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54 ESTIMATING LOST PROFITS AND ECONOMIC LOSSES

effective way for the opposing party to probe the damages analysis prior to trial.
Using a Daubert challenge to disable a damages analysis is relatively new, and it
remains to be seen if this tactic is a successful way to disqualify an expert whose
analysis, although novel in some way, nonetheless uses standard economic prin-
ciples. Chapter 2 also discusses Daubert and laws governing expert witness
testimony.

5.3 ISSUES COMMON TO MOST DAMAGES STUDIES. Throughout this dis-
cussion, I assume that the plaintiff is entitled to compensation for losses sustained
from a harmful act of the defendant. The harmful act may be one whose occurrence
itself is wrongful, asin a tort, or it may be a failure to fulfill a promise, asina breach
of contract. In the first instance, damages have traditionally been calculated under
the principle that compensation should place the plaintiff in a position economi-
cally equivalent to the plaintiff’s position had the harmful event never occurred. In
applications of this principle, either restitution damages or reliance damages are cal-
culated. These two terms are essentially synonyms with respect to their economic
content. The term restitution is used when the harmful act is an injury or theft and
the defendant is unjustly enriched at the expense of the plaintiff. The term reliance
is used when the harmful act is fraud and the intent of damages is to place the
plaintiff in as good a position as if no promises had been made. In breach of con-
tract, damages are generally calculated under the expectation principle, where the
compensation is intended to replace what the plaintiff would have received if the
promise or bargain had been fulfilled. These types of damages are called expecta-
tion damages.

In this section, I review the elements of the standard loss measurement shown
in Exhibit 5-1. For each element, there are several areas of potential dispute. The se-
quence of questions posed in this section should identify most of the areas of dis-
agreement between the damages analyses of opposing parties.

(a) Characterization of the Harmful Event

(i) How Was the Plaintiff Harmed, and What Legal Principles Govern Compensation for the
Harm? The first step in a damages study translates the legal theory of the harmful
event into an analysis of the economic impact of that event. In most cases, the
analysis considers the difference between the plaintiff’'s economic position if
the harmful event had not occurred and the plaintiff’s actual economic position.
The damages study restates the plaintiff’s position “but for” the harmful event; this
step is often called the but-for analysis. Damages, then, are the difference between
the but-for value and the actual value.

In cases where damages are calculated under the restitution-reliance principle, the
but-for analysis® posits that the harmful event did not occur. In many situations—
such as injuries resulting from accidents—the but-for analysis presumes no contact
at all between the parties. Damages are the difference between the value the plaintiff
would have received had there been no contact with the defendant and the value ac-
tually received.

Expectation damages® generally arise from the breach of a contract. The harm-
ful event is the defendant’s failure to perform. Damages are the difference between
the value the plaintiff would have received had the defendant performed his obli-
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(b) Regression Analysis. In simple terms, regression analysis attempts to find a re-
lationship between cost drivers or volumes (called the independent variables) and a

articular cost of interest (called the dependent variable). Regression analysis can
handle relationships between a dependent variable and multiple independent
variables. A simple regression has only one independent variable; multiple regres-
sion has more than one.

Regression usually requires a computer program. Numerous general statistics
packages and specific regression packages exist for most computers. For a sample
output of a regression program, see Exhibit 7-5 in Section 7.6(g).

In practice, most regression analysis is linear. The term linear refers to the fact
that the measured relationship can be drawn as a straight line on a graph. (With
more than one independent variable, the graph becomes difficult or impossible to
draw, but mathematically the result is equivalent to a straight line.) Thus, to apply
linear regression, the relationship between the independent and dependent vari-
ables in the relevant range should approximate a straight line. This means, for ex-
ample, that a one-unit change in production should have the same effect on costs
with low output and high output.

This restriction is not as onerous as it may seem. First, in practice, many costs
approximate linear behavior. If they do not, often they are linear in some limited
range of interest or a mathematical transformation can make them linear (see Sec-
tion 7.6(f)). In addition, a regression analysis provides diagnostic measures that en-
able the analyst to ascertain whether the assumption of linearity appears reason-
able in a particular instance.

Regression analysis refers to the particular hypothesized relationship between
dependent and independent variables as a model. A simple linear regression model
is expressed as:

Y=aX+c¢

where Y is the dependent variable (say, costs), X is the independent variable (say,
units produced), 4 is the regression coefficient of X, and c is the constant term of the
regression.

Consider a simple example. Suppose we produce widgets. A production run
costs $100 to set up, and each widget costs $2 to produce after setup. The resulting
equation is

Cost = $2 X (Number of widgets) + $100

Exhibit 7-2 shows a graph of this simple linear relation.

In regression, we simply turn the problem around. We would know, say, the
number of widgets produced each month and the total monthly cost. We would
hypothesize a model of the form

Cost = g X (Number of widgets) + ¢

The goal of regression is to estimate values for 4 and c. The estimation uses a set
of mathematical equations embedded in a regression computer program.

Analysts do not limit themselves to a single independent variable when con-
structing a model. For example, if on the same production line we produced both
widgets and gizmos, the model might look like
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Exhibit 7-2. Example of Linear Cost Relationship

Cost = a; X (Number of widgets) + a, X (Number of gizmos) + ¢

In this case, 2, equals the incremental cost per widget produced, a, equals the
incremental cost per gizmo produced, and ¢ equals the constant (fixed) cost per
period.

We may have any number of independent variables. The equation for the gen-
eral linear model with n independent variables is

Y=0,X; + Xy, + o +4,X,+¢

In applying regression analysis to cost estimation problems, the analyst must
specify an explicit model for analysis. Many naive users of regression make the
mistake of simply plugging data into a program and using the results. This can
lead to nonsense results. Acknowledged or not, an underlying model and as-
sumptions always exist. The careful analyst recognizes this and makes sure that the
model describes the intended type of cost relation.

In specifying a model, the analyst draws on knowledge of the economic and
physical behavior of the variables involved. For example, as production volume in-
creases, one might reasonably expect costs to increase directly, to increase but at a
decreasing rate, to increase directly with a percentage change in volume, or to in-
crease with the combined change in two or more different products.

One might also consider volume discounts, overtime costs, cost changes ex-
pected during expansion compared with changes expected during contraction,
and technological change, for instance. Each of these implies a different model.
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Sometimes the analysis needs to treat some aspects of the situation as a regression
problem and apply different techniques (as discussed earlier in the chapter) to
other aspects.

Building an explanatory model often becomes an iterative procedure. Early ver-
sions of a model should include those variables suspected of having an effect on
the dependent variable. In subsequent iterations, the analyst can delete variables
found to have a negligible effect or found to duplicate the effects of other variables
and refine the model as necessary. A model should not, however, include variables
just to see if they are significant, a practice sometimes called data mining, which can
Jead to substantial errors in estimates of statistical significance. To avoid this prob-
lem, the analyst needs a theory of how costs behave before running regressions.

(c) Volume Data. The preferred measure of production volume is units. This is su-
perior to sales (in dollars) because it avoids problems of price changes and infla-
tion (see Section 7.6(d) below). When the sales dollar value of production is known
but not units of production, one might divide the dollar volume by the selling
price, on a period-by-period basis, to estimate units produced. However one must
take care to match costs to production volumes, not to sales volumes.

(d) Inflation and Cost Data. Inflation has been part of the economy for decades and
will undoubtedly remain so in the future. To obtain meaningful cost estimates, the
analysis must separate the effects of inflation from those of changing activity lev-
els. Typically, the analyst does this by restating cost data to constant or real terms.

Adjusting for inflation can be simple. First, choose an appropriate inflation in-
dex. The most common ones are the Consumer Price Index (CPI) and the Producer
Price Index (PPI), both issued monthly by the U.S. government. Then choose some
base year into which to convert all dollar amounts. The choice of base year will not
affect the analysis, but interpreting the magnitude of the results becomes easier
when one uses the most recent year as the base year. Next, multiply each period’s
cost data by the ratio of the base year inflation index to the index for the year in
question. (In this discussion, we talk about years. The principle applies equally to
monthly, quarterly, or other periodic data.) In equation form,

Base year index
Current year index

Adjusted cost = Original cost X

To see why this adjustment is necessary, consider an example. Assume the fol-
lowing production volume, costs, and inflation:

Total Average Inflation
Cost Cost/Unit Index Average Cost/Unit
Year Units % % (Yr1 = 100) (Deflated $)
1 10 200 20 100 20
2 15 500 33 200 17
3 20 900 45 300 15

Without considering inflation, it appears that the average cost per unit increased
from $20 in Year 1 to $33 in Year 2 to $45 in Year 3. A regression with units as the
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independent variable and total cost as the dependent variable would generate the
following equation:

Total cost = — $517 + $70 X Units

The regression leads us to believe that the incremental cost per unit equals $70.
The last column in the tabulation shows this result to be misleading. After adjust-
ing for inflation, we find in fact that the average cost per unit declines over time.
The regression results on the adjusted costs yield the following:

Total cost = $100 + $10 X Units

This indicates that in inflation-adjusted (Year 1) dollars, the incremental cost per
unit equals $10. If we want to know the estimated incremental cost per unit in Years
2 and 3, we simply reinflate the estimate, getting an incremental cost per unit of $20
in Year 2 and $30 in Year 3. These results differ significantly from the $70 measured
without an inflation adjustment.

As a rule of thumb, one should consider an inflation adjustment whenever the
analysis uses more than two years of data or whenever inflation exceeds 10 percent
during the time span of the data. The inflation adjustment has three steps:

1. Make the inflation adjustment to restate the data in constant dollars.
2. Perform the analysis.
3. Restate the results in current dollars of the time period(s) of interest.

(e) Indicator (Dummy) Variables. The use of indicator (sometimes called dummy)
variables provides a valuable regression technique. An indicator variable is simply
a variable set equal to zero for some observations and 1 for others. It serves as a flag
to indicate that something is different about certain observations.

For example, consider a series of monthly data from accounting records span-
ning many years. In many accounting records, the entry in December may reflect
year-end adjustments and so not reflecta typical month. Rather than ignore the De-
cember data, one can create an indicator variable to attempt to capture the year-
end effect by setting a new variable with the value 1in each December and 0 in all
other months. The regression can then include this variable (along with the ac-
counting data and other relevant variables). By considering the statistical relevance
of the indicator variable’s coefficient (see following discussion), the magnitude and
importance of the December effect can be measured and extracted from the meas-
urement of the other variables.

Analysts may use other useful indicator variables, such as the following:

e A variable that takes the value 1 for the affected period (e.g., periods of al-
leged harmi) and the value 0 otherwise

o A variable that takes the value 1 during an anomalous period (say, a fire or
strike) and 0 otherwise

e A variable that takes the value 1 during a particular season of the year and 0
otherwise

o Avariable that takes the value 1 for each period after the firm has built a new
factory and 0 for each period before then
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Dummy variables can capture seasonal effects. One can use more than one in-
dicator variable at once to measure effects of each season separately. To measure a
quarterly effect, establish three dummy variables, each taking the value 1 for a dif-
ferent season of the year. For example, the Spring dummy variable has the value 1
for each period that occurs in April or May or June or the value 0 otherwise. Then
put all three dummy variables into the regression equation. The resulting coeffi-
cients and statistics measure the effect of each season.

In using dummy variables, we usually define one fewer variable than there are
possible situations, such as seasons. If we assign indicator variables to all situa-
tions, the model will be unable to estimate a constant term separate from the effects
of the indicator variables.

(f) Transformations. A transformation is a mathematical manipulation applied to
the data or the model before fitting the regression. Transformations convert the
data into a form appropriate for the regression as specified. The transformation can
(1) make the model amenable to analysis or (2) make the data more suitable to the
model.

For example, consider an exponential model: Y = aX”. This is not linear; it does
not fit into the general equation discussed above in Section 7.6(b). By using a
transformation, however, we can make it linear. We take the logarithm of both
sides, getting

(InY) = (Ina) + b(ln X)

By treating the variable In Y as the new dependent variable, In X as the new in-
dependent variable, and In 4 as the new constant term, we have transformed the
equation into one suitable for estimation by linear regression.

We have already seen an example of the second kind of transformation: the
adjustments for inflation discussed in Section 7.6(d). Other examples of transfor-
mations include:

o Multiplying two variables together, as when we have data on price and quan-
tity sold, with the product representing total revenue

e Dividing one variable by another

e Raising a variable to a power, as when economists estimate production func-
tions involving the interplay of capital and labor

e Taking the logarithm of a variable (see Section 7.6(f) above)
¢ Creating an indicator variable (see Section 7.6(¢))
o Computing the change in a variable from one period to the next

These transformations allow the linear regression procedure to fit what would
otherwise be nonlinear situations.

(9) Sample Regression Output. Exhibit 7-3 shows a sample set of data listing
monthly production and cost data of widgets from the Widget Manufacturing
Company for a three-year period. A graph of the data appears in Exhibit 7-4. The
graph shows that the data are well-behaved and exhibit a linear relation and are
therefore suitable for regression.
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Month Units Cost
January ‘96 423 3406.8
February ‘96 53.6 43674
March 96 51.6 3957.5
April 96 60.1 3659.4
May ‘96 415 2535.5
June 96 59.4 3685.7
July ‘96 59.1 3650.8
August 96 52.1 3863.7
September ‘96 58.4 4555.4
October ‘96 53.1 3871.5
November 96 50.4 2995.3
December ‘96 57.3 4490.8
January ‘97 70.6 5300.0
February ‘97 35.6 4287.8
March ‘97 49.5 3967.2
April ‘97 52.1 3573.2
May ‘97 63.2 4484.3
June ‘97 63.6 3760.2
July ‘97 63.2 4446.8
August 97 81.8 5600.0
September ‘97 73.8 4875.7
October 97 72.8 4378.7
November ‘97 81.3 5274.3
December ‘97 82.8 5276.1
January 98 74.0 4217.8
February ‘98 64.6 4938.0
March 98 65.1 5051.7
April 98 724 43974
May ‘98 88.8 4914.3
June ‘98 97.2 5852.3
July 98 95.1 6515.9
August ‘98 80.5 5250.9
September ‘98 101.4 5867.1
October ‘98 85.0 5331.0
November 98 81.0 4796.0
December ‘98 100.3 5886.3

Exhibit 7-3. Monthly Production and Cost Data

A regression was fit of the form Cost = a X Units + c. An extract from the com-
puter output appears in Exhibit 7-5. At the top of the output, we see that the de-
pendent variable is Cost. After some identifying information, we come to the re-
gression results. The first column shows that the regression includes two variables:
the constant (C) and the real variable, Units. The next column shows the computed
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Exhibit 7-4. Monthly Production and Cost Data

Dependent Variable is COST
Number of Observations: 36

Variable  Coefficient  Std. Error  t-Statistics Two-Tailed Significance

Constant 1256.50 308.82 4.07 0.00
Units 47.90 4.39 10.91 0.00

R-squared, 0.78; adjusted R-squared, 0.77; S.E. regression, 421.83; Durbin-Watson statistic,
1.78.

Exhibit 7-5. Sample Regression Results—Monthly Production and Cost Data

coefficients. Reading these values, we find that the resulting regression equation
equals '

Cost = $47.90 X Units + $1,256.50

In other words, the incremental cost per unit equals $47.90, and the constant
term equals $1,256.50. (Analysts often loosely interpret the constant as the fixed
cost. Although this holds true if the regression is relevant for values of the inde-
pendent variable near zero, the analyst should cautiously make this assertion. (See
Section 7.6(j)(i), relevant range.)
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(h) Statistical Measures and Statistical Tests. The remaining output provides vari-
ous measures of how well the regression equation fits the data. One advantage of
regression is that it not only provides estimates of the costs and other parameters
but also measures the accuracy of those estimates. These measures fall into two
groups:

1. How well the model as a whole fits the data
2. The importance of specific variables

The important measures in the first category are the square of the multiple cor-
relation coefficient (R-squared or RZ), adjusted R?, the standard error of the regres-
sion, and the Durbin-Watson statistic. In the second category, we find the standard
error of each variable and the related t-statistic and measures of significance.” Each
of these appears in the sample output in Exhibit 7-5.

R-squared or R?, the square of the multiple correlation coefficient, ranges from
0.0 to 1.0. The number R* measures the percentage of total variation of the de-
pendent variable from its mean value that the regression equation explains.

If the regression equation explains the variation in the dependent variable per-
fectly, then R* equals 1. If, on the other hand, the regression equation cannot ex-
plain the variation any better than the mean itself, then R? equals zero.

A high value of R” leads us to say that the regression equation explains a large
portion of the variation in the dependent variable. Thus, R? invites the interpreta-
tion that it measures the goodness of fit of a regression. This need not be so. In prac-
tice, use caution when drawing conclusions about a regression from the value of
R% Whether R? provides useful information depends on whether the question at
issue involves the prediction of the dependent variable or the coefficient of some
independent variable. If the issue involves one of the independent variables (for
example, variable cost), then the R* will have lesser relevance. Interpreting R’ re-
quires experienced statistical judgment.

In our sample printout (Exhibit 7-5), the R* equals .78, or 78 percent. That figure,
combined with a look at the graph and the residuals (see later discussion), indi-
cates that the regression equation predicts fairly well.

The adjusted R’is a simple variant of the R2 In the basic formulation of R?,
adding any independent variable to the regression equation, even if correlated ran-
domly with the dependent variable, cannot lower the R®. The adjusted R® ad-
dresses this problem. In a loose sense, it indicates whether adding another inde-
pendent variable provides information worth its cost. Adjusted R? penalizes the
computation for adding an uncorrelated variable. For this reason, analysts usually
prefer the adjusted R? to simple R*. The adjusted R” makes an important difference
only if one has a small sample size. When the number of data points exceeds the
number of independent variables by at least 20, the R and adjusted R? have nearly
equal values. In our example, the adjusted R? equals 77 percent, almost exactly
equal to the unadjusted R,

The standard error (SE) of the regression measures the size of the estimation er-
rors made by the regression equation. Loosely speaking, the standard error of the
regression measures the accuracy with which the derived equation predicts the de-
pendent variable for a given value of the independent variable. The units are the
same as those of the dependent variable. It is analogous to the standard deviation
of a variable; in fact, it is the standard deviation of the residuals. Because one can
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think of this value as a standard deviation, it is roughly true (if certain assumptions
are met) that 95 percent of all predictions will lie within two standard errors of the
actual value. In our example, the standard error of the regression equals approxi-
mately $422. Thus approximately 95 percent of our estimates lie within $844 of the
actual value.

In economic data, successive values of a variable may be correlated. For exam-
ple, quantity output or the inflation rate tends to change slowly over time, with suc-
cessive months often close together. In statistical terms, this is called positive (first-
order) serial correlation. (Negative serial correlation also occurs, but less commonly.)
Serial correlation can cause problems in drawing conclusions from regression re-
sults. For example, consider a retail store with seasonal sales, larger than average in
November and December and smaller than average in January and February. The
estimated equation will likely overpredict sales in a period following one where it
also overpredicted sales. The tendency of errors in prediction to be in the same di-
rection as in the preceding period is serial correlation (of residuals).

The Durbin-Watson statistic measures the extent of (first-order) serial correlation
in the residuals. The statistic can range from 0 (perfect positive serial correlation)
to 4 (perfect negative serial correlation). A value of 2 indicates no serial correlation.
Interpreting the Durbin-Watson statistic requires looking up values in several ta-
bles. As a rule of thumb, however, in an analysis with at least 50 observations and
a few independent variables, a Durbin-Watson value below 1.5 or above 2.5 signals
cause for concern. (Correcting for a serial correlation problem and identifying
higher-order serial correlation go beyond the scope of this chapter.) In our exam-
ple, the Durbin-Watson statistic equals 1.78, indicating no problems with first-
order serial correlation.

These statistics apply to the regression equation as a whole. We now turn to the
second category of statistics, those that describe individual variables. As men-
tioned, the important statistics are the standard error of each variable and the re-
lated t-statistics and measures of significance.

The computed regression coefficient is subject to some degree of error because
the data do not lie perfectly on a straight line. The standard error of each variable
measures the accuracy of the variable’s coefficient estimate. In this way, the stan-
dard error is analogous to a standard deviation. Under the usual assumptions, we
can construct confidence bounds for the coefficients using a multiple of the stan-
dard error. For example, we can be roughly 95 percent confident that the true value
of the coefficient lies within plus or minus two standard errors of the computed
value. In our example, an approximate 95 percent confidence bound for the coeffi-
cient of units equals $47.90 per unit plus or minus approximately $8.78 per unit
(i.e., two times the standard error of 4.39).

The t-statistic is a statistical test of the hypothesis that the true value of the
coefficient differs from some specified number, typically zero. In our example, the
t-statistic for units equals approximately

47.90/4.39 = 1091

The analyst compares the t-value to a standard table of t-statistics found in most
statistics books and included in most statistical computer software. In general, if
the t-statistic exceeds 2.0, we can conclude with 95 percent confidence that the true
(unknown) value of the coefficient does not equal zero.
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If the coefficient were truly zero, the corresponding variable would contribute
nothing to the equation. Accordingly, a test of the hypothesis that the coefficient
differs from zero is a test to ascertain whether the corresponding variable con-
tributes to the predictive power of the regression results.

Loosely speaking, the level of significance is the probability that the true value of
the coefficient equals zero (or some other specified critical value). This is just the
probability value (from the standard table of ¢-statistics) that corresponds to the ob-
served t-statistic. Significance level is usually measured as two-sided or two-tailed,
meaning that we are equally interested in whether the computed value lies above
or below the true coefficient. In our example (Exhibit 7-5), the units’ t-statistic of
10.91 corresponds to a significance level of 0.00, indicating that the probability is
near zero that units does not relate to the dependent variable.

(i) Examination of Residuals. The analyst can use the regression equation to predict
values for the dependent variable using the known value(s) of the independent
variable(s). The differences between the predicted values of the dependent vari-
able and the actual values are called residuals. The pattern of the residuals can help
diagnose the regression equation’s appropriateness.

The analyst usually examines residuals graphically. Plot the residuals against
other variables to see if any patterns exist. If the data have a natural sequence (e.g.,
they are time sequenced), analysts most commonly use a plot against time. Some-
times analysts plot the residuals against the estimated value of the dependent vari-
able. In a properly specified regression equation, the residuals should just be the
random errors inherent in the data. Accordingly, the residuals should not exhibit
any particular pattern but should demonstrate a random (normal) distribution
around zero. If the pattern does not look random, the regression may not be ap-
propriate.

Consider the patterns in Exhibit 7-6. In part (a), the residuals appear normal, in-
dicating a satisfactory regression fit. Analysts hope for this pattern.

In part (b), the residuals begin negative, turn positive, and then become nega-
tive again. This pattern suggests that the data are not linear. Fitting a straight line
is not appropriate. The analyst should construct a different model with an appro-
priate transformation or nonlinear form.

In part (c), a positive residual will likely be followed by another positive resid-
ual, and similarly for negative residuals. This indicates the presence of first-order
serial correlation, meaning that one high value will likely be followed by another
high value, as happens with time-series data subject to seasonal patterns. Details
of corrective action go beyond the scope of this chapter.

In part (d), the variability of the residuals grows over time. This problem is
called heteroscedasticity. It may indicate that the regression results are not as signif-
icant as the diagnostics indicate. Again, the solutions to this problem go beyond the
scope of this chapter.

Finally, in part (e), we see that one residual value appears misbehaved. Analysts
refer to this value as an outlier. The analyst should investigate this data point. It
may be an error. If not an error, it may include significant adjusting entries. (Com-
monly, the last month of the year is an outlier.) Analysts may decide to rerun the
analysis without the offending point (if substantive reasons exist) to spread the
year-end adjustment throughout the year, or to analyze the adjustment separately.
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use caution with this interpretation, particularly when, as is usually the case, pro-
duction volumes significantly exceed zero so that production of zero units lies out-

side the relevant range.

(i) Nonlinear Cost Relationships. Not all costs, even within a relevant range or over a
specified period, change linearly. In many operations, a diminishing marginal cost
of production exists where variable costs per unit may become disproportionately
lower with each new level of production. In other operations, costs may increase
at certain levels of production within the existing capacity of the facility. Cost
analyses should not assume linear costs without reason.

(ifi) Causation vs. Correlation. In regression, one of the measures of goodness—of—fit is
the square of the multiple correlation coefficient, or R%. This number measures how
closely the dependent variable changes in response to changes in the independent
variable(s). This is called correlation.

This number does not measure causation. Simply because two variables corre-
late, or change in the same direction at the same time, does not mean that the
changes in one cause the changes in another. Without other information, it is
equally likely that the first variable causes changes in the second, that the second
causes changes in the first, or that some third, unidentified variable causes both.
Accordingly, in reaching a conclusion about correlation, one can say that the vari-
ables move together but not that changes in one cause changes in the other. Con-
clusions about causation generally come from nonstatistical analyses or a priori

knowledge.

(iv) Number of Data Points Required. No hard-and-fast rule exists about the number of
data points required for a regression. Certainly, the more the better, provided that
the expected relationship between the variables remains stable over time. Some ob-
servers suggest a minimum of 15 or 20 data points. One can, however, run valid re-
gressions on as few as five or six points. If you use fewer than the recommended
minimum, consult a professional statistician to make sure your methods and con-

clusions are valid.

(v) Multicollinearity. When two data series change almost in unison, they are highly
correlated. In multiple regression, problems will occur if two (or more) indepen-
dent variables are highly correlated. Analysts call this multicollinearity. In that case,
the regression formula cannot assign valid coefficients for both of the independent

variables.
An example will clarify this problem. Consider sample data as follows:
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In this case, one possible equation would be

Dependent variable = 10 X Independent #1
An equally valid choice is

Dependent variable = .1 X Independent #2

If the analyst includes both independent variables in the regression, no mathe-
matical way exists to assign coefficients to the two variables. Instead, the regres-
sion algorithms usually cannot compute anything at all. (A realistic example of this
would occur if one were attempting to derive the separate cost of producing suit
jackets and suit pants in a factory producing only men’s two-piece suits. The data
would support a reasonable estimate of the total cost of a suit, but not separate es-
timates for coats and jackets.)

Only rarely will an analyst encounter two variables 100 percent correlated, as
with the two independent variables in our example. With two highly (but not per-
fectly) correlated variables, regression usually works and gives apparently correct
results. Because the technique could not evaluate how much weight to assign each
of the two variables, however, the t-statistics of the correlated variables will signal
difficulty. Typically, correlations of over .80 between two independent variables
will cause difficulty.

Analysis can detect multicollinearity in several ways. Most regression program
packages will provide statistics for correlations between variables in a multiple re-
gression equation. If so, look for high correlations between two independent vari-
ables. If the variables vary together, it is unlikely that the regression can separate
their effects. Second, look at the standard error of the variables. If multicollinearity
exists, the regression diagnostics will indicate large standard errors, indicating lit-
tle confidence in the estimates.

When multicollinearity exists between several variables, combine the correlated
variables or eliminate all but one of them.

(vi) Changes in Cost Behavior over Time. An underlying assumption in regression is
that the model describes the cost relationship. Consider a regression of the form:
Cost = 4 X Units + c. This equation asserts that the coefficients are constant over
time. If a cost relation shifts or evolves over time, the specified model becomes in-
appropriate.

Cost can shift gradually or suddenly. Gradual shifts can result from a slow evo-
lution in processes or inattention of management to slowly increasing costs. Infla-
tion can also lead to a gradual shift in the relation, but the analyst can handle in-
flation separately, as described in Section 7.6(d). Sudden shifts can occur when the
firm introduces a new technique or process.

Statistical techniques can detect shifts. One technique explicitly includes a time
term (e.g., January is 1, February is 2, . . ., January of the next year is 13) as an in-
dependent variable. If the resulting coefficient is significant, this suggests that
some time trend exists. Typically, the change is not caused by time itself but by
some underlying cause that moves with time. Whether the analyst must identify
this underlying cause or whether use of the time variable itself is sufficient de-
pends on the requirements of the analysis. Including a time variable usually does
not substitute for making inflation adjustments.
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Analysts sometimes plot the residuals in time sequence to find cost shifts. A pat-
tern in the residuals may indicate some cost shifts. If the analyst suspects a cost
shift at a particular date, either of two alternatives can help. First, with sufficient
available data, one can perform the analysis using only the data before (or after)
the shift. Second, an indicator variable (set to 1 for every period after the shift and
to zero for every period before the shift) can pick up the effect of the cost shift. (See
Section 7.6(e) on indicator (dummy) variables.)

(vii) Tests of Reasonableness. The analyst needs to confirm any cost estimate, statisti-
cal or otherwise, as reasonable. The reasonableness tests include the following:

o Compare the results of applying more than one estimating method. If the re-
sults are reasonable, the methods should yield approximately the same re-
sults, or one should have good reasons for a discrepancy.

» Compare the results to reality. For example, compare estimated costs at his-
torical volumes to historical costs. Compare results at an assumed but-for vol-
ume with historical results (at some other date) at roughly the same volume.
The results need not be the same, but differences should be reconcilable.

e Compare the results to independent cost estimates. For example, the com-
pany under study may have made cost forecasts as part of a business plan be-
fore the alleged liability acts occurred. Alternative industry statistics may
provide a useful baseline.

e Consider the intrinsic reasonableness of the results. Do costs increase with
volume? Are costs appropriately behaved compared to changes in produc-
tion capacity?

e TFinally, apply a test called interocular inspection. This is a tongue-in-cheek
name for a real test, in which you stare at the results until the meaning hits
you between the eyes. In other words, consider whether your results make
sense.

(k) Other Statistical Techniques. The statistical discussions in this chapter focus on
regression analysis. The analyst may use other statistical techniques in cost esti-
mation. We mention some briefly; consult a statistician for further information.

(i) Time Series, ARIMA Models. Time series analysis refers to the analysis of any data
sequenced over time. The time order provides an essential element of the analysis.
Regression (using time as an independent variable) offers one part of time series
analysis. Another approach to time series analysis is called ARIMA (autoregressive
integrated moving average) modeling, sometimes termed Box-Jenkins analysis. This
approach searches for recurring patterns in past history to forecast the future.

(i) Survey Research for Comparable Entities. ~ At times, the analyst needs information on
averages for an industry. A survey of the industry, of customers, or of the public
may be appropriate to measure some factor. Many rules and methods exist for con-
ducting a statistically valid survey.

(iij) Statistical Sampling for Attributes. Statistical sampling estimates a characteristic of
a population without observing every item. Use it when the cost of a complete enu-
meration becomes prohibitive. For example, if you need to establish the average
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size of an invoice, sampling a statistically valid selection of invoices will likely pro-
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