
U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

SUN MICROSYSTEMS INC,

Plaintiff,

 v.

NETWORK APPLIANCE,

Defendant.
 /

No. C-08-01641 EDL

ORDER CONSTRUING CLAIM TERMS

On April 1, 2009, the Court held a claim construction hearing to construe the disputed terms

of United States Patent Numbers 6,965,951 (the “’951 patent”), 6,151,683 (“’683 patent”),

6,283,249 (“’249 patent”), and 6,484,200 (“’200 patent”) (collectively, “Sun patents”) pursuant to

Markman v. Westview Instruments, Inc., 517 U.S. 370 (1996). On April 15, 2009, the Court held a

claim construction hearing to construe the disputed terms of United States Patent Numbers

7,328,305 (the “’305 patent”), 7,293,152 (the “’152 patent”), 6,516,351 (“’351 patent”), and

7,293,097 (“’249 patent”) (collectively, “NetApp patents”). Having read the papers and considered

the arguments of counsel and the relevant legal authority, the Court hereby rules as follows.

I. BACKGROUND

On March 26, 2008, Network Appliance Inc. (“NetApp”) filed its complaint against Sun

Microsystems Inc. (“Sun”) for patent infringement under 35 U.S.C. § 271. Sun filed its answer and

counterclaims on May 19, 2008, to which NetApp filed a reply on June 12, 2008. The parties now

seek construction of four disputed terms contained in the Sun patents. The parties also seek

construction of three disputed terms contained in the NetApp patents. The parties originally sought

construction of two additional terms, but agreed to a stipulated construction of those terms, which

the Court adopts as discussed below.

Sun Microsystems Inc v. Network Appliance Inc. Doc. 92

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2008cv01641/201777/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2008cv01641/201777/92/
http://dockets.justia.com/

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2

II. LEGAL STANDARD

In construing claims, the court must begin with an examination of the claim language itself.

The terms used in the claims are generally given their “ordinary and customary meaning.” See

Phillips v. AWH Corp., 415 F.3d 1303, 1312-13 (Fed. Cir. 2005); see also Renishaw PLC v.

Marposs Societa’ per Azioni, 158 F.3d 1243, 1248 (Fed. Cir. 1998) (“[T]he claims define the scope

of the right to exclude; the claim construction inquiry, therefore, begins and ends in all cases with

the actual words of the claim.”). This ordinary and customary meaning “is the meaning that the

terms would have to a person of ordinary skill in the art in question at the time of the invention”

Phillips, 415 F.3d at 1313. A patentee is presumed to have intended the ordinary meaning of a claim

term in the absence of an express intent to the contrary. York Products, Inc. v. Central Tractor Farm

& Family Ctr., 99 F.3d 1568, 1572 (Fed. Cir. 1996).

Generally speaking, the words in a claim are to be interpreted “in light of the intrinsic

evidence of record, including the written description, the drawings, and the prosecution history, if in

evidence.” Teleflex, Inc. v. Ficosa North Am. Corp., 299 F.3d 1313, 1324-25 (Fed. Cir. 2002); see

also Medrad, Inc. v. MRI Devices Corp., 401 F.3d 1313, 1319 (Fed. Cir. 2005) (court looks at “the

ordinary meaning in the context of the written description and the prosecution history”) (citations

omitted). “Such intrinsic evidence is the most significant source of the legally operative meaning of

disputed claim language.” Vitronics Corp. v. Conceptronic, Inc., 90 F.3d 1576, 1582 (Fed. Cir.

1996).

With regard to the intrinsic evidence, the court’s examination begins with the claim

language. See id. Specifically, “the context in which a term is used in the asserted claim can be

highly instructive.” Phillips, 415 F.3d at 1314. As part of that context, the court may also consider

the other patent claims, both asserted and unasserted. Id. For example, as claim terms are normally

used consistently throughout a patent, the usage of a term in one claim may illuminate the meaning

of the same term in other claims. Id. The court may also consider differences between claims as a

guide to understanding the meaning of particular claim terms. Id.

Second, the claims “must [also] be read in view of the specification, of which they are a

part.” Id. at 1315 (citation omitted). When the specification reveals a special definition given to a

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

3

claim term by the patentee that differs from the meaning it would otherwise possess, the inventor’s

lexicography governs. Id. at 1316. Indeed, the specification is to be viewed as the “best source” for

understanding a technical term, informed as needed by the prosecution history. Id. at 1315. As the

Federal Circuit stated in Phillips, the specification is “the single best guide to the meaning of a

disputed term,” and “acts as a dictionary when it expressly defines terms used in the claims or when

it defines terms by implication.” 415 F.3d at 1321 (citation omitted).

Limitations from the specification, however, such as from the preferred embodiment, cannot

be read into the claims absent a clear intention by the patentee to do so. Altiris, Inc. v. Symantec

Corp., 318 F.3d 1363, 1372 (Fed. Cir. 2003) (“resort to the rest of the specification to define a claim

term is only appropriate in limited circumstances”); Teleflex, 299 F.3d at 1326 (“[T]he claims must

be read in view of the specification, but limitations from the specification are not to be read into the

claims.”) (citations omitted); CCS Fitness, Inc. v. Brunswick Corp., 288 F.3d 1359, 1366 (Fed. Cir.

2002) (“a patentee need not describe in the specification every conceivable and possible future

embodiment of his invention”) (internal quotations omitted).

“[T]here is sometimes a fine line between reading a claim in light of the specification, and

reading a limitation into the claim from the specification. . . . [A]ttempting to resolve that problem in

the context of the particular patent is likely to capture the scope of the actual invention more

accurately than either strictly limiting the scope of the claims to the embodiments disclosed in the

specification or divorcing the claim language from the specification.” Decisioning.com, Inc. v.

Federated Dept. Stores, Inc., 527 F.3d 1300, 1307-08 (Fed. Cir. 2008) (quoting Comark Commc'ns,

Inc. v. Harris Corp., 156 F.3d 1182, 1186 (Fed. Cir. 1998)). There is therefore “no magic formula or

catechism for conducting claim construction,” and the court must “read the specification in light of

its purposes in order to determine whether the patentee is setting out specific examples of the

invention to accomplish those goals, or whether the patentee instead intends for the claims and the

embodiments in the specification to be strictly coextensive.” Id. at 1308 (internal citations omitted).

Finally, as part of the intrinsic evidence analysis, the court “should also consider the patent’s

prosecution history, if it is in evidence.” Phillips, 415 F.3d at 1317. The court should take into

account, however, that the prosecution history “often lacks the clarity of the specification” and thus

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

4

is of limited use for claim construction purposes. Id.

In most cases, claims can be resolved based on intrinsic evidence. See Vitronics, 90 F.3d at

1583. Only if an analysis of the intrinsic evidence fails to resolve any ambiguity in the claim

language may the court then rely on extrinsic evidence, such as expert and inventor testimony,

dictionaries, and learned treatises. See id. (“In those cases where the public record unambiguously

describes the scope of the patented invention, reliance on any extrinsic evidence is improper”).

“Within the class of extrinsic evidence, the court has observed that dictionaries and treatises can be

useful in claim construction.” Phillips, 415 F.3d at 1318. While expert testimony can be useful to a

court for a variety of purposes, conclusory assertions by experts are not useful to a court. Id. The

court generally views extrinsic evidence as less reliable than the patent and its prosecution history in

determining how to read claim terms, even though its consideration is within the court’s sound

discretion. See id. at 1318-19.

III. DISCUSSION

The parties dispute four terms contained in three of the Sun patents: (1) “token” in the ’683

and ’249 patents; (2) “computer system” in the ’683 and ’249 patents; (3) “modifiable tree structure

including elements in a fixed hierarchical relationship”/“modifiable static tree structure” in the ’249

patent; and (4) “discovery interface” in the ’951 patent. The parties dispute three terms contained in

four of the NetApp patents: (1) “in a non-fixed pattern” in the ’305 patent; (2) “initiator group

(igroup)” in the ’152 patent; and (3) “uniform file-locking semantics”/“uniform locking semantics”

in the ’351 and ’097 patents. The parties agreed to a construction of the term “to examine

[examining] the event communication” in the ’200 Sun patent and the term “opportunistic locks” in

the ’351 and ’097 NetApp patents.

A. ’683 and ’249 Patents

The ’683 patent is entitled “rebuilding computer states remotely.” It relates to “monitoring

of computer systems and more particularly to rebuilding the state of a computer system based on

diagnostic data from the computer system.” ’683 patent at 1:17-20. Computer systems have

hardware and software components that fail and degrade system performance. Id. at 1:22-25. The

’683 patent notes that there are limits to the types of diagnostic information available when

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

5

computer systems fail. To address such limitations, the invention in the ’683 patent “provides a

method and apparatus to build a representation of the state of a computer, based on diagnostic data,

by extracting system information from that diagnostic data and building a component based

representation of the computer using the extracted system information.” Id. at 2:22-27. According

to the ’683 patent abstract:

A representation of the state of a computer, based on diagnostic data of the
computer, is built by extracting system information from the diagnostic data
and building a component based representation of the computer using the
extracted system information. A static tree definition of a computer system
is provided which is formed by element types in a fixed hierarchical
relationship. A plurality of token types are provided, each of the token types
being associated with one of the element types. The token types are
component based data types. Respective segments of the incoming data that
are defined by respective token types are identified and stored as tokens in a
token data base. Each of the tokens has a value field holding a value
associated with the element and a parent field referring to an element with
which the token is associated. For each element in the static definition, the
token data base is searched for associated tokens and a host state is built
based on the static state definition and the extracted associated tokens, the
elements of the static state definition being given value by their associated
tokens.

The ’249 patent incorporates by reference the application for the ’683 patent. The ’249

specification repeats substantial parts of the specification of the ’683 patent and describes the same

monitoring system claimed in the ’683 patent. It further describes a way “to generate alerts

indicating predetermined conditions exist in a computer system.” ’249 patent at 2:28-31. That

abstract states:

A monitoring system generates alerts indicating predefined conditions exist
in a computer system. Alerts are generated by comparing alert definitions to
a host state representing the state of the hardware and software components
of a computer system to determine if conditions defined in the alert
definitions exist in the host state; and generating alerts accordingly. The
host state is a static tree structure including elements in a fixed hierarchical
relationship, the elements being given value by associated tokens, the
elements and associated tokens representing the hardware and software
components of the computer system. The alert definitions generate alerts
according to the values of at least one token, at least one alert or a
combination of various tokens and/or alerts. The host state is created by
providing a static tree structure representing a general computer system.
Component information indicating hardware and software components of
the computer system is extracted from diagnostic data of the computer
system. The host state is generated according to the static tree structure and
the component information.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

6

Claim 1 of the ’249 patent is a representative claim (disputed terms are in bold):

A method comprising:

providing a host state representing a state of a computer system,
the host state being represented as a modifiable tree structure including
elements in a fixed hierarchical relationship, the elements being given
value by associated tokens, the elements and associated tokens
representing hardware and software components of the computer system
and wherein the tokens are extracted from diagnostic data from the
computer system;

determining if predetermined conditions exist in the computer
system by comparing respective definitions of the predetermined
conditions to the host state; and

generating an alert if one of the predetermined conditions is
determined to exist.

’249 patent at 39:1-17.

1. “Token”

Disputed Claim Term: “Token” (’683 patent, claims 3, 4, 6, 7, 8, 10, 13, 16, 21, 22, 23, and 24;
’249 patent, claims 1, 8, 11,14, 16, and 18)

NetApp’s construction Sun’s construction

A data structure consisting of a name, an
identifier of an element, an identifier of a
test to be performed on the element, and a
test output value.

Data that communicates information about a
particular element.

The parties dispute whether a token consists of a four-part data structure. NetApp contends

that it does, and Sun proposes a much more general definition of the term. To begin its analysis, the

Court first turns to the claims themselves. The term “token” appears in claims 3, 4, 6, 7, 8, 10, 13,

16, 21, 22, 23, and 24 of the ’683 patent, and in claims 1, 8, 11, 14, 16, and 18 of the ’249 patent.

Claims 1, 11, and 16 of the ’249 patent state that the host state is a tree structure including elements

in a hierarchical relationship, with “the elements being given value by associated tokens, the

elements and associated tokens representing hardware and software components of the computer

system.” ’249 patent at 39:5-10, 40:29-33, 40:65-41:3; see also ’249 patent abstract. This claim

language demonstrates that tokens give value to elements and represent hardware and software

components of the computer system. Other claims also reflect that tokens communicate information

about elements, but these claims vary in their specificity. See, e.g., ’683 patent at claim 6

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

7

(“searching the token data base for at least one token that refers to the respective element type”);

claim 16 (“at least one token respectively associated with each of the elements”); claims 3 and 21

(“each of the token types having a value of one aspect of the component information and an

indication of an association with one of the elements in the static tree”); claim 23 (“at least one

token that refers to the respective element type”). While this claim language indicates that tokens

communicate information about elements, the claims do not specifically define what a token is. Nor

do the claims rule out the possibility that a token may have other attributes, as evidenced by the

varying specificity in which different claims discuss the relationship between tokens and the objects

to which they refer. For example, claims 3 and 21 discuss tokens having a value of the component

information and an association with an element, while other claims merely discuss the reference to

an element. The claim language, therefore, neither defines tokens, nor precludes tokens having

certain structural components.

Certain claims refer to the constituent parts of a “token.” Claim 16 of the ’683 patent, for

example, refers to the test output value and the identifier of the element. However, as NetApp notes,

reference to the constituent parts of a “token” in certain claims does not provide a basis for

disregarding a definition provided by the specification. In Honeywell Int’l, Inc. v. Universal

Avionics Sys. Corp., 488 F.3d 982, 990 (Fed. Cir. 2007), for example, the Federal Circuit upheld the

district court’s construction based on the specification, where the specification made clear that the

disputed term “look ahead distance” was a function of both speed and time, even though the claim

language described a signaling device for “defining a look ahead distance as a function of the speed

of the aircraft” only. Id. (emphasis added). In the present case, therefore, even if certain claims only

refer to certain parts of the token or describe tokens very generally, the token may still have a four-

part data structure if the specification defines “token” to have such a structure. Accordingly, the

Court turns to the specification.

NetApp relies heavily on the following definition of “token” in the specification in support

of its proposed construction, while Sun disputes that the patentee was acting as a lexicographer in

this passage:

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8

In order to extract information from the diagnostic data stream, “token
types” are utilized. A token type defines each token to have a token
name and a test name. A test name comes from the tests shown e.g., in
Table 1 or in Table 2, and indicates which test output contains the
information for each token. In addition to a token name and a test
name, each token has a label and a value. The label for the token gives
the token knowledge about what element the token is associated with, i.e.,
the parent of the token which is an element. The value of the token
provides a value extracted from the diagnostic data that gives value to the
element.

’249 patent at 7:10-20; ’683 patent at 6:33-43 (emphasis added). NetApp argues that Sun’s

construction ignores this four-part structure of a token that includes: a name, an identifier of an

element (token label), an identifier of a test to be performed on the element (test name), and a test

output value (value of the token). In addition, NetApp argues that the following paragraph, which

also appears in both patents, provides further confirmation that “token” refers to a four-part data

structure:

For instance, assume a disk element exists with a name of “c0t10d0.” Assume
also that a token exists for such a disk element indicating the number of
sectors per cylinder. The name of such a token would be, e.g., “number of
sectors per cylinder.” The test name in the token would be “vtsprobe” since
the output of that test provides the information needed for the number of
sectors per cylinder. The label for the token would be “c0t10d0" indicating
that token is associated with a particular disk having that name. Finally, the
token would have a value which indicates the number of sectors per cylinder.

’249 patent at 7:21-35; ’683 patent at 6:44-58 (emphasis added).

The issue here is whether or not this four-part data structure limitation applies to all

of the references to “tokens” in the patent claims. Statements that “describe the invention

as a whole, rather than statements that describe only preferred embodiments, are more

likely to support a limiting definition of a claim term.” C.R. Bard, Inc. v. U.S. Surgical

Corp., 388 F.3d 858, 864 (Fed. Cir. 2004) (“Statements that describe the invention as a

whole are more likely to be found in certain sections of the specification, such as the

Summary of the Invention.”). Here, the passage describing the four-part structure is not in

the summary of the invention. However, while statements that describe the invention as a

whole are more likely to be found in certain sections of the specification of the invention,

such as the summary of the invention (see id.), they need not be contained in only certain

parts of the specification. For example, as NetApp notes, in Sinorgchem Co. v.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9

International Trade Commission, 511 F.3d 1132, 1136 (Fed. Cir. 2007), the Federal Circuit

applied the definition of the term “controlled amount” that appeared in the “detailed

description of the invention” in the middle of a long paragraph describing embodiments.

See Weber Decl, Ex. 1 (U.S. Patent No. 5, 117,063 at 4:48-52). In Sinorgchem, the Court

noted that the presence of quotation marks around the claim term strongly indicated that

what followed was a definition. See 511 F.3d at 1136.

In the present case, the above passage defines the parts of a token. While the

phrase “token” does not appear in quotation marks in this section of the specification, the

phrase “token types” immediately proceeding the token term is in quotes, and the passage

defines “tokens” in the context of “token types.” In addition, the passage explicitly uses

the word “defines” when outlining the token’s components. Sun argues that the use of

“define” has a specific meaning in computer science that refers to the creation of an object

or variable in a programming language. Declaration of Dr. Hugh Smith ¶ 38. The same

term “define” is used in a computer language sense in another part of the specification.

See ’249 patent at 9:42-48 (“an element can have a token defined that is the mathematical

result of other tokens”). The sentence following the description of the token name and test

name, however, states that “[i]n addition to a token name and a test name, each token has a

label and a value,” which indicates that the term “define” is used according to its normal

usage in the passage at issue. ’249 patent at 7:15-16. See also Reply Declaration of

Professor Darrell Long ¶ 5 (noting that “define” is not used as a programming term in the

patent). Even if the term “define” is being used in the computer language sense, however,

a token would still require a four-part data structure under Sun’s expert Dr. Smith’s own

reasoning. See Smith Decl. ¶ 38 (claiming that if the specification defined a token to mean

integer, it would simply mean that tokens would have integer values); Long Reply Decl ¶ 5

(noting that under Dr. Smith’s analysis, “because the specification states that token type

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
1 The Court recognizes the limited role of expert testimony in construing claims, but relies on

it for background on the technology at issue and to analyze how a person of ordinary skill in the art
understands various aspects of the patent. See Phillips, 415 F.3d at 1318.

10

defines a token to be a four-part data structure, tokens will have that four-part structure”).1

Furthermore, while other parts of the specification point out that certain

descriptions are “exemplary,” the passage defining “token” cited by NetApp does not

contain such language. For example, the specification points out the exemplary nature of

static trees discussed in the preceding passage, but not of the four-part structure of tokens.

See, e.g., ’249 patent at 6:5-6, 6:54-57. Rather, the passage defining the token components

is itself followed by a more specific example, starting with “for instance,” of what these

specific components of a token may be. Id. at 7:10-36. This language further supports

NetApp’s assertion that its proposed definition of token is not limited to the preferred

embodiment. Rather, the part of the specification on which it is based provides a high-

level description of “token.”

The specification then notes that there are two types of tokens: element realizing

tokens, which provide a way to determine whether an element should be included when

building a particular host state, and data tokens, which provide additional information

about an element. This subsequent high-level description of tokens discusses the two types

of tokens and reinforces the generalized nature of the “token” discussion. The

specification then notes another “exemplary” output of a diagnostic test, before stating that

the preferred implementation of the invention described is in an object-oriented computer

language. Id. at 7:66-67, 8:8-10. Finally, the patent states that in “preferred embodiment

the tokens in token data base 207 are stored as a hashtable to provide faster access to

subsequent processing steps of building the representation of the system.” ’249 patent at

8:32-36. The above passages demonstrate that the patentee knew how to describe certain

aspects of the invention as “exemplary” or “preferred implementations,” yet did not so

limit the four-part structure of tokens.

Sun relies on Tivo, Inc. v. Echostar Communications Corp., 516 F.3d 1290 (Fed.

Cir. 2008), arguing that NetApp seeks to improperly limit the claim term. In that case,

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

11

Echostar argued that a construction requiring the use of object-oriented software was

proper, because the patent described an embodiment that used terms characteristic of

object-oriented programming. Id. at 1307. Tivo is distinguishable, however, because the

applicant had not expressly defined a claim term. The Federal Circuit held that the use of

an example that employs object-oriented programming is insufficient to require that the

claims be limited to embodiments using such programming. Id. In contrast, the

specification here defines the term “token type,” and in that context, tokens themselves, in

a higher level discussion of the term.

In addition, even if the specification describing the four-part structure did not

provide an explicit definition, if the patentee uses the term throughout the entire patent

specification in a manner consistent with this meaning, the term is defined by implication.

See Bell Atl. Network Servs. v. Covad Commc’ns Group, Inc., 262 F.3d 1258, 1271 (Fed.

Cir. 2001). Therefore, while the Court finds the lexicography relatively clear here, it turns

to the other examples of tokens in the patent specification to examine whether they utilize a

four-part data structure. The Court concludes that they do.

Turning to the various examples in the patent, as discussed above, Column 7 of the

‘249 patent discusses element realizing tokens. Sun argues that such tokens do not have a

four-part data structure. Element realizing tokens “provide a way to determine whether an

element should be included when building a particular host state.” ‘249 patent at 7:42-50.

A disk name token is a type of element realizing token that provides the parent field or the

name. Element realizing tokens obtain information about the specific system to build a

host state representation of the system. Hearing Tr. at 36. Such tokens, while not

explicitly described as having a four-part data structure, follow the discussion of the four-

part structure and fit into such a structure. As NetApp notes, the “test” for the disk name

token would be the method by which the name is retrieved, and the name of the disk

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2 Sun maintains that NetApp’s expert, Professor Darrell Long, provided examples of tokens
that include only a two-part structure, giving the example of an element realizing token that identifies
a disk drive and provides its name. Sun argues that a token that only provides information as to whether
or not a disk exists in a certain location has only a one-part structure. However, as NetApp notes, the
value component is really a value field for holding value information. This type of information will
differ for different tokens. Therefore, even where the token is merely ascertaining whether or not a disk
exists, the value field would still exist, but would not be populated in the ordinary sense of the word,
as it would have a zero or blank value, as NetApp notes. In other words, regardless of whether or not
the value is a name or a number or yes/no information, the value field exists to hold that type of
information.

12

constitutes the value.2

In addition, as noted above, the paragraph following the description of the four-part

data structure gives an example of a data token that retrieves the number of sectors per

cylinder, which explicitly has a four-part structure. Another subsequent example refers to

at least three parts of that structure: “For example, another token associated with that disk

element might be a disk manufacturer token that identifies the manufacturer as ‘Seagate.’

The value of the token in such an instance would be ‘Seagate.’” ’249 patent at 7:32-35. In

this example, the token name would be disk manufacturer, and the label or element

identifier would be the name of the disk, for example c01t10d0. While the patent does not

explicitly discuss a test name for this example, the test name would be the name for the

process used to retrieve the name, such as “get name,” as Professor Long persuasively

noted at the hearing. In other words, there is some type of operation or query by which the

name “Seagate” must be retrieved. Because this example immediately follows the

discussion of the four-part data structure, it utilizes a four-part structure, even though the

patentee was emphasizing the value component, i.e., the manufacturer name, in this

example.

The ’249 patent discusses yet another example of a token, stating:

An element can have a token defined that is the mathematical result of other
tokens. For example, a disk space free token is derived from a simple
subtraction from a disk used token and a total disk space token.

 Id. at 9:42-49; ’683 patent at 8:54-61. According to Sun, because the above mathematical

operation is so basic, there is no “test to be performed” and no “test output value”

generated. Smith Decl. ¶ 37. Thus, Sun contends that NetApp’s construction improperly

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

13

excludes this particular embodiment. While Dr. Smith argues that the basic mathematical

operation to be performed for those tokens defined as a subtraction of the values of two

other tokens does not generate a “test output value,” the specification does not support his

conclusion. Even a straightforward computer operation involving subtraction generates an

output and involves a subtraction “test” or method, albeit a simple one. In fact, NetApp’s

expert, Professor Long notes that a person of ordinary skill in the art would understand that

for a disk space free token, the test output value is the amount of free disk space

determined through the subtraction, and the test to be performed is the subtraction

operation. Long Reply Decl. ¶ 8. This is both logical and persuasive.

Another example of a token implementation involves tokens that are stored in a

hashtable, which is a particular type of lookup table:

In a preferred embodiment the tokens in token data base 207 are stored as a
hashtable to provide faster access to subsequent processing steps of building the
representation of the system. A hashtable is a common key/element pair storage
mechanism. Thus, for the token hashtable, the key to access a location in a
hashtable is the token name and the element of the key/element pair would be the
token value. . . . Token types are run against the test output indicated in the test
name in the token. For example token types having a test name parameter of
“df” are run against “df” test output.

’249 patent at 8:28-47; ’683 patent at 7:47-65. According to Sun, this portion of the

specification does not indicate that an “identifier of a test to be performed” is stored in the

hashtable. Sun argues that based upon the invention’s design, there would be no reason to

store an identifier of a test to be performed in the token database or hashtable, because at

this point in the process, the relevant data has already been collected and properly

associated with the correct element in the tree structure. Smith Decl. ¶ 39.

Sun’s arguments are not persuasive, however. The hashtable discussion expressly

repeats that the test name is part of the token. In addition, Sun is not really arguing that the

hashtable example is at odds with a four-part data structure. Rather, Sun seems to maintain

that the hashtable example has no need for all of the parts of the token that are in NetApp’s

definition. For example, while Sun’s expert agrees that varying information can be

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

14

associated with the hashtable, Sun notes that because a hashtable could contain only yes/no

information, this type of hashtable would not conform to the four-part structure. However,

as NetApp notes, yes/no information is itself a type of value. See footnote 2, above. In

sum, Sun’s argument regarding hashtables is at odds with the discussion of hashtable in the

specification, which discusses all four parts of the data structure and provides an

illustrative test name and test output. In addition, Sun’s own expert agreed that the

hashtable could have more than two elements. Hearing Tr. at 23.

Sun argues that other parts of the specification support its own proposed

construction. However, these portions of the specification actually reveal that Sun’s own

proposed definition is too general. For example, Sun notes that the abstract of the ’683

patent states that data segments that “are defined by respective token types are identified

and stored as tokens in a token data base. Each of the tokens has a value field holding a

value associated with the element and a parent field referring to an element with which the

token is associated.” See also ’249 patent abstract (noting that tokens are associated with

elements and give the elements value). At the hearing, Sun conceded that each token is

associated with an element, which is to say that it has a parent field, and Sun’s expert

stated that the invention requires a correlation between the element (i.e., parent field), and

the value (i.e., value field). The abstract, therefore, shows that, contrary to Sun’s proposed

construction, a token must have at least two components: a value field and a parent field

that refer to an element.

Sun also claims that the preferred embodiment description supports its definition, in

particular the statement that the system received incoming diagnostic data from a

monitored computer system and subsequently the test data “is processed by token

processing 211 to extract the information associated with hardware and software

components in the monitored system.” ’249 patent at 5:36-41; ’683 patent at 5:4-11. The

patent then notes that: “An element has tokens associated with it. Thus, a partition element

may have a disk percentage token, disk name token, and space available token associated

with it.” ’249 patent at 5:61-64; ’683 patent at 5:26-32. However, this latter excerpt

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

15

shows that “elements” may be associated with tokens, each token capturing different

aspects of the element, and the passage merely lists token types – it does not define the

term token itself.

Finally, Sun argues that the ’249 patent emphasizes the flexible and varying nature

of tokens. See Sun Opposition at 7 (quoting ’249 patent at 7:55-59; ’683 patent at 7:9-13)

(“The exact nature of the tokens and the total number of tokens will depend upon the

system that is being monitored”). Just because tokens may be flexible and variable,

however, does not mean that tokens do not share a common structure. The passages quoted

by Sun discuss examples of token types and the purpose of tokens, but these passages do

not provide a definition of token. In addition, the ’683 abstract refers to two different parts

of a token data structure, which is inconsistent with Sun’s proposed construction of

unstructured data. And, as NetApp notes, even though the abstract refers to certain parts of

a “token,” this reference does not provide a basis for disregarding the definition provided

by the specification. Cf. Honeywell, 488 F.3d at 990.

Turning to the prosecution history, NetApp contends that the applicant made a

statement during prosecution of the ’249 patent reinforcing the four-part definition of

token. Specifically, in response to the non-final office action filed on March 8, 1999, the

applicant stated: “For a description of elements and tokens, please see, for example, pages

9-13 of the specification.” See Nathan Decl., Ex. 5 at NAC0015585. NetApp argues that

this patent prosecution history is similar to that in Irdeto Access, Inc. v. Echostar Satellite

Corp., 383 F.3d 1295 (Fed. Cir. 2004), in which the Federal Circuit upheld the construction

of the term “group keys” based in part on the applicant’s statement during prosecution that

the term had no accepted meaning in the art, but that the meaning was described in the

specification. Id. at 1300, 1302-1303. The prosecution history here, however, does not

inform the analysis of this term, because the parties are not arguing about whether the

construction of “token” has an accepted meaning in the art apart from the specification, as

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

3 In Irdeto, the Court was addressing rejections based on indefiniteness. In response to the
examiner’s finding certain terms indefinite, the applicant stated that those terms were clearly defined
in the specification. During claim construction, however, the patentee tried to argue that the term had
an ordinary meaning in the art. The Court rejected this argument, relying on the prosecution history.
Id. at 1298, 1300, 1303. In contrast, here, the patentee cited to pages 9-13 of the specification
describing tokens and elements in order to overcome the examiner’s rejection of certain claims as being
unpatentable in view of prior art. The patentee was arguing that the description of elements and tokens
are different from prior art. See Nathan Decl, Ex. 5 at NAC0015585.

16

the parties argued in Irdeto.3 Irdeto merely indicates that the definition of “token” may be

found in the specification, but the parties here both agree that the specification defines the

term (although they disagree as to the claim term’s ultimate meaning).

Finally, according to Professor Long, all tokens must have the same number of

fields to be consistent with the defined computer science format so that the system will

work. Hearing Tr. at 57-58. While Sun’s expert noted that this argument presupposes a

four-part data structure, Dr. Smith did not dispute the fact that a computer system with a

defined format must use that format in order to work properly and avoid crashing.

Accordingly, the intrinsic evidence, most significantly, as well as the extrinsic evidence, on

balance supports NetApp’s proposed construction.

In sum, the Court finds that the token examples in the specification utilize a four-

part data structure. However, NetApp’s proposed construction is not entirely accurate for a

number of reasons. First, as noted above, the “test” associated with each token is not

necessarily a “test” in the normal sense. In other words, in computer language, this process

may be called a test, but this does not necessarily comport with common usage, as it would

likely be understood by a jury, so defining a token in this way could lead to juror

confusion. Rather, the test is really a method by which the value is generated or by which

the value field is populated. NetApp itself articulated the test as “deriving information

about the particular system for which you want to build a representation.” Hearing Tr. at

33. In addition, as Sun notes, the specification makes no reference to a test “to be

performed” on the “element,” as NetApp proposes in its construction. ’249 patent at 7:10-

15. In fact, the above example involving the subtraction of one token value from another

to determine free disk space does not involve a test performed on an element.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

17

Second, the portion of the specification relied upon by NetApp does not discuss a

“test output value.” Rather, it refers to a token having a value, which “provides a value

extracted from the diagnostic data that gives value to the element.” ’249 patent at 7:17-20.

Finally, the examples above make clear that the value field need not be populated, as

NetApp itself conceded that a value could be zero or blank, i.e., empty.

In sum, the Court proposes construing “tokens” as “a data structure consisting of a

name; an identifier of an element with which the token is associated; an identifier of the

method by which the value field may be populated; and the value field, which holds the

value associated with the element, which can include an empty value.” While this is a

proposed construction, the parties may only comment if they find a mistake or ambiguity in

the wording, as opposed to disagreeing with the Court’s reasoning, and they must do so

within ten days of the date of this Order.

2. “Computer System”

Disputed Claim Term: “Computer System” (’683 patent, claims 1, 2, 6, 11, 12, 16, 18,
19, 20, 23; ’249 patent, claims 1,2, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19)

NetApp’s construction Sun’s construction

A system containing one or more
computers coupled in a network.

A system that includes at least one computer
and that may contain a number of computers
coupled in a network.

The parties agree that this term should receive the same construction in all of the

claims of the ’683 and ’249 patents. See also Innova/Pure Water, Inc. v. Safari Water

Filtration Sys., 381 F.3d 1111, 1119 (Fed. Cir. 2004) (“Unless otherwise compelled, when

different claims of a patent use the same language, we give that language the same effect in

each claim.”). The parties also agree that a “computer system” contains one or more

computers. The parties disagree, however, on whether that system must always be

networked. The sole dispute involves the instance where the computer system includes just

one computer, and whether in that instance, that computer must be “coupled in a network.”

Sun concedes that a computer system containing multiple computers is coupled in a

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

18

network, but asserts that a system containing one computer need not be networked. In this

invention, there are two different aspects of networking. The monitored computer system

may be coupled to other monitored computers in that same system via internal connections.

In addition, the monitored system may be coupled to another computer system, e.g., the

monitoring computer system. The latter type of connection is at issue here. Sun maintains

that a single computer need not be connected to a monitoring system, while NetApp

contends that it must.

As an initial observation, the patent uses the phrase “computer system” rather than

the term “computer.” As NetApp notes, the specification uses the terms computer system

and computer differently. See, e.g., ’249 patent at 3:66-4:2 (“The monitored [computer]

system includes at least one computer and typically includes a plurality of computers.”).

NetApp argues that Sun’s proposal erroneously construes computer system, because Sun’s

construction defines a single-computer system as a “computer,” ignoring the “system”

language in the claim term. NetApp’s point is well taken.

NetApp’s main argument is that the claimed invention of the ’683 and ’249 patents

only makes sense if the computer system is connected or networked to other computer

systems. NetApp Op. Brief at 7:15-17. Turning to the claim language, NetApp is correct

that the majority of the claims require some type of communicating or monitoring between

computers. Independent claim 1 of the ’683 patent requires a first computer system that

communicates diagnostic data to a second computer system. The next independent claim,

claim 16, requires that the computer system be “monitored.” Independent claim 19 refers

to a monitoring computer system. Independent claim 25 requires a “monitored computer

system” and a “monitoring computer system.”

The independent claims of the ’249 patent, however, do not all contain this

communication language. See, e.g., claims 1-4 and 6-8 of the ’249 patent. Sun’s expert

notes that claim 7, for example, uses the term “general computer system.” Dr. Smith

argues that the fact that the monitored computer contains a network is irrelevant, as the

claim addresses what is contained in a modifiable static tree structure representing a

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

4 Similarly, the specification itself first outlines an embodiment describing the method for
providing a host state representing a state of the computer system and comparing alerts and generating
alerts. ’249 patent at 2:31-37. While this brief description in the summary of the invention does not
mention a monitoring system, again this embodiment is a method claim. The subsequent description
of another embodiment is for a monitoring computer system apparatus, which describes the hardware
for carrying out the previously described method. Id. at 2:54-60.

19

general computer system. Smith Decl. ¶ 48. However, Dr. Smith does not explain how the

claimed method would be able to represent the computer system without communicating.

In addition, all of these claims are method claims, which are not meant to spell out the

system structure.4 Furthermore, the ’249 patent incorporates by reference the ’683 patent,

which refers to monitoring in each independent claim, and independent claims 10 and 16 of

the ’249 patent require a “monitoring computer system.”

In addition, while a computer system generally is able to communicate, monitor, or

be monitored by another computer system, the claim language itself does not specifically

state a networking or a connection requirement. Rather, NetApp’s expert asserts that a

person of ordinary skill in the art would understand that the connection between these

systems is necessary for one to monitor another. Long Decl. ¶¶ 32-35. This conclusion is

logical and unrebutted, but since there is no explicit networking requirement in the claim

language, the Court turns to the specification.

NetApp correctly maintains that the specification shows that the “computer system”

of these patents must be connected to other computer systems. First, the titles of both

patents refer to remote monitoring and remote rebuilding of computer states, which require

a connection to the system being monitored. The claimed invention in these patents is

about remote monitoring, and therefore the computer system being monitored must be

capable of communicating in order to be monitored. The field of the invention notes that

the invention “relates to monitoring of computer systems.” ’249 patent at 1:20-24. In

addition, the background of the invention states that it is “commonplace today” for a

system to be part of a network, and that it would be “advantageous to provide a remote

monitoring diagnostic system.” ’249 patent at 1:57-60, 2:14-15; ’683 patent at 1:52-53,

2:9-10. The summary of the invention of the ’249 patent provides that “the present

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

20

invention provides a method, apparatus and computer program products to generate alerts

indicating predetermined conditions exist in a computer system,” id. at 2:28-30, and that a

person of ordinary skill in the art would understand from this description that a connection

is a required part of the computer system of the patents. Long Decl. ¶¶ 33, 35-38.

According to NetApp’s expert, such a system would not work without connections between

systems. Id. ¶ 38. Sun does not refute this point, and Professor Long’s conclusion that

connections between systems are required is persuasive.

In addition, the only embodiment disclosed in the specification includes a network

connecting the monitoring and monitored computer systems. See figures 1a and 1b of both

patents. In figure 1b, for example, even if one single computer were substituted for the

plurality of computers “coupled in a network,” that single computer would still be

“connected” to the monitoring system.

At the hearing, NetApp also argued that an inventor, Mr. Chu, conceded at his

deposition that the invention needs two systems. The inventor was discussing the term

“remote” in the title of the patent and what he understood it meant. He was not interpreting

the “computer system” phrase at issue as one skilled in the art would understand it. Sun

notes that Mr. Chu did not specify whether he was referring to the claimed invention

generally or to a preferred embodiment. While the Court may consider this inventor

testimony only insofar as it relates to how one skilled in the art would understand the term

“remote” in the context of remote monitoring, this testimony lends some further support to

NetApp’s assertion that even a single computer must be connected in such a way to allow

remote monitoring. See Howmedica Osteonics Corp. v. Wright Med. Techn., Inc., 540

F.3d 1337, 1346-47 n.5 (Fed. Cir. 2008) (inventor testimony may be pertinent as to

understanding the established meaning of particular terms in the relevant art, but inventor

testimony concerning the scope of the claims is irrelevant to construction).

Sun also contends that its proposed construction is supported by the specification.

However, Sun fails to distinguish internal versus external types of networking in its

analysis of the specification. Specifically, Sun maintains that the patents provide near-

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

21

verbatim recitation of its construction: “The monitored system includes at least one

computer and typically includes a plurality of computers 104, 106, 108, 110, and 112

coupled in a network as shown in FIG. 1b. . . . In exemplary computer system 100, which

includes one or more computers and associated storage areas, preferably coupled in a

network, incoming diagnostic data from monitored system 102 is received from modem

114” ’249 patent at 4:1-4:4, 4:9-13; ’683 patent at 3:44-46, 3:51-54. Sun argues that

the patents do not define computer system as including a single computer coupled in a

network, and in fact expressly state that a network connection is only a preference.

However, the above discussion of computers “coupled in a network” relates to the

connections between computers in a monitored system, as opposed to the connection

between a monitored computer system and the monitoring system. The specification

makes clear that regardless of whether or not the single computer system is coupled in a

network, that single computer must be able to receive incoming data “via email” or “direct

modem connection” or “other communication channels.” ’249 patent at 4:10-17. In sum,

the passages of the specification relied on by Sun merely state that the invention does not

require a network between multiple computers in a monitored system, but it is the external

type of connection between the monitored and monitoring systems that is in dispute here.

NetApp notes that this connection should be described as being “coupled in a

network,” as both parties use this phrase in their constructions and it is the term used in the

art to refer to connections between computers. Sun does not argue that another term like

“connected” should be used in lieu of “coupled in a network,” should the Court agree that

the disputed term requires connections between systems. Whenever computers

communicate, they are connected by a network. Long Decl. ¶¶ 33-35; see also Microsoft

Press Computer Dictionary at 327 (3d ed. 1997) (defining network as a “group of computer

and associated devices that are connected by communications facilities”) (Nathan Decl.,

Ex. 9 at NAC0109648). However, in light of potential jury confusion, and in light of the

difference between connections between the monitoring and monitored system, the Court

finds that using the phrase “coupled in a network” could mislead the jury. Rather, the

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

22

construction should make clear that where a computer system contains only one computer,

that computer must be able to communicate via email or a dedicated modem connection or

another communication channel to allow remote monitoring. See ’249 patent at 4:14-18.

In sum, NetApp is correct that the invention requires that even a single computer be

networked or otherwise able to communicate with a monitoring system. Otherwise, the

remote monitoring that is claimed would not be able to work. Sun does not tackle this

argument head on. Rather, Sun argues that NetApp confuses the meaning of a “computer

system” with the passing of information between two computer systems. Smith Decl. ¶ 49.

Dr. Smith notes that NetApp appears to be confusing the term “computer system” with the

need for the monitored computer system to communicate with the monitoring computer

system. Smith Decl. ¶¶ 47-49. However, Sun does not grapple with NetApp’s point that

the invention requires communication between the monitoring and monitored systems. In

addition, both parties’ constructions address the connections of the computers in the

computer system, and the Court finds it appropriate to address these connections in

construing this term. Accordingly, the Court construes “computer system” as: “A system

that includes at least one computer and that may contain a number of computers coupled in

a network. Even where a computer system contains only one computer, that computer

must be able to communicate via email or a modem connection or another communication

channel to allow remote monitoring.”

///

///

///

///

///

///

///

///

///

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

23

3. “Modifiable Tree Structure Including Elements in A Fixed
Hierarchical Relationship”/“Modifiable Static Tree Structure”

Disputed Claim Term: “Modifiable Tree Structure Including Elements in A Fixed
Hierarchical Relationship”/“Modifiable Static Tree Structure” (’249 patent, claims 1 and
10/claim 7)

NetApp’s construction Sun’s construction

A tree structure comprising elements,
which does not vary according to the
system being monitored, and which
can be edited by a user to add or
delete elements representing
hardware or software components on
a computer system.

A tree structure that can be modified and that
contains elements that are linked together in a
hierarchical relationship, where the relationship
does not change based on the systems being
monitored. (Claims 1, 10)

A tree structure that can be modified, but does
not change based on the systems being
monitored. (Claim 7)

The parties’ dispute regarding this proposed claim term has been somewhat of a

moving target. Originally, the parties’ dispute centered around the terms “tree structure”

and “modifiable.” NetApp took issue with Sun’s attempt to replace the term “tree

structure” with the broader term “hierarchy.” Because “tree structure” is another disputed

term not ripe for construction at this point in time, Sun amended its proposed constructions

to include the words “tree structure” (as does NetApp) in its construction instead of

embedding a definition of that term in the construction. The sole remaining dispute

concerns the term “modifiable” and whether that term requires that modifications be made

by a user, as NetApp maintains, or whether the modifications also may be implemented

through other means, as Sun maintains.

NetApp also contends that Sun’s proposed construction, which states that the tree

structure “can be modified but does not change,” appears contradictory and will confuse

the jury. At the hearing, Sun noted that NetApp’s construction would be acceptable so

long as the Court struck the phrase “edited by a user” and replaced it with “changed” or

“can be changed.” The Court agrees with NetApp that Sun’s proposed construction is

likely to confuse a jury, because the claim language “can be modified but does not change”

is unclear as to how a structure can be both modifiable and static at the same time. The

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

24

Court therefore focuses on whether or not to adopt NetApp’s proposed construction with or

without the user-editing requirement.

As noted above, Claim 1 of the ’249 patent provides:

A method comprising:
providing a host state representing a state of a computer system, the

host state being represented as a modifiable tree structure including
elements in a fixed hierarchical relationship, the elements being given
value by associated tokens, the elements and associated tokens representing
hardware and software components of the computer system and wherein the
tokens are extracted from diagnostic data from the computer system;

determining if predetermined conditions exist in the computer system
by comparing respective definitions of the predetermined conditions to the
host state; and

generating an alert if one of the predetermined conditions is
determined to exist.

’249 patent at 39:1-17. The reference to a modifiable tree structure also appears in claims

7 and 10 of the ’249 patent. These claims make no reference to a “user,” and the term

“modifiable” seems to be used in a general sense, which supports Sun’s construction, but

the claim language does not define the term, and is not particularly instructive here.

Turning to the specification, Sun relies on the following excerpt to show that the

specification discloses that a tree structure may be modified to add or remove elements

corresponding to hardware and software components in the computer system being

monitored, but does not place any restriction on who or what makes the modification:

The description of the static tree is exemplary. Another tree may be chosen
according to the system being monitored. Additionally, the static tree
may be modified to reflect hardware and software enhancements to
computer systems. The hierarchy tree definition is static in that it does not
vary according to the system being monitored. However, the hierarchy
tree can be edited in element hierarchy editor 215 to accommodate
additions and/or deletions from the hierarchy tree when for instance, a
new technology begins to be utilized in the monitored computer
systems.

’249 patent at 6:54-63 (emphasis added). Sun is correct that there is nothing in the

specification or claims requiring that such modifications be performed only by a user. This

portion of the specification makes clear that the “element hierarchy editor” is simply an

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

5 Both parties’ experts conceded that an “element hierarchy editor” requires that a user make
those edits. Therefore, as to this particular embodiment, a human user is required. At the hearing,
NetApp noted that the inventor Mr. Chu stated during his deposition that the editor needs to involve a
human user. However, the inventor was asked about the element hierarchy editor, which Sun concedes
requires a human user. This inventor testimony is irrelevant on the point of whether the term
“modifiable” always requires a human user.

25

embodiment, because it is described as “exemplary.”5 In addition, this “editor”

requirement is not in the abstract, or the summary of the invention, and is not described as

a necessary part of the invention. Therefore, the Court will not read this requirement into

the claim term. Cf. Liebel-Flarsheim Co. v. Medrad, Inc., 358 F.3d 898, 906 (Fed. Cir.

2004) (“Even when the specification describes only a single embodiment, the claims of the

patent will not be read restrictively unless the patentee has demonstrated a clear intention

to limit the claim scope using ‘words or expressions of manifest exclusion or restriction.’”)

(internal citation omitted).

Turning to the extrinsic evidence, Sun’s expert maintains that it is just as likely that

the supplier of the monitoring system would provide modifications to the static tree

structure through software or firmware updates, rather than only through user edits. Smith

Decl. ¶ 57. If a new hardware device is introduced into the marketplace – a CD-ROM, for

example – and the static tree needs to be modified to allow a representation of that new

device to be a part of it, the system could conceivably be programmed in such a way to

allow such modifications through automatic updates.

NetApp’s expert argues that “modifiable” must mean something more than

automatic updates, because all systems have automatic updates. Dr. Smith contested this

point at the hearing, noting that certain computer software components need to be sent to a

vendor for modification, for example. Professor Long countered that such unmodifiable

“software” is actually called firmware, which is no longer classified as software and is not

implicated in the patent at issue. Hearing Tr. at 90. The experts’ arguments are tangential.

The patent makes clear that the static tree, while static, can be modified to reflect hardware

and software enhancements. The use of the word “modifiable” in the claims focuses on the

effect of the modification, rather than the process of the modification. Because the term

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

26

“modifiable” is not used to describe the process, NetApp’s argument that the term

“modifiable” is redundant is not persuasive.

In sum, the Court adopts a hybrid of the parties’ constructions of the term

“modifiable tree structure including elements in a fixed hierarchical

relationship/modifiable static tree ” and construes the terms as: “A tree structure

comprising elements, which does not vary according to the system being monitored, and

which can be changed to add or delete elements representing hardware or software

components on a computer system.”

B. ’200 Patent

The ’200 patent relates to network management and is titled “distinguished name

scoping system for event filtering” and describes a “[m]ethod and system for allowing a

computer network operations manager to subscribe for and receive notifications concerning

network events from one or more objects or object levels, as defined by distinguished name

scoping, and optionally having at least one event characteristic from a selected list.” ’200

Patent abstract.

The parties originally disputed the meaning of the phrase: “To examine

[examining] the event communication to determine whether the event is associated with at

least one object or object level on a selected object list having at least one specified object

or object level.” The parties, however, have now stipulated to a construction. The Court,

therefore, adopts the parties’ stipulated proposed construction, and construes the phrase as

“to evaluate [evaluating] the event information received from a network device to

determine if the event information relates to any item on a selected list of one or more

network devices or network device levels.”

C. ’951 Patent

The ’951 patent is titled “device centric discovery and configuration for fabric

devices.” Fabric devices are contained in fabric networks, which are a type of storage area

network (SAN) that is capable of connecting a large number of network devices together.

’951 patent at 1:57-60. The networks may have multiple paths between any two devices.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

27

Id. Given the complexity of fabric networks, the patent describes a system for a host

computer to discover and configure devices on a fabric network. Id. at 1:8-10.

Specifically:

A host may be coupled to a fabric network. Fabric devices attached to
the fabric network may be visible to the host through one or more host
adapter ports. The host system may include a device centric discovery
interface configured to provide an interface to a fabric driver to obtain
information about the devices in the fabric network. The device centric
discovery interface may be configured to return device centric discovery
information such that a multi-path fabric device is presented as a single
device with transport information provided for each path to the
multi-path device. A device centric configuration interface may provide
an interface to the fabric driver for device centric configuration of the
devices in the fabric for use by the host such that a requested fabric
device is configured for use by the host on multiple paths in the fabric
network.

’951 patent abstract.

Claim 1 is a representative claim (disputed term is in bold):

1. A system, comprising:
one or more host adapter ports for coupling the system to a fabric network,
wherein one or more devices attached to the fabric network are visible to the
system through the one or more host adapter port;

one or more processors configured to execute:

a fabric driver configured to interface the system to the fabric network
through the host adapter ports; and

a device centric discovery interface configured to provide an interface to the
fabric driver to obtain information about the devices in the fabric network,
wherein the device centric discovery interface is configured to return device
centric discovery information such that a multi-path fabric device is presented
as a single device with transport information provided for each path to the
multi-path device.

Disputed Claim Term: “Discovery Interface” (’951 patent, claims 1, 3, 6, and 9)

NetApp’s construction Sun’s construction

A software module that receives
information directly from a fabric
driver and provides the information to
an application.

Software for discovering information about
devices on a fabric network and providing the
information in a specified format.

The parties have three main disputes: whether the language proposed by Sun –

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

6 The parties originally disputed whether the interface is “software” or a “software module.”
At the hearing, however, the parties agreed that the interface was “one or more software modules.”

7 These two types of discovery interfaces differ in the format of the information sent and
received through the interfaces. NetApp Op. Brief at 19, Sun Opp. Brief at 20.

28

“for discovering information about devices on a fabric network” – should be included in

the term’s construction; whether the term “discovery interface” requires a direct connection

to a fabric driver as proposed by NetApp; and whether the term should refer to an

“application” as proposed by NetApp or a “specified format” as proposed by Sun.6

Regarding the first issue, Sun argues that the patent specification consistently

describes discovery interfaces as providing the ability to discover information about the

devices on a fabric network. For example, the summary of the invention section notes that

device centric and transport centric discovery interfaces7 “may provide an interface to the

fabric driver to obtain information about the devices in the fabric network” and are

“configured to provide” such an interface. ’951 patent at 2:5-7, 21-24. See also id. at

6:50-52 (device centric discovery interface “may allow a user . . . to discover information

about fabric devices . . .”); 6:65-68 (interface to fabric driver may include transport centric

discovery interface “to provide fabric device discovery information”). While the

specification describes this function of a discovery interface, this language is duplicative of

the language already present in the claims. For example, claim 1 provides for “a device

centric discovery interface configured to provide an interface to the fabric driver to obtain

information about the devices in the fabric network.” Id. at 14:25-28. Claim 6 also

describes the discovery interface as one that obtains “information about the devices in the

fabric network.” Id. at 15:12-14. Claims 3 and 9 are dependant on claim 1. Therefore,

while Sun argues that NetApp’s construction is flawed due to its silence on this point,

Sun’s proposed description is redundant of language already present in the claims.

As to whether the term requires a direct connection, the claim language does not

indicate that such a connection is required. Claims 1 and 6 call for a “discovery interface

configured to provide an interface to the fabric driver,” which indicates that the fabric

driver is the object to which the discovery interface is connected. While one may infer that

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

this is a direct connection, the claim language by no means requires such an inference.

Turning to the specification, NetApp argues that the only examples in the

specification show interfaces that are connected directly to the fabric driver and receive

information directly from the fabric driver. In Figure 5, interface 503 contains discovery

interfaces 520 and 522, as well as interfaces 524 and 526. In that figure, interface 503 is

connected to fabric driver 504, and the figure depicts these connections with two arrows,

one going from interface 503 to the fabric driver, and one going from the fabric driver to

the interface. There is also an additional arrow pointing to the interface from the fabric

driver labeled “events.” The figure also shows a connection between interface 503 and

administrative application 502, depicted by two arrows pointing from interface to

application and vice versa. The written description describes interface 503 as providing

“an interface between the administration application 502 and the fabric driver 504.” ’951

patent at 6:37-39.

NetApp’s expert Professor Long maintains that a person of ordinary skill in the art

would understand from this statement that the discovery interface is connected directly to

the fabric driver and receives information directly from the fabric driver. Long Decl. ¶ 89.

However, Sun’s expert explains that one of ordinary skill in the art would conclude that the

arrows in the software architecture diagram in Figure 5 indicate a connection, but not

necessarily a direct connection between the connected components. Declaration of Dr.

Martin Kaliski ¶¶ 35-36. In other words, while the components are conceptually connected

and there is some mechanism by which the two components may communicate, the

components need not be directly connected. In fact, at the Markman hearing, Professor

Long himself conceded that the arrows in Figure 5 show that information flows in both

ways, but do not necessarily reveal a direct connection; rather, the arrows are ambiguous in

this respect.

The Court concludes that the specification does not require a direct connection.

The arrows in Figure 5 portray a general conceptual connection. In addition, only interface

503 – not the discovery interfaces contained in the subset of interfaces inside of it – is

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

shown as connected to the fabric driver in Figure 5. Moreover, the arrows between the

fabric driver and the interface are labeled events, indicating that the arrows show what is

being communicated rather than the physical means by which the communication is

accomplished. Finally, the description of Figure 5 states that the discovery interface “may”

provide or return information, revealing that this figure is just one embodiment of the

invention. See, e.g., ’951 patent at 6:46-65 (“discovery interface may return device centric

discovery information”, “discovery interface . . . may provide . . . discovery information”).

See also Liebel-Flarsheim Co., 358 F.3d at 906 (noting that even if the specification

describes a single embodiment, the claims of the patent are not to be read restrictively

absent clear intention to limit claim scope).

 Sun also points out that the specification provides an example of an interface that

does not provide such a direct connection: “the host system may include a fabric driver

configured to interface the system to the fabric network through the host adapter ports.”

’951 patent at 2:2-11. While this portion of the specification discusses interfacing more

generally as opposed to the “discovery interface” at issue, it indicates that the term

“interface” need not involve a direct connection, because in the example given, the fabric

driver is interfaced to the system, but is connected indirectly through host adapter ports.

Since NetApp argues that the plain meaning of the term “interface” implies a direct

connection as discussed below, this portion of the specification significantly weakens

NetApp’s position.

Sun also relies on the fact that the specification uses the term interface in the

context of a “user interface,” but these portions of the specification do not discuss whether

such an interface is direct. ’951 patent at 9:42-44, 10:1-3, 12:27-31. Sun’s expert Dr.

Kaliski notes that a user interface provides an interface between a user and an application,

but connects that user to the application indirectly via intermediate components, such as a

keyboard or mouse. Kaliski Decl. ¶ 30. This argument, while marginally helpful to Sun, is

somewhat attenuated since the specification is discussing a different type of interface and

does not focus on whether such an interface is directly connecting two things.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

31

In looking at the claim language and specification as a whole, Sun is correct that the

interface is not specifically described or defined as requiring a direct connection. See

Kaliski Decl. ¶ 25. The specification simply requires that information about devices on

fabric networks be discoverable, and indirect discovery is not explicitly ruled out. Id. The

patent, therefore, does not support NetApp’s argument for importing the term “directly”

into this claim phrase.

The parties also argue over the significance of a statement by the applicant made

during patent prosecution:

In the current Office Action dated November 12, 2004, the Examiner
states “it is clear that in the species of Fig. 4, the Fabric Driver (504)
communicates directly with the Administration Application (502)
whereas in the species of Fig. 5, the Fabric Driver (504) communicates
with the Administration Application (502) via a dedicated interface
(503).” However, the Applicant’s specification does not state that the
Fabric Driver (504) shown in Fig. 4 can only communicate directly with
the Administration Application (502). The phrases “communicates
directly” and “dedicated interface” used by the Examiner are not found in
the Applicant’s specification.

Williamson Decl., Ex. A (February 17, 2005 petition at 2-3) (emphasis in original). This

portion of the prosecution history is a side detour that is not particularly helpful, because it

involves Figure 4, which does not show the discovery interface, not Figure 5. NetApp

points out that the patent examiner determined that the systems shown in Figures 4 and 5

were patentably distinct species, and therefore mutually exclusive. Weber Decl., Ex. 2

(August 3, 2004 Office Action at 2). The Examiner then directed the applicant to chose

one of the two species for prosecution. The Examiner explained in the next office action

that he made this determination because Figure 4 showed a direct communication between

Fabric Driver 504 and Administrative Application 502, while Figure 5 showed

communication through Interface 503. Weber Decl., Ex. 3 (November 12, 2004 Office

Action at 2).

NetApp argues that applying the Examiner’s reasoning to Figure 5, the Fabric

Driver 504 must be directly connected to Interface 503, which includes the discovery

interfaces. NetApp’s argument is not persuasive for a number of reasons. First, as noted

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

32

above, the Examiner was discussing Figure 4, not Figure 5. Second, as Sun noted at the

hearing, while the Examiner at one point stated that the patentee had to choose between the

inventions claimed in the two figures, the Examiner nonetheless ended up allowing all

claims. The Examiner’s statements comparing the two figures, therefore, are largely

irrelevant. Third, Figure 5 has arrows labeled events between the interface and the fabric

driver, distinguishing it from Figure 4. Finally, the Examiner simply did not focus on

whether anything other than the interface could be contained in the communication channel

in Figure 5. If anything, this prosecution history supports Sun’s argument that there is no

requirement of a direct connection, as the applicant pointed out that such a phrase is not

included in the specification.

The parties also rely on a great deal of extrinsic evidence – namely dictionary

definitions – in support of their arguments. NetApp argues that the patent does not provide

a specialized meaning for the word “interface,” so the term is subject to the rule that “[i]n

general, words used in a claim are accorded their ordinary and customary meaning.” Cat

Tech LLC v. Tubemaster, Inc., 528 F.3d 871, 884 (Fed. Cir. 2008) (using standard

dictionary definitions to construe term) (internal citations omitted).

While NetApp’s argument hinges largely on the common meaning of “interface,”

the proffered definitions do not require NetApp’s construction. NetApp relies on a number

of dictionary and technical dictionary definitions generally defining “interface” as a

boundary: Webster’s New World College Dictionary 3rd ed. 1997, p. 704) (“a plane

forming the common boundary between two parts of matter or space”); The American

Heritage Dictionary (2nd College Edition 1991, p. 669) (“a surface forming a common

boundary between adjacent regions”); Microsoft Encyclopedia of Networking (2nd ed.

2002, p. 608-09) (“a mechanism for communicating between two devices” that “specifies

the nature of the boundary between two devices and determines the procedures and

protocols that make it possible for the devices to exchange data”). NetApp’s expert notes

that a person of ordinary skill in the art would understand that “just as a boundary is the

edge of an object, that an interface is directly connected to and directly communicates with

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

33

the object.” Long Decl. ¶ 87. However, as Sun notes, none of the proffered dictionary

definitions include the word “directly” or any similar requirement. In addition, Sun offers

its own secondary dictionary definitions that do not discuss a single boundary or direct

connection between two objects. See Webster’s New World College Dictionary (3rd ed.

1997, p. 704) (“a point or means of interaction between two systems”); Microsoft

Computer Dictionary (5th ed. 2002, p. 279) (“software that enables a program to work with

the user (the user interface, which can be a command-line interface, menu-drive interface,

or graphical user interface), with another program such as the operating system, or with the

computer’s hardware”).

The above definitions are not particularly helpful, as there is significant variation

between them. In addition, some of NetApp’s dictionary definitions apply to physical

interfaces, not software, as software is an intangible series of computer instructions – not a

physical object with a “surface,” nor one capable of forming a “plane.” Kaliski Decl. ¶ 34.

The parties agree that the discovery interface is a software interface. For this reason, Dr.

Kaliski maintains that one of ordinary skill in the art would not understand software to

include a boundary. Id. Professor Long disagrees with this conclusion, giving a few

examples of software interfaces that provide a boundary and direct connection. Long

Reply Decl. ¶ 22. But Professor Long’s opinion is significantly undercut by his concession

that there may be software between the discovery interface and the fabric driver in this

invention. Specifically, Professor Long stated that there could be “some steps in between

[the discovery interface and the fabric driver] provided by something else,” although he

noted that such steps or code provide no additional functionality or transformation of the

data. Hearing Tr. at 120-21. As Dr. Kaliski noted, Professor Long’s conclusion that an

interface requires a logical direct connection does not flow from NetApp’s proffered

dictionary definitions, which involve a physical connection. In fact, Professor Long

acknowledged that attributing physical characteristics to software does not make sense. Id.

at 120 (“physical-proximity requirement of instructions . . . doesn’t make any sense inside

a computer’s memory”). In sum, neither the intrinsic nor the extrinsic evidence supports

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

34

including a directness requirement.

Turning to whether or not the phrase should be construed as providing information

to an “application” or providing information in a “specified format,” NetApp notes that

Figure 5 shows that interface 503 (containing discovery interfaces 520 and 522) provides

information to administrative application 502, yet Sun’s proposed construction omits

stating that the discovery interface provides information to an application. Sun responds

that the proposed “application” requirement violates the doctrine of claim differentiation,

because independent claim 1 includes no reference to an “application,” but dependent

claim 3 includes the limitation “wherein the processor is further configured to execute an

application configured to request the device centric discovery interface to provide a list of

fabric devices attached to the fabric” ’951 patent at 14:38-43. However, claim 3

gives a much more detailed description of “application” – in fact, as NetApp points out, the

claim adds nineteen lines of additional requirements to those stated in claim 1. It does not

merely add a generalized “application” requirement. Therefore, reading this requirement

into the term’s meaning would not render the dependent claim superfluous. See

Sinorgchem, 511 F.3d at 1139-40 (characterizing doctrine of claim differentiation as the

“presumption that each claim in a patent has a different scope”).

The Court agrees with NetApp that Sun’s requirement that the discovery interface

provide information “in a specified format,” without stating what that format is, is

confusing. Sun argues that reference to the specific format is clear, because of the

surrounding claim language. Sun notes that the term “discovery interface” is prefaced by

either “device centric” or “transport centric” in the claims. ’951 patent at 14:24, 27, 41, 44,

15:10-11, 13, 26-27. Because these two types of discovery interfaces differ in the format

of device information, the claims require that the discovery interface provide the

information in a specified format, depending on the type of discovery interface. However,

since the claims already specify that format, see, .e.g., claims 13 and 21 referring to

“device centric format,” Sun’s proposed language is redundant and potentially confusing.

In sum, the Court adopts a hybrid of the parties’ constructions of the term

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

35

“discovery interface ” and construes the term as: “One or more software modules that

receive information from a fabric driver and provide the information to an application.”

D. ’305 Patent

The patent is titled “dynamic parity distribution technique.” The invention

involves redundant array of independent disks (“RAID”) technology, in which multiple

disks are aggregated into a single storage volume. The patent relates to storage of parity,

which essentially is redundant information used to correct mistakes. Specifically, the

patent describes:

A dynamic parity distribution system and technique distributes parity
across disks of an array. The dynamic parity distribution system includes a
storage operating system that integrates a file system with a RAID system.
In response to a request to store (write) data on the array, the file system
determines which disks contain free blocks in a next allocated stripe of the
array. There may be multiple blocks within the stripe that do not contain
file system data (i.e., unallocated data blocks) and that could potentially
store parity. One or more of those unallocated data blocks can be assigned
to store parity, arbitrarily. According to the dynamic parity distribution
technique, the file system determines which blocks hold parity each time
there is a write request to the stripe. The technique alternately allows the
RAID system to assign a block to contain parity when each stripe is
written.

’305 patent abstract.

Claim 1 is a representative claim (disputed term appears in bold):

A system adapted to distribute redundant information across disks of an
array, the system comprising: a storage operating system configured to
invoke storage operations executed by a storage system, the storage
operating system further configured to manage storage of information,
including the redundant information and data, on blocks of the disks in
response to disk access operations, the storage operating system including a
storage module adapted to compute the redundant information in response to
a layout of the data in stripes across the disks, the storage operating system
maintaining at least one unallocated block per stripe for use by the storage
module to store the computed redundant information, wherein the at least
one unallocated block used to store the redundant information is located in
any disk and wherein the location of the at least one unallocated block used
to store the redundant information is dynamically allocated in a non-fixed
pattern by the storage module before each write request is completed for
each stripe.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
8 At the hearing, Sun agreed to omit the words “data and” from its proposed construction.

36

Disputed Claim Term: “In a non-fixed pattern” (claims 1, 23-24, 33, 35-36, 39, 42, 44-
45, 51)

Sun’s construction NetApp’s construction

In such a way that the [data and]8

redundant information can be placed
within the stripe in any order.

In locations within the stripe that are not known
in advance.

The parties dispute whether the term “non-fixed pattern” has a physical or a

temporal connotation. Sun’s construction takes into account the order and location of the

placement of the information, while NetApp’s construction focuses on when the locations

are known.

Representative claim 1 requires that “the at least one unallocated block used to

store the redundant information is located in any disk.” Claim 1 at 12:18-20. While

NetApp argues that this language means that the location of redundant information (also

referred to as parity, which is a subset of redundant information) is not known in advance,

the plain meaning of “located in any disk” refers to location – more specifically, that the

parity can be stored in any disk. This language does not support a temporally-oriented

construction. In addition, the claim language separately contains a timing component, as

the claims require that the parity be dynamically allocated in a non-fixed pattern before

each write request is completed for each stripe. See, e.g., Claim 1 at 12:22-24. This claim

language further supports Sun’s construction, which refers to the physical location of the

parity, rather than NetApp’s, which refers to when the location is known.

Turning to the specification, Sun first notes that the abstract states that any

available block in a stripe can be used to store parity, and that the location of parity is

assigned arbitrarily within the stripe:

In response to a request to store (write) data on the array, the file system
determines which disks contain free blocks in a next allocated stripe of the
array. There may be multiple blocks within the stripe that do not
contain file system data (i.e., unallocated data blocks) and that could
potentially store parity. One or more of those unallocated data blocks
can be assigned to store parity, arbitrarily. According to the dynamic

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9 As NetApp notes, Figure 2 also illustrates this timing component via an order of steps. Figure
2 is a “flowchart illustrating a sequence of steps for distributing parity among disks . . .” The figure
demonstrates that the first step in assigning parity is to determine which disks contain free blocks, the
system then reserves as many free blocks as are required for the parity, identified the reserved blocks,
and then assigns the parity to the reserved blocks. See ’305 patent at Figure 2. While this flowchart
supports NetApp’s construction, the order of steps is discussed elsewhere in the claim.

37

parity distribution technique, the file system determines which blocks hold
parity each time there is a write request to the stripe. The technique
alternately allows the RAID system to assign a block to contain parity when
each stripe is written.

’305 patent abstract (emphasis added). The “Summary of the Invention” repeats the same

language. Id. at 3:61-4:3. The arbitrary selection of the parity location is recited again in

the context of the present invention. Id. at 6:24-37 (“In accordance with the present

invention, the dynamic parity distribution system and technique distributes parity across

disks of the array . . . There may be multiple blocks within the stripe that do not contain file

system data (i.e., unallocated data blocks) and that could potentially store parity . . . One or

more of those unallocated data blocks can be assigned to store parity, arbitrarily.”).

The above language, which clearly applies to the invention as a whole, supports

both parties’ constructions. The specification confirms that any unallocated data block can

be used to store parity, and that the location of parity is assigned arbitrarily within the

stripe. It also confirms that the file system waits to determine which unallocated block will

hold the parity until there is a write request to the stripe.9 However, as noted above, the

latter timing component is already contained in the claim language, which states that the

information is allocated before each write request is completed for each stripe. See, e.g.,

Claim 1 (“is dynamically allocated in a non-fixed pattern by the storage module before

each write request is completed for each stripe.”). In addition, this existing claim language

is clearer than NetApp’s proposed construction, which, in reciting “in advance,” does not

explain “in advance” of what.

In addition, in the context of one embodiment, the specification notes that any

available block within a stripe is a suitable candidate for either data or parity: “In the

illustrative embodiment, the file system maintains at least one unallocated block per stripe

for use by the RAID system. During block allocation, the file system provides an

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

38

indication to the RAID system of the unallocated block(s) to be used to store parity

information. All unallocated blocks on the disks of the array are suitable candidates

for file system data or parity. Notably, the unallocated block(s) used to store parity may

be located in any disk and the location(s) of the unallocated block(s) can change over

time.” Id. at 4:4-12 (emphasis added). The specification then states that the location of

parity within a stripe is determined arbitrarily, can vary from stripe to stripe, and is not

determined by the RAID configuration. Id. at 6:16-23. The specification repeats several

times that any unallocated block within a stripe can be selected to hold parity:

According to the inventive technique . . . During block allocation, the file
system provides an indication to the RAID system of the unallocated
block(s) to be used to contain parity information. All unallocated blocks
on the disks of the array are suitable candidates for file system data
or parity. Notably, the unallocated block(s) used to store parity may be
located in any disk and the location(s) of the unallocated block(s) can
change over time. Moreover, all blocks in a RAID group are available
for potential allocation, since parity is not held in fixed locations. In
practice, this means that all blocks, including those that were “hidden” in
the parity disk are available to the file system 160 for allocation in
volume block number space.

Id. at 8:37-49 (emphasis added). This portion of the specification specifically contains the

“fixed” location language. It strongly indicates that fixed location implies a physical

location, i.e., that the data or parity can be placed in any unallocated block in the stripe.

This language supports Sun’s construction and indicates that the term means something

more than NetApp’s construction, which fails to state that the redundant information could

be placed anywhere, so long as it is in an unoccupied block.

While NetApp argues that the “fact that parity is permitted to be stored in any

location within a stripe, does not mean that in every system, at all times, parity must be

stored on all of the disks,” NetApp Opp. at 5-6, Sun’s construction does not include such a

requirement. Rather, Sun proposes that the parity “can be placed within the stripe in any

order,” not that it must be. In so arguing, NetApp concedes that parity may be stored in

any location within the stripe. Its construction, however, omits this limitation, because it

allows the claims to read on systems in which parity cannot be placed on any unallocated

disk in the stripe. Sun gives the example that if a system permitted parity to be stored on

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
10 NetApp also argued that the system is designed to balance the load (see, e.g., ’305 patent

at 9:41-45) and that a completely random placement of parity does not make sense in the context of this
invention, but Sun’s construction does not require a completely arbitrary assignment.

39

disk 1 or 2, but not disks 3, 4, or 5, but did not know in advance if the parity would be

stored on disk 1 or 2, then such a system would satisfy NetApp’s proposed construction,

but would vitiate the patent’s central teaching that parity may be stored on any disk. While

NetApp argues that such a rule could not exist in the context of this patent, because the

patent claims themselves require that the parity be able to be placed on “any disk,” this

language is not contained in all of the patent claims. See, e.g., Claims 36 and 42.

NetApp also argues that the non-fixed pattern does not refer to data or redundant

information. However, as Sun notes, the claims themselves specifically refer to the

arrangement of redundant information and data. For example, claim 23 provides for “the

system of claim 1, wherein the non-fixed pattern is created by the redundant information

being stored in any block remaining after the data is allocated to blocks of the stripe.” The

“non-fixed” pattern refers to relative placement of data and redundant information within a

stripe. Sun’s original proposed construction, however, implied that the data blocks

themselves are ordered arbitrarily like the redundant information, which is not supported

by the patent. In fact, Sun itself concedes that its construction “does not require arbitrary

data block assignments,” but rather “simply refers to the relationship between redundant

information and data blocks – without requiring a particular ordering of blocks within a

stripe.” Sun Reply at 4-5. According to the patent, the parity is distributed in a non-fixed

pattern which depends upon placement of the preexisting data, as the parity is only placed

in unallocated blocks. A more accurate construction, therefore, would refer to placement

of redundant information “in such a way that the redundant information can be placed

within the stripe on unallocated blocks in any order.”

At the hearing, NetApp articulated its argument in a new way, stating that the

pattern is non-fixed with regard to the system as a whole, i.e., the patterns across the

stripes, but the pattern need not be arbitrary within a stripe.10 NetApp argued, as an

example, that the invention would encompass an algorithm which would store parity in

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

40

every third free block of the system. However, NetApp’s expert Dr. Gregory Ganger

conceded that when applied to an empty system, this algorithm would yield a system-wide

non-random pattern. Only after time, according to Dr. Ganger, would this pattern become

random, because the previously stored data itself would be changing and would exist in a

random pattern. But the patent requires that parity be permitted to be stored in any location

within a stripe, as NetApp concedes in its brief. Opp. at 5:27-28. The patent does not limit

this requirement to a mature system. Yet in the above example of an immature system,

under NetApp’s proposal, parity would be located in a fixed pattern across the stripes,

which the patent disavows.

As to the prosecution history, Sun argues that the applicants stated four separate

times to the PTO that the invention permits the placement of parity and data in any order in

a stripe. First, after the PTO rejected certain claims as being anticipated by the Patterson

reference, NetApp contrasted Patterson by stating that the applicant’s invention stores

parity data in the unallocated blocks in a stripe, and that the “unallocated blocks can

change with each stripe and do not follow a constant pattern.” Williamson Decl., Ex. E

(May 22, 2006 response to PTO) at 14. The PTO again rejected certain claims as being

anticipated by Patterson, and NetApp responded by adding the “dynamically allocated”

claim language and argued that “the storage operating system then selects at least one

unallocated block of the stripe to store redundant information. This allows for the

redundant information to be placed in any order, varying from stripe to stripe.” Id., Ex. F

(Oct. 23, 2006 response to PTO) at 13-14. In contrast, according to the applicant, Patterson

described a RAID system where parity information is stored in a rotating pattern. The PTO

again rejected claims as being anticipated, and NetApp responded on February 5, 2007.

NetApp responded by adding the “in a non-fixed pattern” language to the claims and

argued:

In further detail, Applicant’s invention allows the at least one
unallocated block used to store the redundant information is
dynamically allocated by the storage module before each write
request for each stripe in a non-fixed pattern. Before each stripe is
written across each disk, the storage module determines at least one
unallocated block to use for redundant information. Each unallocated

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

41

block is selected from the one or more blocks that are not already
allocated to data blocks. The storage operating system then selects at
least one unallocated block of the stripe to store redundant information.
This allows for the redundant information to be placed in any order,
varying from stripe to stripe because there is no fixed pattern.

Williamson Decl., Ex. G (Feb. 5, 2007 response to PTO) at 13-14 (emphasis in original).

The PTO rejected the claims again as being anticipated, and NetApp moved the location of

the “a non fixed-pattern” language in the claims and argued that the invention allows “the

at least one unallocated block used to store the redundant information is dynamically

allocated in a non-fixed pattern by the storage module before each write request is

completed for each stripe.” Williamson Decl., Ex. H (June 28, 2007 response to PTO) at

16-17.

The PTO issued its Notice of Allowance on September 7, 2007, and in his reasons

for allowance, the Examiner stated: “The prior arts . . do not teach . . . a method, system,

program and an apparatus that in which at least one block is dynamically

assigned/allocated in a non-fixed pattern (in any disk) for storing the parity/redundant

information/data before completing each write request for each stripe.” Williamson Decl.,

Ex. I (Sept. 7, 2007 Notice of Allowance) at 5 (emphasis in original).

The Notice of Allowance, therefore, shows that the Examiner expressly identified

as a point of novelty that the redundant information is stored in a non-fixed pattern that can

be on any [unallocated] disk on which the stripe is written in any order. The Examiner also

identified as a point of novelty that this dynamic assignment/allocation occurs before each

write request for each stripe is completed. However, as discussed above, this latter timing

requirement is already included in the claim language.

In response to this prosecution history, NetApp argues that the applicants’

statements to the PTO must be read in context. But the prosecution history cited above

includes the portions relied upon by NetApp and teaches that redundant information may

be placed in any order on any disk. The prosecution history, therefore, supports Sun’s

construction.

In sum, Sun’s construction, with minor adjustments, is more appropriate. NetApp’s

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

42

construction only addresses the timing of when locations in the stripe are known, which is

already addressed by other parts of the claim language, and fails to discuss the physical

placement of the redundant information. For these reasons, the Court construes “non-fixed

pattern” as “in such a way that the redundant information can be placed within the stripe on

unallocated blocks in any order.”

E. ’152 Patent

This patent relates to the use of groups and is titled “consistent logical naming of

initiator groups.” The invention describes:

A technique enables efficient access to logical unit numbers (luns) or
virtual disks (vdisks) stored on a storage system, such as a multi-protocol
storage appliance. The technique allows a grouping of initiators by a
“human-friendly” logical name that is mapped to a lun or vdisk on the
storage appliance. The initiators are clients operating in, e.g., a storage
area network (SAN) environment that initiate requests for the vdisk using
block-based access protocols, such as the Small Computer Systems
Interface (SCSI) protocol encapsulated over TCP/IP (iSCSI) or over fibre
channel (FCP). The technique enables access to the vdisk by all initiators
that are members of the initiator group (igroup). An igroup is a logical
named entity that is assigned to one or more addresses associated with one
or more initiators. These addresses may comprise fibre channel (FC)
world wide name (WWN) or iSCSI name identifiers (IDs). Therefore,
rather than having to specify these IDs when desiring access to a vdisk, an
initiator need only specify the human-friendly name of the igroup.

’152 patent abstract. A main advantage of this invention, therefore, is that an “igroup” may

be used to provide convenient access to a vdisk obviating the need for more cumbersome

identifiers.

Claims 8 and 25 are representative claims and provide:

Claim 8. A storage operating system configured to enable efficient access to a
virtual disk (vdisk) stored on a storage device of a storage system, the storage
operating system comprising: a user interface adapted to receive commands
that create an initiator group (igroup) of initiators and map the vdisk to the
igroup, the commands specifying a user selected igroup name, addresses of
the initiators and a logical unit number (lun) identifier (ID) assigned to the
vdisk; a file system configured to provide volume management capabilities
for use in block-based access to the vdisk stored on the storage device; a vdisk
module that cooperates with the file system to bind the user selected igroup
name to the initiator addresses; and a small computer systems interface (SCSI)
target module that cooperates with the vdisk module to map the user selected
igroup name to the vdisk, the SCSI target module implementing a mapping
function that allows the vdisk to be exported to the initiators of the igroup.

Claim 25. A method for faster access to a virtual disk (vdisk) stored on a

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

43

storage system, the method comprising: grouping one or more clients into an
initiator group (igroup) entered through an interface, where the one or more
clients initiate a request for the vdisk using a blockbased access protocol;
selecting a selectable name for the igroup, where the igroup is a logical named
entity that is assigned to one or more addresses associated with the one or
more clients; and mapping the vdisk to the user selected name for the igroup
to allow the one or more clients to access the vdisk using the selectable name.

Disputed Claim Term: “Initiator group (igroup)” (claims 2, 8, 18, 21, 25, 26, 29, 33)

Sun’s construction NetApp’s construction

A logical named entity with a human-
friendly name that is assigned to one
or more addresses associated with one
or more initiators. Membership in the
entity can be modified at any time by
adding or removing initiators.

This term does not need to be construed
because its plain meaning suffices and this term
is already clearly defined in the body of the
claims at issue. If the Court determines that this
term requires construction, it should be
construed to mean “a named set of one or more
addresses of clients that can initiate requests.”

The parties dispute whether or not the claim term needs construction in the first

instance. Insofar as the Court agrees that the term needs construction, the parties’

constructions present two main disputes: whether an igroup must have a human-friendly

name, and whether an igroup must be capable of being modified by adding or removing

initiators. Sun contends that igroups must have these characteristics.

As to the first issue, NetApp notes that the claims already define “igroup.” Claim

25, cited above, describes “selecting a selectable name for the igroup, where the igroup is a

logical named entity that is assigned to one or more addresses associated with the one or

more clients.” NetApp argues that this definition of igroup – “a logical named entity that is

assigned to one or more addresses associated with the one or more clients” – is sufficient

and complete because it explains that an igroup is assigned to one or more clients and the

igroup is itself named, which permits the benefit described in the patent of referring to the

igroup by its name, eliminating the need to refer to individual clients. However, as Sun

points out, this definition is not included in all of the claims in which the term appears, see,

e.g., Claim 8, which could mean that the term as it is used throughout the claims has a

different meaning than the definition set forth in certain specific claims.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 11 Here, unlike in Sinorgchem, the patentee did not set off the term “igroup” in quotation marks,
which are an indicator of an explicit definition.

44

NetApp relies on TIP Systems, LLC v. Phillips & Brooks/ Gladwin, Inc., 529 F.3d

1364, 1369 (Fed. Cir. 2008), noting that the Federal Circuit upheld the District Court’s

construction where it relied “heavily on the claim language to construe the claim term.” In

that case, the court’s construction was “supported by an identical definition in the

specification.” Id. Here, too, the specification states: “An igroup is a logical named entity

that is assigned to one or more addresses associated with one or more initiators.” ’152

patent at 2:42-45. The use of the word “is” in the specification may “signify that a patentee

is serving as its own lexicographer.” Sinorgchem Co. v. ITC, 511 F.3d 1132, 1136 (Fed.

Cir. 2007) (citation omitted).11 TIP Systems is somewhat distinguishable, however, as

appellant there was arguing for a construction that was contrary to the express language in

the claim and specification, while Sun’s proposed definition would supplement (with

additional limitations), rather than contradict, the definition contained in the specification

and the claim. See 529 F.3d at 1369. Despite this distinction, the Federal Circuit’s

analysis supports NetApp’s proposed construction, but the Court turns to other portions of

the specification for further guidance.

Sun argues that the summary of the invention requires the human-friendly

limitation. See C.R. Bard, Inc. v. U.S. Surgical Corp., 388 F.3d 858, 864 (Fed. Cir. 2004)

(“Statements that describe the invention as a whole, rather than statements that describe

only preferred embodiments, are more likely to support a limiting definition of a claim

term Statements that describe the invention as a whole are more likely to be found in

certain sections of the specification, such as the Summary of the Invention.”). The

summary of the invention begins:

The present invention overcomes the disadvantages of the prior art by
providing a technique that enables efficient access to logical unit numbers
(luns) or virtual disks (vdisks) stored on a storage system, such as a
multi-protocol storage appliance. The technique allows a grouping of
initiators by a "human-friendly" logical name that is mapped to a lun
or vdisk on the storage appliance. By "human-friendly" it is meant,
generally, a hierarchical naming convention that may use a spoken language
name including an arbitrary label selected by a user or administrator. . . .

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

45

The inventive technique enables access to the vdisk by all initiators that are
members of the initiator group (igroup). An igroup is a logical named entity
that is assigned to one or more addresses associated with one or more
initiators. These addresses may comprise fibre channel (FC) world wide
name (WWN) or iSCSI name identifiers (IDs). Therefore, rather than
having to specify these IDs when desiring access to a vdisk, an initiator
need only specify the human-friendly name of the igroup.

’152 patent at 2:26-48 (emphasis added).

The summary then states: “According to the invention, the technique includes a

method of creating logical igroups of initiators, each identified by a human-friendly

name or label, and binding of each created igroup to one or more WWN or iSCSI IDs.”

Id. at 2:49-52 (emphasis added). The abstract, excerpted in the above description of the

’152 patent, also discusses the human friendly name, noting that the technique of the

invention allows a grouping of initiators by a human friendly logical name, so that an

initiator need only specify the human friendly name of the igroup when desiring access to a

vdisk.

The detailed description portion of the specification further states:

The present invention relates to a technique that allows a grouping of
initiators by a "human friendly" logical name that is mapped to a lun or
vdisk stored on the multi-protocol storage appliance to thereby enable
access to the vdisk by all initiators that are members of the initiator group
(igroup). As used herein, a "human friendly" logical name is an arbitrary
label selected by the user of administrator that may be a spoken name, a
path designation or include a hierarchical naming convention. An
exemplary human friendly name would be "administrators" for a name of
an igroup that comprises the administrators of a given network.

Id. at 10:36-47. See also id. at 10:54-58 (rather than having to specify certain name

identifiers when desiring access to a vdisk, “an initiator need only specify the human

friendly name of the igroup”); id. at 12:17-21 (“According to the invention, the novel

technique includes a method of creating logical igroups of initiators, each identified by a

human friendly name or label”).

Sun argues that each of these statements in the specification establishes that the

invention itself, not merely a preferred embodiment, consists of an igroup with a human

friendly name. However, the specification also makes clear that the term “human friendly”

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

46

does not mean user-friendly as perhaps a juror would understand the term. Rather, it has a

specific meaning, which is a “hierarchical naming convention that may use a spoken

language name including an arbitrary label selected by a user or administrator” or “an

arbitrary label selected by the user of [sic] administrator that may be a spoken name, a path

designation or include a hierarchical naming convention.” ’152 patent at 2:32-35, 10:36-

47. A path designation, for example, is often not a simple English, user-friendly name.

Therefore, at a minimum, if the construction contains the “human friendly” limitation, it

must also define that term so as not to confuse a jury.

In addition, as NetApp’s expert points out, the specification discusses “allowing”

grouping initiators by a human friendly name, suggesting that their use is not required.

Ganger Decl. ¶ 34. However, as Sun notes, the phrase “allow” is not used in every

instance cited above. In addition, despite using the word “allow” in some instances, the

specification still seems to be describing the nature of the invention as a whole. “Human

friendly,” therefore, seems to be part of the definition of “igroup.” The claim language and

specification, when taken together, show that the claimed invention, at a minimum, permits

a human friendly name for igroups.

 NetApp also argues that the claim language and its history reveal that the “human

friendly” limitation is not a requirement of the invention. The claims themselves never

mention “human friendly,” and instead only require that an igroup name be “selectable.”

See, e.g., ’152 patent at 18:7 (Claim 25). Dr. Ganger notes that the claims used to contain

the term “human friendly,” but were amended to “user selected,” which was then changed

to “selectable.” Ganger Decl. ¶ 34. In other words, “human friendly” was explicitly

removed from the claims, which is strong evidence that the limitation should not be

imported into the construction. When the applicant filed the application for the ‘152

patent, some of the original claims (e.g., independent claims 1 and 6, which became 8)

included the term “human-friendly.” See Weber Decl., Ex. 9 (U.S. Patent Application) at

NAC0000940-44. Others (e.g., independent claims 16 and 19, which became claims 18

and 21, respectively) instead simply used the phrase “initiator group (igroup) name.” Id.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

47

To one of ordinary skill in the art, this history would have indicated that, for some claims, a

human-friendly name was required for the initiator group and, for others, it was not.

Further, in the April 4, 2006 amendment, the applicant changed several occurrences of

“human-friendly” in the claims to “user selected,” explicitly removing the human-friendly

name requirement from the subset of claims that originally included it. Weber Decl., Ex.

10 (April 4, 2006 Amendment) at NAC0001656-63. The applicant later changed two

instances of “user selected” to “selectable.” Weber Decl., Ex. 11 (August 25, 2006

Amendment) at NAC0001683-91. Ganger Decl. ¶ 34. The patent prosecution history,

therefore, indicates that the human friendly limitation may be a permissive limitation, but

is not a requirement of the invention.

The Federal Circuit’s analysis in Liebel-Flarsheim Co. v. Medrad, 358 F.3d 898

(Fed. Cir. 2004), sheds some light on the meaning of the specification and the prosecution

history here. In Liebel-Flarsheim, the Federal Circuit considered the scope of claims in

patents related to fluid injectors used during medical procedures. Id. at 900. The Court

found that the language in the patent abstract did not suggest that a pressure jacket was an

essential component of the invention, nor was there language in the specification that

disclaimed the use of the invention in the absence of a pressure jacket. Id. at 908 (where

abstract stated that an injector and method of replacing the injector was provided “in which

the syringe is loadable and unloadable into and from the injector through the open front

end of a pressure jacket of the injector,” and the summary of invention stated that

“according to the principles of the present invention, there is provided an . . . injector

having a front end loadable syringe that can be loaded into and removed from the injector

pressure jacket . . .”). The present case is in a somewhat different posture, insofar as the

patent here distinguishes prior art on the basis that it required specifying various name

identifiers when desiring access to a vdisk, unlike the igroup. See ’152 patent at 2:26-48.

Therefore, the specification in the present case provides somewhat stronger evidence for

limiting the claim term than did the specification in Liebel-Flarsheim.

However, in Liebel-Flarsheim, the patent applicants specifically replaced claims

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

48

with references to a pressure jacket with a new set of claims, many of which omitted that

limitation. Id.at 909. This prosecution history is quite similar to that of the ’152 patent.

The Federal Circuit noted that the replacement was a “strong indication that the applicants

intended those claims to reach injectors that did not use pressure jackets.” Id. (emphasis

added). While the prosecution history in that case contained an explicit statement of

intention (lacking in this case), as applicants stated that there was not necessarily a pressure

jacket in the amended claims, id., in the present case, the omission of the “human friendly”

term from the claims (and replacement of that term with “user selected” and then

“selectable”) provides similarly strong evidence that the applicant intended to broaden its

claims.

After examining the patent prosecution history, the Liebel-Flarscheim Court noted

that “[t]he only remaining question is whether the applicants failed in their effort and the

pressure jacket limitation remained a part of all of the claims, even those from which the

reference to the pressure jacket had been removed.” Id. The Court, however, was

unpersuaded by that argument, especially in light of the express statement in the

prosecution history. Finally, the Federal Circuit also held that “[t]he fact that a patent

asserts that an invention achieves several objectives does not require that each of the

claims be construed as limited to structures that are capable of achieving all the

objectives.” Id. at 908. Similarly, here, there are multiple objectives of the invention, and

each claim need not achieve all of them. Applying Liebel-Flarscheim’s analysis to the

present case, the Court finds that the prosecution history, when read with the specification

and claim language, indicates that igroups may, but need not, have a “human friendly”

name.

As to the second issue – whether an igroup must be capable of being modified by

adding or removing members from the group – Sun argues that an igroup cannot be static

and must be capable of modification. According to Sun, NetApp’s construction would

permit an igroup that is incapable of being modified once it is created.

The claim language does not require or mention this “modification” characteristic.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

49

The parties’ arguments primarily hinge upon the specification. NetApp notes that the

summary of the invention contains a definition of igroup, which omits any reference to

being modifiable. The summary states: “An igroup is a logical named entity that is

assigned to on or more addresses associated with one or more initiators.” ’152 patent at

2:42-45. Sun argues that the summary of the invention also supports its proposed

construction, citing the following portion of the summary:

An igroup has certain attributes, such as transport protocol type and operating
system type of the member initiators. Illustratively, the igroup need not be
homogeneous in terms of these attributes, i.e., an igroup can contain initiators
having different combinations of FCP and/or iSCSI as a transport. For
example, iSCSI and FCP initiators can be combined into a single igroup. In
addition, igroup can support various operating system initiator members. This
allows operations, such as graceful rolling upgrade of a FCP SAN cluster to
an iSCSI cluster, with no application downtime. Moreover, membership of the
igroups can be modified at any time, i.e., initiators can be added to or
removed from an igroup and, as a consequence, inherit or lose the mappings
of the igroup, respectively.

’152 patent at 2-64-3:10. See also id. at 3:16-20 (“e.g., when replacing an initiator in a

client”), 15:18-22 (same); 14:29-33 (discussing illustrative embodiment, noting “[i]n

addition, membership of the igroups can be modified at any time, i.e., initiators can be

added to or removed from an igroup.”).

NetApp argues that the above paragraph makes clear that the listed features,

including the modifiable feature, are examples, as the paragraph uses the terms

“illustratively” and “for example.” However, the word preceding the modifiable

discussion is “moreover,” which means in addition to what has been said. Thus, the

paragraph is ambiguous as to whether or not the “modifiable” feature is a necessary aspect

of the igroup, or is merely an example of a characteristic of an igroup. But it is clear that

the modifiable feature is just one of the many listed attributes.

Sun notes that NetApp does not challenge the facts that: (1) there is no teaching in

the patent of a static igroup, and (2) the teaching of the patent is to the contrary. At the

hearing, however, the parties discussed whether or not the patent contained an example of

an igroup that was not capable of being modified. NetApp noted that the address change

example in the patent involves an igroup that is associated with multiple vdisks and is not

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

50

modified. When the initiator that is bound to the igroup is replaced, only the initiator

address is changed. Therefore, the initiator address, as opposed to the igroup itself, is

modified, which requires no additions, changes, or deletions to the igroup itself. See ’152

patent at 14:34-60. The address change example, therefore, weighs slightly in favor of

NetApp’s construction, because it is an example in which the igroup does not change and

the membership itself is not modified.

Sun also relies on extrinsic evidence, noting that the term “group” has a well-

understood meaning in computer science consistent with its construction, as it is well-

understood by those of ordinary skill in the art that groups can be modified by adding or

removing members of the group. Declaration of Dr. Scott Brandt ¶ 49. Conversely, a

single-member set that is incapable of adding or removing members would not be

considered to be a group. Id. ¶ 50. Dr. Ganger, however, contests this point, noting that to

one of ordinary skill in the art, a “group” is simply a named set of one or more things (its

members). While groups usually allow modification of membership, this feature is not a

definitional aspect. Also, neither the Microsoft computer dictionary definition nor the BSD

book excerpt provided by Sun’s expert Dr. Brandt mentions that groups are modifiable.

See Ganger Decl. ¶ 36; Brandt Decl. ¶¶ 48-49 & Ex. 3. Accordingly, the Court does not

find Dr. Brandt’s opinion to be persuasive and does not find that an igroup must be capable

of being modified.

In sum, the Court construes the term “initiator group (igroup)” as “a logical named

entity that may have a human friendly name assigned to one or more addresses associated

with one or more initiators. As used in the patent, ‘human friendly name’ means an

arbitrary label selected by the user or administrator that may be a spoken name, a path

designation or include a hierarchical naming convention.”

F. ’351 and ’097 Patents

The patents are each titled “enforcing uniform file-locking for diverse file-locking

protocols.” The ’097 patent is a continuation of the ’351 patent. They share the same

specification and are directed to the same file-locking technology. For convenience, the

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
12 The patent sometimes refers to “file-locking” and sometimes refers to “file locking.” Since

this discrepancy appears to be a distinction without a difference, the Court uses the hyphenated version
of the term throughout this opinion.

51

Court largely cites to the specification of the ’351 patent only.

These patents address the issue that arises when more than one client accesses the

same file on the file server at the same time. The technique relevant to the patent is

locking, in which applications synchronize by acquiring locks from the file server. The

invention is geared to allow file and data-sharing among clients that use diverse or

incompatible file-locking protocols. Specifically:

The invention provides a method and system for correct interoperation of
multiple diverse file server or file -locking protocols, using a uniform
multi-protocol lock management system. A file server determines, before
allowing any client device to access data or to obtain a lock, whether that
would be inconsistent with existing locks, regardless of originating client
device or originating protocol for those existing locks. A first protocol
enforces mandatory file-open and file-locking together with an
opportunistic file-locking technique, while a second protocol lacks
file-open semantics and provides only for advisory byte-range and file-
locking.12

’351 patent abstract.

Claims 1 of the ’351 and ’097 patents are representative independent claims. Claim

1 of the ’351 patent provides (disputed terms in bold):

A method of operating a file server, said method including steps for
enforcing a uniform file-locking semantics among a set of client devices
using a plurality of diverse file-locking protocols, said file server
implementing said plurality of diverse file-locking protocols and enforcing
said uniform file-locking semantics for said plurality of diverse file -
locking protocols;
wherein said uniform file-locking semantics includes steps for granting an
opportunistic lock on a selected file to a first said client device in response
to a first message using a first protocol;
and breaking said opportunistic lock in response to a second message using
a second protocol;
wherein the first protocol and the second protocol are ones of said plurality
of diverse file -ocking protocols.

Claim 1 of the ‘’097 patent provides:

A method of enforcing uniform locking semantics among a set of client
devices that use a plurality of diverse locking protocols, comprising the

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

13 NetApp concedes that the preambles in which the term appears are limiting. NetApp also
abandoned its argument that the term need not be construed at all.

14 The bracketed portions of NetApp’s construction apply to “uniform file-locking semantics”
but not to “uniform locking semantics.”

52

steps of:
granting an opportunistic lock on a selected data set to a first client device
in response to a first message using a first protocol; and
breaking said opportunistic lock in response to a second message using a
second protocol;
wherein the first protocol and the second protocol are different ones of said
plurality of diverse locking protocols.

1. “Uniform file-locking semantics”/”Uniform locking semantics”

Disputed Claim Term: “Uniform file-locking semantics”/”Uniform locking semantics”
(’097 patent claims 1, 5, 14, 27, 31, 40, 53, 57, and 66; ’351 patent claims 1, 2, 6, 9-11,
13-16, 18, 38-39, 42, 44, 47-49, 51-54, 56, 76-77, 82, 85-87, 89-92, 94, 114)

Sun’s construction NetApp’s construction

“A set of lock modes, each combining
an access mode and a deny mode,
into which lock requests from
multiple protocols are translated.”
Sun further contends that the
preambles in which this term appears
are limiting.13

“[A] set of [file-] locking rules that can be
applied in the same way to requests using
diverse [file-server or file-] locking
protocols.”14

The dispute centers on whether the semantics are lock modes, which must have an

access mode and deny mode as Sun contends, or whether uniform file-locking semantics

are rules that are applied in the same way to diverse protocols, as NetApp contends.

NetApp argues that the claims show that “uniform [file-] locking semantics” are rules, not

lock modes. As NetApp notes, claim 1 provides that the uniform file-locking semantics

include a list of steps for taking particular actions in response to particular requests. The

rules in this claim, according to NetApp, are that the system will grant an opportunistic

lock in response to a message using the first protocol, and break the lock in response to a

message using the second protocol. ’351 patent at Claim 1. The rules allow clients using

different protocols to work together to access the same data without corrupting it. Ganger

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

15 NetApp also notes that U.S. Patent No. 5,668,958, cited on the face of both patents, states:
“The API also comprises the rules or semantics of behavior of the file system i.e. the effects of various
file system requests on objects in file system repository.” Sun argues that this merits less weight than
evidence of the patentee’s own words. It is also is unclear whether or not the semantics are more
properly categorized as rules or effects in the ’958 patent. Therefore, while this reference in the ’958
patent mildly supports NetApp, it is not particularly persuasive.

53

Decl. ¶ 45.

This claim language strongly indicates that the semantics are a set of rules

composed of certain predetermined steps that mandate certain responses to certain events.

While Dr. Brandt claims that these actions taken by the file server are functions or actions

taken by that server, rather than a set of rules, see Supp. Brandt. Decl. ¶ 23, requiring a

certain action in response to a given event is more accurately characterized as a “rule” as

NetApp argues, as opposed to a function. Claim 1, for example, discusses “steps for

enforcing a uniform file-locking semantics.” The semantics are the rules that are

“enforced” in order to mandate certain actions in response to certain events. In addition,

the use of the word “enforce” in the patent title and in the patent abstract indicates that the

semantics are rules. The steps outlined as the uniform locking semantics cannot be

accurately described as merely a “set of modes,” as Sun argues.15

Turning to the specification, the patent generally contemplates translating the

various types of lock requests received from the file server protocols into uniform file -

locks, each containing an access mode and a deny mode:

The file server 110 uses a uniform file-locking semantics so as to model file-
locking aspects of any requested operation from any file server protocol in
the same way. The uniform file-locking semantics identifies a uniform set of
file -locks, each including an access-mode for the requesting client device
130 and a deny-mode for all other client devices 130.

’351 patent at 7:38-44.

NetApp argues that this aspect of the preferred embodiment shows that the

“uniform file-locking semantics” identifies the “uniform set of locks,” but the former is not

equated with the latter. Ganger Decl. ¶ 47. In addition, the uniform file-locking semantics

model file-locking in the same way, i.e., uniformly, for any protocol, according to Dr.

Ganger. The uniform file-locking semantics do so by providing uniform rules regarding

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

16 The background of the invention explains that in the prior art, there are multiple diverse file
server protocols, each with differing semantics for file operations. The NFS protocol does not provide
semantics for file-locking. The CIFS protocol has an extensive mandatory file-locking semantics. And,
while NFS is often augmented by a NLM protocol, NFS treats NLM locks as advisory only.

54

locking, including (1) how requested lock modes are determined for any request from a

client using any particular protocol and (2) how requested lock modes are compared to

existing lock modes to decide whether to allow or deny a given request. Ganger Decl. ¶

47. The Court agrees with NetApp, as the above passage demonstrates that the locking

semantics are not the same as lock modes. Rather, the semantics identify a set of file -

locks, which include certain modes (access and deny modes). These semantics are a set of

rules or commands that can be applied in the same way to different requested operations.

Dr. Brandt argues that the same passage shows that the uniform locking semantics

establish a uniform representation of file-locks on the server, which consists of a set of lock

modes, each including an access mode and deny mode. Brandt Supp. Decl. ¶¶ 20-21. This

portion of the specification indicates that the set of file-locks which are identified by the

uniform file-locking semantics include an access mode and a deny mode. See ’351 patent

at 4:52-56 (defining “lock mode” as the combination of an access mode and a deny mode).

Dr. Brandt argues that no other embodiment, other than this teaching of a uniform file-

locking semantics having an access mode and a deny mode, is taught or suggested in the

specification. Brandt Decl. ¶¶ 70-71. While this portion of the specification uses lock

modes having an access mode and deny mode, these lock modes are not utilized in this way

for every aspect of the invention.

Specifically, the invention describes three separate aspects of the invention: (1) one

in which the uniform file-locking semantics protect against data corruption; (2) another one

in which the common internet file system (CIFS) client device can obtain an oplock and the

network file system (NFS) and network lock manager (NLM) devices16 are allowed to

request to break the oplock; and (3) a third aspect in which the CIFS client device can

obtain a “change-monitoring lock.” See ’351 patent at column 2. The patents disclose an

application of uniform locking semantics in which lock modes are not involved at all – the

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

55

ability of a CIFS client device to obtain a “change-monitoring” lock on a file directory.

This type of lock gives notice when a directory is changed by CIFS or non-CIFS devices.

’351 patent at 2:51-59. For example, this “change-monitoring” lock provides notice when

a directory is created, deleted, or files are renamed or moved. Id. Such a lock is not

exclusive, does not prevent access to a file, and cannot properly be explained in terms of

access modes and deny modes. Ganger Decl. ¶ 49. Lock modes are not even mentioned in

the description of change-monitoring locks in the specification. ’351 patent at 14:20-15:6

(noting that the change monitoring lock specifies both the name of the changed file and the

type of change). Yet “uniform file -locking semantics” are used when granting change-

monitoring locks. See, e.g., claims 6 and 85. While Sun maintains that the access and

deny lock modes constitute the uniform language of these patents, the fact that the change

monitoring lock cannot be expressed in mere access and deny modes severely undermines

Sun’s proposed construction.

Sun counters that lock modes are involved in granting a change-monitoring lock, as

that process involves receiving a file open request. ’351 patent at 14:30-35. In order to

determine whether such a request should be allowed, the CIFS open request must be

translated into a uniform lock mode, containing an access mode and deny mode. Id. at

9:37-10:33; Brandt Supp. Decl. ¶¶ 18-19. However, while lock modes may be used in

granting a change-monitoring lock, the patent does not address what lock mode exists once

the change-monitoring lock is in effect. Sun concedes that the patent is silent on this point,

but argues that the mode would likely be a deny-none mode. The patent does not support

Sun’s conclusion, however, and a deny-none mode itself would not provide change

notification to a client. Furthermore, the specification notes that the “file-lock” is

converted on the open directory to a change-monitoring lock. ’351 patent at 14:38-39.

When the change-monitoring lock is in effect, therefore, there is no specified lock mode.

Sun’s reliance on Respironics, Inc. v. Invacare Corp., 303 Fed. Appx. 865, 871

(Fed. Cir. Dec. 16, 2008) is inapposite, as in that unpublished case, the patent had only one

embodiment, in which the pressure magnitudes at issue were “predetermined.” Limitation

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

56

of the claim term at issue in Respironics was supported by the patent’s only embodiment.

Here, by contrast, one of the three aspects of the invention – the change-monitoring lock –

does not appear to utilize the uniform lock modes proposed by Sun when carrying out its

change notifying function.

As to NetApp’s proposed construction, Sun argues that it is flawed because the

specification does not teach that the uniform file-locking semantics are applied in the same

way to requests using different protocols. In particular, the patent specification describes

how the uniform file-locking rules are applied differently to requests from different CIFS,

NFS, and NLM protocols. Brandt Decl. ¶¶ 74-75; ’351 patent at columns 6-13 (outlining

differences between application of the rules for CIFS, NFS, and NLM requests). For

example, NLM and CIFS byte-range lock requests are handled differently. With respect to

NLM, “[i]f the file server 110 is checking for conflicts between existing file -locks or byte

range locks, and a new request for a NLM byte-range locks, the . . . locks are cross-indexed

against a lock mode equivalent to the new NLM byte-range lock request. For the purpose

of comparing with existing file -locks, the file server 100 treats newly requested NLM

byte-range locks as having deny-mode deny-none, and as having access-mode read-only

for nonexclusive locks . . . and access-mode read-write for exclusive locks.” By contrast,

“CIFS byte-range lock requests are only checked against byte-range locks because they

require a prior CIFS file open operation at which existing file -locks were already

checked.” Brandt Decl. ¶ 75 (quoting ’351 patent at 11:32-38, 12:25-28).

NetApp counters that Sun fails to distinguish between: (1) the locking rules, which

apply uniformly to locking requests by each client, no matter what protocol that client uses;

and (2) the variation among clients as to which type of locking request a particular client

might make. The background of the invention itself notes “that it is desirable to provide a

method and system for enforcing file-locking semantics among client devices using

multiple diverse file server protocols,” which is achieved in the invention by using a

“uniform set of file-locking semantics.” ’351 patent at 1:60-67. In the preferred

embodiment, specific file-locking semantics of the CIFS protocol are implemented to allow

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

57

NFS client devices to inter-operate with CIFS client devices. Id. at 2:1-5. And, as noted

above, the preferred embodiment states that the file server “uses a uniform file-locking

semantics, so as to model file-locking aspects of any requested operation from any file

server protocol in the same way.” Id. at 7:38-44 (emphasis added). For example, in a

system providing for opportunistic locks, the uniform locking semantics are applied in the

same way to all requests for opportunistic locks. However, not all clients may be able to

request opportunistic locks. Ganger Decl. ¶ 56. As the summary of the invention describes

the invention: “uniform file-locking semantics provides that the file server determines,

before allowing any client device to read or write data, or to obtain a new file -lock or byte-

range lock, whether that would be inconsistent with existing locks, regardless of

originating client device and regardless of originating file server protocol or file-locking

protocol for those existing locks.” ’351 patent at 2:21-27.

As NetApp itself acknowledges, “clients using diverse protocols may make

different types of requests and therefore trigger different subsets of the rules.” NetApp

Markman Hearing Slide 93. In other words, the same subset of “rules” do not apply to all

requests from all protocols. In addition, the initial translating steps are different for

different protocols. For example, both CIFS and NFS protocols issue read requests. For

CIFS read requests, the lock mode of the request is compared only against the access mode

acquired when the file was opened, after file open time. ’351 patent at 4:35-45. On the

other hand, for NFS read requests, the lock mode of the request is compared against the

lock mode of any pre-existing file or byte-range locks. Id. at 6:27-30, 6:46-50, 11:26-30.

NetApp’s proposed construction, which states that the rules are applied “in the same way,”

is therefore somewhat misleading. In addition, the semantics do more than just translate

the requests, as they also compare requests. See Sun Reply Brief at 10:18-22 (citing ’351

patent at 9:37-10:33 (describing method by which CIFS open request is translated into a

uniform lock mode and the requested lock mode is compared with the mode of any

preexisting locks to determine whether file access may be granted). In other words, the

rules govern file-locking aspects of the request, rather than just translate those requests.

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

58

In light of the above, the Court proposes construing “uniform file -locking

semantics/uniform locking semantics” as “[a] set of [file] locking rules that consistently

govern [file]locking aspects of any request, even though the requests use diverse locking

protocols.” While this is a proposed construction, the parties may only comment if they

find a mistake or ambiguity in the wording, as opposed to disagreeing with the Court’s

reasoning, and they must do so within ten days of the date of this Order.

2. “Opportunistic Locks”

Disputed Claim Term: “Opportunistic Locks” (’097 patent claims 1, 14, 24, 27, 40, 50,
53, 66, and 76; ’351 patent claims 1, 2, 11, 29, 38-39, 42, 49, 67, 76-77, 87, 105, and
114)

Sun’s construction NetApp’s construction

Exclusive access to a file which can
be revoked by attempted access by
another client.

No construction necessary, plain and ordinary
meaning. To the extent the Court deems a
construction necessary, “exclusive lock that is
given to only one client at a time, and that
permits that only one client to read or write the
locked data until another client device attempts
to read or write that data.”

At the hearing, the Court noted that the parties did not seem to have a substantive

dispute regarding this claim term. After further conferring, the parties agreed to the

following construction of the term, which the Court adopts: “Exclusive access to a file or a

portion of a file allowing one or more reads or writes, that is given to only one client at a

time, which can be broken by another client’s attempt to access the file or a portion of a

file.”

IV. CONCLUSION

In accordance with the foregoing, and for the reasons discussed above, the Court

construes the disputed terms of the parties’ patents as follows:

1. “Token” is “a data structure consisting of a name; an identifier of an

element with which the token is associated; an identifier of the method by which the value

field may be populated; and the value field, which holds the value associated with the

element, which can include an empty value.” While this is a proposed construction, the

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

59

parties may only comment if they find a mistake or ambiguity in the wording, as opposed

to disagreeing with the Court’s reasoning, and they must do so within ten days of the date

of this Order.

2. “Computer system” is “a system that includes at least one computer and that

may contain a number of computers coupled in a network. Even where a computer system

contains only one computer, that computer must be able to communicate via email or a

modem connection or another communication channel to allow remote monitoring.”

3. “Modifiable Tree Structure Including Elements in A Fixed Hierarchical

Relationship”/“Modifiable Static Tree Structure” is “a tree structure comprising elements,

which does not vary according to the system being monitored, and which can be changed

to add or delete elements representing hardware or software components on a computer

system.”

4. “To examine [examining] the event communication to determine whether

the event is associated with at least one object or object level on a selected object list

having at least one specified object or object level” is “to evaluate [evaluating] the event

information received from a network device to determine if the event information relates to

any item on a selected list of one or more network devices or network device levels.”

5. “Discovery interface” is “one or more software modules that receive

information from a fabric driver and provide the information to an application.”

6. “In a non-fixed pattern” is “in such a way that the redundant information

can be placed within the stripe on unallocated blocks in any order.”

7. “Initiator group (igroup)” is “a logical named entity that may have a human

friendly name assigned to one or more addresses associated with one or more initiators. As

used in the patent, ‘human friendly name’ means an arbitrary label selected by the user or

administrator that may be a spoken name, a path designation or include a hierarchical

naming convention.”

8. “Uniform [file-]locking semantics” is “[a] set of [file] locking rules that

consistently govern [file]locking aspects of any request, even though the requests use

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

60

diverse locking protocols.” While this is a proposed construction, the parties may only

comment if they find a mistake or ambiguity in the wording, as opposed to disagreeing

with the Court’s reasoning, and they must do so within ten days of the date of this Order.

9. “Opportunistic Locks” is “exclusive access to a file or a portion of a file

allowing one or more reads or writes, that is given to only one client at a time, which can

be broken by another client’s attempt to access the file or a portion of a file.”

IT IS FURTHER ORDERED that a case management conference is set for July 8,

2009 at 2:00 p.m, to discuss setting further dates in the case. The parties shall file a joint

case management statement no later than July 1, 2009. The parties shall propose a

schedule for filing summary judgment motions and address whether to limit the number of

such motions and whether to stagger and prioritize the motions.

IT IS SO ORDERED.

Dated: May 29, 2009
ELIZABETH D. LAPORTE
United States Magistrate Judge

