

EXHIBIT 3

Oracle Corporation et al v. SAP AG et al Doc. 832 Att. 3

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2007cv01658/190451/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2007cv01658/190451/832/3.html
http://dockets.justia.com/

Expert Report of
Paul C. Pinto
Oracle USA, Inc., et al. v. SAP AG, et al.

Designated Highly Confidential
Pursuant to Protective Order

2009

Paul C. Pinto
Managing Partner, Sylvan VI. Inc.

November 16, 2009

Expert Report of Paul Pinto Highly Confidential

 Page 7 of 45

C. Selection of Function Point Analysis

While the benefits to Defendants from infringement rather than development are

extensive, this report specifically quantifies a sub-set of those benefits associated with the dollar

value of avoided R&D expenses. As described in Section V, I created an estimated cost of

development for JD Edwards EnterpriseOne and PeopleSoft applications, using Function Point

TEXT REMOVED - NOT RELEVANT TO MOTION

TEXT REMOVED - NOT RELEVANT TO MOTION

Expert Report of Paul Pinto Highly Confidential

 Page 8 of 45

Analysis. This method of analysis is focused on assessing the size of a software product, in

normalized terms that are directly related to the amount of business functionality provided to the

end-user of the application. As such, this approach can be applied across a wide range of

application development environments and throughout the full life-cycle of the software

development effort. When coupled with a series of business metrics, such as productivity and

the hourly rates for assigned personnel, the total cost of application development can be readily

derived.

 The method of Function Point Analysis was introduced in 1979 (by IBM), and is actively

maintained by the International Function Point Users Group (“IFPUG”) as part of its Functional

Size Measurement Method. Function Point Analysis provides an objective, comparative

measure that assists in the evaluation, planning, management, and control of software

production. Among other things, it is used, as applied here, to develop an estimated cost of

development of a software product.3

 I chose to use Function Point Analysis for this assessment because it is recognized by the

International Standards Organization (“ISO”) as a valid method for assessing the size of a

software product and for deriving the associated cost of product development.4 It is also

recognized by a number of the world’s largest I.T. consulting companies and has been used by

IBM, TCS, and Infosys since its inception. Also, I have considerable experience applying the

required techniques in real business scenarios, where it is regularly used to estimate software

development efforts and associated costs that are based on a set of defined requirements, which

is known as “forward-engineering.” I have also applied this method in situations where legacy

software products needed to be redeveloped onto a modern computing platform, while

maintaining the existing functionality.

3 International Function Point Users Group, About IFPUG, http://www.ifpug.org/about. [ORCLX-PIN-000008]
4 International Standard ISO/IEC, 20926, Manual, October 2003, Software engineering - IFPUG 4.1 Unadjusted
functional size measurement method - Counting practices manual,
http://webstore.iec.ch/preview/info_isoiec20926%7Bed1.0%7Den.pdf. [ORCLX-PIN-000009]

Expert Report of Paul Pinto Highly Confidential

 Page 9 of 45

D. Selection of COCOMO Analysis

To confirm the estimates reached through Function Point Analysis for the JD Edwards

EnterpriseOne and PeopleSoft products, and to assess the cost of development for the JD

Edwards World and Siebel products, I applied an alternate estimating method known as

Constructive Cost Model (COCOMO) analysis. COCOMO is an industry-accepted method that

provides a reliable approach to performing high-level “top-down” estimating, as a valid alternate

method to performing a low-level “bottom-up” analysis as is required for Function Point

Analysis.

COCOMO is an algorithm-based software cost estimation model that employs the use of

regression formulas, coupled with parameters that were derived from historical project

characteristics. The model was originally published in 1981 as a method for estimating the level

of effort, project duration, and costs associated with developing software. This original model

was referred to as COCOMO 81. 5

In 2001, the second version of the model, COCOMO II, was published. This recent

iteration is better suited for estimating modern software development projects, by providing an

updated set of project characteristics that are more aligned with today’s software development

tools, iterative approaches, and relational databases. The need for this new model was prompted

by the evolution of software development technologies, which moved away from mainframe and

overnight batch processing, and moved toward desktop development and code reusability. 6

COCOMO II estimates the software development effort as a function of a limited set of

“scaling drivers” that describe the development process, and a set of “cost drivers” that include

subjective assessments about the product, platform, personnel, and project attributes. The end

result of a COCOMO II analysis is the estimated total cost of development.

5 COCOMO Model II, Center for Systems and Software Engineering,
http://csse.usc.edu/csse/research/COCOMOII/cocomo_main html. [ORCLX-PIN-000003]
6 Id.

Expert Report of Paul Pinto Highly Confidential

 Page 10 of 45

I chose to apply COCOMO II analysis here (which I also refer to generally as

“COCOMO”), because it provides a reliable method for confirming the development costs for JD

Edwards EnterpriseOne and PeopleSoft that were estimated through Function Point Analysis.

COCOMO analysis also allows the JD Edwards EnterpriseOne and PeopleSoft estimates to be

reasonably extrapolated to the JD Edwards World and Siebel products, respectively.

TEXT REMOVED - NOT RELEVANT TO MOTION

Expert Report of Paul Pinto Highly Confidential

 Page 15 of 45

B. Step Two: Count the Number of Source Lines of Code

 The next step involved counting Source Lines of Code (“SLOC”) using specially-

designed counting utilities. Counting SLOC is a simple procedure that provides an accurate

predictor of development effort. 10 When development effort is appropriately attributed to the

roles that participate in the Product Development Life-Cycle, and then combined with hourly

rates, enough information is available to develop a reliable estimate of the cost of product

development.11

 Counting SLOCs still requires a certain amount of nuance, however. Imbedded within

Source Code are various statements such as: physical lines of code, logical source lines of code,

blank lines, and commented (unused or educational) lines of code. Each software development

text files produced at ORCLX-PIN-000024 to ORCLX-PIN-000062.
10 Software Size Measurement: A Framework for Counting Source Statements, Technical Report CMU/SEI-92-TR-
020, ESC-TR-92-020, September 1992, Robert E. Parker, Software Engineering Institute at Carnegie Mellon
University, pgs. 13-15. [ORCLX-PIN-000017]
11 Id. at 1-15.

TEXT REMOVED - NOT RELEVANT TO MOTION

Expert Report of Paul Pinto Highly Confidential

 Page 16 of 45

language has rules for constructing its Source Code, in the same way that the English language

has rules for constructing statements and sentences. These software coding rules, or standards,

enable software utilities to be built that can distinguish the different rules and, therefore, count

the different types of statements. The end product is the total number of logical Source Lines of

Code.

 Since 1984, the Software Engineering Institute (SEI), at Carnegie Mellon University, has

established standards for defining a Logical Source Code Statement. SEI is a federally-funded

research and development center that conducts software engineering research in acquisition,

architecture and product lines, process improvement and performance measurement, security,

and system interoperability and dependability.12 I relied on these standards for this portion of my

analysis.

 In order to use the logical Source Lines of Code count as the foundation for estimating

software size and ultimately deriving the total cost of development, I constructed a number of

software utilities that counted the logical Source Lines of Code, which are produced as ORCLX-

PIN-000066 to ORCLX-PIN-000085. Each line counting utility was specifically designed and

tailored to address the specific needs of each type of source code that was analyzed (e.g.,

COBOL, C, SQL, SQR, etc). Below, Table 4 (ORCLX-PIN-000065 Table 4) is a sample of the

output from the automated code counting utility for a series of “C” program files.

Sample SLOC Counting Utility Output (for JDE EnterpriseOne example)
File Name Total Lines of Source Code Logical Source Lines of Code
n4002340.c 701 379 SLOC
n4002350.c 984 519 SLOC
n4002380.c 882 315 SLOC
n4002400.c 192 81 SLOC
n4002440.c 801 410 SLOC

Table 4 - Sample SLOC Counting

 In sum, Step Two involved counting the number of logical SLOC within each grouping,

which then served as the basis for establishing the size of the code base in subsequent steps. The

12 Id. at 13-21.

Expert Report of Paul Pinto Highly Confidential

 Page 17 of 45

Source Code components, as identified in Step One, were used as the input for determining the

number of logical SLOC. Below, Table 5 (ORCLX-PIN-000065 Table 5) displays the size of

code base, for the identified groupings, expressed as the number of logical SLOC.

Number of Source Lines of Code
Software Product

Version
Programming Language

(stratum)
Number of logical

Source Lines of Code Totals

C 6,906,168 JDE EnterpriseOne
Version 8.12 Java J2EE 868,623

7,774,791 SLOC

COBOL/400 2,057,468
SQC, SQR, DMS and SQL 2,282,005
RPT and MDL 244,760

PeopleSoft
Version 8.X

PeopleCode 3,066,260

7,650,493 SLOC

Totals: 15,425,284 15,425,284 SLOC

Table 5 - Source Lines of Code

TEXT REMOVED - NOT RELEVANT TO MOTION

Expert Report of Paul Pinto Highly Confidential

 Page 24 of 45

F. Step Six: Distribute the Effort across the Product Development Life-Cycle

 After determining the amount of PHE required to perform full life-cycle product

development, it is necessary to distribute that effort across the Product Development Life-Cycle

(PDLC). This is an interim step to ultimately assigning particular hours to specific roles that

perform the activities within the PDLC. The PDLC refers to the activities associated with

constructing a software application from inception to deployment, and underpins many types of

software development methodologies, which form the framework for estimating the software

development effort.

 The International Software Benchmarking Standards Group (ISBSG) defines the standard

phases for the PDLC as Plan, Specify, Design, Build, Test, and Implement.19

19 Industry Software Cost, Quality and Productivity Benchmarks, whitepaper, April 2004, by Donald J Reifer, Reifer
Consultants, Inc., http://www.compaid.com/caiinternet/ezine/Reifer-Benchmarks.pdf. [ORCLX-PIN-000014]

TEXT REMOVED - NOT RELEVANT TO MOTION

Expert Report of Paul Pinto Highly Confidential

 Page 34 of 45

In support of developing these estimates, I chose to use the Constructive Cost Model

(COCOMO), which is also accepted as a valid approach to estimating, but from a “top-down”

perspective, as opposed to performing a detailed-level Function Point Analysis.

A. Constructive Cost Model (COCOMO)

COCOMO is an algorithm-based software cost estimation model that employs the use of

regression formulas, coupled with parameters that were derived from historical project

characteristics. The model was originally published in 1981, by Barry Boehm, as a method for

TEXT REMOVED - NOT RELEVANT TO MOTION

Expert Report of Paul Pinto Highly Confidential

 Page 39 of 45

D. COCOMO II Estimate for JD Edwards World

 In performing this top-down analysis for JD Edwards World, I assumed that the product

had similar functionality to that of JD Edwards EnterpriseOne. This assumption is based on the

fact that JD Edwards World was the predecessor to JD Edwards EnterpriseOne, and that it was

predominantly developed in the RPG programming language as opposed to COBOL.31 As a

result of this base assumption, I assumed that JD Edwards World contains the same number of

SLOC as JD Edwards EnterpriseOne (specifically, 7,774,791 SLOC), as well as similar

application characteristics to those found in the JD Edwards EnterpriseOne application, with two

modifications. The modifications are associated with Reusability and Platform Volatility

stemming from its underlying technology for the product (namely, that JD Edwards World was

written in RPG programming language and is run on the IBM I-Series platform), with my

assessments annotated in Table 27 (ORCLX-PIN-000065 Table 27), below.

31 Oracle Indefinitely Extends the life of JDE World, IT Jungle Newsletter, April 24, 2008, by Timothy Prickett
Morgan, http://www.itjungle.com/tfh/tfh042406-story02 html. [ORCLX-PIN-000010]

TEXT REMOVED - NOT RELEVANT TO MOTION

Expert Report of Paul Pinto Highly Confidential

 Page 40 of 45

JD Edwards World Lines of Code
Number of Source Lines of Code 7,774,791
Number of Source Lines of Code (in 1,000s) 7,775

Table 27a - COCOMO Analysis for JDE World: SLOC

Scaling Characteristic
Categories Assessment Weighting

Precedentedness High 1.62
Development Flexibility High 2.43
Architecture / Risk Resolution High 1.69
Team Cohesion High 1.98
Process Maturity High 1.82

Total: 9.54
Process Scale Factor: 1.1054

Table 27b - COCOMO Analysis for JDE World: Scaling

Effort Characteristics
Category Effort Drivers Rating Weighting

Required Software Reliability High 1.15
Database Size High 1.09
Product Complexity High 1.15
Required Reusability Nominal 1

Product

Documentation to match lifecycle needs High 1.06
Execution Time Constraint Nominal 1
Main Storage Constraint Nominal 1 Platform
Platform Volatility Low 0.87
Analyst Capability Very High 0.67
Programmer Capability Very High 0.74
Personnel continuity Very High 0.84
Applications Experience Very High 0.81
Platform Experience Very High 0.81

Personnel

Language and Tool Experience Very High 0.84
Use of Software Tools High 0.86
Multi-site operation High 0.92 Project
Required Development Schedule High 1

Overall Weighting Factor: 0.241417477
Table 27c - COCOMO Analysis for JDE World: Effort

JDE World Estimated Effort
Person Months 11,822
Person Hours 1,702,412

Average Blended
Rate $145.72

Total Cost $248,073,123

Table 27d - COCOMO Analysis for JDE World: Cost

As a result of the performing COCOMO II analysis, the model indicated that the

development effort would require 11,822 person-month of effort, or 1,702,412 person-hours of

effort. When the number of person hours is multiplied by the average blended rate of

Expert Report of Paul Pinto Highly Confidential

 Page 41 of 45

$145.72/hour, for the “Hybrid” staffing scenario (identified in the Function Point Analysis

discussions, above), the estimated cost of development is calculated to be $248,073,123. In

adopting similar proportions to the cost ranges estimated for JD Edwards EnterpriseOne, the JD

Edwards World development costs would have ranged between $172M and $581M, depending

on the selected staffing model.

E. COCOMO II Estimate for Siebel

 In performing this top-down analysis for Siebel, I based my analysis on the assumption

that the Siebel product contained 79.4% more functionality than the PeopleSoft CRM module,

including its use of PeopleTools. This analysis was based on the fact that Siebel contained 7,593

tables (4,435 for SIA and 3,158 for HOR32), while PeopleSoft CRM contained 4,233 tables. This

method of sizing provides a reasonable, while simplistic, approach to estimating the relative

amount of functionality between software products that are built in similar technologies. The

reasonableness of this approach is supported by the fact that PeopleSoft CRM was acknowledged

as a competitor to Siebel, and that Siebel was acknowledged as the industry leader in the CRM

space and offered significantly greater functionality than PeopleSoft CRM. 33 As a result of this

analysis, it is estimated that Siebel contains 1,195,091 Source Lines of Code (SLOC), and similar

application characteristics to those found in the PeopleSoft, with modifications associated with

the Personnel characteristics stemming from the use of a non-integrated development

environment (not PeopleCode with PeopleTools), which are annotated in Table 28 (ORCLX-

PIN-000065 Table 28), below.

Siebel Source Lines of Code
Number of Source Lines of Code 1,195,091
Number of Source Lines of Code (in 1,000s) 1,195

Table 28a - COCOMO Analysis for Siebel: SLOC

32 Siebel SIA refers to Siebel Industry Application, while Siebel HOR refers to Siebel’s Horizontal Application.
Both are components of Siebel available to customers as part of Siebel’s CRM product. Table numbers are
identified in ORCLX-PIN-000004 and ORCLX-PIN-000015.
33 The Forrester Wave: Enterprise CRM Suites, Q3 2008, by William Band, August 28, 2008, updated September 2,
2008. [ORCLX-PIN-000006]

Expert Report of Paul Pinto Highly Confidential

 Page 42 of 45

Scaling Characteristic
Categories Assessment Weighting

Precedentedness Nominal 2.43
Development Flexibility Nominal 3.64
Architecture / Risk Resolution Nominal 2.53
Team Cohesion Nominal 2.97
Process Maturity Nominal 2.73

Total: 14.3
Process Scale Factor: 1.153

Table 28b - COCOMO Analysis for Siebel: Scaling

Effort Characteristics
Category Effort Drivers Rating Weighting

Required Software Reliability High 1.15
Database Size High 1.09
Product Complexity High 1.15
Required Reusability High 1.14

Product

Documentation to match lifecycle needs High 1.06
Execution Time Constraint Nominal 1
Main Storage Constraint Nominal 1 Platform
Platform Volatility Nominal 1
Analyst Capability High 0.83
Programmer Capability High 0.87
Personnel continuity Nominal 1
Applications Experience Nominal 1
Platform Experience Nominal 1

Personnel

Language and Tool Experience Nominal 1
Use of Software Tools Nominal 1
Multi-site operation Nominal 1 Project
Required Development Schedule Nominal 1

Overall Weighting Factor: 1.257854015
Table 28c - COCOMO Analysis for Siebel: Effort

JDE Siebel Estimated Effort
Person Months 10,890
Person Hours 1,568,203

Average Blended
Rate $164.08

Total Cost $257,306,140
Table 28d - COCOMO Analysis for Siebel: Cost

As a result of the performing COCOMO II analysis, the model indicated that the

development effort would require 10,890 person-month of effort, or 1,568,203 person-hours of

effort. When the number of person hours is multiplied by the average blended rate of

$164.08/hour, for the Hybrid scenario, the estimated cost of development is calculated to be

$257,306,140. In adopting similar proportions to the cost ranges estimated for PeopleSoft, the

Expert Report of Paul Pinto Highly Confidential

 Page 43 of 45

Siebel development costs would have ranged between $198M and $573M, depending on the

selected staffing model.

TEXT REMOVED - NOT RELEVANT TO MOTION

