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70 PART1: THE BASICS OF REGRESSION ANALYSIS

Example 3.2 Consumption Expenditures Suppose we wish to build a
two-variable model that explains the dollar valuc of aggregate consumption
expenditures C, measured in billions of dollars (seasunally adjusted).® As an
explanatory variable we use aggregate personal disposable income Y, meas-
ured in billions of dollars (seasonally adjusted). When C is regressed on Y
using quarterly data from the first quarter of 1959 1o the second quarter of
1995, we obtain the following result (standard errors are in parentheses):

C= --2753 + .93Y
445) L0018

In this case, the intercept of —27.53 is significant a1 the 5 percent level (the
fstatistic is — 6.18 (—27.53/4.45). Morc important, the 1 statistic associated
with the coefficient of disposable income is 517 (.93/.0018). We can clearly
reject the null hypothesis of a zero slope in favor of the alternative hypothesis
that the slope is nonzero. Rejection of the null hypothesis allows us to
accept—at least provisionally—the two-variable regression model. Of course,
further research might allow us 10 find a model of aggregatle consumption
expenditures that is more suitable than the one just described.

Suppose (lor illustrative purposes) we replace Y as an explanatory variable
by a random variable. {(We chose a variable X that was drawn cach time from
a normal distribution with a mean of 50 and a variance of 25.) Then we
would expect that approximately 1 time in 20 the coefficient on the X
variable would be significantly different from zero (at the 5 percent signifi-
cance level). We found thar it took 22 trials belore a significantly negative
coefficient was obtained. This shows that no matter how reliable or unreli-
able a statistical estimator is, there is always a statistical chance that one will
make incorrect inferences by relying on the regression resulis.

3.4 ANALYSIS OF VARIANCE AND
CORRELATION

3.4.1 Goodness of Fit

Regression residuals can provide a useful measure of the fit between the esti-
mated regression line and the data. A good regression cquation is une which
helps cxplain a large proportion of the variance of ¥ Large residuals imply a
poor fit, while small residuals imply a good fit. The problem with using the
residual as a measure of goodness of fit is that its value depends on the units
of the dependent variable. To find a measure of goodness of fit which is unit-

“ This example uses data supplied by the Citibase database. The ariginal data (GC and GYD) are
seasonally adjusted ar amnal raes.
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free, it seems reasonable to use the residual variance divided by the variation
ot Y.

Variation (¥Y) = S(Y, — ¥)?

Our goal is 1o divide the variation of Y into two parts, the first accounted for
by the regression cquation and the second associated with the unexplained
purtion (the error term) of the model. Assume first that the slope of the linear
regression model is known to be 0 and we {it a regression estimating only an
intercept. Then the best prediction for ¥; associated with any X; is given by the
satiple mean of Y:

V,=a+0-X;=a=7Y

In this special casc we can conclude that the variation of ¥ measures the square
of the diffcrence between the observed values Y; and the predicted values
¥ =7,

When the slope is nonzero we can improve our predictions by accounting
for ¥; being dependent on X,

Y, = @+ BX:

The additional information will reduce the unexplained portion of the variation
in ¥. To sce this, consider the following identity, which holds for all observa-
tions:

Y, - ¥ =(Y; = ¥) + (¥, - ¥) (3.24)

The term on the Ieft of the equals sign denotes the difference between the
sample value of ¥Yand the mean of Y, the first right-hand term gives the residual
£, and the second right-hand term gives the difference between the predicted
value of ¥ and the mean of Y. This is shown in Fig. 3.4.

To measure variation, we square both sides of Eq. (3.24) and then sum over
all observations7 =1, 2, .. ., N:

SV - PR =S - YR Y -V 2, - Y- T) (3.25)

The last term in Eq. (3.25) can be shown to be identically 0 by using two
properties of the least-squares residuals, £€; = 0 and Z&;X; = 0. All the deri-
vations appear in Appendix 3.2. Tt follows that

< = it = - 7 > 72

Y, =¥ = Ny -7 + iy -Y)
total variation of residual variation of  explained variation
¥ ior wtal sum of ¥ tor error sum ol ol ¥ (or regression

squares) squares) sum of squares)

TSS = ESS + RSS (3.26)
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FIGURE 3.4
X  Decomposition of Y;.

To normalize, we divide both sides of Eq. (3.26) by the total sum of squares to
get

- ESS _RSS
" TSS  TSS

We define the R-squared (R?) of the regression equation as

: “ESS _ RSS
3 oujes BS. RSS 3.27
s TSS ~ TSS g2

R? is the proportion of the total variation in Y explained by the regression of ¥
on X. Since the error sum of squares ranges in value between 0 and the total
sum of squares, it is easy 10 see that R* ranges in value between 0 and 1. An
R? of 0 occurs when the linear regression model does nothing to help explain
the variation in Y. This may occur when the values of ¥ lie randomly around
the horizontal line Y = ¥ or when the sample points lie on a cirde (Fig. 3.5b).
An R? of 1 can occur only when all sample points lie on the estimated regression
line (Fig. 3.5a).

To relate R* 1o the regression parameters estimated earlier in this chapter,
we write the predicted values of y; as

= Bx;
Then, each dependent variable observation can be subdivided as

Yi=¥i+ &

i Perfect Fit

- FIGURE 3.5
.+ "Measuring R-squared.
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a satisfactory one because of the large variation across individual units of ob-
servation.’

It is occasionally useful to summarize the breakdown of the variation in ¥
in terms of an analysis of variance. In such a case the total unexplained and
explained variations in Y are converted into variances by dividing by the appro-
priate number of degrees of freedom.® Thus, the variance in Y is the total
variation divided by N — 1, the explained variance is equal 10 the explained
variation (since the regression involves only one additional constraint above
the one used to estitnate the mean of Y), and the residual variance is the
residual variation divided by N — 2.

3.4.2 Correlation

Because R* is of value in arialyzing a model with a causal relationship between
the dependent variable ¥ and the independent variable X, B® is interpreted
as more than a measure of correlation between two variables. Correlation
techniques do not involve an implicit assumption of causality, while regression
techniques do. We saw in Chapter 1 that the choice of dependent and in-
dependent variables in a regression model is crudal. The dependent variable
is the variable 10 be explained, while the independent variable is the moving
force. The least-squares technique is appropriate only if the causal structure
of the model can be determined before the data are examined. If a model
Y = a + BX is specified, one may interpret a significant ¢ statistic on the
regression slope parameter as evidence tending to validate the model. By con-
trast, an insignificant statistic would invalidate it.

As an example of correlation without causality, consider a series of obser-
vations over time that might have been obtained in a nineteenth-century study
of medicine in Africa. One might find a high correlation between the number
of doctors present in a region and the prevalence of disease in that region, but
it would be wrong rto infer that the presence of doctors is a cause of spreading
disease.

Thus, high correlations do not provide for an inference of causality. One
must specify a priori (based on previous information) that the number of doctors
in a region is a function of the prevalence of disease and test statistically whether
such a relationship holds if one is to use regression correctly. Correlation tech-
niques are often used to suggest hypotheses or to confirm previously held

* This suggests that R* alone may not be a suitable measure of the extent to which a model is
satisfactory. A better overall measure might be a statistic which describes the predictive power of
the made] in the face of new daia.

*The number of degrees of freedom is the number of observations minus the number of
cunstraints placed on the data by the calculation procedure. Thus, an estimate of the variation in
Vinvolves N — | degrees ol freedom because ornie conseraint is placed on the data when deviations
are measured about the sample mean (which must in itsclf be calculated). An additional degree of
freedom is used up in the calculation of the stope parameter. leaving N — 2 degrees of [reedom
associated with the unexplained variation in the problem.
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