to do the transmission the same in point-to-point microwave transmission and satellite microwave transmission?
A: Which structures are you referring to?
Q: Let's start with the structure which 12] actually transmits the signal.

Is it true that in a satellite, the
structure that transmits the signal transmits it over a wide directional area?

Hemami

[1]
${ }^{[2]}$ A: The statement that you just made is ${ }^{[3]}$ not correct.
${ }^{4}$) Q: Okay. I believe, and please correct ${ }_{[5]}$ me if I'm wrong, that one significant distinction ${ }_{[6]}^{[6]}$ between a satellite transmission and a
[7] point-to-point microwave transmission is that in ${ }_{[8]}$ point-to-point microwave transmission, the 99) microwave beam from the microwave transmitter is [10] relatively narrow when compared to the beam from ${ }_{[11]}$ the satellite and has to be specifically directed ${ }_{[12]}$ at the receiver in contrast to the satellite.
[13] Is that generally true?
[14] A: What you have stated with respect to ${ }_{[15]}$ the, the point to point using a very narrow beam
${ }_{[16]}$ is accurate. Clearly the narrower the beam, the
${ }_{[17]}$ more energy is concentrated in, in a region.
[18] As far as satellite relay is
[19] concerned, I have to say I do not know - this
${ }^{[20]}$ depends if we're using the satellite to broadcast
[21] or to essentially target a particular individual
[22] reception point.
${ }^{[23]} \mathbf{Q}$: Well, let's talk about that.
[24] Are you familiar with the DirecTV
[25] satellite system?

[1]
[2] level of a block diagram such that I can point to
$\left.{ }^{3}\right]$ what occurs in each block of the diagram, this 4] level of abstraction.
[5] What I do not have knowledge in is ${ }^{[6]}$ antenna design and beam forming.
(7) Q: Do you - let's put this in context.
${ }^{\text {[8] }}$ Can you pull out the ' 839 patent
${ }^{[9]}$ which is in front of you? I believe it is Exhibit
[10] 3 and if you could look at column 12 at line 10.
[11] A: Yes.
[12] Q: The '839 patent says that, "Both
${ }^{[13]}$ point-to-point microwave transceivers and
[14] satellite transceivers may be used."
[15] Do you see that?
[16] A: Yes.
[in] \mathbf{Q} : It appears that the Burst patent is
[18] drawing a distinction between a microwave
[10] transceiver and a satellite transceiver, correct?
[20] (Telephone interruption)
[21] Q: Sorry about that. Go ahead.
[22] A: Nice ring.
[23] Q: Do you want me to repeat the
[24] question?
[25] A: No.I understand your question and
[2] I would have to say I'm not sure about that.
${ }^{\text {4) }}$ different things in this sentence
A: There are two items in the sentence, yes.
(7] Q: And one of them is a microwave ${ }_{[8]}$ transceiver, correct?
[9] A: Yes.
[10] Q : And the other one is a satellite [11] transceiver, correct?
${ }^{[12]} \mathrm{A}$: Yes.
[13] \mathbf{Q} : A satellite transceiver uses
14] microwaves, correct?
[15] A: It does.
[16] Q: But at least some of the time, as
[17] we've just described, it uses a broadcast signal
${ }^{[18]}$ as opposed to a point-to-point signal, correct?
[19] A: A satellite would do such a thing, [20] yes.
[21] Q: So one can distinguish between [22] point-to-point microwave transceivers and ${ }^{233}$ satellite transceivers on the grounds that one is [24] a point-to-point signal and one is a broadcast [25] signal, correct?

Hemami

[2] phrasing here.
Q: Can I ask you about that?
A: Yes.
Q: The term of art, "point-to-point
microwave transceivers," can that include a
satellite transceiver?
A: My understanding of - now, a
[9] satellite, a satellite that would serve as a relay
10] between two earth stations, certainly from a
[11] communication perspective, we would characterize
${ }_{[12]}$ the uplink as a point to point because there's no
[13] relay in between and the downlink as a point to
${ }^{[14]}$ point also because there's no relay. The two
[15] ground units are clearly not point to point
[16] because there is a, the satellite is relaying,
$17]$ right, there's something in the middle.
[18] Now, having said that, the
[19] point-to-point microwave transmission, sorry,
[20] point-to-point microwave transceiver which we have
${ }_{[21]}$ here, there is a term which I've used in my
[22] report, "point-to-point terrestrial microwave,"
[23] which indicates that the "terrestrial" modifies
[24] that the microwave is not going into space. Now, I think that it is fair that

Page 69

Hemami

[2] certainly we would call from the ground station to
[3] the satellite, that is indeed a point-to-point
[4] link. I don't believe we would characterize the
[5] transmission via relay as point to point even
[6] though the individual constituent links were
point-to-point microwave links, point-to-point
links that used the microwave frequency band.
Q: Is it fair to say, based on what
[10] you've just said, that the point-to-point
[11] microwave transceiver described in lines 10 and 11
[12] of column 12 of the Burst patent can't be
[13] referring to a link through a satellite between
[14] two of the transceivers described in the Burst
[15] patents?
[16] A: I don't think I would be comfortable
[17] saying "can't." You know, my reading of this is
[18] that a microwave terrestrial antenna and a
[19] satellite terrestrial antenna are different
[20] beasts. And the, the user or the person who's
${ }^{[21]}$ going to purchase the device, shall we say, you
[22] know, maybe wants to understand what the form
[23] factor is, you know, what the orientation is.
[24] If they don't have a line of sight
[25] on the ground to the, the other point, then they
[2] must consider satellites. If they live in a ${ }^{\text {[3] }}$ forest, unless they can get the satellite ${ }^{[4]}$ antenna - well, if they live in a forest, they're [5] sort of out of luck, but if they live in an area ${ }_{[6]}$ with overhanging trees where they can't get line $\square 7$ of sight to the satellite then they need to consider perhaps the terrestrial.

Q: I thought you said that you would [10] not consider a link between two places on the ground through a satellite to be a point-to-point 2] link?

A: That is not, we would not call that [14] a point-to-point link. We would say that that [15] constituted two point-to-point links involving the [6] satellite.

Q: Okay. I'd like to - we'll come back to the ' 839 patent. I want to talk about the ${ }^{19]}$ '995 patent for a second and specifically I want ${ }^{20]}$ to ask you some questions about the fax chip ${ }^{21]}$ that's described in column 5 of the ' 995 patent. Do you see in line 5 and 6 it
describes the A.M.D. 7971 chip?
A: Yes.
Q: Are you familiar with that chip?

Hemami

A: I'm familiar with the chip to the
extent that I read the data sheets that were part of the material that I reviewed.

Q: Okay. Do you have any familiarity
with that chip other than through the data sheet that you reviewed?

A: With the chip itself? No.
Q: Have you ever used the chip?
A: I don't know. I mean, I may have used a fax machine that had the chip in it.

Q: Fair enough. Have you ever
knowingly used that chip?
A: I can neither confirm nor deny that [15] statement. No, most fax machines do not have a [16] stamp on them as to what their internal engine is.

Q: So it's fair to say that you have
[18] never knowingly used that particular chip. Is
[19] that right?
A: I have never knowingly used that ${ }^{211}$ chip but, you know, I don't know how many ${ }_{21}$ manufacturers made those chips. It may well be ${ }_{[23]}$ that if 90 percent of the fax chips were made by [24] A.M.D. and I sent faxes in 1988, then I probably ${ }^{[25]}$ used one.

Q: Fair enough. Do you have any
opinion about whether that chip can be used to do ${ }^{[4]}$ video compression?

A: I do.
Q: And what's your opinion?
A: It can.
Q: And why do you think that?
A: Because one can, one can use the
chip to compress color video frames as described
in the specification.
Q: Do you recall what the - well, I
use the term "data rate." Does that - another word might be "throughput."

Do you know how much data the A.M.D.
7971 chip can handle in a particular amount of time?

A: So what are you calling "data"?
Q: Well, as I understand it, this is a
fax chip, correct?
A: Yes.
Q: And it will receive information, I
would assume, from a scanner, correct?
A: That, that is certainly one way we
can certainly assume - well, the chip actually
Page 75

Hemami

gets its data from memory. It's not really our business where, how the data got to memory.

Q: Fine. So the chip gets data from
somewhere, potentially memory, correct?
A: Yes.
Q: And what does it do to that data?
A: It takes the data and it puts it
through the CCITT Group IV algorithm that it
implements and then it outputs compressed data.
So here, when we say "data," to be
clear, we are referring to a sequence of bits.
Q: So the 7971 chip implements a
specific CCITT Group IV algorithm, correct?
A: Yes.
Q: The CCITT Group IV contains a number
7 of different algorithms, correct?
A: I don't think so.
Q: Okay.
A: Well, what type of algorithm are we
${ }^{121]}$ discussing? Can you be more specific?
[22] Q: Can you give me a general
[23] description of what you understand the algorithm
[24] or algorithms in the CCITT Group IV to be?
[25] A: My understanding of the CCITT Group
Page 76
Hemami
[1]
[2] IV compression algorithms is that they are
[3] compression algorithms for binary images, where a
[4] binary image is - I use the term "image" here
[5] Sort of as a ray when I think of a rectangle -
[6] and in each position we have a zero or a 1. So it
[7] can only take on two values, zero or a 1. Hence,
[8] the word "binary."
[9] Q: So this, the algorithm - I think
[10] you used the plural when you, in your description
[11] - the algorithms in CCITT Group IV process what
[12] you call binary images. Is that right?
[13] A: Well, let's say the chip runs an
[14] algorithm. "Algorithm" is sort of a nebulous word
[15] but it processes binary data.
[16] Q: What do you mean when you say
[17] "algorithm" is a nebulous word?
[18] A: Well, algorithms have
[19] sub-algorithms. It depends on what level we're
[20] talking about.
[21] You know, we could draw a block
[22] diaphragm, for example, of JPEG and talk about the
[23] entire JPEG algorithm or the cosine algorithm or
[24] various pieces. So it's, it's, it can refer to
[25] many levels of a particular task that we are

A: Yes.
Q: But the data that you need to feed
through the chip has to be a binary image, as you
put it?
A: That is correct.
Q: So if you broke a color image into a
series of binary images, you could then feed those
images in succession through the chip. Is that
right?
A: That is correct.
Qr alternatively, you could feed
of different chips?
A: Or even in parallel through the same
Q: Is the 7971 A.M.D. chip that's
described here capable of processing data in
parallel?
A: For the, the data, the color image
data as it is described here, and as we would
expect color video data to be, yes.
Q: What do you mean by that?
A: So what's given in the specification
is, the example that's given is a frame that is of

Page 79
[1]

Hemami

[2] size 300 by 300 with each pixel defined by 21
${ }^{3}$] bits. And this 300 by 300 is a reasonable frame
size for digitized video, you know, as opposed to
say, 10,000 by 10,000 or 3 by 3 . This is a
[6] reasonable number. That is completely what one
万 would expect.
${ }^{[8]} \quad$ Q: Here it says that each pixel is
19 defined by 21 bits, correct?

A: Yes.

Q: Could you break that into 21
different 300 by 300 binary images?
A: Yes.
Q: And at that point, you could feed
those 21 binary images through the 7971 chip, is
that right?
A: That's correct.
Q: Or through a series of parallel
chips?
A: Or in parallel through one chip,
[21] yes.
[22] Q: Okay.
[23] A: You could feed some number of them
$\left.{ }^{24}\right]$ in paralegal through one chip.
[25] Q: Is the A.M.D. 791, I'm sorry, 7971

Page 80

Hemami

chip capable of processing nonbinary images？
A：Well，it＇s a bit of a－
Q：You＇re right．Let me try it
differently．
Is it，is the chip，this A．M．D． 7971
chip capable of directly processing nonbinary
fimages？
A：What does－
MR．PAYNE：Objection to form．
A：What does＂directly processing＂ mean？

Q：Sure．I think we just described how
4］you can use this chip to process a 21 bit color image，correct？

A：Well，you described it．
Q：Fair enough．It＇s accurate to say
that the A．M．D． 7971 chip can process a 21 bit per pixel color image by breaking it into 21 separate binary images，correct？

A：Yes，that is an accurate statement．
Q：Okay．Would it be possible to send a 300 by 300 frame with 21 bits for each pixel 24］through the A．M．D．processor without breaking it into 21 separate frames？

Hemami

A：Well，in fact－now，let me think．
Okay．I would have to look at the data sheet to－I don＇t want to rely on doing math in my head or remembering the data sheet but as far as that A．M．D．chip is concerned，remember， it doesn＇t know that the bits that we are pushing into it，whether they came from our 21 bit color image or whether they came from a scanner or whether somebody accidentally unplugged the machine prior to turning it back in and those bits that it＇s going to process are just whatever state the memory powered back up in．

So we can feed it any bits we want．
It will not，it will not explode．It will not
raise a red flag saying，you know，this data
doesn＇t－
Q：Understood．You can feed any bits
you want into the chip is what you＇re saying，is that right？

A：Yes．
Q：Okay．
THE VIDEOGRAPHER：I need to
change the tape．
MR．BROWN：Do I have five
［1］ minutes，three minutes？

THE VIDEOGRAPHER：You have
d about one minute．
MR．BROWN：Let＇s change the dape．

THE VIDEOGRAPHER：The time is now 11：04．This marks the ending of tape number one．Off the record．
（Recess taken）
THE VIDEOGRAPHER：The time is now 11：05．This marks the beginning 3）of tape number two．On the record． BY MR．BROWN：
Q：Before we took that brief break，I
6］think you said that the algorithm or algorithms in the CCITTT Group IV processed binary images， s correct？

A：They＇re intended to process binary
${ }^{[20]}$ images．The，the chip was designed with binary
［21］images in mind．
［22］Q：That＇s exactly where I was going．
［23］You＇ve anticipated me perfectly．
［24］So even though they＇re designed to 25］process binary images，you can feed other data
［1］

Hemami

〔〕］into them，right？
A：Well－
［4］Q：There＇s nothing to stop you？
［5］A：First off，you can feed any data ［6］into it．

Q：Right．
A：Now，we would hope that we would
feed data that had something in common with a
［t0］binary image if we wanted to use the chip in such
iit］a manner to achieve compression．
［12］Q ：Let＇s talk generally about
［13］compression and I think that the reason for what
［14］you just said is that different kinds of data have
［15］different patterns of bits in them that make
${ }^{[16]}$ different algorithms more and less effective at
${ }_{[17]}$ compressing them．Is that true？
［18］A：I think that＇s a laymen＇s
［19］understanding，which if I were explaining it to
［20］somebody on a bus，that is probably what I would
［21］say to them．
22］Q：Excellent．Let＇s suppose you were
${ }^{[23]}$ explaining this to a Federal judge who is an
${ }^{[24]}$ extremely intelligent and accomplished woman．
［25］How would you clarify and deepen

Hemami

correlated.
Q: And image compression takes
advantage of that fact, correct?

A: Yes.

Q: Or at least it can?
A: Yes. Yes. I would say general
image compression algorithms, for example, that we
can't predict what every single picture that
someone is going to take is.JPEG, for example,
exploits this fact.
Q: Okay. Now, let's take a very
different example. Let's talk about a database
file that's a binary file on a computer.
That file will also have correlation
(6] within it, correct?
A: Maybe, maybe not. It depends how
${ }^{18]}$ it's stored and what the file is and what format it is.

Q: Fair enough. We don't necessarily
need that for the, for the case.
What I wanted to ask you is it true that the efficiency and performance of any given compression algorithm depends on whether the data that's provided actually has the type of

Page 89

[1] Hemami [2] correlation that it was designed to handle? (3] So, for example, if you have a video [4] compression algorithm which one would expect to [5] look for, so to speak, correlation between pixels ${ }_{[6]}$ and successive frames and you created, using some $\square 7$ video authoring tool, a bizarre kaleidoscope where ${ }^{8]}$ no pixels remain the same between successive ${ }_{91}$ frames, the performance of that algorithm would [10] degrade immensely, right? [11] A: If the algorithm is designed for ${ }^{[12]}$ what we would call natural images, then if you ${ }_{[13]}$ gave it an arbitrary collection of frames [14] consisting of an arbitrary collection of pixels, [15] we would expect that the compression would not be ${ }_{[16]}$ as good as if you fed it, say, footage of a [17] football game. [18] $Q:$ Right. So is it generally true in [19] compression that the performance of the algorithm ${ }_{[20]}$ is related to whether the data it is receiving ${ }^{[21]}$ contains the types of correlations that the ${ }_{[22]}$ algorithm is designed to handle? ${ }^{223]}$ A: Well, what type of compression are [24] you talking about? Q: Let's use video compression.	

		Page 90
[1]	Hemami	
[2] A: There are some compression		
${ }^{\text {[3] }}$ algorithms for which what you said is not true.		
[4] And for video compression, video compression		
${ }^{51}$] algorithms designed for natural video, we would		
$\left.{ }_{[6]}{ }^{6}\right]$ expect that if we fed it video with different		
$\square 7$ statistical characteristics, it would not do as		
${ }^{\text {[8] }}$ well.		
${ }^{9]}$ Q: Let's take the specific example of		
${ }_{[10]}$ the 7971 chip here.		
[11] Would you expect that chip to		
[12] perform better for black and white fax images than [13] for color video images?		
[14] A: How do you define "better"?		
${ }_{115]}$ Q: Well, I'm probably not very good at		
[16] that. You're a compression expert, true?		
[17] A: Yes.		
[18] Q: How would you define a "better		
[19] compression" performance?		
[20] A: Well, the question that you have		
[21] asked is, is a little bit awkward and I will		
[22] oblige you by telling you why.		
[23] The CCITT Group IV algorithm is a		
[24] lossless algorithm for binary images. So the		
	array that you send in of 1's and zeroes arranged	

Hemami

in an image format will come out as exactly the same array of 1's and zeroes, modulo the options ${ }^{[4]}$ and the chip. You know, you can set the, you can ${ }^{[5]}$ set up the border if you would like.

I think there's some, there's some
m options for, shall we say, presentation of the
${ }_{[8]}$ output of the fax on the page, okay? But if we're
${ }_{[9]}$ talking about just the bits that refer to the
${ }_{[10]}$ single array, the array of binary images that went
${ }_{[111]}$ in, those bits will come out exactly the same.
[12] Now, a video compression algorithm,
[13] we don't need the output video or the decompressed
[14] video to be pixel for pixel equivalent to the
[15] original. Now, you could argue maybe for fax.
${ }^{[16]}$ You don't need it. We're all able to read lousy
[17] faxes, right? You know, that's clearly not a
${ }^{[18]}$ pixel for pixel equivalent. But as far as the
[19] chip is concerned, it produces the same binary
[20] image decompressed as it decompressed.
[21] Q : I don't mean to interrupt you. I
[22] was trying to understand how you would define
[23] "better compression."
[24] A: Okay. Okay. So with respect to the
[25] fax, okay, we're talking about a lossless - so

Page 92		Page 94
${ }^{11]}$ Hemami	[1] Hemami	
[2] with respect to binary, single binary image, we're	${ }^{[2]}$ that it performs a CCITT Group IV algorithm which	
${ }^{[3]}$ talking about lossless compression. So the only	${ }_{\text {[3] }}$ are generally lossless algorithms?	
${ }^{[4]}$ metric that we have is the size.	[4] A: Yes.	
[5] Q: The size of what?	[5] Q: Are there any lossy CCITT Group IV	
${ }^{[6]}$ A: The size of the compressed file,	[6] algorithms?	
[] okay?	\square A: To my knowledge, no.	
${ }^{[8]}$ Now, with respect to the video, we	${ }_{\text {[8] }}$ Q: All right. Let's talk about the	
[9] can produce output video of varying qualities and	[9] next paragraph which says that, "The compression	
${ }^{[10]}$ the varying qualities correspond to varying sizes	[10] algorithm can simply record data corresponding to	
[11] of the compressed file. And the designer of the	[11] only those pixels which change color from one	
${ }_{[12]}$ system or whoever, you know, however this is being	${ }_{[121}$ frame to the next."	
${ }_{[13]}$ used, can make design choices as to tradeoffs	[13] Do you see that?	
${ }^{[14]}$ involved on what size of file we want and what	[14] A: Yes.	
${ }^{15]}$ quality of output video we want.	(15] Q: Is that a lossy or lossless	
[16] Q: Is it possible to use the A.M.D.	[16] algorithm or both? I shouldn't put it that way.	
[17] 7971 chip to do lossy compression?	[17] Does that describe a lossless	
${ }_{[18]} \quad \mathbf{A}:$ Yes.	${ }_{[18]}$ algorithm, does that describe a lossy algorithm or	
${ }^{[19]} \mathbf{Q}$: How do you do that?	${ }_{[19]}$ could it be describing either?	
[20] A: We simply do not feed it all of the	[20] A: At that point of the sentence, it	
[21] 21 bit planes.	[21] could be describing either.	
[22] Q: So it's possible to use the chip	[22] Q: Okay. In the context of the	
${ }^{[23]}$ within a work flow that produces a lossy	[23] paragraph as a whole, is the answer any different?	
${ }^{[24]}$ compression. Is that right?	[24] A: So the question is - can you put	
${ }^{[25] ~ A: ~ W o r k ~ f l o w ? ~}$	[25] the whole question together for me?	
Page 93		Page 95
[1] Hemami	[1] Hemami	
${ }^{\text {[2] }}$ (Q: Okay. We'll avoid that word if you	[2] Q: Sure. You said that at that point	
${ }^{[3]}$ don't like it.	${ }_{[3]}$ in the sentence, it could be describing either a	
${ }_{\text {[4] }}$ Is it true that the loss, in the	${ }^{4]}$ lossy algorithm or a lossless algorithm.	
${ }_{5]}$ example you just gave, is injected by something	[5] The paragraph that runs from column	
${ }^{[6]}$ other than the A.M.D. chip?	[6] 5 , line 9 through - actually, I don't mean to ask	
[] A: That is accurate.	[7] you about the entire paragraph.	
${ }^{[8]}$ Q: Is the A.M.D. chip itself capable of	[8] From column 5, line 9 through column	
${ }_{\text {[9] }}$ implementing a lossy compression?	[9] 5 line 18, the sentence that ends with,	
[10] A: That I don't know. I'd have to	[10] "90 percent." Do you see that?	
${ }_{[11]}$ reread the, the chip description.	[11] A: "90," yes.	
${ }^{[12]} \mathbf{Q}$: But your understanding sitting here	[12] Q: Does that portion of the '995 patent	
[13] today of the algorithm it runs is that it's a	[13] describe a lossy compression process, a lossless	
[14] lossless algorithm. Is that right?	[14] compression process or could it be describing	
[15] A: My understanding of the algorithm is	[15] either?	
${ }_{[16]}$ based on the standard document. So I, when I	[16] A: I read this as it could be	
[17] discuss this chip, I am - it has options, it does	${ }_{[17]}$ describing either. It's, it's up to the system	
${ }_{[18]}$ things that allow for, I think what CCITT Group IV	[18] designer.	
${ }_{[19]}$ maybe considered not falling within the standard	[19] There is a general approach to video	
${ }^{[20]}$ but the engine is a CCITT Group IV standard. So,	[20] compression described here. The system designer	
${ }^{[21]}$ you know, I don't know if CCITT Group IV allows	[21] would make specific decisions based on their	
${ }^{[2]}$ for putting borders on pages or some of the other	${ }^{22}$ 22] requirements.	
[23] options that the chip has.	[23] Q: Okay. Now, is it true that - well,	
[24] Q: Okay. So when you say that the chip	[24] there's only one thing that's actually described	
${ }^{[25]}$ performs a lossless algorithm, what you meant is	[25] here which is recording data corresponding to	

Hemami

A: Yes.
Q: Did you check that calculation?
A: Yes, I did.
Q: And is it accurate?
A: I - well, you know, I don't
remember that I checked the 1.89 . I certainly
checked the 51 gigahertz. So if this is
consistent with - sorry, gigabyte storage size.
${ }^{10]}$ If this is consistent with the 51 gigabyte storage
[11] size, then I believe that it's correct.
[12] Q: Let's assume that it's correct.
[13]
[14]
[15] the form of 21 separate frames or a single frame
[16] with 21 bits of depth for each pixel, it's going
[17] to have the same amount of data, is that right?
${ }_{[18]}$ A: Yes.
[19] Q : So let's assume the amount of data
${ }_{[20]}$ is 1.89 megabits. Is that right?
A: Uh-huh.
Q: Okay.That means that the A.M.D.
chip that's described here would be capable of
processing that data in real time given the
processing rate that you described. Is that
Page 101

[1]

${ }^{\text {[2] right? }}$
[3] A: What you have just stated is
inaccurate at several levels.
[5] Q: Okay. Please explain.
[6] A: So first off, one of ordinary skill
would understand that we don't need 7 bits per [8] color for good quality, NTSC quality video.
[9] Q: Okay. You know what? That's fair
and I'm not, I don't mean to ask you about what
${ }^{[10]}$ and I'm not, I don't mean to ask you about what
${ }^{[11]}$ you could do in between because I understand it's
[i2] possible to do things to the bits in between
[13] having 21 bits per pixel representing the color [14] and feeding it into the fax chip. Okay? But bear ${ }^{[15]}$ with me for a second.
[16] Let's assume that you were going to
${ }_{[17]}$ take the frames with 21 bits per pixel without
${ }^{8]}$ doing any compression on the color and feed it
into the fax chip.Are you with me?
[20]
[21] Q: Okay.At that point, assuming the
${ }^{[22]}$ math in the patent is correct, you would need 1.89
[23] megabits per frame, right?
[24]
A: Yes.
[25]

Hemami

A: Yes.
so
megabits per frame, right?

Q: And the patent describes 30 frames

Page 103

Hemami

[1] Q: Okay. Does the specification ever
(3) describe using multiple A.M.D. chips in parallel?

A: Well, the specification states,
] "Various algorithms may be employed in the] compression process," to which I'll just put a π little asterisk and say knowing that one would [] throw away some lower bit planes, right, would [9] fall in the category of "various," and then as an example, compression algorithms like CCITT Group 1 IV.
[12] Now, that doesn't say run it once.
[13] It is simply - just as a discrete cosine
[14] transform can be described as an algorithmic part
[15] of JPEG, there's no suggestion that we run it once
${ }_{[16]}$ per image. It's a block that's in there that we
are going to run as part of the algorithm.
[18] \quad Q: Sure. So the algorithm -
[19] A: So I don't read this to suggest that ${ }^{20]}$ one is limited to a single chip.
[21] Q: And that's because, like you said, [22] the algorithm referred to could require using [23] multiple chips in parallel. Is that right?
[24] A: The compression algorithm for video, 25] you know, cannot simply be, we can't just slap

Page 104	Page 106
${ }^{11}$ (Hemami	[1] Hemami
${ }^{12]}$ down the 7971 chip and say, there, we're done,	[2] correct?
${ }^{[3]}$ right? This requires design.	[3] A: The compression is done by the
[4] So as I, you know, as I mentioned, a	[4] compressor/decompressor, yes.
[5] designer or a video person would know that we	[5] Q: And are any examples of the hardware
${ }_{[6]}$ didn't need lower bit planes and could, would make	${ }_{[6]}$ for the compressor/decompressor given in the Burst
[7] an intelligent design decision about not	円 patents other than this A.M.D. 7971 chip?
${ }_{[8]}$ processing those because the visual impact will be	[8] A: There are no other examples of
[9] negligible or zero.And similarly, the designer	[9] specific hardware for the compressor/decompressor
[10] sees a suggestion here for a compression algorithm	${ }_{[10]}$ given in the patent.
${ }_{[11]}$ in conjunction with the hardware chip and this is	[11] Q: Does the - strike that.
${ }_{[12]}$ a, you know, they can use it. But to say that	[12] Do the Burst patents describe any
${ }^{[13]}$ one, we have to have only one, I don't read it	[13] intra-frame compression algorithm other than the
[14] that way.	[14] CCITT' Group IV algorithm or algorithms?
[15] Q: What you've said so far is that the	[15] A: The compression as described at the
${ }^{[16]}$ specification doesn't say you have to only use one	[16] bottom of page 4, the general statement which
[i7] chip, right?	$\left[{ }^{[17]}\right.$ starts on line 65 says, "Various algorithms may be
${ }_{[18]} \mathbf{A}$: Yes.	[18] employed in the compression process which enable
${ }^{[19]}$ Q: My question was does it ever say	[19] the representation of a series of numbers by a
$\left.{ }^{20}\right]$ expressly that you can use more than one chip?	[20] reduced number of digits." The CCITT Group IV
[21] A: It says nothing about any numbers of	[21] material follows after as an example.
[22] chips. Neither that you can use only one or that	[22] So to one of ordinary skill, that
${ }^{\text {[23] }}$ you must use more than one	[23] "various algorithms" sentence suggests that there
[24] Q: Okay. What it does say is that	[24] are things out there and you can go pick something
[25] CCITT Group IV compression algorithms are	${ }^{[25]}$ but if you're too lazy to do so or you would like
Page 105	Page 107
Hemami	
[2] available on a single integrated circuit and it	[2] a kick in the rear, I'm going to provide you with
${ }^{[3]}$ provides the example of the A.M.D. 7971, correct?	${ }_{[3]}$ just one example to get you thinking.
[4] A: Yes.	[4] Q: Fair enough. So there's a statement
[5] Q: And doesn't provide any other	$\left.{ }^{5}\right]$ in here that various algorithms can be used.
[6] examples of chips that can do compression,	[6] Is it true that the only example of
(7) correct?	[7] an intra-frame compression algorithm that's
${ }^{\text {[8] }}$ A: Well, there are other chips that are	${ }_{[8]}$ provided in the Burst patents is the CCITT' Group
${ }_{[9]}$ referred to in the specification. The chip	[9] IV algotithm or class of algorithms?
[10] itself, certainly we could program it to do	${ }_{[10]}$ A: That, that is the only example.
[11] compression. In the context of the Burst patent,	${ }_{[11]} \quad$ Q: Okay. We've talked before about the
[12] $n o$.	[12] text between lines 9 and about 18 in column 5 as
${ }^{[13]}$ Q: Okay. So you're referring to the	[13] describing the, a class of inter-frame compression
${ }_{[14]}$ CPU. Is that right?	[14] algorithms. Is that right?
[15] A: Yes.	[15] A: Yes.
${ }^{[16]}$ Q: And so it refers to microprocessors	${ }^{[16]}$ Q: So that text - well, other than
[17] and I believe at the bottom of column 5 around	[17] that text, does the Burst patents provide any
${ }^{[18]}$ line 50 through 55 it gives examples of	[18] Other examples of inter-frame compression
${ }^{[19]}$ microprocessors, right?	[19] algorithms?
[20] A: Right.	[20] A: That text represents the suggestion
[21] Q: And it would be possible to program	${ }^{[21]}$) 0 the reference to the class, the class I would
[22] those chips to do compression, correct?	${ }^{[22]}$ say, not a class, but the class of inter-frame
[23] A: Yes.	${ }^{[23]}$ compression algorithms.
[24] Q: But the Burst patent makes clear	[24] Q: The distinction you drew between
${ }^{25]}$ that the compression is not done by the CPU,	[25] "the class" and "a class," does that mean that you

Page 109
[1]
2] where it's not but we are still using multiple [3] frames.

Q: Okay. So the text in column 5 of 5] the ' 995 patent refers to a very large sub-class 6] of inter-frame compression algorithms that doesn't include all inter-frame algorithms but includes most of them. Is that right?

A: Well, let's also be clear that, you] know, every single human on earth could design a
${ }^{[11]}$ compression algorithm and then we could design
${ }_{[12]}{ }^{12}$ another one and another one and there's sort of an [13] infinite number of compression algorithms.
[14] There are a lot of hypothetical
[15] things that you could do that may or may not work
${ }_{[16]}$ better or worse that would still qualify as
[i7] compression algorithms, but may not be anything
${ }_{[18]}$ that anybody would really care about so I would
${ }_{[19]}$ say, let's - from the standpoint of any type of
[20] video compression algorithm that somebody would
${ }^{[21]}$ attempt to use in a commercial product.
[22] So this somehow suggests that it
[23] looks good enough and provides performance good
${ }^{[24]}$ enough that somebody somewhere would be willing to [25]
fork over money for it, okay? From that
[1]
${ }^{[2]}$ perspective, I think we can say the inter-frame
${ }^{[3]}$ compression algorithms are going to do something
[4] that compares pixels across one or more frames.
[5] Q: Okay. Is it fair to say that by
${ }_{[6]}$ referring to algorithms that record data
[7] corresponding to only those pixels which change
${ }^{[8]}$ color from one frame to the next, the ' 995 patent
[9] is referring to all, I think you used the phrase
[10] "commercially viable" or at least this idea of
${ }^{11]}$ commercially viable compression.
[12] A: Let's go with the idea of
[13] "commercially viable." I think people have
[14] different opinions as to what is commercially
[15] viable and I'm certainly not a matketing expert
but -
Q: Fair enough. Let's try it a little
181 bit differently then.
[19] Is it true that the text in column 5
${ }^{[20]}$ that we've been discussing between lines 9 and 18
[21] refers to any of the algorithms that could
[22] feasibly be used commercially for inter-frame
[23] video compression?
[24] A: Any of the algorithms - let's say
[25] - "any" is a very all encompassing but -

- Page 111
[1] Hemami
Q: That, that's fine. I'll ask it
slightly differently. Would "most" work?
A: Let's go with "most."
Q: Okay. Is it true that the text in
column 5 between lines 9 and 18 that describes -
well, let me back up because I think you've
already said that.
Is it true that the text in column 5
between lines 9 and 18 is referring to a class of
$[4]$ inter-frame compression algorithms that would
${ }_{2}{ }^{2}$ include most of the commercially viable video
[3] inter-frame compression algorithms?
MR. PAYNE: Object to form.
A: And you say "the commercially
available," which suggests to me that you have
something in mind.
Q: Maybe I better reframe the question.
[19] I might have misspoken.
[20] Is it true that the text in column 5
[21] between lines 9 and 18 would be understood by a
[22] person of ordinary skill in the art to refer to
[23] any one of a class which includes most of the
[24] commercially viable video compression algorithms
[25] that use inter-frame compression?
=
Hemami
A: I think that mischaracterizes my
intended, my intended description of
"commercially viable." commercially viable."
Q: Okay.
A: What I meant by "commercially viable" - let's see if I can come up with a better description - something that provides reasonable quality and reasonable performance where reasonable art design parameters.
[11] I didn't mean to suggest that this
[12] was written in a way to encompass some algorithms
[13] that existed such that the patentee would be able
${ }_{[14]}$ to immediately go out and jump on people. That is
${ }_{[15]}$ not what I meant to suggest when I went toward the
[6] "commercially viable."
[17] I was trying to exclude crazy things
${ }^{18]}$ that somebody might put together for a paper in
Hawaii because they wanted to go but one would
never actually consider such an algorithm were one
to attempt to build a system that could be used
outside of the laboratory and the lecture
presentation room in Hawaii.
24] Q: Okay. So let's try it one more
[25] time.
Page 113

Hemami

Excluding unreasonable compression
algorithms, is it true that the text between lines
9 and 18 of column 5 in the ' 995 patent describes
the class of inter-frame compression algorithms
for video?
A: I think that's fair.
MR. PAYNE: Are you at a good
stopping point?
MR. BROWN: If you want to
take a break, I'm happy to take a
break. I could keep going but let's
take a break. I certainly don't want
to -
THE VIDEOGRAPHER: The time is
now 11:44. Off the record.
(Recess taken)
THE VIDEOGRAPHER: The time is
now 11:53. On the record.
THE WITNESS: Oh, can we go
] off the record?
MR. BROWN: Sure. Let's go
23] off the record for a second.
(Discussion off the record)
MR. BROWN: Okay. Back on.

Hemami

${ }^{[2]}$ THE VIDEOGRAPHER: Well, I
[3] didn't actually get a chance to go off [4] the record.

MR. BROWN: Well, that's fine.
${ }_{[6]}$ We'll keep going.
円 BY MR. BROWN:
Q: If you look at the ' 995 patent, [9] between lines 28 and 35 , there's a paragraph
[0] beginning, "In one embodiment."
Do you see that?
A: Yes.
(3] : That paragraph describes sampling
${ }^{14]}$ the audio portion of the program, correct?
(15) A: Yes.

16] Q : And it describes digitizing the
17 audio. Is that right?
A: Yes.
Q: Sampling is part of the digitizing
process, correct?
A: Yes.
[22] Q : It says in the patent that it is
digitized by digital to analog conversion. Do you
4] see that?
[25] A: Yes.
Page 115

Hemami

[1]
Q: That's backwards, right? It should
be analog to digital conversion?
A: Good, good catch. Yes.
Q: But in any event, after the analog
6] to digital conversion which it describes as
occurring at a sampling rate of 88,000 per second.
8] Do you see that?
91 A: Yes.
[10] Q: Presumably that means samples per
[11] second. Is that right?
[12] A: Well, it says sample rate. Yes,
[13] samples per second.
[14] Q: Well, do you think that means 88,000
[15] of something other than samples per second?
[16] A: No, no, but, that, that's fine.
$[17]$ Q: Well, I want to make sure I
${ }^{[18]}$ understand what you think that means.
[19] A: No. No. I was -
[20] Q: What does 88,000 per second mean?
[21] A: No, it's, it's exactly samples per
[22] second. I mean, I read that as a replacement for
$[23]$ hertz. A hertz is one over a second and instead
[24] of writing hertz, he wrote over second. It is
[25] 88,000 samples per second.
Page 116
17] 24 bits per second, right?
[18] A: It's per sample, I think.
[19] \mathbf{Q} : I'm sorry.
[22] Q: So are you aware of, I believe it's ${ }^{[23]}$ called the SACD format? Are you aware of that format?

A: No.
Page 117

Hemami

Q: Fair enough.
1 The sampling rate for CDs is 44,100
${ }^{4]}$ samples per second, correct?
A: That's right.
Q: So here he has double, slightly less
than double that rate and slightly, and exactly
half of the bits per sample. Is that right?
A: That's right.
Q: So this is, it's, in fact, true that
1 the total number of bits described here is
${ }^{2]}$ approximately the same as in $C D$ quality sound. Is
[13] that right?
[14] A: Approximately, because of the, it
[15] would be 88,200 if it were exactly, yes.
Q: Okay.The next sentence states,
[17] "The sampling rate could be dropped to reduce
18] memory requirements." Do you see that?
[19] A: Yes.
[20] Q: Would you consider dropping the
[21] sampling rate as described there to be
[22] compression?
[23] A: Generally, we do not - well, I
${ }^{224]}$ think it, that perhaps describes - excuse me.
${ }^{[25]}$ That perhaps depends on the system

Hemami

[2] description. I think generally I would not
[3] consider that to be compression but I can
[4] certainly imagine contexts in which it was
${ }_{[5]}$ described as such in that it would produce less
${ }^{[6]}$ data, smaller file sizes than without reducing the
历 sampling rate.
[8] Q: Here it's certainly described,
[9] implicitly at least, as reducing file sizes,
[10] right?
${ }^{[11]}$ A: Well, it says memory requirements.
[12] \quad : So it reduces the amount of memory
${ }^{13]}$ needed to store the audio data, right?
[14] A: Required to store the, the raw
[15] samples, the raw digitized samples, yes.
Q: But you wouldn't consider that -
well, I'm going to make sure I understand.
Would you or would you not consider
${ }_{[19]}$ that sentence, in the context of the Burst
${ }_{[20]}$ patents, to be describing compression?
[21] A: I don't believe I would describe
[22] dropping a sampling rate as compression because
[23] this is actually oversampled. So from very solid,
[24] a very solid signal processing argument, one can
[25] reduce the sampling rate and still exactly

Hemami

[2] represent the data.
[3] Q : The next sentence says, "The audio
[4] data can be compressed with conventional
[5] algorithms, e.g., a Fibonacci delta compression
[6] algorithm." Do you see that?
(7) A: Yes.
[8] Q: The Fibonacci delta compression
[9] algorithm indeed compresses audio data, correct?
A: It does.
Q: Does - strike that.
[12] We've now talked about four specific
[13] places where compression algorithms are referred
${ }_{[14]}$ to in the ' 995 patent. One is column 4 at around
[15] line 66 where it says, "Various algorithms may be
[16] employed."
[17] A: Yes.
[18] Q : Another is the CCITT Group IV
$[9]$ compression algorithm at the top of column 5,
[20] correct?
[21] A: Yes.
[22] Q: And within that, the example of the
[23] 7971 chip is provided. Is that right?
[24] A: Yes.
[25] Q: Another class of algorithms is

Hemami

identified in column 5 between lines 9 and 18, correct?

A: Yes.
Q: And then down at line 35 , the
Fibonacci delta compression algorithm is described?

A: As well as in the previous line, "compressed with conventional algorithms."

Q: So the Burst patent we've just seen
describes various algorithms at the bottom of
column 4, the CCITT Group IV algorithm at the top of column 5, a class of intra -

A: Inter.
Q: "Inter," excuse me.A class of
inter-frame algorithms in column 5 between lines 9
and 18 and then both various, various conventional
algorithms and the Fibonacci delta compression
algorithm at lines 34 and 35, correct?
A: Yes.
Q: Besides those, does the Burst
patents describe any other compression algorithms?
A: Well, in the context of mentioning
compression, it appears in the objectives. With
respect to describing algorithms, you have

[1]
[2]
${ }^{[3]}$ point out depends on the validity of the OCR, the
[4] first appearance of the word "algorithm" is in [5] column 4 at line 66.

A: Okay. So if we are tracking the
$[7]$ word "algorithm," you know, taking into account
${ }_{[8]}$ that I'm not as fast as your machine and I don't
[9] want to sit here and go through every single word
[i0] in my head, the, I would suggest that the
${ }^{[11]}$ objectives we refer to, sorry, the specification
${ }_{[12]}$ refers to utilizing a data compression technique.
[13] Now, granted, the word "algorithm"
[14] is not there, but utilizing a data compression
[15] technique would suggest to one of ordinary skill
[46] that there was a compression algorithm in use in
[17] some manner.
[18] Similarly, I think references to
[19] decompression in the context of, if those appear
${ }^{201}$ in the context of editing, that also suggests that
[21] obviously you can't decompress if you haven't
[22] compressed.
[23] Q: Sure.And maybe the way to do this
[24] since you're talking about places that suggest an
${ }^{[25]}$ algorithm might be in use, that was not the intent
[4]

Hemami

of my question.
What I really want to get at is -
${ }^{[4]}$ and I do want to take the time that we need to
${ }_{[5]}$ make sure that we have a complete list but what I
[6] want is a complete list of the algorithms and
[7] classes of algorithms that are disclosed for doing
${ }^{[8]}$ compression in the Burst patents. And so if you
[9] can take the time you need to give me that
(10) complete list?
[11] A: I believe that what you have said is
${ }_{[12]}$ accurate. I think that sort of from a standpoint
[13] of being consistent between the audio and the
[14] video, we may want to include the paragraph that
[15] includes the digitization of the video.
You clearly cannot compress video
[17] unless it has been digitized. So to the extent
[18] that the audio paragraph discusses A to D
[19] conversion, you know, the paragraph that precedes
[20] the, "if each frame contains." Also, it describes
[21] an equivalent process.
[22] Q: Let's make sure we're clear. You're
[23] talking about the paragraph in column 4 between
[24] lines, approximately 47 and 62 . Is that right?
[25] A: Okay. I am talking about not only
Hemami
[1] Page 124
[2] that paragraph, but also the paragraph above that
[3] discusses the format for the video.
[4] Q: The paragraph that begins at
[5] approximately line 32?
[6] A: Yes, "The video signals defining."
[7] Q: Is it accurate to say that the
[8] paragraphs between lines 32 and 62 in column 4 of
[9] the '995 patent describe the digitization of
[10] video?
[11] A: Yes.
[12] Q: I believe, going back to audio, that
[13] you told me that the digitization of the audio was
[14] not something that you would call compression. Is
[15] that true?
[16] A: It is not something that I would
[17] call compression, but it does define what it is
[18] that we will compress.
[19] If we're going to take one sample
[20] per second or 88,000 samples per second, that
[21] impacts decisions that will be made about what
[22] algorithms will be used and how fast things need
[23] to be, how many chips one would need, for example.
[24] Q: Is it similarly true for video that
[25] you believe that the digitization of video that's

Page 125 [1]
${ }^{21}$ described in paragraph, I'm sorry, lines 32
${ }^{31}$ through 62 in column 4 is not itself compression [4] of the video?

A: Digitization itself is not compression.

Q: So is it accurate to say that what $\left.{ }^{3}\right]$ is described between lines 32 and 62 in column 4 $[9]$ is not describing compression of video?

A: It does not describe compression but
[11] "it makes implications about" is almost too weak.
${ }_{[12]}$ It has strong implications.
[13] What is performed in those two
${ }^{[14]}$ paragraphs has strong implications for specific
[15] design decisions and performance of the
${ }_{[16]}$ algorithms. So from the standpoint - you know,
[17] if you just said, "Can you compress video for me,"
[18] my first question might be what is the frame rate,
[19] what is the bit depth, what is the format. That's
$\left.{ }_{200}\right]$ integral in describing what is, what is done.
[21] \mathbf{Q} : So in the case of both audio and
${ }^{[22]}$ video, the digitization process is not itself
[23] compression but it has strong implications on the
${ }^{[24]}$ choices that one makes when one subsequently does
${ }_{[25]}$ the compression, is that accurate?

Page 126

Hemami

A: Yes. It can have strong
[3] implications and it certainly informs a designer
${ }_{[4]}$ as to which choices he or she may make or may
[5] choose to ignore.
Q: Okay. What led us down that tangent
[7 was an attempt to get a complete list of the
${ }^{81}$ places where compression algorithms are described
[9] in the ' 995 patent and I had given you a list,
(10] which I believe you told me was accurate and I
${ }^{111]}$ just want to confirm that. So here's the
[12] question.
Is it accurate that the complete
[14] list of compression algorithms that's described in
[15] the '995 patent is, one, the various algorithms at
[16] lines 65 and 66 on column 4, two, the CCITT Group
[17] IV compression algorithms at the top of column 5,
[18] three, the class of inter-frame compression
[19] algorithms described between lines 9 and 18 in
[20] column 5 and, four, the conventional algorithms
[21] described as being used with audio data at line 34
[22] of column 5 and the Fibonacci delta compression
[23] algorithm in line 35 of column 5?
[24] A: Yes.
[25] MR. BROWN: Les, what time is

	Page 127
[1] Hemami	
[2] it?	
${ }^{[3]}$ MR. PAYNE: It's about 12	
${ }^{\text {[4] }}$ after. Are you at a good place?	
${ }^{51}$] MR. BROWN: This is a good	
${ }_{[6]}$ place to stop for lunch. It's close	
[7] to 12:15. I think we should do that.	
${ }^{[8]}$ THE VIDEOGRAPHER: The time is	
${ }^{\text {[9] }}$ now 12:11. This marks the ending of	
[10] tape number two. Off the record.	
${ }_{[11]}$ (Luncheon recess: 12:11 p.m.)	
[12]	
[13]	
[14]	
[15]	
[6]	
[17]	
[18]	
[19]	
[20]	
[21]	
[22]	
[23]	
[24]	
[25]	

Q: I want to go back to your CV for a moment. On page 69 , there is a heading there which we discussed earlier, "Other Expert Witness Consulting," which I believe you said would be more accurately phrased as, "Other Expert Witness Testimony," correct?
A: Yes.
Q: Was that section of your CV added particularly for the purpose of presenting your CV in the context of this expert report?
A: Yes.
Q: Did you do anything else to your CV ${ }^{[23]}$ particularly for the purpose of including it as an [24] attachment to your expert report?
[25] A: I have multiple CVs. I have one for

Hemami
 AFTERNOON SESSION

THE VIDEOGRAPHER: The time is now $12: 51$. This marks the beginning of tape number three. On the record.
SHEILA S. H EMAMI, having been

[1]
 Hemami

[2] the department which includes every single committee I've ever sat on in my life.
[4] I have another one which doesn't include departmental level but which includes all
[6] of the invited lectures I've given around the
历 world and I think it would be fair to say I ${ }^{[8]}$ synthesized this CV by removing things that I [9] didn't feel would be relevant, like departmental [10] committees and also the very, I don't think I ${ }_{[11]}^{[1]}$ included my list of lecture, you know, invited] presentations which is quite lengthy and not, I didn't feel was relevant.
[14] Let me see if there's anything else [15] that's - I also, I think they - material gets ${ }_{[16]}$ listed in different orders depending on who the, [17] who's consuming the CV so I may have, this may be [18] a rearranged order of headings that are common [19] relative to say the CV I give to my department.

Q: Okay. But is it true that the only
[21] material that was added as opposed to rearranged [22] is the section "Other Expert Witness Consulting"?

A: That is accurate.
[24]
Q: Okay. Let's go to page 16 of your
[25] expert report.
Page 129
[1] Hemami
[2] There's a paragraph, it's the last
[3] paragraph on this page which begins, "Any
${ }^{[4]}$ compression procedure is described by an
${ }^{[5]}$ algorithm." Do you see that?
${ }_{[6]}$ A: Yes.
®] Q: And you go on to give a definition
${ }^{[8]}$ of "algorithm" in that sentence, correct?
[9] A: Yes.
(10) \mathbf{Q} : Is that the sense in which you've
if been using the word "algorithm" in the testimony
${ }^{12]}$ you've given so far today?
A: So here I say it is "broadly defined
[14] as a procedure for solving a problem or
[15] accomplishing some end."
[16] So I believe that in the context of
[17] a compression algorithm as we have used it to
$[18]$ refer to putting something in and getting
[19] something out which is smaller, the first
${ }^{[20]}$ definition, "procedure for solving a problem" is
${ }^{211]}$ appropriate.
[22] "Accomplishing some end" is
${ }^{[23]}$ accurate, I think, for, I think, I maybe described
[24] a sub-algorithm or an algorithm can consist of
${ }^{[25]}$ sub-parts, each individually, which we could say

Hemami

[2] was an algorithm or implemented an algorithm. So
[3] I think that this is accurate.
(4) Q: Okay. Is it true that this sentence
${ }^{[5]}$ in your expert report accurately defines the
[6] meaning of "algorithm" to you in the context of
[7 this case and the Burst patents?
${ }^{[8]}$ A: Well, when I wrote it, I was writing
[9] it for the, for the paragraph, you know. I put it
[10] in because I wanted to discuss algorithm, excuse
[11] me, implementations. So, therefore, I wanted to,
[12] since "algorithm" is potentially a technical term,
${ }_{[13]}$ I wanted to provide some context for what I meant
[14] by "algorithm."
[15] Q: And what you mean by "algorithm" is
[16] a broad concept that includes a procedure for
$[17]$ solving a problem or accomplishing some end. Is $\left.{ }^{[11}\right]$ that right?
[19] A: Yes, where the problem or end may be
${ }^{[20]}$ at a very large scale or at a very minute scale,
${ }^{[21]}$ say, to rearrange numbers in a sequence or along a
[22] grand path of doing some broader exercise.
[23] Q : The paragraph goes on to describe
[24] ways in which algorithms can be implemented,
[25] correct?

[^0]: [1]
 [2]
 [3]
 [4]
 [5]

 $$
 [6]
 $$

 ## Hemami

 Q: Was that in August?
 A: Yes.
 Q: Approximately when?
 A: Around the 14 th. That was when I
 was contacted. Then I went to Greece. I came back around the 23 rd .

 Q: And you signed the paperwork around the 23 rd . Is that right?

 A: Some time after then, yes. Yes.
 Q: Was it within a week of the 23 rd ?
 A: Oh, sure.
 Q: If you turn to tab - there's no
 tab, but I think there's an appendix A -
 A: Yes.
 Q: - which I think is page 66. Do you have that?

 A: Yes.
 Q: And spanning pages 66 to 78 in your
 expert report, which is appendix A, is what
 appears to be your CV. Is that right?
 A: Yes.
 Q: Is that, in fact, your CV?
 A: Yes, at the time I submitted the
 report.

