Apple Computer Inc. v. Burst.com, Inc. Doc. 89 Att. 6
Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 1 of 70

ISO/IEC 13818-7:2006(E)

Table 48 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 8 kHz

fs [kHz] 8
num_swb_long_window 40
swb swb_offset_long_window swbh swhb_offset_long_window
0 0 21 288
1 12 22 308
2 24 23 328
3 36 24 348
4 48 25 372
5 60 26 396
6 72 27 420
7 84 28 448
8 96 29 476
9 108 30 508
10 120 31 544
11 132 32 580
12 144 33 620
13 156 34 664
14 172 35 712
15 188 36 764
16 204 37 820
17 220 38 880
18 236 39 944
19 252 1024
20 268

Table 49 — Scalefactor bands for SHORT_WINDOW at 8 kHz

fs [kHz] 8
num_swb short window 15
swb swh offset short window swb swb offset short window
0 0 8 36
1 4 9 44
2 8 10 52
3 12 11 60
4 16 12 72
5 20 13 88
6 24 14 108
7 28 128
© I1SO/IEC 2006 — All rights reserved 65

Dockets.Justia.com

http://dockets.justia.com/docket/court-candce/case_no-3:2006cv00019/case_id-175168/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2006cv00019/175168/89/6.html
http://dockets.justia.com/

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

Table 50 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 11.025 kHz, 12 kHz and 16 kHz

Page 2 of 70

fs [kHz] 11.025, 12, 16
nhum_swb_long_window 43
swh swh_offset_long_window swb swhb_offset_long_window
0 0 22 228
1 8 23 244
2 16 24 260
3 24 25 280
4 32 26 300
5 40 27 320
6 48 28 344
7 56 29 368
8 64 30 396
9 72 31 424
10 80 32 456
11 88 33 492
12 100 34 532
13 112 35 572
14 124 36 616
15 136 37 664
16 148 38 716
17 160 39 772
18 172 40 832
19 184 41 896
20 196 42 960
21 212 1024

Table 51 — Scalefactor bands for SHORT_WINDOW at 11.025 kHz, 12 kHz and 16 kHz

fs [kHz] 11.025, 12, 16
num_swb short window 15
swb swb_offset short window swb swh_ offset short window
0 0 8 32
1 4 9 40
2 8 10 48
3 12 11 60
4 16 12 72
5 20 13 88
6 24 14 108
7 28 128

66

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007

Table 52 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 22.05 kHz and 24 kHz

Page 3 of 70

ISO/IEC 13818-7:2006(E)

fs [kHz] 22.05 and 24
num_swb_long_window 47
swb swb_offset_long_window swb swh_offset_long_window
0 0 24 160
1 4 25 172
2 8 26 188
3 12 27 204
4 16 28 220
5 20 29 240
6 24 30 260
7 28 31 284
8 32 32 308
9 36 33 336
10 40 34 364
11 44 35 396
12 52 36 432
13 60 37 468
14 68 38 508
15 76 39 552
16 84 40 600
17 92 41 652
18 100 42 704
19 108 43 768
20 116 44 832
21 124 45 896
22 136 46 960
23 148 1024

Table 53 — Scalefactor bands for SHORT_WINDOW at 22.05 kHz and 24 kHz

fs [kHz} 22.05 and 24
num_swb_short_ window 15
swb swb_offset short window swb swb_offset short window
0 0 8 36
1 4 9 44
2 8 10 52
3 12 11 64
4 16 12 76
5 20 13 92
6 24 14 108
7 28 128

© ISO/IEC 2006 — All rights reserved

67

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

Table 54 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 64 kHz

Page 4 of 70

fs [kHz] 64
num_swb_long_window 47
swb swb_offset_long_window swb swb_offset_long_window
0 0 24 172
1 4 25 192
2 8 26 216
3 12 27 240
4 16 28 268
5 20 29 304
6 24 30 344
7 28 31 384
8 32 32 424
9 36 33 464
10 40 34 504
11 44 35 544
12 48 36 584
13 52 37 624
14 56 38 664
15 64 39 704
16 72 40 744
17 80 41 784
18 88 42 824
19 100 43 864
20 112 44 904
21 124 45 944
22 140 46 984
23 156 1024
Table 55 — Scalefactor bands for SHORT_WINDOW at 64 kHz
fs [kHz] 64
num_swb_short_window 12
swhb swb_offset short window swb swb_offset _short window
0 0 7 32
1 4 8 40
2 8 9 48
3 12 10 64
4 16 11 92
5 20 128
6 24

68

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP

Document 89-7

Table 56 — Scalefactor bands for

Filed 01/04/2007

Page 5 of 70

ISO/IEC 13818-7:2006(E)

LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 88.2 kHz and 96 kHz

fs [kHz]} 88.2 and 96
num_swb_long_window M
swb swb_offset_long_window swb swh_offset_long_window
0 0 21 120
1 4 22 132
2 8 23 144
3 12 24 156
4 16 25 172
5 20 26 188
6 24 27 212
7 28 28 240
8 32 29 276
9 36 30 320
10 40 31 384
11 44 32 448
12 48 33 512
13 52 34 576
14 56 35 640
15 64 36 704
16 72 37 768
17 80 38 832
18 88 39 896
19 96 40 960
20 108 1024

Table 57 — Scalefactor bands for SHORT_WINDOW at 88.2 kHz and 96 kHz

fs [kHZz] 88.2 and 96
num_swb _short window 12
swb swh_offset short window swb swb_offset short window
0 0 7 32
1 4 8 40
2 8 9 48
3 12 10 64
4 16 11 92
5 20 128
6 24

© ISO/IEC 2006 — All rights reserved

69

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 6 of 70
ISO/IEC 13818-7:2006(E)

8.10 Figures

window_sequence = EIGHT _SHORT _SEQUENCE

num_windows = 8
grouping_bits =“1100101"
num_window_groups =4
window group length[1=1{3,1,2,2}

0 1 2 3
group#

" Figure 4 — Example for short window grouping

spectral coefficients ——y _
sfb O [sfb 1 |sfb2 sfb (num_sfb-1)

Order of scalefactor bands for ONLY_LONG_SEQUENCE

Figure 5 — Spectral order of scalefactor bands in case of ONLY_LONG_SEQUENCE

spectral coefficients —p

< group 0 » 44— groupl —»
4— sfb0 —p | —sfbl —p sfb0 Isfo 1 [sfb2
win Ojwin 1jwin 2{win Ojwin 1jwin2| = ° win 3 |win 3 {win 3

Order of scale factor bands for EIGHT _SHORT _SEQUENCE
window_group_length[]={3, 1, ... }

Figure 6 — Spectral order of scalefactor bands in case of EIGHT_SHORT_SEQUENCE

9 Noiseless Coding

9.1 Tool Description

Noiseless coding is used to further reduce the redundancy of the scalefactors and the quantized spectrum of
each audio channel.

The global_gain is coded as an 8 bit unsigned integer. The first scalefactor associated with the quantized
spectrum is differentially coded relative to the global_gain value and then Huffman coded using the scalefactor
codebook. The remaining scalefactors are differentially coded relative to the previous scalefactor and then
Huffman coded using the scalefactor codebook.

Noiseless coding of the quantized spectrum relies on two divisions of the spectral coefficients. The first is a

division into scalefactor bands that contain a multiple of 4 quantized spectral coefficients. See subclause 8.3.4
and 8.3.5.

70 © ISO/IEC 2006 ~ All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 7 of 70

ISO/IEC 13818-7:2006(E)

The second division, which is dependent on the quantized spectral data, is a division by scalefactor bands to
form sections. The significance of a section is that the quantized spectrum within the section is represented
using a single Huffman codebook chosen from a set of 11 possible codebooks. The length of a section and its
associated Huffman codebook must be transmitted as side information in addition to the section’s Huffman
coded spectrum. Note that the length of a section is given in scalefactor bands rather than scalefactor window
bands (see subclause 8.3.4). In order to maximize the match of the statistics of the quantized spectrum to that
of the Huffman codebooks the number of sections is permitted to be as large as the number of scalefactor
bands. The maximum size of a section is max_sfb scalefactor bands.

As indicated in Table 59, spectrum Huffman codebooks can represent signed or unsigned n-tuples of
coefficients. For unsigned codebooks, sign bits for every non-zero coefficient in the n-tuple immediately follow
the associated codeword.

The noiseless coding has two ways to represent large quantized spectra. One way is to send the escape flag
from the escape (ESC) Huffman codebook, which signals that the bits immediately following that codeword
plus optional sign bits are an escape sequence that encodes values larger than those represented by the ESC
Huffman codebook. A second way is the pulse escape method, in which relatively large-amplitude coefficients
can be replaced by coefficients with smaller amplitudes in order to enable the use of Huffman code tables with
higher coding efficiency. This replacement is corrected by sending the position of the spectral coefficient and
the differences in amplitude as side information. The frequency information is represented by the combination
of the scalefactor band number to indicate a base frequency and an offset into that scalefactor band.

9.2 Definitions

9.21 DataElements

sect_cb[g][i] Spectrum Huffman codebook used for section i in group g (see
subclause 6.3, Table 17).

sect_len_incr Used to compute the length of a section, measures number of
scalefactor bands from start of section. The length of
sect_len_incr is 3 bits if window_sequence is
EIGHT_SHORT_SEQUENCE and 5bits otherwise (see
subclause 6.3, Table 17).

global_gain Global gain of the quantized spectrum, sent as unsigned integer
value (see subclause 6.3, Table 16).

hcod_sf[l Huffman codeword from the Huffman code Table used for coding
of scalefactors (see subclause 6.3, Table 18).

hcod[sect_cbg]l[ill[wi[x1[vl[Z] Huffman codeword from codebook sect_cb[g][i] that encodes
the next 4-tuple (w, x, v, z) of spectral coefficients, where w, x, y,
z are quantized spectral coefficients. Within an n-tuple, w, x, y, z
are ordered as described in subclause 8.3.5. so that
x_quant[group]iwin][sfb][bin] = w, x_quant[group][win][sfb][bin+1]
= X, x_quant[group][win][sfb][bin+2] = y and
x_quant[group][win][sfb][bin+3] = z. N-tuples progress from low to
high frequency within the current section (see subclause 6.3,
Table 20).

hcod[sect_cb[g][illlyl[z] Huffman codeword from codebook sect_cb[g][i] that encodes
the next 2-tuple (y, z) of spectral coefficients, where y, z are
quantized spectral coefficients. Within an n-tuple, y, z are
ordered as described in subclause8.35 so that
x_quant[group]fwin][sfb][bin] = y and
X_quantfgroup][win][sfb][bin+1] = z. N-tuples progress from low to
high frequency within the current section (see subclause 6.3,
Table 20).

© ISO/IEC 2006 — All rights reserved 71

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

quad_sign_bits

pair_sign_bits

hcod_esc_y

hcod_esc_z

pulse_data_present

number_pulse

pulse_start_sfb

pulse_offset[i]

pulse_ampli]

9.2.2 Help Elements

sect_start[g][i]

sect_end|[g]fi]

num_sec[g]
escape_flag
escape_prefix
escape_separator
escape_word

escape_sequence

escape_code

x_quant[gj[win][sfbj[bin]

spec[wilk]

72

Document 89-7 Filed 01/04/2007 Page 8 of 70

Sign bits for non-zero coefficients in the spectral 4-tuple. A ‘1’
indicates a negative coefficient, a ‘0’ a positive one. Bits
associated with lower frequency coefficients are sent first (see
subclause 6.3, Table 20).

Sign bits for non-zero -coefficients in the spectral 2-tuple. A ‘1’
indicates a negative coefficient, a ‘O’ a positive one. Bits
associated with lower frequency coefficients are sent first (see
subclause 6.3, Table 20).

Escape sequence for quantized spectral coefficient y of 2-tuple
(y,2) associated with the preceeding Huffman codeword (see
subclause 6.3, Table 20).

Escape sequence for quantized spectral coefficient z of 2-tuple
(y,2) associated with the preceeding Huffman codeword (see
subclause 6.3, Table 20).

1 bit indicating whether the pulse escape is used (1) or not (0)
(see subclause 6.3, Table 21). Note that pulse_data_present
must be 0 for an EIGHT_SHORT_SEQUENCE.

2 bits indicating how many pulse escapes are used. The number
of pulse escapes is from 1 to 4 (see subclause 6.3, Table 21).

6 bits indicating the index of the lowest scalefactor band where
the pulse escape is achieved (see subclause 6.3, Table 21).

5 bits indicating the offset (see subclause 6.3, Table 21).

4 bits indicating the unsigned magnitude of the pulse (see
subclause 6.3, Table 21).

Offset to first scalefactor band in section i of group g (see
subclause 6.3, Table 17).

Offset to one higher than last scalefactor band in section i of
group g (see subclause 6.3, Table 17).

Number of sections in group g (see subclause 6.3, Table 17).
The value of 16 in the ESC Huffman codebook

The bit sequence of N 1’s

One 0 bit

An N+4 bit unsigned integer word, msb first

The sequence of escape prefix, escape_separafor and
escape_word

27(N+4) + escape_word

Huffman decoded value for group g, window win, scalefactor
band sfb, coefficient bin

De-interleaved spectrum. w ranges from O to num_windows-1
and k ranges from 0 to swb_offsetinum_swbj-1.

© ISO/IEC 2006 - All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 9 of 70

ISO/IEC 13818-7:2006(E)

The noiseless coding tool requires these constants (see subclause 6.3, spectral_data()).

ZERO_HCB 0
FIRST_PAIR_HCB 5
ESC_HCB 11
QUAD_LEN 4
PAIR_LEN 2
INTENSITY_HCB2 14
INTENSITY_HCB 15
ESC_FLAG 16

9.3 Decoding Process

Four-tuples or 2-tuples of quantized spectral coefficients are Huffman coded and transmitted starting from the
lowest-frequency coefficient and progressing to the highest-frequency coefficient. For the case of multiple
windows per block (EIGHT_SHORT_SEQUENCE), the grouped and interleaved set of spectral coefficients is
treated as a single set of coefficients that progress from low to high. The set of coefficients may need to be
de-interleaved after they are decoded (see subclause 8.3.5). Coefficients are stored in the array
x_quant[g][win][sfb][bin], and the order of transmission of the Huffman codewords is such that when they are
decoded in the order received and stored in the array, bin is the most rapidly incrementing index and g is the
most slowly incrementing index. Within a codeword, for those associated with spectral four-tuples, the order of
decoding is w, X, Y, z; for codewords associated with spectral two-tuples, the order of decoding is y, z. The set
of coefficients is divided into sections and the sectioning information is transmitted starting from the lowest -
frequency section and progressing to the highest frequency section. The spectral information for sections that
are coded with the “zero” codebook is not sent as this spectral information is zero. Similarly, spectral
information for sections coded with the “intensity” codebooks is not sent. The spectral information for all
scalefactor bands at and above max_sfb, for which there is no section data, is zero.

There is a single differential scalefactor codebook which represents a range of values as shown in Table 58.
The differential scalefactor codebook is shown in Table A.1 . There are eleven Huffman codebooks for the
spectral data, as shown in Table 59. The codebooks are shown in Table A.2 through Table A.12 . There are
three other “codebooks” above and beyond the actual Huffman codebooks, specifically the “zero” codebook,
indicating that neither scalefactors nor quantized data will be transmitted, and the ‘“intensity” codebooks
indicating that this individual channel is part of a channel pair, and that the data that would normally be
scalefactors is instead steering data for intensity stereo. In this case, no quantized spectral data are
transmitted. Codebook indices 12 and 13 are reserved.

The spectrum Huffman codebooks encode 2- or 4-tuples of signed or unsigned quantized spectral
coefficients, as shown in Table 59. This Table also indicates the largest absolute value (LAV) able to be
encoded by each codebook and defines a boolean helper variable array, unsigned_cb[], that is 1 if the
codebook is unsigned and 0 if signed.

The result of Huffman decoding each differential scalefactor codeword is the codeword index, listed in the first
column of Table A.1 . This is translated to the desired differential scalefactor by adding index_offset to the
index. Index_offset has a value of —-60, as shown in Table 58. Likewise, the result of Huffman decoding each
spectrum n-tuple is the codeword index, listed in the first column of Table A.2 through Table A.12 . This index
is translated to the n-tuple spectral values as specified in the foliowing pseudo C-code:

unsigned = Boolean value unsigned_cbli], listed in second column of Table 59.

dim = Dimension of codebook, listed in the third column of Table. 59.

lav =LAV, listed in the fourth column of Table 59.

© ISOMEC 2006 — All rights reserved 73

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 10 of 70

ISO/IEC 13818-7:2006(E)

idx = codeword index

if (unsigned) {

mod = lav + 1;
off = 0;

else {
mod = 2*lav + 1;
off = lav;

if (dim == 4)
w = INT(idx/(mod*mod*mod)) - off;

idx -= (w+off)* (mod*mod*mod)
x = INT(idx/(mod*mod)) - off;
idx -= (x+0off)* (mod*mod)
y = INT(idx/mod) - off;
idx -= (y+off)*mod
z = idx - off;
else {
y = INT(idx/mod) - off;
idx -= (y+off)*mod

z = idx - off;

/

If the Huffman codebook represents signed values, the decoding of the quantized spectral n-tuple is complete
after Huffman decoding and translation of codeword index to quantized spectral coefficients. If the codebook
represents unsigned values then the sign bits associated with non-zero coefficients immediately follow the
Huffman codeword, with a ‘1’ indicating a negative coefficient and a ‘0’ indicating a positive one. For example,
if a Huffman codeword from codebook 7

hcod[7]lyl[z]
has been parsed, then immediately following this in the bitstream is
pair_sign_bits

which is a variable length field of 0 to 2 bits. It can be parsed directly from the bitstream as

if (y != 0)
if (one_sign bit == 1)
y =Y ;
if (z 1= 0)
if (one_sign bit == 1)
Z = -Z;

where one_sign_bit is the next bit in the bitstream and pair_sign_bits is the concatenation of the
one_sign_bit fields.

The ESC codebook is a special case. It represents values from 0 to 16 inclusive, but values from 0 to 15
encode actual data values, and the value16 is an escape_flag that signals the presence of hcod_esc_y or
hcod_esc_z, either of which will be denoted as an escape_sequence. This escape_sequence permits
quantized spectral elements of LAV>15 to be encoded. It consists of an escape_prefix of N 1's, followed by an
escape_separator of one zero, followed by an escape_word of N+4 bits representing an unsigned integer
value. The escape_sequence has a decoded value of 2/(N+4)+escape_word. The desired quantized spectral
coefficient is then the sign indicated by the pair_sign_bits applied to the value of the escape_sequence. In
other words, an escape_sequence of 00000 would decode as 16, an escape_sequence of 01111 as 31, an
escape_sequence of 1000000 as 32, one of 1011111 as 63, and so on. Note that restrictions in
subclause 10.3 dictate that the length of the escape_sequence is always less than 22 bits. For escape
Huffman codewords the ordering of data elements is Huffman codeword foliowed by 0 to 2 sign bits followed
by O to 2 escape sequences.

74 © ISO/EC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 11 of 70

ISO/IEC 13818-7:2006(E)

When pulse_data_present is 1 (the pulse escape is used), one or several quantized coefficients have been
replaced by coefficients with smaller amplitudes in the encoder. The number of coefficients replaced is
indicated by number_pulse. In reconstructing the quantized spectral coefficients x_quant this replacement is
compensated by adding pulse_amp to or subtracting pulse_amp from the previously decoded coefficients
whose frequency indices are indicated by pulse_start_sfb and pulse_offset. Note that the pulse escape
method is illegal for a block whose window_sequence is EIGHT_SHORT_SEQUENCE. The decoding
process is specified in the following pseudo-C code:

if (pulse data present) {
g =0;
win = 0;
k = swb_offset [pulse start sfb];
for (j = 0; j < number pulse+1; F++) {
k += pulse offset([j];

/* translate pulse parameters(); */
for (sfb = pulse start sfb; sfb < num swb; sfb++) {
if(k < swb_offset[sfb+1]) {
bin = k - swb _offset[sfb] ;
break;
}
}

/* restore coefficients */
if (x_qguant(g] [win] [sfb] [bin] > 0)

x quant [g] [win] [sfb] [bin] += pulse amp[j];
else

x_quant [g] [win] [sfb] [bin] -= pulse_amp([j];

Several decoder tools (TNS, filterbank) access the spectral coefficients in a non-interleaved fashion, i.e. all
spectral coefficients are ordered according to window number and frequency within a window. This is
indicated by using the notation spec[w][k] rather than x_quant{g][w]isfb][bin].

The following pseudo C-code indicates the correspondence between the four-dimensional, or interleaved,
structure of array x_quant[][][I[] and the two-dimensional, or de-interleaved, structure of array spec[][]. In
the latter array the first index increments over the individual windows in the window sequence, and the second
index increments over the spectral coefficients that correspond to each window, where the coefficients
progress linearly from low to high frequency.

quant_to_spec() {
k = 0;
for (g = 0; g < num window groups; g++) {
j=0;
for (sfb = 0; sfb < num swb; sfb ++) {
width = swb_offset[sfb+1] - swb_offset([sfb];
for (win = 0; win < window_group lengthl[qg]; win++) {
for (bin = 0; bin < width; bin++) {
spec [win+k] [bin+3j] = x_quant[g] [win] [sfb] [bin] ;

/
b
}

k += window _group length[g];

+= width;

}
}

© ISO/IEC 2006 — All rights reserved . 75

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 12 of 70

ISO/IEC 13818-7:2006(E)

9.4 Tables

Table 58 — Scalefactor Huffman codebook parameters

Codebook | Dimension of | index_offset | Range of values | Codebook listed in
Number Codebook

0 1 -60 -60 to +60 Table A.1

Table 59 — Spectrum Huffman codebooks parameters

Codebook Number, i | unsigned_cbli] Dimension of LAV for codebook Codebook listed

Codebook in

0 - - 0 -

1 0 4 1 Table A.2

2 0 4 1 Table A.3

3 1 4 2 Table A.4

4 1 4 2 Table A.5

5 0 2 4 Table A.6

6 0 2 4 Table A.7

7 1 2 7 Table A.8

8 1 2 7 Table A.9

9 1 2 12 Table A.10

10 1 2 12 Table A.11

11 1 2 (16) ESC Table A.12

12 - - (reserved) -

13 - - (reserved) -

14 - - intensity out-of-phase -

15 - - intensity in-phase -

10 Quantization

10.1 Tool Description
For quantization of the spectral coefficients in the encoder a non uniform quantizer is used. Therefore the

decoder must perform the inverse non uniform quantization after the Huffman decoding of the scalefactors
(see clause 9 and 11) and spectral data (see clause 9).

10.2 Definitions

10.2.1 Help Elements

x_quantfg][win][sfb]{bin] quantized spectral coefficient for group g, window win,
scalefactor band sfb, coefficient bin.

x_invquant{g]{winj[sfb]{bin] spectral coefficient for group g, window win, scalefactor band s7b,
coefficient bin after inverse quantization.

10.3 Decoding Process

The inverse quantization is described by the following formula:

4
x _invquant = Sign(x _ quant) - |x . quam‘| 3VEk

76 © ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 13 of 70

ISO/IEC 13818-7:2006(E)

The maximum allowed absolute amplitude for x_quant is 8191. The inverse quantization is applied as follows:

for (g = 0; g < num_window _groups; g++) {
for (sfb = 0; sfb < max sfb; sfb++) {
width = (swb_offset [sfb+1] - swb_offset [sfb]);
for (win = 0; win < window _group len([qg]; win++) {,-
for (bin = 0; bin < width; bin++)
x_invquant [g] [win] [sfb] [bin] = sign(x_quant [g] [win] [sfb] [bin]) *
abs (x_quant [g] [win] [sfb] [bin]) *(4/3);
}
}
}
}

11 Scalefactors

11.1 Tool Description

The basic method to adjust the quantization noise in the frequency domain is the noise shaping using
scalefactors. For this purpose the spectrum is divided in several groups of spectral coefficients called
scalefactor bands which share one scalefactor (see subclause 8.3.4). A scalefactor represents a gain value
which is used to change the amplitude of all spectral coefficients in that scalefactor band. This mechanism is
used to change the allocation of the quantization noise in the spectral domain generated by the non uniform
quantizer.

For window_sequences which contain SHORT_WINDOWSs grouping can be applied, i.e. a specified number of
consecutive SHORT_WINDOWSs may have only one set of scalefactors. Each scalefactor is then applied to a
group of scalefactor bands corresponding in frequency (see subclause 8.3.4).

In this tool the scalefactors are applied to the inverse quantized coefficients to reconstruct the spectral values.
11.2 Definitions

11.2.1 Data Functions

Part of bitstream which contains the differential coded
scalefactors (see Table 18)

scale_factor_data()

11.2.2 Data Elements

global_gain An 8-bit unsigned integer value representing the value of the first
scalefactor. It is also the start value for the following differential
coded scalefactors (see Table 16)

hcod_sf[] Huffman codeword from the Huffman code Table used for coding
of scalefactors, see Table 18 and subclause 9.2

11.2.3 Help Elements

dpcm_sfgl[sfb]
x_rescalf]

sflgl[sfb]

get_scale_factor_gain()

© ISO/IEC 2006 — All rights reserved

Differential coded scalefactor of group g, scalefactor band sfb.
Rescaled spectral coefficients
Array for scalefactors of each group

Function that returns the gain value corresponding to a
scalefactor

77

“Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 14 of 70

ISO/IEC 13818-7:2006(E)

11.3 Decoding Process

11.3.1 Scalefactor Bands

Scalefactors are used to shape the quantization noise in the spectral domain. For this purpose, the spectrum
is divided into several scalefactor bands (see subclause 8.3.4). Each scalefactor band has a scalefactor,
which represents a certain gain value which has to be applied to all spectral coefficients in this scalefactor
band. In case of EIGHT_SHORT_SEQUENCE a scalefactor band may contain multiple scalefactor window
bands of consecutive SHORT_WINDOWSs (see subclause 8.3.4 and 8.3.5).

11.3.2 Decoding of Scalefactors

For all scalefactors the difference to the preceeding value is coded using the Huffman code book given in
Table A.1 . See clause 9 for a detailed description of the Huffman decoding process. The start value is given
explicitly as a 8 bit PCM in the data element global_gain. A scalefactor is not transmitted for scalefactor
bands which are coded with the Huffman codebook ZERO_HCB. if the Huffman codebook for a scalefactor
band is coded with INTENSITY_HCB or INTENSITY_HCB2, the scalefactor is used for intensity stereo (see
clause 9 and subclause 12.2). In that case a normal scalefactor does not exist (but is initialized to zero to have
a valid entry in the array).

The following pseudo code describes how to decode the scalefactors sf{gj[sfb]:

last_sf = global_gain;
for (g = 0; g < num window groups; g++) {
for (sfb = 0; sfb < max sfb; sfb++) {
if (sfb_cblg] [sfb] != ZERO _HCB && sfb_cbl[g] [sfb] != INTENSITY HCB

&& sfb cblg] [sfb] != INTENSITY HCB2) f{
dpcm_sf = decode_huffman() - index offset; /* see clause 9%/
sf[g] [sfb] = dpcm_sf + last_sf;
last_sf = sf[g] [sfb];

else {
sflg] [sfb] = 0;

}
}

Note that scalefactors, sf[g][sfb], must be within the range of zero to 255, both inclusive.

11.3.3 Applying Scalefactors

The spectral coefficients of all scalefactor bands which correspond to a scalefactor have to be rescaled
according to their scalefactor. In case of a window sequence that contains groups of short windows all
coefficients in grouped scalefactor window bands have to be scaled using the same scalefactor.

In case of window_sequences with only one window, the scalefactor bands and their corresponding
coefficients are in spectral ascending order. In case of EIGHT_SHORT_SEQUENCE and grouping the
spectral coefficients of grouped short windows are interleaved by scalefactor window bands. See
subclause 8.3.5 for more detailed information.

The rescaling operation is done according to the following pseudo code:

for (g = 0; g < num window groups; g++) {
for (sfb = 0; sfb < max sfb; sfb++) {
width = (swb_offset [sfb+1] - swb _offset [sfb]);
for (win = 0; win < window group len[g]; win++) {;
gain = get_scale_ factor_gain(sf[g] [sfb]) ;
for (k = 0; k < width; k++)
x _rescal [g] [window] [sfb] [K] =
x_invquant [g] [window] [sfb] [k] * gain;

78 © ISO/EC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007

Page 15 of 70

ISO/IEC 13818-7:2006(E)

}
}

The function get_scale_factor_gain(sflg][sfb]) returns the gain factor that corresponds to a scalefactor. The

return value follows the equation;

gain = 0025(s/g1[fb)-SF _OFFSET)

The constant SF_OFFSET must be set to 100.

The following pseudo code describes this operation:

get _scale factor gain(sflg] [sfb]) {

SF _OFFSET = 100;

gain = 2°(0.25 * (sf[g][sfb] - SF_OFFSET));

return (gain);

12 Joint Coding
12.1 M/S Stereo

12.1.1 Tool Description

The M/S joint channel coding operates on channel pairs. Channels are most often paired such that they have
symmetric presentation relative to the listener, such as leftfright or left surround/right surround. The first
channel in the pair is denoted “left” and the second “right.” On a per-spectral-coefficient basis, the vector
formed by the left and right channel signals is reconstructed or de-matrixed by either the identity matrix

s T

or the inverse M/S matrix

HEA K

The decision on which matrix to use is done on a scalefactor band by scalefactor band basis as indicated by
the ms_used flags. M/S joint channel coding can only be used if common_window is ‘1’ (see subclause 8.3.1).

12.1.2 Definitions

12.1.21 Data Elements

ms_mask_present

ms_used[g][sfb]

© ISO/IEC 20086 — All rights reserved

This two bit field indicates that the MS mask is
00 All zeros
01 A mask of max_sfb bands of ms_used follows this field
10 All ones
11 Reserved
(see subclause 6.3, Table 14)

One-bit flag per scalefactor band indicating that M/S coding is
being used in windowgroup g and scalefactor band sfb (see
subclause 6.3, Table 14).

79

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 16 of 70

ISO/IEC 13818-7:2006(E)

12.1.2.2 Help Elements

1_specf] Array containing the left channel spectrum of the respective
channel pair.

r_specf] Array containing the right channel spectrum of the respective
channel pair.

is_intensity(g,sfb) Function returning the intensity status, defined in 12.2.3

12.1.3 Decoding Process

Reconstruct the spectral coefficients of the first (‘left’) and second (“right”) channel as specified by the
mask_present and the ms_used[][] flags as follows:

if (mask present >= 1) {
for (g = 0; g < num window _groups; g++) {
for (b = 0; b < window _group lengthl[g]; b++) {
for (sfb = 0; sfb < max _sfb; sfb++) {
if ((ms_used[g] [sfb] || mask present == 2) && !is_intensity(g,sfb)) {
for (i = 0; 1 < swb_offset[sfb+1] -swb_offset [sfb]; i++)

tmp = 1_specl(qg] [b] [sfb] [1] - zr_spec(g] [b] [sftb] [i];
1 speclgl] [b] [sfb] [1] 1 spec|g] [b] [sfb] [i1] + r_speclqg] [b] [sfb] [i] ;
r_spec(gl] [b] [sfb] [1i] tmp;

Please note that ms_used[][] is also used in the context of intensity stereo coding. If intensity stereo coding is
on for a particular scalefactor band, no M/S stereo decoding is carried out.

12.2 Intensity Stereo

12.2.1 Tool Description

This tool is used to implement joint intensity stereo coding between both channels of a channel pair. Thus,
both channel outputs are derived from a single set of spectral coefficients after the inverse quantization
process. This is done selectively on a scalefactor band basis when intensity stereo is flagged as active.

12.2.2 Definitions

12.2.2.1 Data Elements

hcod_sf{l Huffman codeword from the Huffman code Table used for coding
of scalefactors (see subclause 9.2)

12.2.2.2 Help Elements

dpem_is_position[][] Differentially encoded intensity stereo position

is_position[group][sfb] Intensity stereo position for each group and scalefactor band

|_spec|] Array containing the left channel spectrum of the respective
channel pair

r_spec|] Array containing the right channel spectrum of the respective
channel pair

80 © ISO/IEC 2006 — Al rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 17 of 70

ISO/IEC 13818-7:2006(E)

12.2.3 Decoding Process

The use of intensity stereo coding is signaled by the use of the pseudo codebooks INTENSITY_HCB and
INTENSITY_HCB2 (15 and 14) only in the right channel of a channel_pair_elelement() having a common
ics_info() (common_window == 1). INTENSITY_HCB and INTENSITY_HCB2 signal in-phase and out-of-
phase intensity stereo coding, respectively. ‘

In addition, the phase relationship of the intensity stereo coding can be reversed by means of the ms_used
field: Because M/S stereo coding and intensity stereo coding are mutually exclusive for a particular scalefactor
band and group, the primary phase relationship indicated by the Huffman code tables is changed from in-
phase to out-of-phase or vice versa if the corresponding ms_used bit is set for the respective band.

The directional information for the intensity stereo decoding is represented by an "intensity stereo position"”
value indicating the relation between left and right channel scaling. If intensity stereo coding is active for a
particular group and scalefactor band, an intensity stereo position value is transmitted instead of the
scalefactor of the right channel.

Intensity positions are coded just like scalefactors, i.e. by Huffman coding of differential values with two
differences:

¢ there is no first value that is sent as PCM. Instead, the differential decoding is started assuming the last
intensity stereo position value to be zero.

¢ Differential decoding is done separately between scalefactors and intensity stereo positions. In other
words, the scalefactor decoder ignores interposed intensity. stereo position values and vice versa (see
subclause 11.3.2)

The same codebook is used for coding intensity stereo positions as for scalefactors.
Two pseudo functions are defined for use in intensity stereo decoding:

function is intensity(group,sfb) {
+1 for window groups / scalefactor bands with right channel codebook

sfb cbl[group] [sfb] == INTENSITY HCB

-1 for window groups / scalefactor bands with right channel codebook
sfb_cb[group] [sfb] == INTENSITY HCB2

0 otherwise

}

function invert intensity(group,sfb) {

1-2*ms_used [group] [sfb] if (ms_mask present == 1)

+1 otherwise

/

The intensity stereo decoding for one channel pair is defined by the following pseudo code:

p = 0;
for (g = 0; g < num_window groups; g++) {

/* Decode intensity positions for this group */
for (sfb = 0; sfb < max_sfb; sfb++)
if (is_intensity(g,sfb))
is positionl(gl] [sfb] = p += dpcm_is position([g] [sfb];

/* Do intensity stereo decoding */
for (b = 0; b < window group lengthl[g]; b++) {
for (sfb = 0; sfb < max_sfb; sfb++)
if (is _intensity(g,sfb)) {

scale = is_intensity(g,sfb) * invert intensity(g,sfb) *
0.5%(0.25*is position(g] [stb]};

/* Scale from left to right channel, do not touch left channel */
for (i = 0; 1 < swb offset[sfb+1]-swb_offset[sfb]; i++)

© ISO/IEC 2006 — All rights reserved 81

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 18 of 70

ISO/IEC 13818-7:2006(E)

r_spec[g] [b] [sfb] [1] = scale * 1 _spec[g] [b] [sfb] [i];

}

12.2.4 Integration with Intra Channel Prediction Tool

For scalefactor bands coded in intensity stereo the corresponding predictors in the right channel are switched
to “"off" thus effectively overriding the status specified by the prediction_used mask. The update of these
predictors is done by feeding the intensity stereo decoded spectral values of the right channel as the "last
quantized value" Xpgc(n-1). These values result from the scaling process from left to right channel as

described in the pseudo code.
12.3 Coupling Channel

12.3.1 Tool Description

Coupling channel elements provide two functionalities: First, coupling channels may be used to implement
generalized intensity stereo coding where channel spectra can be shared across channel boundaries.
Second, coupling channels may be used to dynamically perform a downmix of one sound object into the
stereo image.

Note that this tool includes certain profile dependent parameters (see subclause 7.1).
12.3.2 Definitions

12.3.2.1 Data Elements

ind_sw_cce_flag One bit indicating whether the coupled target syntax element is
an independently switched (1) or a dependently switched (0)
CCE (see subclause 6.3, Table 22).

~ num_coupled_elements Number of coupled target channels is equal to
num_coupled_elements+1. The minimum value is 0 indicating 1
coupled target channel (see subclause 6.3, Table 22).

cc_target_is_cpe One bit indicating if the coupled target syntax element is a CPE
(1) or a SCE (0) (see subclause 6.3, Table 22).

cc_target_tag_select Four bit field specifying the element_instance_tag of the coupled
target syntax element (see subclause 6.3, Table 22).

cc_l| One bit indicating that a list of gain_element values is applied to
the left channel of a channel pair (see subclause 6.3, Table 22).

ce_r One bit indicating that a list of gain_element values is applied to
the right channel of a channel pair (see subclause 6.3, Table 22).

cc_domain One bit indicating whether the coupling is performed before (0) or

after (1) the TNS decoding of the coupled target channels (see
subclause 6.3, Table 22).

82 © ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 19 of 70

ISO/IEC 13818-7:2006(E)

gain_element_sign One bit indicating if the transmitted gain_element values contain
information about in-phase / out-of-phase coupling (1) or not (0)
(see subclause 6.3, Table 22).

gain_element_scale Determines the amplitude resolution cc_scale of the scaling
operation according to Table 61 (see subclause 6.3, Table 22).

common_gain_element_present[c] One bit indicating whether Huffman coded
common_gain_element values are transmitted (1) or whether
Huffman coded differential gain_elements are sent (0) (see
subclause 6.3, Table 22).

12.3.2.2 Help Elements

dpem_gain_element{][] Differentially encoded gain element.
gain_element[group][sfb] Gain element for each group and scalefactor band.
common_gain_element|] Gain element that is used for all window groups and scalefactor

bands of one coupling target channel.

spectrum_m(idx, domain) Pointer to the spectral data associated with the
' single_channel_element() with index idx. Depending on the value
of "domain", the spectral coefficients before (0) or after (1) TNS

decoding are pointed to. .

spectrum_I(idx, domain) Pointer to the spectral data associated with the left channel of the
channel_pair_element() with index idx. Depending on the value
of "domain", the spectral coefficients before (0) or after (1) TNS
decoding are pointed to.

spectrum_r(idx, domain) Pointer to the spectral data associated with the right channel of
the channel_pair_element() with index idx. Depending on the
value of "domain”, the spectral coefficients before (0) or after (1)
TNS decoding are pointed to.

12.3.3 Decoding Process

The coupling channel is based on an embedded single_channel_element() which is combined with some
dedicated fields to accomodate its special purpose.

The coupled target syntax elements (SCEs or CPEs) are addressed using two syntax elements. First, the
cc_target_is_cpe field selects whether a SCE or CPE is addressed. Second, a cc_target_tag_select field
selects the instance_tag of the SCE/CPE.

The scaling operation involved in channel coupling is defined by gain_element values which describe the
applicable gain factor and sign. In accordance with the coding procedures for scalefactors and intensity stereo
positions, gain_element values are differentially encoded using the Huffman Table for scalefactors. Similarly,
the decoded gain factors for coupling relate to window groups of spectral coefficients.

Independently switched CCEs vs. dependently switched CCEs

There are two kinds of CCEs. They are “independently switched” and “dependently switched” CCEs. An
independently switched CCE is a CCE in which the window state (i.e. window_sequence and window_shape)
of the CCE does not have to match that of any of the SCE or CPE channels that the CCE is coupled onto
(target channels). This has several important implications:

e First, it is required that an independently switched CCE must only use the common_gain element,
not a list of gain_elements.

© ISO/IEC 2006 — Al rights reserved 83

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 20 of 70

ISO/IEC 13818-7:2006(E)

e Second, the independently switched CCE must be decoded all the way to the time domain (i.e.
including the synthesis filterbank) before it is scaled and added onto the various SCE and CPE
channels that it is coupled to in the case that window state does not match.

A dependently switched CCE, on the other hand, must have a window state that matches all of the target SCE
and CPE channels that it is coupled onto as determined by the list of cc_| and cc_r elements. In this case, the
CCE only needs to be decoded as far as the frequency domain and then scaled as directed by the gain list
before it is added to the target SCE or CPE channels.

The following pseudo code in function decode_ coupling_channel() defines the decoding operation for a
dependently switched coupling channel element. First the spectral coefficients of the embedded
single_channel_element() are decoded into an internal buffer. Since the gain elements for the first coupled
target (list_index == 0) are not transmitted, all gain_element values associated with this target are assumed to
be 0, i.e. the coupling channel is added to the coupled target channel in its natural scaling. Otherwise the
spectral coefficients are scaled and added to the coefficients of the coupled target channels using the
appropriate list of gain_element values.

An independently switched CCE is decoded like a dependently switched CCE having only
common_gain_element's. However, the resulting scaled spectrum is transformed back into its time
representation and then coupled in the time domain.

Please note that the gain_element lists may be shared between the left and the right channel of a target
channel pair element. This is signalled by both cc_I| and cc_r being zero as indicated in the Table below:

Table 60 — Sharing of gain_element lists

cc_|, shared gain list left gain list right gain list
cc_r present present present

0, O yes no no

0 1 no no yes

1, 0 no yes no

i, 1 no yes yes

decode_coupling channel ()

- decode spectral coefficients of embedded single channel element
into buffer "cc_spectrum/[]".

/* Couple spectral coefficients onto target channels */
list_index = 0;
for (c = 0; ¢ < num coupled elements+1; c++) f{
if (!cc_target is cpelcl) {
couple_channel (cc_spectrum,
spectrum_m(cc_target tag select(c],
cc_domain), list _index++);
}
if (cc_target_is cpelcl) {
if (lcc_1[c] && !lcc_rlcl) {
couple_channel (cc_spectrum,
spectrum 1 (cc_target_tag select/c],
cc_domain), list_ index);
couple channel (cc_spectrum,
spectrum r(cc target_ tag select/c],
cc_domain), list_index++);

}
if (cc 1llc]) |
couple_channel (cc_spectrum,
spectrum 1 (cc target_ tag select/c],
cc_domain), list_index++));

84 © ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 21 of 70
ISO/IEC 13818-7:2006(E)

if (cc ricl) {
couple channel (cc_spectrum,
spectrum r(cc_target tag select/(c],
-cc_domain), list_index++));
}
}
!
}

couple channel (source spectrum(], dest_spectrum(], gain list index)

idx = gain list index;

a = 0;

cc_scale = cc_scale table[gain element_scale];
for (g = 0; g < num window groups; g++) f{

/* Decode coupling gain elements for this group */
if (common_gain element present [idx])

for (sfb = 0; sfb < max sfb; sfb++) {
cc_signlidx] [g] [sfb] = 1;
gain_element [idx] [g] [sfb] = common gain element [1dx];

else {
for (sfb = 0; sfb < max sfb; sfb++) {
if (sfb cb(g] [sfb] == ZERO HCB)
continue;

if (gain element sign) {
cc_sign[idx] [g] [sfb] = 1 - 2*(dpcm gain element [idx] [g] [sfb] & 0x1);
gain_element [idx] [g] [sfb] = a += (dpcm gain element [idx] [g] [sfb] >>
1);

else {
cc_signlidx] [g] [sfb] = 1;
gain_element [idx] [g] [sfb] = a += dpcm _gain element [idx] [g] [sfb] ;

}

/* Do coupling onto target channels */
for (b = 0; b < window group length[b]; b++) {
for (sfb = 0; sfb < max sfb; sfb++) {

if (sfb cblgl] [sfb] != ZERO HCB) {
cc _gainlidx] [g] [sfb] = cc_sign(idx] [g] [sfb] *
cc_scale®gain element [idx] [g] [sfb] ;
for (i = 0; i<swb_offset [sfb+1]-swb_offset [sfb]; i++)
dest_spectrum[g] [b] [sfb] [1] += cc_gain[idx] [g] [sfb] *
source_spectrum/[g] [b] [sfb] [1] ;

}
}
}
) }
Note: The array sfb_cb represents the codebook data respect to the CCE's embedded single_channel_element() (not the coupled target
channel).

© ISO/IEC 2006 — Al rights reserved 85

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 22 of 70

ISO/IEC 13818-7:2006(E)

12.3.4 Tables

Table 61 — Scaling resolution for channel coupling (cc_scale_table)

Value of "gain_element_scale" | Amplitude Resolution "cc_scale” | Stepsize [dB]
0 27(1/8) 0.75
1 27(1/4) 1.50
2 271/2) 3.00
3 2" 6.00

13 Prediction

13.1 Tool Description

Prediction is used for an improved redundancy reduction and is especially effective in case of more or less
stationary parts of a signal which belong to the most demanding parts in terms of required bitrate. Prediction
can be applied to every channel using an intra channel (or mono) predictor which exploits the auto-correlation
between the spectral components of consecutive frames. Because a window_sequence of type
EIGHT_SHORT_SEQUENCE indicates signal changes, i.e. non-stationary signal characteristics, prediction is
only used if window_sequence is of type ONLY_LONG_SEQUENCE, LLONG_START_SEQUENCE or
LONG_STOP_SEQUENCE. The use of the prediction tool is profile dependent. See clause 7 for detailed
information.

For each channel prediction is applied to the spectral components resulting from the spectral decomposition of
the filterbank. For each spectral component up to limit specified by PRED_SFB_MAX, there is one
corresponding predictor resulting in a bank of predictors, where each predictor exploits the auto-correlation
between the spectral component values of consecutive frames.

The overall coding structure using a filterbank with high spectral resolution implies the use of backward
adaptive predictors to achieve high coding efficiency. In this case, the predictor coefficients are calculated
from preceding quantized spectral components in the encoder as well as in the decoder and no additional side
information is needed for the transmission of predictor coefficients - as would be required for forward adaptive
predictors. A second order backward-adaptive lattice structure predictor is used for each spectral component,
so that each predictor is working on the spectral component values of the two preceding frames. The predictor
parameters are adapted to the current signal statistics on a frame by frame base, using an LMS based
adaptation algorithm. If prediction is activated, the quantizer is fed with a prediction error instead of the original
spectral component, resulting in a coding gain. '

In order to keep storage requirements to a minimum, predictor state variables are quantized prior to storage.

13.2 Definitions

13.2.1 Data Elements

predictor_data_present 1 bit indicating whether prediction is used in current frame (1) or
not (0) (always present for ONLY_LONG_SEQUENCE,
LONG_START_SEQUENCE and LONG_STOP_SEQUENCE,
see subclause 6.3, Table 15).

predictor_reset 1 bit indicating whether predictor reset is applied in current frame
(1) or not (0) (only present if predictor_data_present flag is set,
see subclause 6.3, Table 15).

predictor_reset_group_number 5 bit number specifying the reset group to be reset in current

frame if predictor reset is enabled (only present if
predictor_reset flag is set, see subclause 6.3, Table 15).

86 © ISO/NEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 23 of 70

ISO/IEC 13818-7:2006(E)

prediction_used 1 bit for each scalefactor band (sfb) where prediction can be
used indicating whether prediction is switched on (1) / off (0) in
that sfb. If max_sfb is less than PRED_SFB_MAX then for i
greater than or equal to max_sfb, prediction_used[i] is not
transmitted and therfore is set to off (0) (only present if
predictor_data_present flag is set, see subclause 6.3,
Table 15).

The following Table specifies the upper limit of scalefactor bands up to which prediction can be used:

Table 62 — Upper spectral limit for prediction

Sampling Frequency | Pred_SFB_MAX |[Number of Predictors | Maximum Frequency using

(Hz) Prediction (Hz)
96000 33 512 24000.00
88200 33 512 - 22050.00
64000 38 664 20750.00
48000 40 672 15750.00
44100 40 672 14470.31
32000 40 ' 672 10500.00
24000 41 652 7640.63
22050 41 652 7019.82

16000 37 664 5187.50
12000 37 664 3890.63
11025 37 664 3574.51

8000 34 664 2593.75

This means that at 48 kHz sampling rate prediction can be used in scalefactor bands 0 through 39. According
to Table 46 these 40 scalefactor bands include the MDCT lines 0 through 671, hence resulting in max. 672
predictors.

13.3 Decoding Process

For each spectral component up to the limit specified by PRED_SFB_MAX of each channel there is one
predictor. Prediction is controlled on a single_channel_element() or channel_pair_element() basis by the
transmitted side information in a two step approach, first for the whole frame at all and then conditionally for
each scalefactor band individually, see subclause 13.3.1. The predictor coefficients for each predictor are
calculated from preceding reconstructed values of the corresponding spectral component. The details of the
required predictor processing are described in subclause 13.3.2. At the start of the decoding process, all
predictors are initialized. The initialization and a predictor reset mechanism are described in
subclause 13.3.2.4.

13.3.1 Predictor Side Information

The following description is valid for either one single_channel_element() or one channel_pair_element() and
has to be applied to each such element. For each frame the predictor side information has to be extracted
from the bitstream to control the further predictor processing in the decoder. In case of a
single_channel_element() the control information is valid for the predictor bank of the channel associated with
that element. In case of a channel_pair_element() there are the following two possibilities: If
common_window = 1 then there is only one set of the control information which is valid for the two predictor
banks of the two channels associated with that element. If common_window = 0 then there are two sets of
control information, one for each of the two predictor banks of the two channels associated with that element.

If window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE or
LONG_STOP_SEQUENCE, the predictor_data_present bit is read. If this bit is not set (0) then prediction is
switched off at all for the current frame and there is no further predictor side information present. In this case
the prediction_used bit for each scalefactor band stored in the decoder has to be set to zero. If the

© ISO/IEC 2006 — All rights reserved 87

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 24 of 70

ISO/IEC 13818-7:2006(E)

predictor_data_present bit is set (1) then prediction is used for the current frame and the predictor_reset bit
is read which determines whether predictor reset is applied in the current frame (1) or not (0). If
predictor_reset is set then the next 5 bits are read giving a number specifying the group of predictors to be
reset in the current frame, see also subclause 13.3.2.4 for the details. If the predictor_reset is not set then
there is no 5 bit number in the bitstream. Next, the prediction_used bits are read from the bitstream, which
control the use of prediction in each scalefactor band individually, i.e. if the bit is set for a particular scalefactor
band, then prediction is enabled for all spectral components of this scalefactor band and the quantized
prediction error of each spectral component is transmitted instead of the quantized value of the spectral
component. Otherwise, prediction is disabled for this scalefactor band and the quantized values of the spectral
components are transmitted.

13.3.2 Predictor Processing

13.3.2.1 General

The following description is valid for one single predictor and has to be applied to each predictor. A second
order backward adaptive lattice structure predictor is used. Figure 7 shows the corresponding predictor flow
graph on the decoder side. In principle, an estimate x.q(n) of the current value of the spectral component x(n)
is calculated from preceding reconstructed values x...(n-1) and x,.-(n-2), stored in the register elements of the
predictor structure, using the predictor coefficients k;(n) and k»(n). This estimate is then added to the
quantized prediction error eq(n) reconstructed from the transmitted data resulting in the reconstructed value
Xec(n) of the current spectral component x(n). Figure 8 shows the block diagram of this reconstruction process
for one single predictor.

Due to the realization in a lattice structure, the predictor consists of two so-called basic elements which are
cascaded. In each element, the part x5 n(n), m=1, 2 of the estimate is calculated according to

xe:l,m (n) = b : km (n) : rq,m—l (n - 1))
where
rll,o (n) =Xy (71) '

ra(m) =a(r, o (n=1)=b-k,(n)-¢, (1))

and e, (m) =¢,, (M)—x,,(n).
Hence, the overall estimate results to:
Xy (1) = Xy () + X 5 (1)
The constants
a and b, | 0<a,b<l1

are attenuation factors which are included in each signal path contributing to the recursivity of the structure for
the purpose of stabilization. By this means, possible oscillations due to transmission errors or drift between
predictor coefficients on the encoder and decoder side due to numerical inaccuracy can be faded out or even
prevented.

In the case of stationary signals and with a = b = 1, the predictor coefficient of element m is calculated by

k= E[eq,In—l n)-r, a(n— l)]
", @]+ ER, - D))

m=12 and e, ,(n) =7, ,(n) =x,,.(n)

88 © ISO/IEC 2006 — Al rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 25 of 70

ISO/IEC 13818-7:2006(E)

In order to adapt the coefficients to the current signal properties, the expected values in the above equation
are substituted by time average estimates measured over a limited past signal period. A compromise has to
be chosen between a good convergence against the optimum predictor setting for signal periods with quasi
stationary characteristic and the ability of fast adaptation in case of signal transitions. In this context
algorithms with iterative improvement of the estimates, i.e. from sample to sample, are of special interest.
Here, a "least mean square" (LMS) approach is used and the predictor coefficients are calculated as follows

COR
k (n+1)= —VAR"'((:))

with

COR,(n)=a-COR,,(n-1)+ ¥yt (n-1)- €y m (n)
VAR, (7) = a-VAR, (n=1)+0.5-(:2, , (1) + €2, (n))

where « is an adaptation time constant which determines the influence of the current sample on the estimate
of the expected values. The value of & is chosen to

a = 0.90625 .

The optimum values of the attenuation factors a and b have to be determined as a compromise between high
prediction gain and small fade out time. The chosen values are

a=b=0.953125 .

Independent of whether prediction is disabled - either at all or only for a particular scalefactor band - or not, all
the predictors are run all the time in order to always adapt the coefficients to the current signal statistics.

If window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE and
LONG_STOP_SEQUENCE only the calculation of the reconstructed value of the quantized spectral
components differs depending on the value of the prediction_used bit:

o If the bit is set (1), then the quantized prediction error reconstructed from the transmitted data is
added to the estimate x.y(n) calculated by the predictor resulting in the reconstructed value of the

quantized spectral component, i.e. x,,.(n) = x,,(n) +e, (n)

o If the bit is not set (0), then the quantized value of the spectral component is reconstructed directly
from the transmitted data.

In case of short blocks, i.e. window_sequence is of type EIGHT_SHORT_SEQUENCE, prediction is always
disabled and a reset is carried out for all predictors in all scalefactor bands, which is equivalent to a
reinitialization, see subclause 13.3.2.4.

For a single_channel_element(), the predictor processing for one frame is done according to the following
pseudo code:

(It is assumed that the reconstructed value y_rec(c) - which is either the reconstructed quantized prediction
error or the reconstructed quantized spectral coefficient - is available from previous processing.)

if (ONLY_LONG_SEQUENCE || LONG_START SEQUENCE || LONG_STOP SEQUENCE) {
for (sfb = 0; sfb < PRED SFB MAX; sfb++) {
fc = swb_offset_long window[fs index] [sfb];
lc = swb _offset_long window[fs_index] [sfb+1];
for (¢ = fc; ¢ < lc; c++) |
x _est[c] = predict();
if (predictor data present && prediction used{[sfb])

© ISO/IEC 2006 — All rights reserved ' 89

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 26 of 70

ISO/IEC 13818-7:2006(E)

x reclc] = x est[c] + y reclcl;
else
x reclc] = y _recic];
}
}

else {
reset_all_ predictors();

In case of channel_pair_element()’s with common_window = 1, the only difference is that the computation of
x_est and x_rec in the inner for loop is done for both channels associated with the channel_pair_element(). In
case of channel_pair_element()’s with common_window = 0, each channel has prediction applied using that
channel's prediction side information.

13.3.2.2 AQuantization in Predictor Calculations

For a given predictor six state variables need to be saved: ro, ry, COR;, COR,, VAR, and VAR,. These
variables will be saved as truncated IEEE floating-point numbers (i.e. the 16 msb of a float storage word).

The predicted value x.s will be rounded to a 16-bit floating point representation (i.e. round to a 7-bit mantissa)
prior to being used in any calculation. The exact rounding algorithm to be used is shown in pseudo-C function
fit_round_inf(). Note that for complexity considerations, round to nearest, infinity is used instead of round to
nearest, even.

The expressions (b / VAR;) and (b / VAR,) will be rounded to a 16-bit floating point representation (i.e. round
to a 7-bit mantissa), which permits the ratio to be computed via a pair of small look-up tables. C-code for
generating such tables is shown in pseudo-C function make_inv_tables().

All intermediate results in every floating point computation in the prediction algorithm will be represented in
single precision floating point using rounding described below.

The IEEE Floating Point computational unit used in executing all arithmetic in the prediction tool will enable
the following options:

¢ Round-to-Nearest, Even - Round to nearest representable value; round to the value with the least
significant bit equal to zero (even) when the two nearest representable values are equally near.

o Overflow exception - Values whose magnitude is greater than the largest representable vaiue will
be set to the representation for infinty.

e Underflow exception - Gradual underflow (de-normalized numbers) will be supported; values
whose magnitude is less than the smallest representable value will be set to zero.

13.3.2.3 Fast Algorithm for Rounding

/* this does not conform to IEEE conventions of round to
* nearest, even, but it is fast
*/
static void .
flt_round_inf (float #*pf)
)
int flg;
unsigned long tmp, tmpl, tmp2;

tmp * (unsigned long*)pf;

flg tmp & (unsigned long) 0x00008000;
tmp &= (unsigned long) OXffff0000;

tmpl = tmp;

/* round 1/2 lsb toward infinity */
if (flg) {

920 » © ISO/IEC 2006 — Al rights reserved

Case 3:06-cv-00019-MHP Document 89-7

tmp &= (unsigned long)0xff800000;
tmp [= (unsigned long)0x00010000;
tmp2 = tmp;

tmp &= (unsigned long)O0xff800000;

Filed 01/04/2007 Page 27 of 70

/*
/*
/*
/*

ISO/IEC 13818-7:2006(E)

extract exponent and sign */
insert 1 1lsb */

add 1 1sb and elided one */
extract exponent and sign */

*pf = *(float*)&tmpl+* (float*)&tmp2-* (float*)&tmp;
/* subtract elided one */

} else {
*pf = *(float*)&tmp;

13.3.2.4 Generating Rounded b / Var

static float mnt_table[128];
static float exp table[256];

/* function flt_round even() only works for arguments in the range

* 1.0 < *pf < 2.0 - 2™-24
*/
static void flt round even(float #*pf)
{
int exp,a;
float tmp;

frexp ((double) *pf, &exp);
tmp = *pf * (I<<(8-exp));

a = (int)tmp;

if ((tmp-a) >= 0.5) a++;

if ((tmp-a) == 0.5) a&=-2;
*pf = (float)a/(l<<(8-exp));

}

static void make inv tables (void)
L. .
int 1i;
unsigned long tmpl, tmp;
float #*pf = (float *)&tmpl;
float ftmp;

*pf = 1.0;

for (i=0; 1i<128; i++) {
tmp = tmpl + (i<<16); /* float 1.m,
ftmp = b / *(float*)&tmp;

7 msb only */

flt round even(&ftmp); /* round to 16 bits */

mnt_table[i] = ftmp;

for (i=0; i<256; i++) {

tmp = (i<<23); /* float 1.0 * 2%exp */

if (*(float*)&tmp > 1.0) {
ftmp = 1.0 / *(float*)&tmp;
} else {
ftmp = 0;

exp table[i] = ftmp;

13.3.3 Predictor Reset

Initialization of a predictor means that the predictor's state variables are set as follows: r, = ry = 0, COR, =
COR; =0, VAR, = VAR, = 1. When the decoding process is started, all predictors are initialized.

© ISO/IEC 2006 — All rights reserved

N

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 28 of 70

ISO/IEC 13818-7:2006(E)

A cyclic reset mechanism is applied by the encoder and signaled to the decoder, in which all predictors are
initialized again in a certain time interval in an interleaved way. On one hand this increases predictor stability
by re-synchronizing the predictors of the encoder and the decoder and on the other hand it allows defined
entry points in the bitstream.

The whole set of predictors is subdivided into 30 so-called reset groups according to the following table:

Table 63 — Predictor reset groups

Reset group Predictors of reset
number group
1 PO, P30, P60, P90....
2 P1, P31, P61, P91,...
3 P2, P32, P62, P92,...
30 P29, P59, P89, P119,...

where P, is the predictor which corresponds to the spectral coefficient indexed by i.

Whether or not a reset has to be applied in the current frame is determined by the predictor_reset bit. If this
bit is set then the number of the predictor reset group to be reset in the current frame is specified in
predictor_reset_group_number. All predictors belonging to that reset group are then initialized as described
above. This initialization has to be done after the normal predictor processing for the current frame has been
carried out. Note that predictor_reset_group_number cannot have the value 0 or 31.

A typical reset cycle starts with reset group number 1 and the reset group number is then incremented by 1
until it reaches 30, and then it starts with 1 again. Nevertheless, it may happen, e.g. due to switching between
programs (bitstreams) or cutting and pasting, that there will be a discontinuity in the reset group numbering. If
this is the case, these are the following three possibilities for decoder operation:

e Ignore the discontinuity and carry on the normal processing. This may result in a short audible
distortion due to a mismatch (drift) between the predictors in the encoder and decoder. After one
complete reset cycle (reset group n, n+1, ..., 30, 1, 2, ..., n-1) the predictors are re-synchronized
again. Furthermore, a possible distortion is faded out because of the attenuation factors a and b.

e Detect the discontinuity, carry on the normal processing but mute the output until one complete
reset cycle is performed and the predictors are re-synchronized again.

o Reset all predictors.

Every predictor group has to be reset after a maximum ‘active’ period of 240 frames. The reset of the 30
predictor reset groups can be done either intermittently or in a burst or in whatever other pattern is convenient,
as long as the maximum reset period of 240 ‘active’ frames is not violated. Note that an ‘active’ period of 240
frames may take much longer than 240 frames, since frames with predictor activity may be interleaved with an
arbitrary number of frames without any predictor activity. Note further, that prediction groups may be active
independently of each other, so that separate ‘activity’ bookkeeping is required for each predictor reset group.

in case of a single_channel_element() or a channel_pair_element() with common_window = 0O, the reset has
to be applied to the predictor bank(s) of the channel(s) associated with that element. In case of a
channel_pair_element() with common_window = 1, the reset has to be applied to the two predictor banks of
the two channels associated with that element.

In the case of a short block (i.e. window_sequence of type EIGHT_SHORT_SEQUENCE) all predictors in all
scalefactor bands must be reset.

92 © ISO/IEC 2006 - All rights reserved

Case 3:06-cv-00019-MHP

13.4 Diagrams

Xec()

Document 89-7

o

ro(n-1)

ei(n)

I'](Il-l)

Filed 01/04/2007 Page 29 of 70

ISO/IEC 13818-7:2006(E)

Xeu(12)

&st.l(n))@5,’2(1’1)

Figure 7 — Flow graph of intra channel predictor for one spectral component in the decoder. The
dotted lines indicate the signal flow for the adaptation of the predictor coefficients.

ELSE

RECONSTRUCTION

IF (PDP && PU)
Xjrec(= Virec() + %jest(®)

Xi,rec(n) = Yi,mc(n)

Xirec (0

Predictor Side Info
—— Qi'l >
Yig (W) Virec (7)
xjest (n)

Legend: P Predictor

Q;' Inverse quantizer

Xirec (n-1)

F

PDP predictor_data-present
PU prediction_used

Figure 8 — Block diagram of decoder prediction unit for one single spectral component

14 Temporal Noise Shaping (TNS)

14.1 Tool Description

Temporal Noise Shaping is used to control the temporal shape of the quantization noise within each window
of the transform. This is done by applying a filtering process to parts of the spectral data of each channel.

Note that this tool includes certain profile dependent parameters (see subclause 7.1).

© ISO/EC 2006 — Al rights reserved

93

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 30 of 70

ISO/IEC 13818-7:2006(E)

14.2 Definitions

14.2.1 Data Elements

n_filtfw] Number of noise shaping filters used for window w (see
subclause 6.3, Table 19).

coef_res[w] . Token indicating the resolution of the transmitted filter
coefficients for window w, switching between a resolution of
3 bits (0) and 4 bits (1) (see subclause 6.3, Table 19).

length[w][filt] Length of the region to which one filter is applied in window w (in
units of scalefactor bands) (see subclause 6.3, Table 19).

order[w][filt] Order of one noise shaping filter applied to window w (see
subclause 6.3, Table 19).

“direction[w][filt] 1 bit indicating whether the filter is applied in upward (0) or
downward (1) direction (see subclause 6.3, Table 19).

coef_compresswif{filt] 1 bit indicating whether the most significant bit of the coefficients
of the noise shaping filter filt in window w are omitted from
transmission (1) or not (0) (see subclause 6.3, Table 19).

coef[w][fil][i] Coefficients of one noise shaping filter applied to window w (see
subclause 6.3, Table 19).

specfwlik] Array containing the spectrum for the window w of the channel
being processed.

Note: Depending on the window_sequence the size of the following bitstream fields is switched for each transform window
according to its window size:

Name |Window with 128 spectral| Other window
lines ' size

n_filt |1 2

'length' | 4 6

‘order’ |3 5

14.3 Decoding Process

The decoding process for Temporal Noise Shaping is carried out separately on each window of the current
frame by applying all-pole filtering to selected regions of the spectral coefficients (see function
tns_decode_frame).

The number of noise shaping filters applied to each window is specified by "n_filt". The target range of
spectral coefficients is defined in units of scalefactor bands counting down "length" bands from the top band
(or the bottom of the previous noise shaping band).

First the transmitted filter coefficients have to be decoded, i.e. conversion to signed numbers, inverse
quantization, conversion to LPC coefficients as described in function tns_decode_coef().

Then the all-pole filters are applied to the target frequency regions of the channel's spectral coefficients (see

function tns_ar_filter()). The token "direction" is used to determine the direction the filter is slid across the
coefficients (0 = upward, 1 = downward).

94 © ISONEC 2006 — Al rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 31 of 70

ISO/IEC 13818-7:2006(E)

The constant TNS_MAX_BANDS defines the maximum number of scalefactor bands to which Temporal Noise
Shaping is applied. The maximum possible filter order is defined by the constant TNS_MAX_ORDER. Both
constants are profile dependent parameters.

The decoding process for one channel can be described as follows pseudo code:

/* TNS decoding for one channel and frame */
tns_decode_frame()

for (w = 0; w < num windows; w++) {
bottom = num swb;
for (f = 0; £ < n filt[w]l; £++) {

top = bottom;

bottom = max(top - length[w] [f], 0);

tns_order = min(order[w] [f], TNS MAX ORDER);

if (!tns order) continue;

tns_decode coef(tns order, coef res[w]+3, coef compress|w] [f],
coef [w] [f], 1lpcl]l);

start = swb_offset [min(bottom, TNS MAX BANDS,max_stb)];

end = swb offset [min(top, TNS MAX BANDS,max_sftb)];

if ((size = end - start) <= 0) continue;

if (direction([w] [f]) {

inc = -1; start = end - 1;
} else {
inc = 1;

}
tns_ar_filter(&speclw] [start], size, inc, lpc[], tns order);
}
}
/

Please note that this pseudo code uses a C-style interpretation of arrays and vectors, i.e. if coefw][filt][i]
describes the coefficients for all windows and filters, coef[w][filt] is a pointer to the coefficients of one particular
window and filter. Also, the identifier coef is used as a formal parameter in function tns_decode_coef().

/* Decoder transmitted coefficients for one TNS filter */
tns decode coef (order, coef_res bits, coef_compress, coef[], al])
{

/* Some internal tables */

sgn mask[] = { 0x2, 0x4, 0x8 };

neg mask[] = { ~0x3, ~0x7, ~0xf };

/* size used for transmission */

coef res2 = coef res bits - coef compress;

s _mask = sgn _mask[coef res2 - 2];/* mask for sign bit */

n _mask = neg mask[coef_res2 - 2];/* mask for padding neg. values */

/* Conversion to signed integer */
for (i = 0; 1 < order; i++)
tmp[i] = (coef[i] & s mask) ? (coef[i] | n_mask) : coef(i];

/* Inverse quantization */
igfac = ((1 << (coef res bits-1)) - 0.5) / (n/2.0);
igfac_m = ((1 << (coef res bits-1)) + 0.5) / (®%/2.0);
for (i = 0; 1 < order; i++)
tmp2[i] = sin(tmp[i] / ((tmp[i] >= 0) ? igfac : igfac m)});

/* Conversion to LPC coefficients */
aflol] = 1;
for (m = 1; m <= order; m++) {
for (i = 1; i < m; i++) {
bl[i] = afi] + tmp2[m-1] * a[m-1i];

© ISO/IEC 2006 ~ All rights reserved 95

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 32 of 70

ISO/IEC 13818-7:2006(E)

1; 1 < m; i++) {
bfi];

for (i =
ali] =
alm] = tmp2[m-1];
}
}

tns ar filter(spectrum[], size, inc, lpc(], order)

- Simple all-pole filter of order "order" defined by
y(n) = x(n) - Ipcl[i]*y(n-1) - ... - lpclorder]*y(n-order)

- The state variables of the filter are initialized to zero every time
- The output data is written over the input data ("in-place operation")

- An input vector of "size" samples 1is processed and the index increment
to the next data sample is given by "inc"

15 Filterbank and Block Switching

15.1 Tool Description

The time-frequency representation of the signal is mapped onto the time domain by feeding it into the
filterbank module. This module consists of an inverse modified discrete cosine transform (IMDCT), and a
window and an overlap-add function. In order to adapt the time/frequency resolution of the filterbank to the
characteristics of the input signal, a block switching tool is also adopted. N represents the window length,
where N is a function of the window_sequence, see subclause 8.3.3. For each channel, the N/2 time-
frequency values X« are transformed into the N time domain values x;, via the IMDCT. After applying the
window function, for each channel, the first half of the z,, sequence is added to the second half of the previous
block windowed sequence z;.,. to reconstruct the output samples for each channel out; ..

15.2 Definitions
The syntax elements for the filterbank are specified in the raw data stream for the single_channel_elementy()
(see subclause 6.3, Table 13), channel_pair_element() (see subclause 6.3, Table 14), and the

coupling_channel (see subclause 6.3, Table 22). They consist of the control information window_sequence
and window_shape.

15.2.1 Data Elements

window_sequence 2 bit indicating which window sequence (i.e. block size) is used
(see subclause 6.3, Table 15).

window_shape 1bit indicating which window function is selected (see
subclause 6.3, Table 15).

Table 44 shows the four window_sequences (ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE,
EIGHT_SHORT_SEQUENCE, LONG_STOP_SEQUENCE).

96 © ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 33 of 70
ISO/IEC 13818-7:2006(E)

15.3 Decoding Process

16.3.1 IMDCT

The analytical expression of the IMDCT is:

=l
X, = -]% gspec[i][k] cos(% (n +n, {k + %)) for 0 S n<N
where :
n =sampleindex
i =window index
k =spectral coefficient index
N =window length based on the window_sequence value
n, = N2+ 12
The synthesis window length N for the inverse ftransform is a function of the syntax element
window_sequence and is defined as follows:
2048, if ONLY_LONG_SEQUENCE (0x0)
2048, if LONG_START SEQUENCE (0x1)
256, if EIGHT_SHORT_SEQUENCE (0x2), (8 times)
2048, if LONG_STOP_SEQUENCE (0x3)

The meaningful block transitions are as follows:

from ONLY_LONG_SEQUENCE 10 {PNer START SonODNGE

from LONG_START_SEQUENCE to {Eg;%r_ss#(%r{&gﬁ%%\é@

from LONG_STOP_SEQUENCE to {Sglﬁé—ggggfsgggﬁgﬁ&

from EIGHT_SHORT_SEQUENCE to {E{S&*&—SSF&,R&%%%%E&CE

In addition to the meaningful block transitions the following transitions are possible:
from ONLY_LONG_SEQUENCE ~ to {11y —SSTH(E;,R&%%%%E&CE

from LONG_START_SEQUENCE to {Sglﬁé—ls’?k%sggggg}?&

from LONG_STOP_SEQUENCE to {E%}’%—S#&,R&SQ%)E%E&CE

from EIGHT_SHORT_SEQUENCE {0 {[ONor START SoOUPNCE

This will still result in a reasonably smooth transition from one block to the next.

© ISO/IEC 2006 — All rights reserved 97

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 34 of 70

ISO/IEC 13818-7:2006(E)

15.3.2 Windowing and Block Switching

Depending on the window_sequence and window_shape element different transform windows are used. A
combination of the window halves described as follows offers all possible window_sequences.

For window_shape == 1, the window coefficients are given by the Kaiser - Bessel derived (KBD) window as
follows:

n

> I (p.)]

p=0

Sl ()]

WKBD_LEFT,N(n)z for 0<n<—

N-=n-l

217 (e.a)]

p=0

S (o))

p=0

WD RIGHT,N (n)= for

where:

W’ (Kaiser-Bessel kernel window function, see also Error! Reference source not found.) is defined as

follows:
2
n-N/4
I,| 7ex j1.0—
N/4 N
' _ for 0<n<—
W' (na) = 2
I, [n'a]
k 2
)
o0
' 2
L= = |55
k=0)
) 4 for N = 2048
a =kernel window alpha factor,a =
6 for N=256

Otherwise, for window_shape == 0, a sine window is employed as follows:

4 1 N
=sin(—(n+— <n<=
WSIN_LEFT,N(n) sm(N(n+2)) for 0<n< >

7 1 N
= sin(— — — <
WSIN_RIGHT,N(n) sm(N(n+2)) for 5 <£n< N

The window length N can be 2048 or 256 for the KBD and the sine window. How to obtain the possible
window seguences is explained in the parts a) - d) of this clause. All four window_sequences described below
have a total length of 2048 samples.

98 © ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 35 of 70

ISO/IEC 13818-7:2006(E)

For all kinds of window_sequences the window_shape of the left half of the first transform window is
determined by the window shape of the previous block. The following formula expresses this fact:

Wysp err x (), if window_shape_previous_block ==1

WLEFT,N (n)= {

Way 1erry(m),if window_shape_previous_block =0

where:
window_shape_previous_block: window_shape of the previous block (i-1).

For the first block of the bitstream to be decoded the window_shape of the left and right half of the window
are identical.

a) ONLY_LONG_SEQUENCE:

The window_sequence == ONLY_LONG_SEQUENCE is equal to one LONG_WINDOW (see Table 44) with
a total window length of 2048.

For window_shape == 1 the window for ONLY_LONG_SEQUENCE is given as follows:

() W, err 2008 (1)s for 0<n <1024
/4 = ’
Y\ W s s (), Tor 1024 <n <2048

If window_shape == 0 the window for ONLY_LONG_SEQUENCE can be described as follows:

) W irr 2048 (M)s for 0<n <1024
w = ’
= W wicr.aois (1)s for 1024 <n < 2048

After windowing, the time domain values (z;,) can be expressed as:
Zig = w(n)- Xins
b) LONG_START_SEQUENCE:

The LONG_START_SEQUENCE is needed to obtain a correct overlap and add for a block transition from a
ONLY_LONG_SEQUENCE to a EIGHT_SHORT_SEQUENCE.

If window_shape == 1 the window for LONG_START_SEQUENCE is given as follows:

W Lkrr 2048 ()5 for 0<n <1024
1.0, for 1024 <n <1472
W(n) = .
Wisp it 2ss(n+128 —=1472), for 1472 <n <1600
0.0, for 1600 <n <2048

If window_shape == 0 the window for LONG_START_SEQUENCE looks like:

W grr 2008 (1) for 0<n <1024
1.0, for 1024 <n <1472
w(n)=
Wy wicur,2s6(n +128 =1472), for 1472 <n <1600
0.0, for 1600 < n < 2048

© ISO/IEC 2006 — All rights reserved 29

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 36 of 70

ISO/IEC 13818-7:2006(E)

The windowed time-domain values can be calculated with the formula explained in a).
¢) EIGHT_SHORT

The window_sequence == EIGHT_SHORT comprises eight overlapped and added SHORT_WINDOWSs (see
Table 44) with a length of 256 each. The total length of the window_sequence together with leading and
following zeros is 2048. Each of the eight short blocks are windowed separately first. The short block number
is indexed with the variable j =0,..., 7.

The window_shape of the previous block influences the first of the eight short blocks (Wy(n)) only.

If window_shape == 1 the window functions can be given as follows:

W () WLEFT,256 (n), for 0<n<128
0 M WKBD_RIGHT,ZSG(n)a for 128 <n <256

W (n) _ WKBD_LEFT,256 (n), for 0<n<128
=7 Wi ricar 256(1), for 128 <n <256

Otherwise, if window_shape == 0, the window functions can be described as:

() W et 256 (1), for 0<n<128
w = ’
0V Wan ricur 2s6(1), for 128 <n <256

W (n) _ Wan 1errass(n), for 0<n <128
=7 W ricrr,s6(n), for 128 <n <256

The overlap and add between the EIGHT_SHORT window_sequence resuiting in the windowed time domain

values z;, is described as follows:

-

0, for 0<n <448
X paag * W,(n —443), for448<n <576

X, peasg Wo(n—448) + x, o6 - W (n—576), for 576 <n <704

X, poste Wi (n—=576) + x, , 50, - W,(n—704), for 704 <n < 8§32
X;ngoa *Wo(n=T704) + x,, e, -W,(n—832), for 832 <n <960
X;pgzz *W3(n=832) + x,,_oqo - W,(n —960), for 960 <n <1088

X; nseo " Wa(m—960) + x, ,_ 005 - W5(n—1088), for 1088 <n <1216
X; paoss Ws(m—1088) + x,, ¢ - Ws(n—1216),for 1216 < n <1344
X poaze " We(n—=1216) + X, _ 1, - W;(n—1344),for 1344 <n <1472
X; potaaa - W (n—1344), for 1472 <n <1600

0, for 1600 < n <2048

\

d) LONG_STOP_SEQUENCE

This window_sequence is needed to switch from a EIGHT_SHORT_SEQUENCE back to a
ONLY_LONG_SEQUENCE.

100 © ISO/IEC 2006 — Al rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 37 of 70

ISO/IEC 13818-7:2006(E)

If window_shape == 1 the window for LONG_STOP_SEQUENCE is given as follows:

0.0, for 0 <n <448
() WLEFT,256 (I’Z "‘448), fOl‘ 448 S n< 576
"=, for 576 <n <1024

Wi ricuraos(m), for 1024 <n <2048

If window_shape == 0 the window for LONG_START_SEQUENCE is determined by:

0.0, for 0<n <448
) W e 256 (1= 448), for 448<n <576
=10, for 576 <n <1024

WS,N_ RIGHT 2048 (n), for 1024 <n <2048
The windowed time domain values can be calculated with the formula explained in a).

15.3.3 Overlapping and Adding with Previous Window Sequence

Besides the overlap and add within the EIGHT_SHORT window_sequence the first (left) half of every
window_sequence is overlapped and added with the second (right) half of the previous window_sequence
resulting in the final time domain values out; ,. The mathematic expression for this operation can be described
as follows. It is valid for all four possible window_sequences.

out,, =z, +z y; for OSn<g, N =2048

j=l,n+—
2

16 Gain Control

16.1 Tool Description

The gain control tool is made up of several gain compensators and overlap/add processing stages, and an
IPQF (Inverse Polyphase Quadrature Filter) stage. This tool receives non-overlapped signal sequences
provided by the IMDCT stages, window_sequence and gain_control_data, and then reproduces the output
PCM data. The block diagram for the gain control tool is shown in Figure 9.

Due to the characteristics of the PQF filterbank, the order of the MDCT coefficients in each even PQF band
must be reversed. This is done by reversing the spectral order of the MDCT coefficients, i.e. exchanging the
higher frequency MDCT coefficients with the lower frequency MDCT coefficients.

If the gain control tool is used, the configuration of the filter bank tool is changed as follows. In the case of an
EIGHT_SHORT_SEQUENCE window_sequence, the number of coefficients for the IMDCT is 32 instead of
128 and eight IMDCTs are carried out. In the case of other window_sequence values, the number of
coefficients for the IMDCT is 256 instead of 1024 and one IMDCT is performed. In all cases, the filter bank
tool outputs a total of 2048 non-overlapped values per frame. These values are supplied to the gain control

tool as Uy, , (/) defined in 16.3.3.

The IPQF combines four uniform frequency bands and produces a decoded time domain output signal. The
aliasing components introduced by the PQF in the encoder are cancelled by the |IPQF.

The gain values for each band can be controlled independently except for the lowest frequency band. The
step size of gain control is 2 * n where n is an integer.

The gain control tool outputs a time signal sequence which is AS(n) defined in 16.3.4.

© ISO/IEC 2006 — Al rights reserved 101

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

16.2 Definitions

16.2.1 Data Elements

adjust_num

max_band

alevcode

aloccode

16.2.2 Help Elements

gain control data

IPQF band

16.3 Decoding Process

Document 89-7

Filed 01/04/2007 Page 38 of 70

3-bit field indicating the number of gain changes for each IPQF
band. The maximum number of gain changes is seven (see
subclause 6.3, Table 27).

2-bit field indicating the number of IPQF bands in which their
signal gain have been controlled.

The meanings of this value are shown below (see subclause 6.3,
Table 27).

0: no bands have activated gain control.
1: signal gain on 2nd IPQF band has been controlled.
2: signal gain on 2nd and 3rd IPQF bands have been controlled.

3: signal gain on 2nd, 3rd and 4th IPQF bands have been
controlled.

4-bit field indicating the gain value for one gain change (see
subclause 6.3, Table 27).

2-, 4-, or 5-bit field indicating the position for one gain change.

The length of this data varies depending on the window
sequence (see subclause 6.3, Table 27).

side information indicating the gain values and the positions used
for the gain change.

each split band of IPQF.

The following four processes are required for decoding.

(1) Gain control data decoding

(2) Gain control function setting

(3) Gain control windowing and oveﬂapping

(4) Synthesis filter

16.3.1 Gain Control Data Decoding

Gain control data are reconstructed as follows.

Q)
NADy, ; = adjust_num[BIW]

102

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 39 of 70

ISO/IEC 13818-7:2006(E)

2)
ALOC,, ,(m)= AdjLoc(aloccode[B]w fm 1)1 <m < N4D,, ,

ALEVW 5 (m) — 2AajLev(alevcode[B][WIm—-l])’1 <m< NADW R

3
ALoc,, ,(0)=0

: a Lif NADy, 5 =0
ALEVy 5 (0)= {ALE Vs () otherwise

4

(256, = 0if ONLY_LONG_SEQUENCE
1120 =0

if LONG_START_SEQUENCE
32 W =1

ALOC,, ,(NAD,, , +1)=3 32,0<W < 7if EIGHT SHORT SEQUENCE
12 =0

if LONG_STOP_SEQUENCE
256, =1

ALEV,, ,(N4D,, , +1)=1

where

NADy, z: Gain Control Information Number, an integer
ALOCy, 4 (m) Gain Control Location, an integer

ALEV, 4 (m) Gain Control Level, an integer-valued real number

B: Band ID, an integer from 1to 3
w. Window ID, an integer from O to 7
m an integer

aloccode[B][W][m] must be set so that {ALOC w.B (m)} satisfies the following conditions.

ALOC,, ,(m,)< ALOC,, ,(m,)1 <m, <m, <NAD,, , +1

In cases of LONG_START_SEQUENCE and LONG_STOP_SEQUENCE, the values 14 and 15 of
aloccode[B][0][m] are invalid. AdjLoc() is defined in Table 64. AdjLev() is defined in Table 65.

© ISO/IEC 2006 — All rights reserved 103

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 40 of 70

ISO/IEC 13818-7:2006(E)

16.3.2 Gain Control Function Setting ‘
The Gain control function is obtained as follows.
M

M, 5, =Maxim: ALOC,, ,(m)< j},

0< j <255 =0ifONLY_LONG_SEQUENCE

0<j<111 W =0

_ ifLONG_START SEQUENCE
0<j<31LW =1

0<j<31,0<W <7ifEIGHT_SHORT SEQUENCE

0< /<111 =0

fLONG_STOP_SEQUENCE
OSjSZSS,W=1}lfL STOP_SEQ

)

ALEV,, (M, ,)
Inter| ALEV,, (M, , +1), |
FMD,, 4(j)=1 J—ALOCy, 4 (Mw,B,j)

if ALOC,, (MW,BJ <J<ALOCy 4 (MW,B,j)+ 7
ALEV,, (M, , +1)otherwise

(&)
ifONLY_LONG_SEQUENCE

_ [ALEV, ,(0)x PFMD,(j)0 < j <255
GME; (/)= {FMDO,B(J' -256)256 < j <511
PFMDy(j)= FMD, ,(7)0 < j <255
ifLONG_START_SEQUENCE

ALEV, ,(0)x ALEV; ,(0)x PFMD, ()0 < j <255
ALEV, 5(0)x FMD, ,(j -256)256 < j <367
FMD, ,(j—368)368 < j <399

1,400< j <511

GME),B (J) =

PFMD,(j)=FMD, ,()0 < j <31

104

© ISO/IEC 2006 ~ All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 41 of 70

ISO/IEC 13818-7:2006(E)

IfFEIGHT_SHORT_SEQUENCE

ALEV,, ,(0)x PFMD, ()7 =0, < j <31
GMF,, ;(j)={ ALEV,, ;(0)x FMD,,_, ;(/}1 <W <7,0< j<31
FMD,, ,(j=32)0<W <732< j<63

PFMD,(j)= FMD, ,(j)0< j<31
if LONG_STOP_SEQUENCE

1,0<j <111
ALEV, ,(0)x ALEV, ,(0)x PFMD,(j—112)112 < j <143
ALEV, 5(0)x FMD, 5(j -144)144 < j <255

FMD, ,(j—256)256 < j <511

GME),B (1) =

PFMD,(j)= FMD, ,(j)0 < j <255
“)

1
AD, (i)= —————
w.B (.]) GMFW,B (J) >

0< <511/ = 0if ONLY_LONG_SEQUENCE
0<j<511W == 0if LONG_START_SEQUENCE
0<<63,0<W <TifEIGHT_SHORT_SEQUENCE
0<j<511W = 0if LONG_STOP_SEQUENCE

where

FMDy, , (j): Fragment Modification Function, a real number

PFMD, (j) :Fragment Modification Function of previous frame, a real number

GMFy, (]) :Gain Modification Function, a real number

ADW’B(j): Gain Control Function, a real number

ALOCy, 4 (m) Gain Control Location defined in subclause 16.3.1, an integer

ALEV,, » (m) Gain Control Level defined in subclause 16.3.1, an integer-valued real number

B: Band ID, an integer from 10 3

w. Window ID, an integer from Oto 7

© ISO/IEC 2006 - All rights reserved 105

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 42 of 70

ISO/IEC 13818-7:2006(E)

My, 5 ;- aninteger

m: an integer
and

(8—7)los, (a)+10g, (5)

Im‘er(a,b, j)= 2 8
Note that the initial value of PFMD, () must be set 1.0.

16.3.3 Gain Control Windowing and Overlapping
Band Sample Data are obtained through the processes (1) to (2) shown below.
(1) Gain Control Windowing

ifB=0
Ty 5()=Uy 5 (/)
0< <511/ = 0ifONLY_LONG_SEQUENCE
0< j<511LW = 0if LONG_START_SEQUENCE
0<7<63,0<W <7ifEIGHT SHORT SEQUENCE
0<j<511W = 0if LONG_STOP_SEQUENCE
else
Ty 5(7)= 4Dy 5(j)x Uy 5 (),
0< <511 W = 0ifONLY_LONG_SEQUENCE
0<j<511L,W = 0ifLONG_START_SEQUENCE
0<j<63,0<W <T7ifEIGHT _SHORT SEQUENCE
0< <511 W = 0if LONG_STOP_SEQUENCE

(2) Overlapping
if ONLY_LONG_SEQUENCE

Ve(7)=PT,()+ T, ,(j)0 < j <255

PT,(j)=T,,(j +256)0< j <255

106

© ISO/IEC 2006 — All rights reserved

Document 89-7 Filed 01/04/2007 Page 43 of 70
ISO/IEC 13818-7:2006(E)

Case 3:06-cv-00019-MHP

if LONG_START_SEQUENCE
Vs(1)=PT;(/)+T,5(j)0 < j < 255
Vo(j+256)=T, ,(j +256)0< j <111
PT,(j)=T,,(j +368)0 < <31
if EIGHT_SHORT_SEQUENCE
V()= PT,())+T, , ()7 = 00< <31
Vs(B2w + j)=T,_ ,(j +32)+T, ,()}1 <W <70< j<31
PT,(j)=T, ,(j +32)W =17,0<j <31
if LONG_STOP_SEQUENCE
V5 (1)=PT;(1)+T,,,(j +112)0< j <31
V,(j+32)=T,,(j +144)0 < j <111
PT,(j)="T,,(j +256)0< j <255

where

UW,B(j): Band Spectrum Data, a real number

Ty s (j):Gain Conjrolled Block Sample Data, a real number

PT, (j):Gain Controlled Block Sample Data of previous frame, a real number
Vg (j): Band Sample Data, a real number

ADW,B (/) Gain Control Function defined in subclause 16.3.2, a real humber

B: Band ID, an integer from 0to 3
W: Window ID, an integer from 0 to 7
J aninteger

Note that the initial value of PT} (/) must be set 0.0.

© ISO/NEC 2006 - Al rights reserved 107

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 44 of 70

ISO/IEC 13818-7:2006(E)

16.3.4 Synthesis Filter
Audio Sample Data are obtained from the following equations.

M

~ oy [V (k)if j = 4k,
VB(]):{OBe(lsZ / 0<B<3

@)

(2B+1)2j-3)r
16

QB(j)=Q(j)x§os(),Osj's95,0sBs3

3

45(1)=3"30,()x7, (2~)

B=0 j=0
where

AS(r): Audio Sample Data

Vg (n): Band Sample Data defined in subclause 16.3.3, a real number

VB (j): Interpolated Band Sample Data, a real number
Op (j): Synthesis Filter Coefficients, a real number

Q(j): Prototype Coefficients given below, a real number

B: Bar_ld ID, an integer from O to 3
W: Window ID, an integer from 0 to 7
n: an integer

/i aninteger

k. aninteger

The values of Q(0) to Q(47) are shown in Table 66. The values of Q(48) to Q(95) are obtained from the

following equation.

0(7)=0(95- /)48 < j <95

108

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP

16.4 Diagrams

window_

Document 89-7

Filed 01/04/2007

Page 45 of 70

ISO/IEC 13818-7:2006(E)

sequence
. gain control tool
gain_
control
data
256 or 32 A | Overlapping
IMDCT i
X output
> Gain PCM
| Spectral | 256 or 32 > Compensat'or data
reverse IMDCT ?l & Overlapping IPQF >
N Gain
256 or 32 » Compensator
IMDCT » & Overlapping
Gain
Spectral | 256 0r32 » Compensator
reverse | IMDCT ¥| & Overlapping
non-
overlapped
time signal
Figure 9 — Block diagram of gain control tool
16.5 Tables
Table 64 — AdjLoc()
AC AdjLoc(AC) AC AdjLoc(AC)
0 0 16 128
1 8 17 136
2 16 18 144
3 24 19 152
4 32 20 160
5 40 21 168
6 48 22 176
7 56 23 184
8 64 24 192
9 72 25 200
10 80 26 208
11 88 27 216
12 96 28 224
13 104 29 232
14 112 30 240
15 120 31 248

© ISO/NEC 2006 — All rights reserved

109

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

110

Document 89-7

Table 65 — AdjLev()

>
<

AdjLev(AV)

OCO~NOODAWN_2O

4
-3
2
-1

Io0CONOURWNO

Table 66 — Q()

Filed 01/04/2007

QG)

J

Q)

OCONOOAARWN-= Of=—

9.7655291007575512E-05
1.3809589379038567E-04
9.8400749256623534E-05
8.6671544782335723E-05
4.6217998911921346E-04
-1.0211814095158174E-03
1.6772149340010668E-03
-2.2533338951411081E-03
-2.4987888343213967E-03
-2.1390815966761882E-03
-9.56595397454597772E-04

1.1172111530118943E-03

3.9091309127348584E-03

6.9635703420118673E-03

9.5595442159478339E-03

1.0815766540021360E-02

9.8770514991715300E-03

6.1562567291327357E-03
-4.1793946063629710E-04
-9.2128743097707640E-03
-1.8830775873369020E-02
-2.7226498457701823E-02
-3.2022840857588906E-02
-3.0996332527754609E-02

24
25

-2.2656858741499447E-02
-6.8031113858963354E-03
1.5085400948280744E-02
3.9750993388272739E-02
6.2445363629436743E-02
7.7622327748721326E-02
7.9968338496132926E-02
6.5615493068475583E-02
3.3313658300882690E-02
-1.4691563058190206E-02
-7.2307890475334147E-02
-1.2993222541703875E-01
-1.7551641029040532E-01
-1.9626543957670528E-01
-1.8073330670215029E-01
-1.2097653136035738E-01
-1.4377370758549035E-02
1.3522730742860303E-01
3.1737852699301633E-01
5.1590021798482233E-01
7.1080020379761377E-01
8.8090632488444798E-01
1.0068321641150089E+00
1.0737914947736096E+00

Page 46 of 70

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 47 of 70

ISO/IEC 13818-7:2006(E)

Annex A
(normative)

Huffman Codebook Tables

Table A.1 — Scalefactor Huffman Codebook

index length codeword index length codeword
(hexadecimal) (hexadecimal)
0 18 3ffe8 61 4 a
1 18 3ffeB 62 4 c
2 18 3ffe7 63 5 1b
3 18 3ffe5 64 6 39
4 19 7fff5 65 6 3b
5 19 7fff1 66 7 78
6 19 ‘ 7ffed 67 7 7a
7 19 7fff6 68 8 f7
8 19 Tifee 69 8 9
9 19 7ifef 70 9 16
10 19 7fff0 71 9 119
11 19 7fffc 72 10 3f4
12 19 7fffd 73 10 3f6
13 19 Tifif 74 10 3f8
14 19 7fffe 75 11 715
15 19 7iff7 76 11 714
16 19 7fff8 77 11 76
17 19 7fffb 78 11 717
18 19 7fff9 79 12 ff5
19 18 3ffe4 80 12 ff8
20 19 7fffa 81 13 1ff4
21 18 3ffe3 82 13 1f6
22 17 1ffef 83 13 1ff8
23 17 1fff0 84 14 3ff8
24 16 fff5 85 14 3ff4
25 17 1ffee 86 16 fffO
26 16 fff2 87 15 7ff4
27 16 fff3 88 16 fff6
28 16 fff4 89 15 7ff5
29 16 fff1 90 18 3ffe2
30 15 7ff6 91 19 7ffd9
31 15 717 92 19 7ffda
32 14 3ff9 93 19 7ffdb
33 14 3ff5 94 19 7ffdc
34 14 3ff7 95 19 7ffdd
35 14 3ff3 96 19 7ffde
36 14 3ff6 97 19 7ffd8
37 14 3ff2 98 19 -~ Tfid2
38 13 1ff7 99 19 7ffd3
39 13 1f5 100 19 7ffd4
40 12 ff9 101 19 7ffd5
41 12 ff7 102 19 7ffd6
42 12 ff6 103 19 7fff2
43 11 719 104 19 7ffdf

© ISO/IEC 2006 — All rights reserved 111

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

105

44 12 ff4 19 7ffe7
45 11 7f8 106 19 7ffe8
46 10 3f9 107 19 7ffe9
47 10 3f7 108 19 7ffea
48 10 3f5 109 19 7ffeb
49 9 118 110 19 7ffe6
50 9 117 111 19 7ffe0
51 8 fa 112 19 7ffe1
52 8 f8 113 19 7ffe2
53 8 6 114 19 7ffe3
54 7 79 115 19 7ffe4
55 6 3a 116 19 7ffeb
56 6 38 117 19 7ffd7
57 5 1a 118 19 7ffec
58 4 b 119 19 7fff4
59 3 4 120 19 7fff3
60 1 0
Table A.2 — Spectrum Huffman Codebook 1
index length codeword index length codeword
(hexadecimal) (hexadecimal)

0 11 718 41 5 14
1 9 1f1 42 7 65
2 11 7fd 43 5 16
3 10 3f5 44 7 6d
4 7 68 45 9 1e9
5 10 3f0 46 7 63
6 11 77 47 9 1e4
7 9 lec 48 7 6b
8 11 715 49 5 13
9 10 3f1 50 7 71
10 7 72 51 9 1e3
11 10 3f4 52 7 70
12 7 74 53 9 13
13 5 11 54 11 7fe
14 7 76 55 9 1e7
15 9 1eb 56 11 713
16 7 6¢ 57 9 1ef
17 10 3f6 58 7 60
18 11 7fc 59 9 1ee
19 9 1e1 60 11 7f0
20 11 7f1 61 9 1e2
21 9 - 1f0 62 11 7fa
22 7 61 63 10 3f3
23 9 116 64 7 6a
24 11 7f2 65 9 1e8
25 9 1ea 66 7 75
26 11 7fb 67 5 10
27 9 112 68 7 73
28 7 69 69 9 114
29 9 1ed 70 7 6e
30 7 77 71 10 3f7
31 5 17 72 11 7f6
32 7 6f 73 9 1e0

112

© ISO/IEC 2006 — Al rights reserved

Page 48 of 70

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007

Page 49 of 70

ISO/IEC 13818-7:2006(E)

33 9 1e6 74 11 79
34 7 64 75 10 3f2
35 9 1e5 76 7 66
36 7 67 77 - 9 115
37 5 15 78 11 7ff
38 7 62 79 9 17
39 5 12 - 80 11 7f4
40 1 0
Table A.3 — Spectrum Huffman Codebook 2
index length codeword index length codeword
(hexadecimal) (hexadecimal)
0 9 113 41 5 7
1 7 6f 42 6 1d
2 9 1fd 43 5 b
3 8 eb 44 6 30
4 6 23 45 8 ef
5 8 ea 46 6 ic
6 9 117 47 7 64
7 8 e8 48 6 1e
8 9 1fa 49 5 c
9 8 f2 50 6 29
10 6 2d 51 8 3
11 7 70 52 6 2f
12 6 20 53 8 0
13 5 6 54 9 1fc
14 6 2b 55 7 71
15 7 6e 56 9 112
16 6 28 57 8 4
17 8 e9 58 6 21
18 9 1f9 59 8 eb
19 7 66 60 8 f7
20 8 8 61 7 68
21 8 e7 62 9 118
22 6 1b 63 8 ee
23 8 1 64 6 22
24 9 1f4 65 7 65
25 7 6b 66 6 31
26 9 115 67 4 2
27 8 ec 68 6 26
28 6 2a 69 8 ed
29 7 6c 70 6 25
30 6 2c 71 7 6a
31 5 a 72 9 1fb
32 6 27 73 7 72
33 7 67 74 9 1fe
34 6 1a 75 7 69
35 8 5 76 6 2e
36 6 24 77 8 6
37 5 8 78 9 1ff
38 6 1f 79 7 6d
39 5 9 80 9 116
40 3 0

© ISO/IEC 2006 — All rights reserved

113

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

Table A.4 — Spectrum Huffman Codebook 3

length

index codeword index length codeword
(hexadecimal) (hexadecimal)
0] 1 0 41 10 3ef
1 4 9 42 9 1f3
2 8 ef 43 9 1f4
3 4 b 44 11 76
4 5 19 45 9 1e8
5 8 0 46 10 3ea
6 9 1eb 47 13 1ffc
7 9 1e6 48 8 f2
8 10 3f2 49 9 111
9 4 a 50 12 ffb
10 6 35 51 10 3f5
11 9 1ef 52 11 7f3
12 6 34 53 12 ffc
13 6 37 54 8 ee
14 9 1e9 55 10 3f7
15 9 1ed 56 15 7ffe
16 9 1e7 57 9 1f0
17 10 3f3 58 11 75
18 9 1ee 59 15 7ffd
19 10 3ed 60 13 1ffb
20 13 1ffa - 61 14 3ffa
21 9 1ec 62 16 ffff
22 9 112 63 8 f1
23 11 79 64 10 3f0
24 11 718 65 14 3ffc
25 10 3f8 66 9 1ea
26 12 ff8 67 10 3ee
27 4 8 68 14 3ffb
28 6 38 69 12 ff6
29 10 3f6 70 12 ffa
30 6 36 71 15 7ffc
31 7 75 72 11 712
32 10 3f1 73 12 f5
33 10 3eb 74 16 fffe
34 10 3ec 75 10 3f4
35 12 ff4 76 11 7f7
36 5 18 77 15 7ffb
37 7 76 78 12 ff7
38 11 74 79 12 ff9
39 6 39 80 15 7ffa
40 7 74

114

© ISO/NEC 2006 — All rights reserved

Page 50 of 70

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007

Page 51 of 70

ISO/NEC 13818-7:2006(E)

Table A.5 — Spectrum Huffman Codebook 4

index length codeword index length codeword
(hexadecimal) {hexadecimal)
0 4 7 41 7 6b
1 5 16 42 8 e3
2 8 6 43 7 69
3 5 18 44 9 1£3
4 4 8 45 8 eb
5 8 ef . 46 8 €6
6 9 1ef 47 10 36
7 8 3 48 7 6e
8 11 7f8 49 7 6a
9 5 19 50 9 14
10 5 17 51 10 3ec
11 8 ed 52 9 1f0
12 5 15 53 10 3f9
13 4 1 54 8 5
14 8 e2 55 8 ec
15 8 0 56 11 7fb
16 7 70 57 8 ea
17 10 3f0 58 7 6f
18 9 1ee 59 10 37
19 8 1 60 11 79
20 11 7fa 61 10 33
21 8 ee 62 12 fff
22 8 e4 63 8 e9
23 10 3f2 64 7 6d
24 11 76 65 10 3f8
25 10 3ef 66 7 6c
26 11 7fd 67 7 68
27 4 '5 68 9 115
28 5 14 69 10 3ee
29 8 f2 70 9 12
30 4 9 71 11 74
31 4 4 72 11 77
32 8 e5 73 10 3f1
33 8 f4 74 12 ffe
34 8 e8 75 10 3ed
35 10 3f4 76 9 111
36 4 6 77 11 75
37 4 2 78 11 7fe
38 8 e7 79 10 3f5
39 4 3 80 11 7fc
40 4 0

© ISO/IEC 2006 — All rights reserved

115

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

Table A.6 — Spectrum Huffman Codebook 5

Page 52 of 70

index length codeword index length codeword
(hexadecimal) (hexadecimal)
0 13 1fff 41 4 a
1 12 ff7 42 7 71
2 11 74 43 8 3
3 11 7e8 44 11 7e9
4 10 3f1 45 11 7ef
5 11 7ee 46 9 1ee
6 11 79 47 8 ef
7 12 f8 48 5 18
8 13 1ffd 49 4 9
9 12 ffd 50 5 1b
10 11 71 51 8 eb
11 10 3e8 52 9 1e9
12 9 1e8 53 11 7ec
13 8 fo 54 11 716
14 9 lec 55 10 3eb
15 10 3ee 56 9 113
16 11 72 57 8 ed
17 12 ffa 58 7 72
18 12 f4 59 8 €9
19 10 3ef 60 9 1f1
20 9 1f2 61 10 3ed
21 8 e8 62 11 717
22 7 70 63 12 ff6
23 8 ec 64 11 710
24 9 1f0 65 10 3e9
25 10 3ea 66 9 1ed
26 11 7f3 67 8 1
27 11 7eb 68 9 1ea
28 9 1eb 69 10 3ec
29 8 ea 70 11 718
30 5 1a 71 12 f9
31 4 8 72 13 1ffc
32 5 19 73 12 ffc
33 8 ee 74 12 ff5
34 9 1ef 75 11 7ea
35 11 7ed 76 10 313
36 10 3f0 77 10 3f2
37 8 2 78 11 715
38 7 73 79 12 ffb
39 4 b 80 13 1ffe
40 1 0

116

© ISO/IEC 2006 ~ All rights reserved

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007

Page 53 of 70

ISO/IEC 13818-7:2006(E)

Table A.7 — Spectrum Huffman Codebook 6

index length codeword index length codeword
(hexadecimal) (hexadecimal)
0 11 7fe 41 4 3
1 10 3fd 42 6 2f
2 9 11 43 7 73
3 9 1eb 44 9 1fa
4 9 114 45 9 1e7
5 9 1ea 46 7 6e
6 9 110 47 6 2b
7 10 3fc 48 4 7
8 11 7fd 49 4 1
9 10 3f6 50 4 5
10 9 1e5 51 6 2c
11 8 ea 52 7 6d
12 7 6c 53 9 lec
13 7 71 54 9 1f9
14 7 68 55 8 ee
15 8 fO 56 6 30
16 9 1e6 57 6 24
17 10 3f7 58 6 2a
18 9 113 59 6 25
19 8 ef 60 6 33
20 6 32 61 8 ec
21 6 27 62 9 112
22 6 28 63 10 3f8
23 6 26 64 9- 1e4
24 6 31 65 8 ed
25 8 eb 66 7 6a
26 9 1f7 67 7 70
27 9 1e8 68 7 69
28 7 6f 69 7 74
29 6 2e 70 8 1
30 4 8 71 10 3fa
31 4 4 72 11 7ff
32 4 6 73 10 3f9
33 6 29 74 9 116
34 7 6b 75 9 1ed
35 9 1ee 76 9 118
36 9 1ef 77 9 1e9
37 7 72 78 9 115
38 6 2d 79 10 3fb
39 4 2 80 11 7fc
40 4 0

© ISO/IEC 2006 — All rights reserved

117

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

Table A.8 — Spectrum Huffman Codebook 7

Page 54 of 70

index length codeword index length codeword
{(hexadecimal) {hexadecimal)
0 1 0 32 8 3
1 3 5 33 8 ed
2 6 37 34 9 1e8
3 7 74 35 9 1ef
4 8 f2 36 10 3ef
5 9 1eb 37 10 3f1
6 10 3ed 38 10 3f9
7 11 7f7 39 11 7fb
8 3 4 40 9 1ed
9 4 c 41 8 ef
10 6 35 42 9 1ea
11 7 71 43 9 112
12 8 ec 44 10 3f3
13 8 ee 45 10 3f8
14 9 1ee 46 11 79
15 9 1f5 47 11 7fc
16 6 36 48 10 3ee
17 6 34 49 9 1ec
18 7 72 50 9 14
19 8 ea 51 10 3f4
20 8 f1 52 10 3f7
21 9 1e9 53 11 7f8
22 9 13 54 12 ffd
23 10 3f5 55 12 ffe
24 7 73 56 11 76
25 7 70 57 10 3f0
26 8 eb 58 10 3f2
27 8 fo 59 10 3f6
28 9 11 60 11 7fa
29 9 1f0 61 11 7fd
30 10 3ec 62 12 ffc
31 10 3fa 63 12 fff

118

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007

Page 55 of 70

ISO/IEC 13818-7:2006(E)

Table A.9 — Spectrum Huffman Codebook 8

index length codeword index length codeword
{(hexadecimal) (hexadecimal)
0 5 e 32 7 71
1 4 5 33 6 2b
2 5 10 34 6 2d
3 6 30 35 6 31
4 7 6f 36 7 6d
5 8 1 37 7 70
6 9 1fa 38 8 f2
7 10 3fe 39 9 1f9
8 4 3 40 8 ef
9 3 0 41 7 68
10 4 4 42 6 33
11 5 12 43 7 6b
12 6 2c 44 7 6e
13 7 6a 45 8 ee
14 7 75 46 8 f9
15 8 f8 47 10 3fc
16 5 f 48 9 118
17 4 2 49 7 74
18 4 6 50 7 73
19 5 14 51 8 ed
20 6 2e 52 8 fO
21 7 69 53 8 6
22 7 72 54 9 16
23 8 5 55 9 1fd
24 6 2f 56 10 3fd
25 5 11 57 8 3
26 5 13 58 8 f4
27 6 2a 59 8 f7
28 6 32 60 9 1f7
29 7 6¢ 61 9 1fb
30 8 ec 62 9 1fc
31 8 fa 63 10 3ff

© ISO/IEC 2006 — All rights reserved

119

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

120

Document 89-7

Filed 01/04/2007

Table A.10 — Spectrum Huffman Codebook 9

index length codeword index length codeword
(hexadecimal) (hexadecimal)
0 1 0 85 12 fda
1 3 5 86 12 fe3
2 6 37 87 12 fe9
3 8 e7 88 13 1fe6
4 9 1de 89 13 13
5 10 3ce 90 13 117
6 10 3d9 91 11 7d3
7 11 7¢c8 92 10 3d8
8 11 7cd 93 10 3e1
9 12 fc8 94 11 7d4
10 12 fdd 95 11 7d9
11 13 1fe4 96 12 fd3
12 13 1fec 97 12 fde
13 3 4 98 13 1fdd
14 4 c 99 13 1fd9
15 6 35 100 13 1fe2
16 7. 72 101 13 1fea
17 8 ea 102 13 1ff1
18 8 ed 103 13 1f6
19 9 1e2 104 11 7d2
20 10 3d1 105 10 3d4
21 10 3d3 106 10 3da
22 10 3e0 107 11 7c7
23 11 7d8 108 11 7d7
24 12 fcf 109 11 7e2
25 12 fd5 110 12 fce
26 6 36 111 12 fdb
27 6 34 112 13 1fd8
28 7 71 113 13 1fee
29 8 e8 114 14 3ff0
30 8 ec 115 13 1ff4
31 9 1e1 116 14 3ff2
32 10 3cf 117 11 7e1
33 10 3dd 118 10 3df
34 10 3db 119 11 7¢9
35 11 7d0 120 11 7d6
36 12 fc7 121 12 fca
37 12 fd4 122 12 fd0
38 12 fe4 123 12 fe5
39 8 €6 124 12 fe6
40 7 70 125 13 - 1feb
41 8 e9 126 13 1fef
42 9 1dd 127 14 3ff3
43 9 1e3 128 14 3ff4
44 10 3d2 129 14 3ff5
45 10 3dc 130 12 fe0
46 11 7cc 131 11 7ce
47 11 7ca 132 11 7d5
48 11 7de 133 12 fc6
49 12 fd8 134 12 fd1
50 12 fea 135 12 fe1
51 13 1fdb 136 13 1fe0
52 9 1df 137 13 _1fe8

© ISO/IEC 2006 - Al rights reserved

Page 56 of 70

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 57 of 70
ISO/IEC 13818-7:2006(E)

53 8 eb 138 13 1ff0
54 9 1dc 139 14 3ff1
55 ‘9 1e6 140 14 3ff8
56 10 3d5 141 14 3ff6
57 10 3de 142 15 7ffc.
58 11 7cb 143 12 fe8
59 11 7dd 144 11 7df
60 11 7dc 145 12 fc9
61 12 fed 146 12 fd7
62 12 fe2 147 12 fdc
63 12 fe7 148 13 1fdc
64 13 1fe1 149 13 1fdf
65 10 3d0 150 13 1fed
66 9 1e0 151 13 1ff5
67 9 1ed 152 14 3ff9
68 10 3d6 153 14 3ffb
69 11 7¢5 154 15 7ffd
70 11 7d1 155 15 7ffe
71 11 7db 156 13 1fe7
72 12 fd2 157 12 fce
73 11 7e0 158 12 fdé
74 12 fd9 159 12 fdf
75 12 feb 160 13 1fde
76 13 1fe3 161 13 1fda
77 13 1fe9 162 13 1fe5
78 11 7c4 163 13 1ff2
79 9 1e5 164 14 3ffa
80 10 3d7 165 14 3ff7
81 1" 7¢6 166 14 3ffc
82 11 7cf 167 14 - 3ffd
83 11 7da 168 15 7iff
84 12 fcb

© ISO/IEC 2006 — Al rights reserved 121

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

Table A.11 — Spectrum Huffman Codebook 10

Page 58 of 70

index length codeword index length codeword
(hexadecimal) (hexadecimal)
0 6 22 85 9 1c7
1 5 8 86 9 1ca
2 6 1d 87 9 1e0
3 6 26 88 10 3db
4 7 5f 89 10 3e8
5 8 d3 90 11 7ec
6 9 1cf 91 9 1e3
7 10 3d0 92 8 d2
8 10 3d7 93 8 cb
9 10 3ed 94 8 do
10 11 710 95 8 d7
11 11 716 96 8 db
12 12 fid 97 9 1c6
13 5 7 98 9 1d5
14 4 0 99 9 1d8
15 4 1 100 10 3ca
16 5 9 101 10 3da
17 6 20 102 11 7ea
18 7 54 103 11 7f1
19 7 60 104 9 1e1
20 8 d5 105 8 d4
21 8 dc 106 8 cf
22 9 1d4 107 8 dé
23 10 3cd 108 8 de
24 10 3de 109 8 el
25 11 7e7 110 9 1d0
26 6 1c 111 9 1d6
27 4 2 112 10 3d1
28 5 6 113 10 3d5
29 5 c 114 10 3f2
30 6 1e 115 11 Tee
31 6 28 116 11 7fb
32 7 5b 117 10 3e9
33 8 cd 118 9 1cd
34 8 d9 119 9 1c8
35 9 1ce 120 9 1cb
36 9 1dc 121 9 1d1
37 10 3d9 122 9 1d7
38 10 3f1 123 9 1df
39 6 25 124 10 3cf
40 5 b 125 10 3e0
41 5 a 126 10 3ef
42 5 d 127 11 7e6
43 6 24 128 11 718
44 7 57 129 12 ffa
45 7 61 130 10 3eb
46 8 cc 131 9 1dd
47 8 dd 132 9 1d3
48 9 1cc 133 9 1d9
49 9 1de 134 9 1db
50 10 3d3 135 10 3d2
51 10 3e7 136 10 3cc
52 7 5d 137 10 3dc

122

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 59 of 70

ISO/IEC 13818-7:2006(E)

53 6 21 138 10 3ea
54 6 1f 139 11 7ed
55 6 23 140 11 73
56 6 27 141 11 719
57 7 59 142 12 ffo
58 7 64 143 11 712
59 8 d8 144 10 3ce
60 8 df 145 9 1e4d
61 9 1d2 146 10 3cb
62 9 1e2 147 10 3d8
63 10 3dd 148 10 3d6
64 10 3ee 149 10 3e2
65 8 d1 150 10 3e5
66 7 55 151 11 7e8
67 6 29 162 11 : 74
68 7 56 153 11 7f5
69 7 58 154 11 717
70 7 62 155 12 ffb
71 8 ce 156 11 7fa
72 8 el 157 10 3ec
73 8 e2 158 10 3df
74 9 1da 159 10 3e1
75 10 3d4 160 10 3e4
76 10 3e3 161 10 3eb
77 11 7eb 162 10 3f0
78 9 1c9 163 11 7¢e9
79 7 5e 164 11 7ef
80 7 5a 165 12 ff8
81 7 5¢ 166 12 ffe
82 7 63 167 12 ffc
83 8 ca 168 12 fff
84 8 da

© ISO/IEC 2006 ~ Al rights reserved 123

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007

Table A.12 — Spectrum Huffman Codebook 11

index length codeword index length codeword
{hexadecimal) (hexadecimal)
0 4 0 145 10 38d
1 5 6 146 10 398
2 6 19 147 10 3b7
3 7 3d 148 10 3d3
4 8 9c 149 10 3d1
5 8 c6 150 10 3db
6 9 1a7 151 11 7dd
7 10 390 152 8 b4
8 10 3c2 153 10 3de
9 10 3df 154 9 1a9
10 11 7e6 155 9 19b
11 11 713 156 9 19¢
12 12 ffb 157 9 1a1
13 11 7ec 168 9 1aa
14 12 ffa 159 9 1ad
15 12 ffe 160 9 1b3
16 10 38e 161 10 38b
17 5 5 162 10 3b2
18 4 1 163 10 3b8
19 5 8 164 10 3ce
20 6 14 165 10 3et
21 7 37 166 10 3e0
22 7 42 167 11 7d2
23 8 92 168 11 7e5
24 8 af 169 8 b7
25 9 191 170 11 7e3
26 9 1a5 171 9 1bb
27 9 1b5 172 9 1a8
28 10 39 173 9 1a6
29 10 3c0 174 9 1b0
30 10 3a2 175 9 1b2
N 10 3cd 176 9 1b7
32 11 7d6 177 10 39b
33 8 ae 178 10 39a
34 6 17 179 10 3ba
35 5 7 180 10 3b5
36 5 9 181 10 3d6
37 6 18 182 11 7d7
38 7 39 183 10 3e4
39 7 40 184 11 7d8
40 8 8e 185 11 7ea
41 8 a3 186 8 ba
42 8 b8 187 11 7e8
43 9 199 188 10 3a0
44 9 1ac 189 9 1bd
45 9 1¢1 190 9 1b4
46 10 3b1 191 10 38a
47 10 396 192 9 1c4
48 10 3be 193 10 392
49 10 3ca 194 10 3aa
50 8 9d 195 10 3b0
51 7 3c 196 10 3bc
52 6 15 197 10 3d7

124

© ISO/IEC 2006 — All rights reserved

Page 60 of 70

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007 Page 61 of 70

ISO/IEC 13818-7:2006(E)

53 6 16 198 11 7d4
54 6 1a 199 11 ~7dc
55 7 3b 200 11 7db
56 7 44 201 11 7d5
57 8 91 202 11 70
58 8 ad 203 8 cl
59 8 be 204 11 7fb
60 9 196 205 10 3c8
61 9 1ae 206 10 3a3
62 9 1b9 207 10 395
63 10 3a1 208 10 39d
64 10 391 209 10 3ac
65 10 3a5 210 10 3ae
66 10 3d5 211 10 3ch
67 8 94 212 10 3d8
68 8 9a 213 10 3e2
69 7 36 214 10 3eb
70 7 38 215 11 7e4
71 7 3a 216 1 7e7
72 7 H 217 11 7e0
73 8 8c 218 11 7e9
74 8 9b 219 11 77
75 8 b0 220 9 190
76 8 c3 221 11 7f2
77 9 19e 222 10 393
78 9 1ab 223 9 1be
79 9 1bc 224 9 1c0
80 10 39f 225 10 394
81 10 38f 226 10 397
82 10 3ag 227 10 3ad
83 10 3cf 228 10 3c3
84 8 93 229 10 3c
85 8 bf 230 10 3d2
86 7 3e 231 11 7da
87 7 3f 232 11 7d9
88 7 43 233 11 7df
89 7 45 234 11 7eb
- 90 8 9e 235 11 7f4
9N 8 a7 236 11 7fa
92 8 b9 237 9 195
93 9 194 238 11 7f8
94 9 1a2 239 10 3bd
95 9 iba 240 10 39¢
96 9 1c3 241 10 3ab
97 10 3ab 242 10 3a8
98 10 3a7 243 10 3b3
99 10 3bb 244 10 3b9
100 10 3d4 245 10 3d0
101 8 of 246 10 3e3
102 9 1a0 247 10 3ed
103 8 8f 248 11 7e2
104 8 8d 249 11 7de
105 8 90 250 11 7ed
106 8 98 251 11 M
107 8 a6 252 11 719
108 8 b6 253 11 7fc

© ISO/IEC 2006 — All rights reserved

125

Case 3:06-cv-00019-MHP

ISO/IEC 13818-7:2006(E)

Document 89-7

Filed 01/04/2007 Page 62 of 70

109 8 c4 254 9 193
110 9 19f 255 12 ffd
111 9 1af 256 10 3dc
112 9 1bf 257 10 3b6
113 10 399 258 10 3c7
114 10 3bf 259 10 3ce
115 10 3b4 260 10 3cb
116 10 3¢9 261 10 3d9
117 10 3e7 262 10 3da
118 8 a8 263 11 7d3
119 9 1b6 264 11 7e1
120 8 ab 265 11 7ee
121 8 a4 266 11 7ef
122 8 aa 267 11 7f5
123 8 b2 268 11 76
124 8 c2 269 12 ffc
125 8 c5 270 12 fff
126 9 198 271 9 19d
127 9 1a4 272 9 1c2
128 9 1b8 273 8 b5
129 10 38¢c 274 8 al
130 10 3a4 275 8 96
131 10 3c4 276 8 97
132 10 3c6 277 8 95
133 10 3dd 278 8 99
134 10 3e8 279 8 a0
135 8 ad 280 8 a2
136 - 10 3af 281 8 ac
137 9 192 282 8 a9
138 8 bd 283 8 b1
139 8 bc 284 8 b3
140 9 18e 285 8 bb
141 9 197 286 8 c0
142 9 19a 287 9 18f
143 9 1a3 288 5 4
144 9 1b1

126

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP

Table A.13 — Kaiser-Bessel window for SSR profile EIGHT_SHORT_SEQUENCE

Document 89-7

Filed 01/04/2007

Page 63 of 70

ISO/IEC 13818-7:2006(E)

w(i)

w(i)

CO~NDADWN ==

0.0000875914060105
0.0009321760265333
0.0032114611466596
0.0081009893216786
0.0171240286619181
0.0320720743527833
0.0548307856028528
0.0871361822564870
0.1302923415174603
0.1848955425508276
0.2506163195331889
0.3260874142923209
0.4089316830907141
0.4959414900423747
0.5833939894958904
0.6674601983218376

16

0.7446454751465113
0.8121892962974020
0.8683559394406505
0.9125649996381605
0.9453396205809574
0.9680864942677585
0.9827581789763112
0.9914756203467121
0.9961964092194694
0.9984956609571091
0.9994855586984285
0.9998533730714648
0.9999671864476404
0.9999948432453556
0.9999995655238333
0.9999999961638728

Table A.14 — Kaiser-Bessel window for SSR profile for other window sequences.

w(i)

w(i)

OCONOOOTA WN=0O|=-

0.0005851230124487
0.0009642149851497
0.0013558207534965
0.0017771849644394
0.0022352533849672
0.0027342299070304
0.0032773001022195
0.0038671998069216
0.0045064443384152
0.0051974336885144
0.0059425050016407
0.0067439602523141
0.0076040812644888
0.0085251378135895
0.0095093917383048
0.0105590986429280
0.0116765080854300
0.0128638627792770
0.0141233971318631
0.0154573353235409
0.0168678890600951
0.0183572550877256
0.0199276125319803
0.0215811201042484
0.0233199132076965
0.0251461009666641
0.0270617631981826
0.0290689473405856
0.0311696653515848
0.0333658905863535
0.0356595546648444
0.0380525443366107
0.0405466983507029
0.0431438043376910
0.0458455957104702
0.0486537485902075

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

0.7110428359000029
0.7188474364707993
0.7265597347077880
0.7341770687621900
0.7416968783634273
0.7491167073477523
0.7564342060337386
0.7636471334404891
0.7707533593446514
0.7777508661725849
0.7846377507242818
0.7914122257259034
0.7980726212080798
0.8046173857073919
0.8110450872887550
0.8173544143867162
0.8235441764639875
0.8296133044858474
0.8355608512093652
0.8413859912867303
0.8470880211822968
0.8526663589032990
0.8581205435445334
0.8634502346476508
0.8686552113760616
0.8737353715068081
0.8786907302411250
0.8835214188357692
0.8882276830575707
0.8928098814640207
0.8972684835130879
0.9016040675058185
0.9058173183656508
0.9099090252587376
0.9138800790599416
0.9177314696695282

© ISO/IEC 2006 — All rights reserved

127

ISO/IEC 13818-7:2006(E)

128

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007

0.0515698787635492
0.0545955386770205
0.0577322144743916
0.0609813230826460
0.0643442093520723
0.0678221432558827
0.0714163171546603
0.0751278431308314
0.0789577503982528
0.0829069827918993
0.0869763963425241
0.0911667569410503
0.0954787380973307
0.0999129187977865
0.1044697814663005
0.1091497100326053
0.1139529881122542
0.1188797973021148
0.1239302155951605
0.1291042159181728
0.1344016647957880
0.1398223211441467
0.1453658351972151
0.1510317475686540
0.1568194884519144
0.1627283769610327
0.1687576206143887
0.1749063149634756
0.1811734433685097
0.1875578769224857
0.1940583745250518
0.2006735831073503
0.2074020380087318
0.2142421635060113
0.2211922734956977
0.2282505723293797
0.2354151558022098
0.2426840122941792
0.2500550240636293
0.2575259686921987
0.2650945206801527
0.2727582531907993
0.2805146399424422
0.2883610572460804
0.2962947861868143
0.3043130149466800
0.3124128412663888
0.3205912750432127
0.3288452410620226
0.3371715818562547
0.3455670606953511
0.3540283646950029
0.3625521080463003
0.3711348353596863
0.3797730251194006
0.3884630932439016
0.3972013967475546
0.4059842374986933
0.4148078660689724
0.4236684856687616

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

0.9214642831859411
0.9250796989403991

.0.9285789863994010

0.9319635019415643
0.9352346855155568
0.9383940571861993
0.9414432135761304
0.9443838242107182
0.9472176277741918
0.9499464282852282
0.9525720912004834
0.9550965394547873
0.9575217494469370
0.9598497469802043
0.9620826031668507
0.9642224303060783
0.9662713777449607
0.9682316277319895
0.9701053912729269
0.9718949039986892
0.9736024220549734
0.9752302180233160
0.9767805768831932
0.9782557920246753
0.9796581613210076
0.9809899832703159
0.9822535532154261
0.9834511596505429
0.9845850806232530
0.9856575802399989
0.9866709052828243
0.9876272819448033
0.9885289126911557
0.9893779732525968
0.9901766097569984
0.9909269360049311
0.9916310308941294
0.9922909359973702
0.9929086532976777
0.9934861430841844
0.9940253220113651
0.9945280613237534
0.9949961852476154
0.9954314695504363
0.9958356402684387
0.9962103726017252
0.9965572899760172
0.9968779632693499
0.9971739102014799
0.9974465948831872
0.9976974275220812
0.9979277642809907
0.9981389072844972
0.9983321047686901
0.9985085513687731
0.9986693885387259
0.9988157050968516
0.9989485378906924
0.9990688725744943
0.9991776444921379

Page 64 of 70

© ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP

Document 89-7

Filed 01/04/2007

Page 65 of 70

ISO/IEC 13818-7:2006(E)

127

0.4325622561631607
0.4414852981630577
0.4504336971855032
0.4594035078775303
0.4683907582974173
0.4773914542472655
0.4864015836506502
0.4954171209689973
0.5044340316502417
0.5134482766032377
0.5224558166913167
0.5314526172383208
0.5404346525403849
0.5493979103766972
0.5583383965124314
0.5672521391870222
0.5761351935809411
0.5849836462541291
0.5937936195492526
0.6025612759529649
0.6112828224083939
0.6199545145721097
0.6285726610088878

0.6371336273176413

0.6456338401819751
0.6540697913388968
0.6624380414593221
0.6707352239341151
0.6789580485595255
0.6871033051160131
0.6951678668345944
0.7031486937449871

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

0.9992757396582338
0.9993639958299003
0.9994432036616085
0.9995141079353859
0.9995774088586188
0.9996337634216871
0.9996837868076957
0.9997280538466377
0.9997671005064359
0.9998014254134544
0.9998314913952471
0.9998577270385304
0.9998805282555989
0.9999002598526793
0.9999172570940037
0.9999318272557038
0.9999442511639580
0.9999547847121726
0.9999636603523446
0.9999710885561258
0.9999772592414866
0.9999823431612708
0.9999864932503106
0.9999898459281599
0.9999925223548691
0.9999946296375997
0.9999962619864214
0.9999975018180320
0.9999984208055542
0.9999990808746198
0.9999995351446231
0.9999998288155155

© ISO/IEC 2006 — All rights reserved

129

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 66 of 70

ISO/IEC 13818-7:2006(E)

Annex B
(informative)

Information on Unused Codebooks

As specified by the normative part of this standard, the AAC decoder does not make use of codebooks #12
and #13. However, if desired, a decoder may use these codebooks to extend its functionality in a way that is

consistent with other MPEG standards like ISO/IEC 14496-3 which use these particular codebooks to indicate
coding by extended coding methods.

As an example, the syntax in subclause 6.3 would change to

Table B.1 — Extended syntax for scale_factor_data()

Syntax No. Of bits Mnemonic
scale_factor_data() '

{

noise_pcm_flag = 1;
for (g = 0; g < num_window_groups; g++) {
for (sfb = 0; sfb < max_sfb; sfb++) {
if (sfb_cb[g][sfb] != ZERO_HCB) {
if (is_intensity(g,sfb))
hcod_sfl[dpcm_is_position[g][sfb]]; 1..19 viclbf
else if (sfb_cb[g][sfb] == 13)
if (noise_pcm_flag) {
noise_pcm_flag = 0;

dpcm_noise_nrg[g][sfb]; 9 uimsbf
}else
hcod_sf[dpcm_noise_nrg[gl[sfb]]; 1..19 viclbf
else '
hcod_sfl[dpcm_sf[g][sfb]]; 1..19 viclbf

130 © ISO/IEC 2006 — All rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 67 of 70

ISO/IEC 13818-7:2006(E)

Annex C
(informative)

Encoder

C.1 Psychoacoustic Model

C.1.1 General

This annex presents the general Psychoacoustic Model for the AAC encoder. The psychoacoustic model
calculates the maximum distortion energy which is masked by the signal energy. This energy is called
threshold. The threshold generation process has three inputs. They are:

1. The shift length for the threshold calculation process is calied iblen. This iblen must remain constant over
any particular application of the threshold calculation process. Since it is necessary to calculate
thresholds for two different shift lengths, two processes, each running with a fixed shift length, are
necessary. For long FFT iblen = 1024, for short FFT iblen = 128.

2. For each FFT type the newest iblen samples of the signal, with the samples delayed (either in the
filterbank or psychoacoustic calculation) such that the window of the psychoacoustic calculation is
centered in the time-window of the codec time/frequency transform .

3. The sampling rate. There are sets of tables provided for the standard sampling rates. Sampling rate, just
as iblen, must necessarily remain constant over one implementation of the threshold calculation process.

The output from the psychoacoustic model is:

1. aset of Signal-to-Mask Ratios and thresholds which are adapted to the encoder as described below,

2. the delayed time domain data (PCM samples) , which are used by the MDCT,
3. the block type for the MDCT (long, start, stop or short type)
4. an estimation of how many bits should be used for encoding in addition to the average available bits.

The delay of the PCM samples is necessary , because if the switch decision algorithm detects an attack, so
that short blocks have to be used for the actual frame the long block before the short blocks has to be
‘patched’ to a start block type in this case..

Before running the model initially, the array used to hold the preceding FFT source data window and the
arrays used to hold r(w} and f(w) should be zeroed to provide a known starting point.

C.1.2 Comments on Notation

Throughout this threshold calculation process, three indices for data values are used. These are:

w- indicates that the calculation is indexed by frequency in the FFT spectral line domain. An
index of 0 corresponds to the DC term and an index of 1023 corresponds to the spectral line
at the Nyquist frequency.

b- indicates that the calculation is indexed in the threshold calculation partition domain. In the
case where the calculation includes a convolution or sum in the threshold calculation partition
domain, bb will be used as the summation variable. Partition numbering starts at O.

n- indicates that the calculation is indexed in the coder scalefactor band domain. An index of 0
' corresponds to the lowest scalefactor band.

© ISO/IEC 2006 — Al rights reserved 131

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 68 of 70

ISO/IEC 13818-7:2006(E)

C.1.3 The "Spreading Function”

Several points in the following description refer to the "spreading function”. 1t is calculated by the following
method:

if § >= i

tmpx = 3.0 (F-1)
else

tmpx = 1.5(j-1)

Where i is the Bark value of the signal being spread, j is the Bark value of the band being spread into, and
tmpx is a temporary variable.

tmpz = 8 * minimum ((tmpx-0. 5)2-2 (tmpx-0.5),0)
Where tmpz is a temporary variable, and minimum (a , b) is a function returning the more negative of a or b.

tmpy = 15.811389 + 7.5(tmpx + 0.474)-17.5(1.0+(tmpx + 0.474)2)0-5
where tmpy is another temporary variable.

if (tmpy <- 100) then {sprdngf (i, j) = 0} else {sprdngf (i, j) = 10*((tmpz + tmpy)/10)}

C.1.4 Steps in Threshold Calculation

The following are the necessary steps for the calculation of SMR(n) and xmin(n) used in the coder for long
and short FFT.

1. Reconstruct 2 *iblen samples of the input signal.

iblen new samples are made available at every call to the threshold generator. The threshold generator
must store 2 * iblen - iblen samples, and concatenate those samples to accurately reconstruct 2 * iblen
consecutive samples of the input signal, s(i), where i represents the index, 0 <= i < 2 * jblen , of the
current input stream.

2. Calculate the complex spectrum of the input signal.
First, s(i) is windowed by a Hann window, i.e.

sw(i) = s(i) * (0.5-0.5 * cos((pi *(i+0.5))/ iblen).

Second, a standard forward FFT of sw(i) calculated.Third, the polar representation of the transform is
calculated. r(w) and f(w) represent the magnitude and phase components of the transformed sw(i),
respectively.

3. Calculate a predicted r{w) and f(w).

A predicted magnitude, r_pred(w) and phase, f_pred(w) are calculated from the preceding two threshold
calculation blocks r(w) and f(w):

r pred(w) = 2.0 * r (t-1)-r(t-2)

f pred(w) =2.0 * f£(t-1)-f (t-2)
where f represents the current block number, -1 indexes the previous block's data, and {-2 indexes the
data from the threshold calculation block before that.

4. Calculate the unpredictability measure c(w).

c(w) = (((r(w) * cos(f(w)) - r pred(w) * cos(f pred(w)))™2 + (r(w) *
sin(f(w)) - r_pred(w) ‘
* sin(f pred(w)))*2)%0.5) / (r(w) + abs(r_pred(w))
This formula is used for each of the short blocks with the short FFT, for long blocks for the first 6 lines the
unpredictability measure is calculated from the long FFT, for the remaining lines the minimum of the

132 © ISO/IEC 2006 — Al rights reserved

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 69 of 70

ISO/IEC 13818-7:2006(E)

unpredictability of all short FFT’s is used. If calculation power should be saved, the unpredictability of the
upper part of the spectrum can be set to 0.4.

Calculate the energy and unpredictability in the threshold calculation partitions.
The energy in each partition, e(b), is:

do for each partition b:
e(b) =0
do from lower index to upper index w of partition b
e(b) = e(b) + r(w)’2
end do
end do

(e(b) is used in the M/S-module (see subclause C.6.1): e(b) is equal to Xengy with ‘X' = [R,L M S]) and
the weighted unpredictability, c(b), is:

do for each partition b:
c(b) =0
do from lower index to upper index w of partltlon b
c(b) = c(b) + r(w)"2 * c(w)
end do
end do
The threshold calculation partitions provide a resolution of approximately either one FFT line or 1/3 critical
band, whichever is wider. At low frequencies, a single line of the FFT will constitute a calculation partition.
At high frequencies, many lines will be combined into one calculation partition. A set of partition values is
provided for each of the three sampling rates in Table C.1 to Table C.24. These Table elements will be
used in the threshold calculation process. There are several elements in each Table entry:

1) The index of the calculation partition, b.

2) The lowest frequency line in the partition, w_low(b).

3) The highest frequency line in the partition, w_high(b)

4) The median bark value of the partition, bval(b)

5) The threshold in quiet gsthr(b)

6) A largest value of b, bmax, equal to the largest index, exists for each sampliing rate.
Convolve the partitioned energy and unpredictability with the spreading function.

for each partition b:
ecb(b) = 0
do for each partition bb:
ecb(b) = ecb(b) +e(bb)* sprdngf (bval (bb),bval (b))

end do

end do

do for each partition b:
ct(b) =0

do for each partition bb:
ct(b) = ct(b) +c(bb)* sprdngf (bval (bb),bval (b))
end do
end do

Because ct(b) is weighted by the signal energy, it must be renormalized to cb(b)

cb(b) = ct(b) / ecb(b)

© ISO/IEC 2006 — Al rights reserved 133

Case 3:06-cv-00019-MHP Document 89-7 Filed 01/04/2007 Page 70 of 70

ISO/IEC 13818-7:2006(E)

Just as this, due to the non-normalized nature of the spreading function, ecbp, should be renormalized and the
normalized energy enp, calculated.
en(b) = ecb(b) * rnorm(b)
The normalization coefficient, rorm(b). is:
do for each partition b
tmp(b) = 0
do for each partition bb
tmp (b) = tmp(b). + sprdngf (bval (bb),bval (b))
end do

rnorm(b) = 1/ tmp (b)
end do

7. Convert cb(b) to tb(b) , the tonality index.

tb(b) = -0.299 - 0.43 loge (cb(b))
Each tb(b) is limited to the range of O<tb(b) <1.

8. Calculate the required SNR in each partition.
NMT(b) = 6 dB for all b. NMT(b) is the value for noise masking tone (in dB) for the partition. TMN(b) = 18
dB for all b. TMN(b) is the value for tone masking noise (in dB) .The required signal to noise ratio,
SNR(b), is:
SNR(b) = tb(b) * TMN(b) + (1-tb(b)) * NMT(b)

9. Calculate the power ratio.
The power ratio, be(b) , is:
be(b) =10"(-SNR(b) /10)

10. Calculation of actual energy threshold, nb(b) .

nb(b) = en(b) * bc(b)
nb(b) is also used in the M/S-module (see clause 12): nb(b) is equal to Xthr with ‘X’=[R,L,M,S]

11. Pre-echo control and threshold in quiet.

To avoid pre-echo.es the pre-echo control is calculated for short and long FFT, the threshold in quiet is
also considered here:

nb_I(b) is the threshold of partition b for the last block , gsthr(b) is the threshold in quiet . The dB values of
gsthr(b) shown in Figure C.1

Table C.1 to Table C.24 are relative to the level that a sine wave of + or - %2 Isb has in the FFT used for
threshold calculation. The dB values must be converted into the energy domain after considering the FFT
normalization actually used.

nb(b) = max (gsthr(b), min (nb(b), nb_1(b)*rpelev))
rpelev is set to ‘1’ for short blocks and ‘2’ for long blocks

12. The PE is calculated for each block type from the ratio e(b) / nb (b) , where nb(b) is the threshold and e(b)
is the energy for each threshold partition.

PE = 0
do for threshold partition b

PE = PE - (w_high(b)-w low(b)) * logl0 (nb(b) / (e(b) +1))
end do

134 © ISONEC 2006 — All rights reserved

