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SERIAL CORRELATION AND HETEROSCEDASTICITY 183

In this section we deal with the problem of first-order serial correlation, in
which errors in one time period are correlated directly with errors in the ensuing
time period.f While it is certainly possible that serial correlation can be negative
as well as positive, we concern ourselves primarily with the case of positive serial
correlation, in which errors in one time period are positively correlated with

errors in the next time period. Positive serial correlation frequently occurs in
time-series studies, either because of correlation in the measurement error
component of the error term or more likely, because of the high degree of
correlation over time present in the cumulative effects of the omitted variables in
the regression model.

As a general rule, the presence of serial correlation will not affect the
unbiasedness or consistency of the ordinary least-squares regression estimators,
but it does affect their efficiency.f In the case of positive serial correlation, this

loss of efficiency will be masked by the fact that the estimates of the standard
errors obtained from the least-squares regression will be smaller than the true
standard errors. In other words, the regression estimators will be unbiased, but
the standard error of the regression will be biased downward.§ This will lead to
the conclusion that the parameter estimates are more precise than they actually
are. There will be a tendency to reject the null hypothesis when, in fact, it should
not be rejected. We shall not prove these results in the chapter, but one can
obtain an intuitive feeling for why they are true by examining Fig. 6.1a¢ and 5.

Both graphs illustrate the presence of positive serial correlation in a model
with a single independent explanatory variable. In Fig. 6.1a, the error term
associated with the first observation happens to be positive. This leads to a series
of error terms, the first four of which are positive and the last two of which are
negative. In Fig. 6.1b, the oppositive case has occurred, the first four errors
being negative, and the last two being positive. In the first case the estimated
regression slope is lower than the true slope, while in the second case it is higher.
Since both cases are equally likely to occur, it seems reasonable that least-
squares slope estimates will be correct on average; i.e., they will be unbiased.
However, in both cases, the least-squares regression lines fit the observed sample
data points more closely than the true regression line; this leads to an R? that
gives an overly optimistic picture of the success of least-squares regression. More
important, however, least squares will lead to an estimate of the error variance
which is smaller than the true error variance.|| Once again the success of the
regression procedure will be overstated if the least-squares estimate of the error
variance is used to do statistical tests.

t The more general case can be handled with the use of generalized least-squares estimation, as
detailed in Appendix 6.1 and with time-series techniques discussed in Part Three.

i If the model includes a lagged dependent variable, the problems are much more severe. The
lagged-dependent-variable case will be discussed briefly in Section 7.7.

§ This holds provided that the X’s are not negatively serially correlated.

9 Some of these assertions are proved in Appendix 6.1. .

il For a discussion of the lack of bias and consistency of the parameter estimators as well as
details concerning efficiency, see Kmenta, op. cit., sec. 8-2.



dgallow
Rectangle


156 SINGLE-EQUATION REGRESSION MODELS

" where
Y=Y —o¥,..  Xh= Xy —eXyo
e = X = 0Ky U, =& T PE L
are generalized differences of Y, X, ..., Xy, and 0, By construction the

transformed equation has an error process which is independently distributed
with 0 mean and constant variance [see Eq. (6.12)). Thus, ordinary least-squares
regression applied to Eq. (6.19) will yield efficient estimates of all the regression
parameters. Of course, the intercept of the original model must be calculated
from the estimated intercept associated with Eq. (6.19).%

We have restricted our discussion of serial correlation to the case in which p
is strictly less than 1. However, the case in which p is identically equal to 1 is of
particular interest because it leads to a commoniy used estimation procedure.f
The solution process, known as first-differencing, is applied if we estimate the
transformed equation (by analogy to the generalized differencing procedure):

Y= B X3+ B Xt 4+ - B XL+ o where Y = Y, - Y,_, (6.20)
X;: XZ: - Xlt—l -
XI:: = Xkr - Xkr--l

L S |

il

Note that first-differencing eliminates the need tor a comstant term in the

transformed equation. The intercept of the original equation must be calculated,

by solving in the original equation when the variables are measured at their
respective means.§ If a constant term were included, it would pick up the effect
of any time trend present in the initial model.

The generalized differencing procedure would be very useful if the value of
p were known a priori. Because this is usually not the case, we examine three
alternative procedures for estimating p, each of which has certain computational
advantages and disadvantages. All three of these procedures vield estimated
parameters with the desired properties when the sample size is large, but little is
known about their small-sample properties.

t There is only one serious difficulty associated with the generalized differencing process. As
described, the transformed equation is defined only for the time period 2, 3, ..., T. Dropping the
initial time period from the regression procedure scems plausible, but it results in the loss of
important information, A better solution would take the first time period observations into account
as follows: -

r=Vi-¢v, Xp=Vi-g Xy - An=Vi-p* Xy

"This transformation works because it adjusts the variance of ¥ and the X’s for the first time period,
so that the corresponding error varance is equal to the error variance associated with all other time
periods. By construction, ef = (1 — p9)'/%, and Var (¢f) = (1 — p?)Var (¢)) = o.

T Note, however, that as p approaches }, the error varjance in the original equation becomes
infinitely large, so that the previous analysis does not follow.

§ In the two-variable model, for ex.a.mple_, Yt.fi BXF. To oblain 1he intercept esfimate, we
estimate 3 and then substitute to obtain & = ¥ — gX.
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