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670 REGRESSION MoODELS FOR TIME-SERIES DATA
trend-stationary. that is. stationary around a trend. In contrast, the second
model, (19.02). says that y, follows a random walk with drift. The drift
parameter 8; in (19.02) plays much the same role as the trend parameter ¥,
in {19.01). since both cause y, to trend upward over time. But the behavior
of g is very different in the two cases. because in the first case detrending it
will produce a variable that is stationary. while in the second case it will not.

There has been a great deal of literature on which of these iwo models.
the trend-stationary model (19.01) or the random walk with drift {19.02).
best characterizes most economic time series. Nelson and Plosser (1982) is a
classic paper, Campbell and Mankiw (1987) is a more recent one, and Stock
and Watson (1988a) provides an excellent discussion of many of the issues.
In the next chapter we will discuss some of the methods that can be used
to decide whether a given time series is well characterized by either of these
models. For now, what concerns us is what happens if we use time series
that are described by either of these two models as dependent or independent
variables in a regression model.

If a time series with typical element z, trends upward forever. then
n~! 3% ¥ will diverge to +oc. Thus. if such a series is used as a regressor
in a linear regression model, the matrix n='X TX cannot possibly tend to a
finite, positive definite matrix. All of the asymptotic theory we have used in
this boek is therefore inapplicable to models in which any of the regressors is
well characterized by {19.01) or (19.02).! This does not mean that one should
never put a trending variable on the right-hand side of a linear or nonlinear
regression. Since the samples we actually observe are finite. and often quite
small, we can never be sure that a series will trend upward forever. Moreaver.
the desirable finite-sample properties of least squares regression hold whether
or not the regressors trend upward. But if we wish to rely on conventional
asvmptotic theory. it would seem to be prudent to specify our models so that
strongly trending variables do not appear on the right-hand side. This in
turn means that the dependent variable cannot be strongly trending. The
most common approach is to take first differences of all such variables before
specifying the model.

" One compelling reason for taking first differences of trending variables
is the phenomenon of spurious regression. It should be obvious that if two
variables, say y; and x;. both trend upward. a regression of y, ou #; Is very

! The fact that standard asymptotic theory is inapplicable to such models does
not mean that no such theory applies to them. For example. we studicd a
simple model of regression on a linear trend in Section 4.4 and found that the
least squares estimator of the coeflicient on the trend term was consistent. but
with a variance that was O{n~>) instead of the more conventional O(n—l),
Moreover, since there exist CLTs that apply to such madels, the usual proce-
dures for inference are asymptotically valid. For example, if u¢ ~ 1ID(0, o)
and §, = =32 z:’_ | fue. then Sy tends in distribution to N {8, a2 /3). Notice
that the normalizing factor here is 77312 rather than n71/2
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they have in common is the upward trend. In fact. the R? for a regression
of y, on z, and a constant will tend to unity as n — oc whenever both series
can be characterized by (19.01). even if there is no correlation at all between
the stochastic parts of y and z,. Readers may find it illuminating to prove
this result and are advised to look at Section 1.4 for some useful results.

f
likely to find a “significant™ relationship between them. even if the only thing |
|
|

It is intuitively very plausible that we should observe apparently signif-
icant, but actually spurious. relationships between unrelated variables that
both trend upward over time. Granger and Newbold (1974) discovered what
appears at first to be a much more surprising form of spurious regression.
They considered time series which are generated by random walks without
drift. that is, series generated by a process like y» = y—1 + u,. What they
found. by Monte Carlo experiment. is that if r, and y, are independent ran-
dom walks. the f statistic for # = 0 in the regression

yr = a+ i3y + g {19.03)
rejects the null hypothesis far more often than it should and tends to reject
it more and more frequently the larger is the sample size n. Subsequently.
Phillips (1986) proved that this ¢ statistic will reject the null hypothesis all
the time, asymptotically.

Some Monte Carle results on spurious regressions are shown in Table 19.1.
Each column shows the proportion of the time, out of 10,0800 replications. that
the ¢ statistic for 7 = 0 in some regression rejected the null hypothesis at the
5% level. For column 1. the regression is (18.03}. and both x; and y; are
generated by independent random walks with n.id. errors. For column 2,
T, and y, are the same as for column 1, but a lagged dependent variable is
added to the regression. For columns 3 and 4. the regression is simply (19.03)
again. For column 3, both r; and y; are generated by independent random
walks with drift. the drift parameter 8, being one-fifth the size of the standard
error o {this ratio is the only parameter that affects the distribution of the
t statistic). For column 4, both x; and y; are independent trend-stationary
series, with the trend coefficient 2 being 1/25 the size of 0.

The results in colurns 3 and 4 of the table are not very surprising. siuce 3
z, and g are both trending upward. The only interesting thing about these
results is how rapidly the number of rejections creases with the sawmple size.
This is a consequence of the fact that, in both these cases. the amount of
information in the sample is increasing at a rate faster than n. It is evidently
increasing faster in the trend case than in the case of the random walk with
drift. 3

In contrast, the results in columns 1 and 2 of the table may be surprising.
After all, x4 and y; are totally independent series, and neither countains a trend.
So why do we often— very often indeed for large sample sizes — find evidence
of a relationship when we regress 3 on 2,7 One answer should be obvious to




	6.pdf
	Levy Ex6
	6.pdf
	Ex_6


