

EXHIBIT D

Oracle Corporation et al v. SAP AG et al Doc. 844 Att. 4

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2007cv01658/190451/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2007cv01658/190451/844/4.html
http://dockets.justia.com/

Expert Report of Donald J. Reifer

26 March 2010

Expert Report of
Donald J. Reifer

Oracle USA, Inc., et al. v. SAP AG, et al.

Designated Highly Confidential
Pursuant to Protective Order

--
Donald J. Reifer, President

Reifer Consultants, Inc.
14820 N. Dragons Breath Lane

Prescott, AZ 86305-5644
--

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

17

exceptionally high when compared with current salary benchmarks for Information

Technology (IT) workers from this nation.

 Soundness – I investigated whether or not Mr. Pinto’s estimating approach was sound.

It was not. For example, Mr. Pinto incorrectly assumes that user documentation is

outside the scope of the normal software development activities. As will be discussed

later in this report, most of it is not.

 As part of my evaluation of the Pinto Report, I identified a number of major concerns related

to my assessment criteria. For convenience, major issues identified are discussed in more detail

in the next section of this report, Section VI.

b. Specific Analysis Performed
 I reviewed the Pinto Report from a COCOMO II point-of-view. My findings are

summarized in the following paragraphs.

 Mr. Pinto’s Ten-Step Estimating Approach

 Because of its potential impact on the factors used in the COCOMO II model, I reviewed Mr.

Pinto’s ten-step estimating approach. My comments are as follows:

o Mr. Pinto’s Step 1: Identify and Group Source Code Components

 Most organizations do not develop source code from scratch. They try to reuse legacy

and Commercial Off-The-Shelf (COTS) software to reduce the volume of work involved. They

use applications generators to develop the code whenever possible because they accomplish this

task automatically without human intervention. They convert some of the applications using

commercial tools developed for that purpose again of reducing the development effort. Some of

the most advanced software groups develop their own libraries of reusable software when the

payback associated with the extra costs involved is warranted. To account for these practices,

users of models like COCOMO II.2000 group the software so that they can reduce the size of the

software generated to account for the reduced workload. The reuse model in COCOMO II.2000

[BOE01] addresses this existing code and converts them into equivalent new source lines of code

using user inputs for modified code in the model or the rules of thumb summarized in Table 2.

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

18

Code Category % Design
Modified

% Code
Modified

% Integration
Modified

Relative
Percent Effort

New – all original N/A N/A N/A 100%
0 to 100% 0 to 100% 0 to 100% 0 to 100% Adapted – existing software

that is changed or modified
NOMINAL

40%

40%

60%

46%

Reused – existing software
that is used as-is/calls counted

0% 0% 0 to 100% 30%
(at most)

COTS – requires glue code
wrappers that are counted

Count the wrapper code as new and add effort needed to test
wrapped COTS package

Table 2: Counting Conventions for Equivalent Source Lines of Code

 In other words, the size for a software package is most often never all new source lines of

code. It is smaller because of these reuse considerations.

 Mr. Pinto assumed that all of the suites of products under consideration would have to be

redeveloped as new code. This assumption is just not true for most of the applications that I

have been associated with. Instead, Mr. Pinto should have grouped the software into new,

modified, reused, generated and COTS categories and used the Software Engineering Institute

(SEI) counting standards that he referenced to address these different types of software

[ORCLX-PIN-000017] as these different groupings of software were used to develop the suites

of products in a manner similar to that shown in Figure 1 to calculate source lines of code.

 The net results of Mr. Pinto’s failure to use such practices as he grouped the software are

that his estimates of source lines of code are highly suspect and his size estimates seem biased

high. This in turn biases Mr. Pinto’s COCOMO II estimates high.

o Mr. Pinto’s Step 2: Count the Number of Source Lines of Code

 I next tried to acquire copies of the specialized counting utilities that Mr. Pinto developed

to tally source lines of code. My goal was to replicate his analysis as I tried to understand how

he counted source lines of code assuming that all of the code was considered new code. While

Mr. Pinto infers that calculating source lines of code is simple [Pinto Report, p. 15], the SEI

manual that he relied on to provide counting conventions refutes his claim. Counting lines of

code is difficult and requires more powerful tools than Mr. Pinto developed to deal with the

many nuances that he acknowledges may be present in the code that the counters must handle.

 Why Mr. Pinto developed his own source lines of code counters puzzled me. Powerful

tools, frequently used by industry, that perform the task exist and can be acquired for free from

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

19

sites like those at the University of Southern California (see the tools section of

http://sunset.usc.edu). When investigating Mr. Pinto’s counters more closely, one sees that while

they count the code, they do not do so in a manner that fully complies with the standards and

conventions defined by the SEI. Many of the nuances that Mr. Pinto acknowledges that are

present like embedded constants in the C programming language were just overlooked by his

utilities. [Pinto Report, pp. 15 – 16]

 To understand the impact of these counts, my assistant and I developed a set of utilities

that replicated the code for Mr. Pinto’s counters as described in ORCLX-PIN-000067 for the C

programming language (including headers) running on a PC running Windows Vista. I then had

my assistant download the C source code for a piece of public domain software for a flight

simulator called FlightGear (http://www.flightgear.org). I next had him count the code for the

main routine using the Pinto utilities and the freely available USC developed language code

counters called Unified CodeCount (UCC) (see the download section of http://sunset.usc.edu).

The results of this counting experiment are provided in Table 3 [see SAP-DJR-000003 for

summary]. These differences lead me to question both the accuracy and correctness of Mr.

Pinto’s counts and his customized counting utilities.

SLOC
Counting

Tool

Total
Number

Lines

Total
Blank
Lines

Total
Comment

Lines

Total
Physical
SLOC

Total
Logical
SLOC

Total
Number

Files
Pinto Code
Counter1

58,739 9,687 11,941 37,111 30,215 199

USC Code
Counter

58,752 9,687 12,086 36,979 27,585 199

DIFFERENCE - 13 0 - 1452 132 - 2,630 0
Table 3: Results of Code Counting Experiment using FlightGear

Notes
 1 This is a counter that follows Mr. Pinto’s parsing rules as described in ORCLX-PIN-000066
 and replicated his code as described in ORCLX-PIN-000067.
 2 The difference in comment lines is primarily the number of embedded constants in the count.

 The main difference in Logical Source Lines of Code (“SLOC”) calculation occurred due

to how embedded comments were counted by Mr. Pinto’s utility software. There was also some

confusion over how Mr. Pinto counted compiler directives and data declarations.

 To verify whether this error consistently existed in the JD Edwards code, my assistant

and I developed a second set of counters for the Java J2EE programming language following the

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

20

parsing rules described in ORCLX-PIN-000076 and replicating the code described in ORCLX-

PIN-000077 to run on my Windows/Vista PC platform. We then extracted three C and two Java

J2EE routines from the JD Edwards EnterpriseOne code library and ran them through our

versions of the Pinto utilities and USC UCC counter. The results, which are summarized in

Table 4, verify that an error of nine and one half percent exists for all of the code inspected [see

SAP-DJR-000004 for summary including file list].

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

21

Figure 1: SLOC Definition Checklist

Definition Checklist for Source Statements Counts
Definition name: __Logical Source Statements___ Date:________________
________________(basic definition)__________Originator:_COCOMO II____

Measurement unit: Physical source lines
 Logical source statements √
Statement type Definition √ Data Array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence 1 √
2 Non-executable

3 Declarations 2 √
4 Compiler directives 3 √
5 Comments

6 On their own lines 4 √
7 On lines with source code 5 √
8 Banners and non-blank spacers 6 √
9 Blank (empty) comments 7 √

10 Blank lines 8 √
11
12
How produced Definition √ Data array Includes Excludes
1 Programmed √
2 Generated with source code generators √
3 Converted with automated translators √
4 Copied or reused without change √
5 Modified √
6 Removed √
7
8
Origin Definition √ Data array Includes Excludes
1 New work: no prior existence √
2 Prior work: taken or adapted from

3 A previous version, build, or release √
4 Commercial, off-the-shelf software (COTS), other than libraries √
5 Government furnished software (GFS), other than reuse libraries √
6 Another product √
7 A vendor-supplied language support library (unmodified) √
8 A vendor-supplied operating system or utility (unmodified) √
9 A local or modified language support library or operating system √
10 Other commercial library √
11 A reuse library (software designed for reuse) √
12 Other software component or library √

13
14

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

22

SLOC
Counting

Tool

Language Total
Number

Lines

Total
Blank
Lines

Total
Comment

Lines

Total
Physical
SLOC

Total
Logical
SLOC

Total
Number

Files
Pinto C1 779 10 230 539 528 3
 Java1 156 8 43 105 95 2
USC C 779 10 2452 524 478 3
 Java 156 8 552 104 86 2

Table 4: Results of Code Counting Experiment using Five Routines from the JD Edwards
EnterpriseOne Software Applications Package

Notes
 1 These are utilities that count C and Java code following the rules and replicating the code as
 Mr. Pinto’s describes in ORCLX-PIN-000066, PIN-000067, PIN-000076 and PIN-000077.
 2 The difference in comment lines is the number of embedded constants in the count.

 While seemingly small, a nine and one half percent error in counts is significant when

working with numbers of this magnitude. For the C and Java programming language code in the

JD Edwards EnterpriseOne suite, this error means that the code count in Mr. Pinto’s Table 5

should be reduced by 738,605 source lines of code (using 7,774,791 SLOC as the base count). I

will address this error in Section VII of this report.

 Because of the impact, I went a step further. As summarized in Table 5, I counted a larger

sample of the C code in the JD Edwards EnterpriseOne suite to assess whether this error

propagated throughout it. As noted in the summary, the error for C code including the headers

was 14.5% when I compared the USC versus Pinto counts [see SAP-DJR-000005 for summary].

I use these results to correct the C and Java sizing source lines of code counts later in this report

when I develop an independent cost estimate for this suite, which I develop in order to point out

the various, substantial errors in Mr. Pinto’s analysis and conclusions.

Language No. Programs USC Count Pinto Count1 % Difference
Header 836 153,172 153,205 0.02
C 728 779,139 937,620 16.9

TOTAL 932,311 1,090,825 14.5
Table 5: Results of Code Counting for JD Edwards EnterpriseOne Package

Notes
 1 These are C language counting utilities that replicate Mr. Pinto’s code and follow the rules
 provided in ORCLX-PIN-000066 and ORCLX-PIN-000067.

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

23

o Mr. Pinto’s Step 3: Determine the Amount of Functionality

 Because the results of this step are not germane to my COCOMO II analysis, I will not

comment on them other than to say that in all of my experience I have not seen SLOC backfired

to determine the number of function points.

o Mr. Pinto’s Step 4: Determine the Number of Pages of Documentation

 Mr. Pinto next assumes that user and support documentation must be estimated in

addition to the documentation that is normally produced as a by-product of the software

development process. This is a controversial assumption and an issue that I will discuss in the

next Section. Estimating this documentation separately leads to double counting because the

user and programmer reference manuals are normally already accounted for by tasks performed

during standard software development processes.

 Mr. Pinto then uses a partial Table that he took from [JON02], which he did not cite, to

identify the types of documentation that need to be generated using a conversion factor of so

many pages of documentation per function point to develop his page counts. The complete

Table [ORCLX-PIN-000065, Table 8, Pages per FP] identifies a range of factors that is much

broader than appears in the Pinto Report.

 As I previously stated, when Mr. Pinto uses the conversion factors in his report, an

unreasonable estimate of the amount of documentation results. As I will discuss in the next

Section of this report, one reason for this is that substantial double counting is involved. Another

is that Mr. Pinto did not step back to assess what the numbers really meant from a user

perspective. Using Mr. Pinto’s numbers, millions of pages of documentation would have to be

produced to satisfy user needs. Having over five thousand volumes of user and support

documentation each over four hundred pages in length is just more than the normal user would

want to deal with in my opinion. This leads to me to question the reasonableness of his

approach.

o Mr. Pinto’s Step 5: Derive the Productive Hours of Effort

 For his next step, Mr. Pinto makes the following, questionable assumptions when he

expands the number of function points into productive hours of effort.

1. He used the value 144 productive staff hours per staff month in his calculations, but

this value comes from a reference that was developed in Europe [ORCLX-PIN-

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

24

000013]. Instead, he should have increased the number of hours to 152 staff hours

per staff-month because this is the expansion ratio used by the COCOMO II and other

cost models for labor in the United States. [BOE01] The result leads to an error in

cost because the COCOMO II.2000 model assumes that it will take more effort in

staff hours than he uses to get the job done per the predicted duration.

2. Mr. Pinto estimates the effort involved in labor hours to generate the volumes of

documentation that he determined were needed in addition to that which is normally

generated as a by-product of the software development process. Because there is

substantial double counting involved, these additional costs in staff hours inflate his

already high estimates even higher.

 Because of the inconsistencies noted, I again have to question the accuracy, correctness,

currency, reasonableness, and soundness of the approach that Mr. Pinto takes to build his

software development cost estimates. These inconsistencies make it difficult to believe that his

results are credible.

o Mr. Pinto’s Step 6: Distribute the Effort across the Product Development Life-

Cycle

 Mr. Pinto next begins building an effort distribution model so that he can assign labor

rates to the productive hours of effort that he estimated by role to activities performed during the

software development process. This is a normal procedure that estimators perform to determine

the labor rates to use to price the staff hours predicted using a cost model like COCOMO II.

 For this step, Mr. Pinto selects a software development life cycle and distributes a

percentage of the software effort involved to each of its phases using a draft of one of my

publications as his source [ORCLX-PIN-000014]. He next takes the hours that he estimated in

his Step 5 and distributes them to life cycle phases/activities using these percentages. However,

he did not use the numbers correctly [page 24 of the Pinto Report]. Instead, he builds an effort

distribution model which spends a seemingly disproportionate amount of time doing front-end

tasks. This loading focuses the effort inappropriately on specification rather than production

tasks. The results are unreasonable in my opinion.

 I will correct these distributions in the next Section of this report when I develop a

corrected labor rate model for use with the COCOMO II.2000 cost model. Needless to say, I

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

25

question the correctness, reasonableness, and soundness of the effort distribution model that Mr.

Pinto built in this step and the accuracy of number of hours he derived in Table 14 of his report.

o Mr. Pinto’s Step 7: Allocate Productive Hours of Effort to Team Roles

 Mr. Pinto next distributes effort by role to activities within each of the phases of the

software development cycle he selected as illustrated in Table 15 of his report. Mr. Pinto did this

so that he could distribute estimated staff hours by role to specific tasks as shown in Table 16 of

his report. These spreads summarize how many hours each of the team members will spend on

the development effort by role.

 When the final product of this distribution model is examined, it suggests that about sixty

percent of the labor force will need to perform management and support tasks, while the

remaining forty percent of the labor force does the software development work. As I will discuss

in the next Section of this report, these percentages seem reversed.

 I will correct these distributions in the next Section of this report when I develop a

corrected labor rate model for use with the COCOMO II.2000 cost model. Mr. Pinto’s emphasis

on management overhead rather than technical effort again makes me question the accuracy,

correctness, reasonableness, and soundness of his effort distribution model.

o Mr. Pinto’s Step 8: Derive the Cost of Localization and Documentation

Translation

 In this next step, Mr. Pinto estimates the cost of localization of documentation. He calls

for translation of user documentation into twenty-one different languages assuming that support

documentation can remain in English. This translation expands his original million or so page

estimate to over thirty-two million pages of user documentation. [Pinto Report, pp. 28 – 29]

 Whether or not the user documentation would need to be translated into twenty-one

languages is debatable. Mr. Pinto cites no evidence to suggest – as he does – that there are

marketplace demands for such documentation. However, Mr. Pinto’s numbers are skewed on the

high side, since it appears to me that the costs quoted by Mr. Pinto are primarily for manual

translation of court and patent documents where errors in language use cannot be tolerated

[ORCLX-PIN-000020]. He does not consider using the many powerful automated translation

tools like SYSTRAN that can reduce the time to generate a page of user documentation from

days to seconds and cost from $15 per page, as quoted in the Pinto Report, to about 30¢ a page

(see for example http://www.translation.net/net_faq.html).

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

26

 The use of professionals to translate 32,010,559 pages of user text seems unreasonable to

me when capable tools are available to do the job at about two percent of Mr. Pinto’s estimated

cost. The costs would stay low even if professionals were hired to check the results of these

automated translators for accuracy in those areas of the manuals where it mattered to the users.

Also, producing and keeping such a vast amount of documentation current seems overwhelming.

o Mr. Pinto’s Step 9: Apply Hourly Rates to Determine the Development Costs

 Mr. Pinto next develops what he calls a hybrid staffing model to develop labor rates to be

used to price the effort as distributed by roles to phases. The following four staffing scenarios

are considered by Mr. Pinto and then combined primarily in order to try to meet one of the

conditions set by Mr. Pinto, namely, that the development be completed in two years:

1. Offshore – Product development tasks entirely outsourced to an offshore company,

typically in India.

2. On-staff – Product development tasks staffed using full-time TN personnel located in

Bryan, Texas.

3. Outsourced to U.S. Integrator – Product development tasks would be outsourced to

a U.S. organization with the skills, knowledge and experience to need to develop and

integrate Oracle replacement products.

4. Outsourced to Oracle Consulting – Product development would be outsourced to

Oracle Consultants with expertise allowing them to charge Oracle’s consulting rates.

[Pinto Report, p. 30]

 Mr. Pinto next develops the estimated cost of development by applying a set of standard

hourly rates to each team member’s role using a staffing model that calls for Oracle consultants

to accomplish the Planning Phase activities, the U.S. based Integrator to handle the specify and

deploy phases, TN on-staff resources at Bryan, Texas, to conduct the design and document

phases, and offshore resources in India to complete the build and test phases.

 Mr. Pinto’s development of cost estimates for Oracle suites of products using this

approach raises many issues. First and foremost, recommending that the primary Program,

Project and Quality Management roles and responsibilities for such a large software development

project be given to consultants is something most companies that I have worked with would

never consider. Senior managers want their people in charge of such efforts because their people

understand the organization and its practices and have loyalty to it. Second, because of the rates,

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

27

companies tend to use high priced consultants only in specialist roles. If there are specific design

or implementation problems, companies pay the price because those consultants have the skills

and knowledge to resolve issues quickly. Third, rates quoted for India seem high even when

consulting Mr. Pinto’s references [ORCLX-PIN-000011]. For example, he quotes an hourly rate

for offshore project managers of $95, while the article he cites suggests that when performed

offshore in India the rate should be $34 per hour [ORCLX-PIN-000011; see Pinto Report p. 30,

n. 24]. Why he used the higher rate is not explained.

 I will address these and other issues in the next Section of this report when I develop a

corrected labor rate model for use with the COCOMO II.2000 cost model. Based on the

assumptions behind Mr. Pinto’s hybrid staffing model, I have no alternative but to question the

accuracy, correctness, currency, reasonableness, and soundness of his approach.

o Mr. Pinto’s Step 10: Analyze the Estimated Development Costs

 In his final step, Mr. Pinto multiplies the labor hours he developed using his labor

distribution model by the rates he derived for all five scenarios (the four listed in the previous

step plus his hybrid model which uses elements of each of them) to develop cost estimates for

the JD Edwards EnterpriseOne 8.12 and PeopleSoft 8.X suites of products. Estimated costs for

these two suites of products are expressed in cost/program, cost/source line of code,

cost/function point, and total cost in Tables 22 and 23 of the Pinto Report.

 I looked at the reasonableness of these costs by comparing them to proprietary

benchmarks that I recently developed for that purpose [SAP-DJR-000001] and which are

included as Reference materials in Appendix B. A summary of my findings is provided in Table

6. Mr. Pinto’s estimated costs for the both JD Edwards EnterpriseOne and PeopleSoft suites of

products are both higher than the norm. Such high values of predicted cost lead me to believe

that Mr. Pinto did not properly use the COCOMO II model when developing his estimates.

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

88

b. Summary of Estimates
 I am highly confident in my numbers based on the estimates that I independently developed

for them. To create confidence in my numbers, I developed three independent COCOMO

II.2000 estimates for each of the four suites of products discussed in this report.

 The first estimate was that developed by Mr. Pinto using the COCOMO II.1997 model with

only changes made needed to correct mathematical errors. This estimate creates a baseline cost

for numbers taken from the Pinto Report.

 The second estimate was developed using the COCOMO II.2000 with the number of hours

assumed per staff-month of effort increased from the 144 hours assumed by Mr. Pinto to the 152

hours used by the COCOMO team when calibrating the model.

 The third estimate was also developed using the COCOMO II.2000 model. However, I

updated the ratings for the scale and cost drivers used by the model employing my knowledge of

the estimation package to calibrate it more closely with the realities of the situation. I continued

to use Mr. Pinto’s labor rates to develop these results.

 The fourth estimate used the new labor rates I derived based primarily on variations to the

salaries paid in India to update the numbers generated by the third estimate. As part of this

prediction, I also developed the changes needed to take into account my new size estimates for

the code written in the C language for the JD Edwards EnterpriseOne applications software.

 The final estimate was developed using new size estimates that make corrections to Mr.

Pinto’s SLOC counts for the JD Edwards suites of products. The first correction fixes a problem

with Mr. Pinto’s results, brought about when he used his faulty counting utilities. To date, I have

not made corrections to the SLOC counts for the PeopleSoft suite of products due to the

difficulty in extracting the source code from the materials provided by Plaintiffs. In addition,

because Plaintiffs did not provide source code for the Siebel suite of products, to date it has not

been possible to make any SLOC corrections for that suite of products.

 The results of all of the COCOMO II.2000 model runs are summarized and compared in the

Table 53 that follows. This comparison shows a wide range of variation in the estimates due

primarily to the following factors: use of COCOMO II.1997 versus COCOMO II.2000, use of

144 hours/staff-month versus 152 hours/staff-month, variations in setting cost and scale drivers,

Expert Report of Donald J. Reifer Designated Highly Confidential
Pursuant to Protective Order

89

updated size estimates, and corrections to the labor rate model used by Mr. Pinto and his by role

percentage allocation model to life cycle phases.

 The project files that I created in the process of developing these estimated for both the USC

COCOMO II.2000 and the COSTAR models are provided in SAP-DJR-000002 along with an

inventory identifying them by name.

Cost ($) Duration (Months) Estimate Applications
Package OPT LIKELY PESS OPT LIKELY PESS

JDE Enterprise ?1 $325.0M ?1 ?2 ?2 ?2
PeopleSoft ?1 $647.0M ?1 ?2 ?2 ?2
JDE World ?1 $248.0M ?1 ?2 ?2 ?2

Pinto

Siebel ?1 $257.3M ?1 ?2 ?2 ?2
TOTALS ? $1,477.3M ?

JDE Enterprise $207.1M $258.9M $323.6M 77.8 83.3 89.1
PeopleSoft $402.3M $502.8M $628.5M 91.9 98.4 105.3
JDE World $168.4M $210.5M $263.1M 73.0 78.2 83.7

Reifer
(COCOMO
II.2000 +
152 hrs/SM) Siebel $185.2M $231.5M $289.4M 62.4 67.0 71.9

TOTALS $963.0M $1,203.7M $1,504.6M
JDE Enterprise $148.4M $185.6M $231.9M 34.1 36.5 39.0
PeopleSoft $200.2M $250.3M $310.4M 35.4 37.8 40.4
JDE World $129.1M $161.4M $201.8M 32.7 35.0 37.4

Reifer
(above plus
recalibrate
parameters) Siebel $96.1M $120.2M $150.2M 30.7 32.9 35.2

TOTALS $573.8M $717.5M $894.3M
JDE Enterprise $93.4M $116.8M $145.9M 34.1 36.5 39.0
PeopleSoft $125.9M $157.4M $195.1M 35.4 37.8 40.4
JDE World $81.3M $101.6M $127.0M 32.7 35.0 37.4

Reifer
(above +
new labor
rate model) Siebel $60.4M $75.5M $94.4M 30.7 32.9 35.2

TOTALS $361.0M $451.3M $562.4M
JDE Enterprise $80.4M $100.5M $125.6M 32.6 34.9 37.3
PeopleSoft $125.9M $157.4M $195.1M 35.4 37.8 40.4
JDE World $36.1M $45.2M $56.5M 25.7 27.5 29.4

Reifer
(above +
size update)

Siebel $60.4M $75.5M $94.4M 30.7 32.9 35.2
TOTALS $302.8M $378.6M $471.6M

JDE Enterprise $56.2M $70.3M $87.8M 43.5 46.5 49.7
PeopleSoft $88.0M $110.0M $137.5M 47.2 50.4 53.8
JDE World $25.3M $31.6M $39.5M 34.3 36.6 39.2

Reifer
(above +
optimal
schedule) Siebel $42.3M $52.8M $66.0M 40.9 43.8 46.9

TOTALS $211.8M $264.7M $330.8M
Table 53: Summary and Comparison of COCOMO Model Runs

Legend
 OPT – optimistic LIKELY – most likely PESS – pessimistic

