Ventura v. Sony Computer Entertainment America Inc Doc. 117 Att. 45

EXHIBIT MM
(VOL 3)

Dockets Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv01811/226894/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv01811/226894/117/45.html
http://dockets.justia.com/

Programming high~iserfermance applications on the Cell BE processor, Part 5: Programmi... Page 1 of 14

Programming high-performance applications
on the Cell BE processor, Part 5: Programming
the SPU in C/C++ 1 e

Use the language extensions to power up your applications
Jonathan Bartlett (johnnyb@eskimo.com), Director of Technology, New Medio,

Summary: In Part 5 of the Programining high-performance applications on the Cell BE processor
series, apply your knowledge of the synergistic processing unit (SFU) fo pro grammuing the Cell

Broadband Engine™ (Cell BE) processor in C/C-++. Learn how to use the vector extensions, direct
the compiler to do branch prediction, and perform DMA transfers in C/C+. ' o

Date: 20 Mar 2007
Level: Intermediate
Also available in: Chinese Russian Japanese

Activity: 13720 views
Comments: 0 {Add comments)

W R W Average rating (based on 28 votes)

Previous discussions about the SPU have focused on the SPU's assembly language to help you get to
know the processor intimately. Now I will swifch to C/C++ so that you can see how to let the
compiler do a large amount of the work for you. To utilize the SPU C/C++ language extensions, the
header file spu_intrinsics.h must be included at the beginning of your code.

Vector basics on the SPU

The primary difference between vector processors and non-vector processors is that vector processors
have large registers which allow them to store multiple values (called elements) of the same data type
and process them with the same operation at once, On vector processors a register is treated both as a
single unit and as multiple units. To represent this concept in C/CHt, a vector keyword has been
added to the language, which takes a primitive data type and uses it across a whole register. For
instance, vector unsigned int myvech cteates a four-integer vector where the elements are to be
loaded, processed, and stored altogether, and the variable myvec refers to all four of them
simultaneously. The signed/unsigned keyword is reguired for non-floating point declarations.
Vector constants are created by putting the type of vector in parentheses followed by the contents of
the vector in curly braces. For instance, you can assign values to a vector named myvec like this:

vector unsigned int myvec = {vector unsigned int) {1, 2, 3, 4};

In addition to direct assignment, there are four main primitives that are used to go between scalar and
vector data: spu_insert, spu_extract, spu_promote, and spu_spiats. spu_insert isusedtoputa

scalar value into a specific element of a vector. spu_insert (5, myvec, 0) returnsa copy of the
BAKER 0000123

hitp://www.ibm.com/developerworks/power/library/pa-linuxps3-5/index.html 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5 Prograﬁxmi...]—f’ags 2of 14

vector myvec with the first element (element 0) of the new vecior set to 5. spu_
specific element from a vector and returns it as a scalar, spu_extract (myvec,
element of myved as a scalar. spu_promote CONVeTts & yvalie to a vector, but on

extract pullsout a
0) returns the first
1y defines one element.

The type of vector depends on the type of value promoted. spu_promote { (unsigned int}5, 1)

creates d vector of unsigned ints with 5 in the second element (element 1),
elements undefined. spu_splats works like spu_promote, except that it copies

and the remaining
the value to ali

elements of the vector. spu_splats((unsigned int)5) creates a vector of unsigned ints with

each element having the value 5.

It is tempting to think of vectors as short arrays, but in fact they act differently in several respects.
Vectors are treated essentially as scalar values, while arrays are manipulated ds references. For- -
instance, spu_insext does not modify the contenis of the vector, Instead, it returns a brand new copy
of the vector with the inserted element, It is an expression that résults in a value, not a modification to
the value itself, For instance, just as myvar + 1 gives back a new value instead of modifying myvar,
spu_insert{l, myvec, 0) does not modify myvec, but instead refwrns a new vector value that is

equivalent with myvec but has the first element set to 1.

Here is a short program using these ideas (enter as vec_test. el

Listing 1. Program to introduce SPU C/C++ language extensions

#igclude <spu_intrinsies.h>

void print_vector{char *var, vector unsigned int val) [

printf ("Vector %s ig: {%d, %d, %d, %d}i\n", var, s?uwextract(val, o),

spu_extract{val, 1), spu_extrackt(val, 2}, spu_extract(val, 3y

1

int main{) { i } .
/+ Create Ffour vectors */

vector unsigned int a = (vectoxr unsigned int) {1, 2, 3

vector unsigned int by
vector unsigned int C;
vector unsigned int 4

/* b is identical to a, but the last elewment is changed to 9 */

b = spu_insext (9, a, 3);

/* ¢ has all four values set %fo 20 %/
C o= spumsplats((unsignad int) 20) 7 ‘

/* d has the second value set to to 5, and the others are garbage */
/% {in this case they will all be set to 5, but that should not be relied u

d = spu_promote{{unsignad int)s, 13¥;

/* Show Results */

print_vectozr("a", ay:
print_vector {"b", B);
print_vector{®c", c);
print_vactor("d", d):

return 0;

http://www.ibm.com/developerworks!power/library/pa-linuxpsB»5/index.ﬁimi

BAKER 0000124
9/20/2010

Programming high-performance applications on the Cell BE‘ processor, Part 5: Programmi...Page 3 of 14

To compile and tun the program under elfspe, simply do: |

spu~goc vee test.c -0 vec test
./vec test

Vector infrinsics

The C/C-++ language extensions include data types and intrinsics that give the programmer neatly full
access 1o the SPU's assembly language instructions. However, many infrinsics are provided which
greatly sirplify the SPU's assembly language by coalescing many similar instructions into one
intrinsic. Instructions that differ only on the type of operand (such as a, ai, ah, ahi, £a, and dfa for
additibn) are represented by a single C/C++ intrinsic which selects the proper instruction based on the
type of the operand. For addition, spu_aad, when given two vector unsigned ints as parameters,
will generate the a (32-bit add) instruction. However, if given two vector f£loats as parameters, it
will generate the f£a (float add) instruction. Note that the infrinsics generally have the same limitations
as their corresponding assembly language instructions, However, in cases where an irmediate value
is too large for the appropriate immediate-mode instruction, the compiler will promote the immediate
value to a vector and do the corresponding vector/vector operation. For instance, spu_add (myvec, 2)
generates an ai (add immediate) instruction, while spu_add (myvec, 2000) first loads the 2000 into
its own vector using i1 and then performs the a (add) instruction. :

The order of operands in the infrinsics is essentially the same as those of the assembly language
instruction except that the first operand (which holds the destination register in assembly language) is
not specified in C/C-++, but instead is used as the return value for the function. The compiler supplies

the appropriate operand in the assembly language code it generates.

Here are some of the more common SPU intringics (types are not given as most of them are
polymorphic): ' % -

o épu_add(vail, val2)

Adds each element of va1i to the corresponding element of va12. If val2 is a non-vector value,
it adds the value to each element of vali. '

* spu_sub(vall, valz) '

Subtracts each element of val2 from the corresponding element of va11. If vall is a non~
vector value, then vall is replicated across a vector, and then val2 is subtracted from it.

* spu_mul{vall, valz} '

Because the multiplication instructions operate so differently, the SPU intrinsics do not
coalesce them as much they do for other operations. spu_mul handles floating point
multiplication (single and double precision). The result is a vector where each element is the
result of multiplying the corresponding elements of vall and val2 together.

* spu_and{vall, val2), spu_cr(vall, valz),spu_pot{val),spunxor(vail, vald),
spu_nor{vall, val2}, spu_nand{vall, val?), spu_eqgv{vall, valZ2) '
Boolean operations operate bit-by-bit, so the type of operands the boolean operations receive is
not relevant except for determining the type of value they will return. spu_eqv is a bitwise
equivalency operation, not a per-element equivalency operation.

BAKER 90060125
hitp://www.ibm.com/developerworks/power/library/pa-linuxps3 -Sfindex.himl 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5 Prdgrammi...Page 4 of 14

* spu_rl{val, count),spu_sl(val, count)
spu_rl rotates each element of val left by the number of bits specified in the corresponding
element of count. Bits rotated off the end are rotated back in on the right. If count is a scalar
valte, then it is used as the count for all elements of val. spu_sl operates the same way, but
performs a shift instead of a rotate.

* spu_rlmask {val, count), spu_rimaska, spu_rlmaskqw{val, count), spu_rlmaskgqwbyte
{val, count}
These are very confusingly named operations. They are named "rotate left and mask,” but they
are actually performing right shifis (they are implemented by a combination of left shifts and
masks, but the programming interface is for right shifts). spu_rlmask and spu_rlmaska shifts
each element of val to the right by the number of bits in the corresponding element of count
(or the value of count if count is a scalar). spu_rimaska replicates the sign bit as bits are
shifted in. spu_rimaskqw operates on the whole quadword at a time, but only up to 7 bits (it
performs a modulus on count 10 put it in the proper range). spu_rimaskqwbyte works
similarly, except that count is the number of bytes instead of bits, and count is modulus 16
instead of 8.

* spu_cmpgt (vall, val2), spu_cmpedq {vall, vall} .
These instructions perform element-by-element comparisons of their two operands. The results
are stored as all ones (for true) and all zeros (for false) in the resulting vector in the
corresponding element. spu_cmpgt performs a greater-than comparison while spu_cmpeq
performs an equality comparison. :

= spu_sel{vall, val?, conditional) .
This corresponds to the selb assembly language instruction. The instruction jtself is bit-based,
so all types use the same underlying instruction. However, the intrinsic operation returns a
value of the same type as the operands. As in assembly language, spu_sel looks at each bit in
conditional. If the bit is zero, the corresponding bit in the result is selected from the
corresponding bit in val1; otherwise it is selected from the corresponding bit in val2.

+ spu_shuffle (vall, vall, pattezn)
This is an interesting instruction which allows you to rearrange the bytes in vail and val2
according to a pattern, specified in pattexn, The instruction goes through each byte in
pattern, and if the byte starts with the bits 0b10, the corresponding byte in the result is set 1o
0x00; if the byte starts with the bits 0b110, the corresponding byte in the result is set 10 0x££; if
the byte starts with the bits ob111, the corresponding byte in the result is set t0-0x80; finally
(and most importantly), if none of the previous are true, the last five bits of the pattern byte are
used to choose which byte from vall or vai2 should be taken as the value for the current byte,
The two values are concatenated, and the five-bit value is used as the byte index of the ‘
concatenated value. This is used for inserting elements into vectors as well as performing fast
table lookups. :

All of the instructions that are prefixed with spu_ will try to find the best instruction match based on
the types of operands. However, not all vector types are supported by all instructions — it is based on
the availability of assembly language instructions to handle it. In addition, if you want a specific
instruction rather than having the compiler choose one, you can perform almost any non-branching
instruction with the specific intrinsics. All specific infrinsics take the form
si_assemblyinstzuctionname where assemblyinstructionname is the name of the assembly
Janguage instruction as defined in the SPU Assembly Language Specification. So, si_a(a, b) forces
the instruction a to be used for addition. All operands to specific intrinsics are cast to a special type
called qwora, which is essentially an opaque register value type, The return value from specific
intrinsics are also gwords, which can then be cast into whatever vector type you wish.

BAKER 0000126

ht:tp://www.’ibm.com/dcveloperworks!power/libraryfpa—limzxp33-5 findex.html 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5: Programmi...Page 5 of 14

Using the intrinsics

Now let's look at how to do the uppercase conversion function using C/C++rather than assembly
language. The basic steps for converting a single vector are:

1. Convert all values using the uppercase conversion.

2. Do a vector comparison of all bytes fo see if they are between *a' and 'z'.

3. Use the comparison to choose between the converted and unconverted values using the select
instruction. ‘

In addition, to help better schedule instructions, the assembly language version performed several of
these conversions simultaneously. In C/C-++, you can call an inline function multiple times, and let the
compiler take care of scheduling it appropriately. This doesu't mean that your knowledge of _
instruction scheduling is useless, but rather because you know how instruction scheduling works, you
are able to give the compiler better raw material to work with, If you did not know that instruction
scheduling improves your code, and that instruction scheduling can be helped by unrolling your loops,
then you would not be able to help the compiler optimize your code.. :

So here is the C/C++ version of the convert_buffer_to_upper function (enter a5
convert_buffer c.c in the same directory as the files from the previous articles — you will need

them to compile the full application): .-

Listing 2. Uppercase conversion in C/C++

finciude <spu_intrinsics.h>
unsigned char conversion value = 'a' - TA';

inline vec ucharl6 convert_vec_to_upper(vec_ucharlé values) {
/* Process all characters */ ‘ o
vec_ucharl€ processed_values = spu absd{values, spu_splats (conversion value
/* Check to see which ones need processing (those between ‘a’ and 'z')*/
vec_ucharlé should be processed = spu_xor (spu_cmpgt{values, ‘a’-1j,
spu_cmpgt (values, '27)); Ce :
/* Use should be_processed to select between the original and processed val
return spu_sel {values, pzocessed values, should be processed);

}

void convert_buffer_to_upper(vec ucharlf *buffer, int buffer size) {
/* Find end of buffer (must be casted Ffirst because size is bytes) */
vec_ucharl6 *buffer_ end = (vec ucharlé *}{{char *Ybuffer + buffer size);

while(wwbuiltinmexpect(buffer < buffer end, 1}} {

‘ +*huffer = convert_vec_to_uppexr (*buffer);
‘puffertt; '
*huffer = convert vec to_upper (*buffer):
buffert+;
*puffer = converl_vec_to upper (*buffer);
buffer-t;
*buffer = convert_vec to_upper (*buffer}:
buffer+t; .

' BAKER 0000127
http://www.ibm.com/developerworks/p0wer/1ibrary/pa~linuxp33»5/index.htmi : 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5: Programmi...Page 6 of 14

To corppile and run, simply do:

spu-gee convert buffer c.c convert driver.s dma_utils.s -o spe_copvert
embedspu -mé4 convert_to upper handle spe_convert spe_convert csf.o
goe -mé4 spe_convert_csf.o ppu_dma main.c -lspe -o° dma convert

. /dma_convert ’

As you probably noticed, this program uses slightly different notation for vector type names than used
previously. The SPU intrinsics documentation (see Resources) defines simplified vector type names
starting with vec_. For integer types, the next character is u or s for signedAumsigned types. After that
is the name of the basic type being used (char, int, float, and 5o on). Finally, at the end is the
number of elements of that type which are in the vector. vec_ucharlé, for instance, is a 16-element
vector of unsigned chars, and vec_floatd isa 4-element vector of £1oats. This notation greatly

simplifies the typing involved.

When computing the buffer_end the program did some casting gymunastics, Because size was in
bytes, I had to convert the pointer to a chaxr * S0 that when I added the size, it would move by bytes
rather than by quadwords. Vector pointers, since the value they point to is 16-bytes long, move
forward in increments of 16 bytes, while char pointers move forward in single-byte increments. That
is why bugfer++ works -- it is incrementing by a single vector length, which is 16 bytes.

Another interesting feature of the C/C++ versioniis __builtin_expect which belps the compiler do
branch hinting. You cannot do branch hinting directly in C/C++ because you have neither the address
of the branch nor the target. Therefore, you instead provide hints to the compiler, which can then
generate appropriate branch hints, _builtin_ expect {buffer < buffer_end, 1) generaies
branching code based off of the first argument, buffer < buffer_end, but produces branch hints
based off of the second argument, 1. It tells the compiler to generate hints that expect the value of
puffer < buffer endtobel.

Now, there are two compilers currently available for SPU programming, and, as one might expect,
they excel in different areas. GCC, for instance, does a fantastic job of interleaving the instructions
between invocations of convert_vec to_upper o that instruction latency is minimized. However, in
this particular program, _ builtin_expect gives us almost no help at all. The IBM X1.C compiler,
on the other hand, is the opposite. It does not interleave the instructions between invocations of
convert_vec_to_upper at all, but structures the loop so that the branch hint has a maximum effect,
and in fact was able to guess the branch hint without it being supplied. Unsurprisingly, neither
compiler does nearly as well as the hand-coded assembly language version from the previous article,
but for this program XLC outperformed GCC. Code that was compiled without any optimization flags
resulted in code that was approximately five times slower, 50 be sure 1o always compile with -0z or -

Q3.

Composite intrinsics and MFC programming

The composite intrinsics are those that compile 1o multiple instructions. The composite intrinsics
encapsulate common usage patterns on the SPE 1o simplify its programming. The two most important
composite intrinsics are spu_mfcdmaéd and spu_mfostat. spu_mfcdnacd is almost exactly like the

BAKER 0000128
http:ifwww.ibm.com/deve10perworks/power/libxjary/pwIinuxpsBwSIindex.himI 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5: Programmi... Page 7 of 14

dma_transfer function I wrote and used in previous articles, except that the high and low parts of the
effective address are split between two 32-bit parameters (dma_transfer uged one 64-bit parameter
for the effective address).

spu_mfodmat4 takes six parameters:

the local store address for the transfer

the high-order 32-bits of the effective address
the low-order 32-bits of the effective address
the size of the transfer

a "tag" to give the transfer

the DMA command to give

AR b el ha

Often times you will have the effective address as a gingle 64-bit value. To separate it out into parts,
use mfc_eazh to extract the higher-order bits and mfc_ea21 f0 extract the lower-order bits. The tag is
a nuinber designated by the programmer between 0 and 31 used to identify a transfer or for a group of
transfers for status queries and sequencing operations. The DMA command can take a range of values
(see Resources for information on where fo find the ones not listed here). DMA. transfers are called
PUTs if they transfer from the SPU local store to the sysiem memiory, and GETs if they go in the
other direction. These DMA. command names are prefixed with gither MFC_PUT OT MFC_GET,
respectively. Then, MFC commands either operate individually or on a list. If the DMA command is a
list command, the DMA. command name bas an . appended to it (see Resources for more information
on DMA list commands). The DMA command can also have certain levels of synchronization applied
to it. For barrier synchronization add a 8, for fence synchronization add an ¥, and for no
synchronization you do not need to add anything, Finally, all DMA command names have a _cMD
suffix. So, the commmand name for a single transfer from the local store to system memory using fence
synchronization would be MFC_pUTF_CMD. : : R

By default DMA commands on the SPE's MFC are totally unordered - the MFC may process them in
any order that it wishes. However, 1ags, fences, and barriers can be used to force ordering constraints
on MFC DMA. tzansfers. A _fence establishes the constraint that a given DMA transfer only execute
after all previous commands using the same Tag have completed. A barrier establishes the constraint
that a given DMA transfer only execute. gffer all previous commands using the same tag have
completed (like a fence), but also that they must execute before all subsequent commands using the
same tag. : v o A -

Here are some examples of spu mfpdmaés:

Listing 3. Using spu_nfodnatd

typedef unsigned long long wint64:

typedef unsigned long uink32;
uint64 eal, eal, ea3, ead, eald; /* assume each of these have sensible values */

void *1sl, *ls2, *1s3, *ls4; /% assume each of these have sensible values */ .
wint32 szl, sz22, sz3, szd; /* assune each of these have sensible values */
int tag = 3; /* Arbitrary value, but needs to be the same for all
synchronized transfers *f - ’

/* Transfer 1l: System Storage —> t.0cal Store, .no ordering specified */
spu_mfcdmaéd (1si, mfe_eaZh(eal), mfc eaZl{eal), szl, tag, MEFC_GET_CMD) /

BAKER 0600129
http://www.ibm.com/deveioperworksfpowerflibrary/pa»linuxpsi&~5/indcx.htrn1 . 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5: Programmi... Page 8 of 14

/* Transfer 2: Local Storage —> System Storage, must perform sfter previous transfe
apuwmfcdma64(lsz, mfic_eaZh{ea?), mic_eal{eal2), sz?2, tag, MFC_PUTF _CMD);

/* Transfer 3: Local Storage ~> System Storage, no ordering specified */
spu_mfcdmaté (1s3, mfe eah(eal}, mic_eaZl (ea3), sz3, tag, MFC PUT_ CMD):

/* Transfer 4: Local Storage -»> System Storage, must be synchronized */
spu_mfodma6d (1s4, nic_ealh(ead), mfc eaZllead), szé, tag, MFC_PUTE _CMD) ;

/* Transfer 5:; System Storage -> Local Bteorags, no ordering specified */
spu_mfocdmaéd (1s4, mfc eaZh{eabd}, mfc_ea2l(eab), sz4, tag, MFC_GET_CMD);

The above example has several possible orderings. All of the following are possibilities:

« 1,2,3,4,5
3,1,2,4,5
I: 3: 2: 4: b

*

Because transfer 2 only uses a fence and transfer 3 doesn't specify any ordering at all, transfer 3 is free
to float anywhere before the barrier (transfer 4). The only requirement for the first three transfers is
that transfer 2 must be performed after transfer 1. Transfer 4, however, requires full synchronization
of transfers before and afier it. :

Take a closer look at transfers 4 and 5. This is a useful idiom to take note of -- save and reload. If you
are processing system memory data a piece at a time into local store and storing it back into system
memory, you can queue up a save and a load at the same time, using a fence or barrier to order them.
This puts all of the transferting logic into the MFC, and leaves your program free to do other
computational tasks while the buffer waits for new data. We will make use of this in the next article
when we talk about double buffering.

spu_mfcdmaé4 is quite a handy tool, but it is a little tedious, especially when you have to keep on
using mfc_ea2h and mfe_ea2l to convert your addresses. Therefore, the specification also provides a
number of utility functions to lessen the amount of redundant typing necessary. The mfc_ class of
functions all take the same parameters as the spu_mfcdmags function, except that the effective
address is a single 64-bit parameter, and the DMA command is encoded into the function name, It
also takes two extra parameters, the fransfer class identifier and the replacement class identifier, Both
of these can be safely set to zero in non-realtime applications (see Resources for references to further
information on these iwo fields). Therefore, transfer 2 above can be rewritten as:

mfc _putf(ls2, eal, sz2, tag, 0, 0);

Tags are useful not just for synchronizing data transfers, but also for checking on the statns of

transfers. On the SPE, there is a tag mask channel which is used to specify which tags are currently

used for status checks, a channel which is used to issue status requests, and another channel to read

the channel status back. Although these are pretty simple operations anyway, the specification gives

special methods for performing these operations as well. mfc_write_tag mask takes a 32-bit integer

and uses it as a charmel mask for future status updates. In the mask, set the bit position of each tag

that you want to check the status of to 1. So, to check the status of channel 2 and 4, you would use

mfc_write tag_mask(20), or, to make it more readable, you can do mfc_write tag _mask(1<<2 |
BAKER 6000130

http:/frww.ibm .cam/deve'{operworks/powerllibrary/pa~1inuxps3~5‘/index.htm1 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5; Programmi...Page 9 of 14

1<<4} ;. To actually perform the status update, you have to pick a status command, and gend it using
spu_mfostat (unsigned int command).The commands are:

* MFC_TAG_UPDATE_IMMEDIATE '
This command causes the SPE to immediately return with the status of the DMA chanpels.
Each chanme! which was specified in the channel mask will be set to 1 if there are no remaining
commands in the queue with that tag (in other words, all operations that may have been
previously active, are completed), and set to 0 if there are commands remaining in the queue.

* MFC_TAG UPDATE_ANY :

This command causes the SPE to wait until at least one tag specified in the tag mask has no
remaining commands before returning, then returns the status of the DMA. channels that were
specified in the tag mask. . '

* MFC_TAG_DPDATE_ALL :

This command causes the SPE to wait until all tags specified in the tag mask bave no remaining

commands before returning. The return value will be 0.

To use these constants, you need to include spu_mfcio.h.

Using spu_mfecstat allows you to both check on the status of DMA requests and wait for them.
Using MFC_TAG_UPDATE_ANY allows you to issue multiple DMA requests, let the MFC process them
in whatever order it thinks is best, and then your code can respond based on the order that the MFC
processes them. '

Example MFC program

Now I'll apply this knowledge of the MFC composite intrinsics to the uppercase conversion program.
Earlier in the article I rewrote the main conversion function in C, and now I am going to rewrite the
main loop in C. The new code is fairly straightforward (enter as convert_driver_i.c) S

3

Listing 4. Uppercase conversion MFC transfer code .

#include <spu intrinsics.h>
#include <spu mfcio.h>
typedef unsigned long long uint64;

#define CONVERSION BUFFER _SIZE 16384
$define DMA TAG 0

void convert buffer to_upper(char *conversion_buffer, int current_transfer_size);
char acnversiom_buffer{CONVERSION“BUFFER;SizE]:

typedef struct {
int length uwattribute__((aligned(lﬁ}});
wint64 data __attribute_ ((aligned(16})):

} conversion structure;

int main(uint64 spe id, uintéd conversion info_ea) {
conversion structure conversion_info: /¥ Information about the data from th

/% We are only using one tag in this progrem */

nfo_write tag mask(l<<DMA_TAG); '
BAKER 0000131

http://www.ibm‘com/deveioperwork_s/power/library/pawimuxps?a-5/index.htmi | 9/20/2010

Programming high-performance app!icaﬁons on the Cell BE processor, Part 5: Program... Page 10 of 14

/% Grab the conversion information */
mfc_get {&conversion info, conversion_info_ea, sizeof (conversion_info), DMA_
spummfcstat(MFC_TAGWUPDATEWALL): /% Wait for Completiom */

/* Get the actual data */
'mfcmget(aonversionmbuffer, conversion#info.data, conversion_info.length, DM
spu_mEcstat (MFC_TAG_UPDATE ALL) ;

/* Perform the conversion */
ccnvext“puffex_to_ppper(conversion_buffer, conversion_info.length);

/* put the data back inte system storage %/] :
mfc_put (conversion buffex, conversion_info.data, conversioh info.length, DM
spadmfcstat(MFC_TAGHUPDATEWALL}; /* Wait for Completion */

To compile and run, simply do:

spu-ge¢ convert buffer c.c comvert driver c.c¢ ~o spe_convert
embedspu -m64 convert to_upper handle spe convext spe_convert_csf.o
gco. ~m64 spe_convert_csf.o ppuwdma*main.c ~lspe —o dma_convert
/dma_convert

This implementation in C follows the same basic structure as the original code, except that it's more
readable to human beings, which, incidentally, makes it easier to revise and expand. For instance, one
of the problems with the original code is that it is limited to the size of a DMA transfer. What if you

wanted to remove that limitation? You could simply wrap the whole thing in a loop, and keep moving
data a piece at a time until the whole string has been processed. Here's the revised code to do this:

“

Listing 5. Looping in the MFC transfer code

#include <spu_intrinsics.h>

. #include <spu_mfcio.h> /* constant declarations for the MFC */
typedef unsigned long long ulnt 64z ‘
yypedef unsigned int uint32;

/* Renamed CONVERSION~BU?FER_SEZE to MAXMTRANSFER_SIZE because it is now
primarily used to limit the size of DMA transfers */
#define MAX*TRANSFERWSZZE 16384

void convert buffer to_upper(char *conversion_bﬁffer, int current transfer_sizel;
char conversionﬁbuffer[MAX_:RANSFER“SEZEJ;

typedef struct { i ‘
uint32 length _ attribute_ {(aligned(18)}};
uint64 date ~wattributa_*{(aligned(lﬁ)));

} conversion_structure;

ipt main{uint64 spe_id, uint6é conversion_info_eal) {)
: BAKER 0000132
http://www.ibm.com/developcrworks/power/library/ pa-linuxps3-5/index.html 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5: Program... Page 11 of 14

conversion, structure conversion_info; /* Information about the data from th

/* New variables to keep track of where we are in the data */

uint32 remaining data; /* How wuch data is left in the whole stzring */
uinté4 current_ea pointer; /* Where we are in system memory */

uint32 current transfexr_size; /* How big the current transfer is (may be sm

than MAYX_TRANSFER_SIZE} */

/% We are only using one tag in this program */
mfc_write_tag mask(1<<0);

/* Grab the conversion information */
mfc get{&conversion jinfo, conversion_infeo ea, gizeof (conversion_info), O, O
spu_mfcstat {MFC_TAG_UPDATE_ALL); /* Wait for Completion */

/* Setup the loop */
remaining data = conversion info.length:
current_ea_pointer = conversion info.data;

while(remaining data > 0) |
. /* Determine how much data is left to transfexr */
if ({remaining_data < MAX TRANSFER_SIZE)
current_transfer size = remaining data;

else
current_transfer size = MAX TRANEFER_STZE;

/* Get the actual data */
nfc getb{conversion buffer, current_ea pointer, cnrrent transfer si

spu_mfcstat (MFC_TAG_UPDATE_ALL) ;

/* Perform the conversion ¥/ .
convert buffer_to_upper {conversion buifer, current_transfer size};

/* Put the data back into system storage */
mfe_putb (conversion_buffer, current _ea pointer, current transfer si

/* Advance to the next segment of data */
" remaining_data -= current_transfer size;
current ea_pointer 4= current transfer size;

spu_mfcstat (MFC_TAG_UPDATE_ALL): /* Wait for Completion */

Compile and run using the same commands as you used in the previous example:

spu-gcc convert buffer ¢.c convert driver c.c ~o spe convert
embedspu ~m64 convert_to_upper handle spe convert spe convert csf.o
goe ~-m64 spe_convert_csf.o ppu_dme _main.c -lspe -0 dma convert
./dma_convert

So now you have just expanded the size of the data you can process to 4 gigabytes, though you‘could
easily go beyond that by making the data size variables 64-bit instead of 32-bit. Notice that you don't
explicitly code to ask the MFC to wait for your PUT to complete before you re-issue the GET, This is

because you are using barriers with your transfers, and you ere using the same DMA tag for them.
) BAKER 0000133

hitp://www.ibm.com/developerworks/power/library/pa-linuxps3-5/index html 9/20/2010

Programming high-performance applications on the Cell BE processor, Part 5: Program... Page 12 of 14

This forces the transfers to be serialized by the MFC itself, so it will always wait until the cutrent
conversion is finished being PUT into system storage before GETting more data into the buffer. Just
remermber to wait for the completion at the end (notice the spu_nfestat outside the loop), or else
your last bit of data may not finish transferring before it is used in the program!

Another thing to be careful of when programming in Cisto always make sure that you give function
prototypes, It is real easy to accidentally mix up 32-bit and 64-bit values. On the PPE that isn't so bad,
as the value is merely truncated or expanded. But in the SPE, if the prototype is wrong, the preferred
slot for 32-bit and 64-bit values is offset in such a way that conversion between the two must be
handled explicitly.

Helpful tips for C language SPE programming
Here are some tips to keep in mind when building SPE ‘applicatio'ns inC:

» Vectors can be cast between vectors of other types, and back-and-forth between the vector
types and the special quad type, but none of these casts perform any data conversion. If you
need to convert between types, use an appropriate SPU intrinsic.

« Vector and non-vector pointers can be cast between each other, but when converting from a
scalar pointer to a vector pointer i is the programmer's responsibility to be sure that the pointer
is quadword-aligned. =

« Declared vectors are always quadword-aligned when allocated.

« Remember that DMA. transfers of 16 bytes or more must be in I 6-byte multiples and aligned 1o
16-byte boundaries on both the SPE and the PPE. Transfers smaller than that must be a power
of two and be naturally aligned. Optimal transfers are multiples of 128 bytes that are on 128~
byte boundaries.

« If you are not sure about the alignmenit of data on the PPE, use memalign OF posix memalign
to allocate an aligned pointer from the heap, and use memcpy OF an equivalent to move the data
to the aligned area.

« Always compile with -wa11 and especially pay attention fo missing protolype messages.
Incorrectly implied prototypes (especially between 32~ and 64-bit types) can lead to bizarre
error conditions.

« Always store effective addresses as unsigned long longs, On both the PPE and the SPE. This
way they can be treated in a unified fashion on the SPE and on the PPE, whether the PPE code
is compiled for 32-bit or 64-bit execution.

« Avoid integer multiplies (especially 32-bit multiplies) on the SPE. It takes five instructions to
perform the multiply. If you must multiply, cast to an unsigned shoxt before multiplying.

» In scalar code on the SPE, declaring scalar values as vectors and vector pointers (even if you
aren't using them as vectors) can speed up code because it doesn't have to do unaligned loads
and stores.

« Be aware that on the SPE, £1o0ats and doubles are implemented differently, and round
differently as well. £1oats in particular deviate from the C99 standard, The next article will

cover these further.

Conclusion

The intrinsics available for C allow programmers to make the best mix of C and assembly language
knowledge. The SPU intrinsics allow programs to freely switch among high- and low-level code, but
all within the semantic framework of the C langnage.

BAKER 0000134

http://www.ibm.com/deve!operworks/power!librarylpa*linuxpﬁ—5/ index.htm] 9/20/2010

Programming high-performance gpp]icétions on the Cell BE processor, Part 5: Program... Page 13 of 14

The next article applies this knowledge into a real-world numerical application.

Resources

Learn

» See the other parts in the Programming high-performance applications on the Cell BE processor
series. '

« The full set of intrinsics is documented in the PPU & SPU C/C++ Language Extension
Specification. :

+ Another (more extended) tutorial resource for Cell BE programming on both the SPE and the
PPE is the official Cell BE Prograruming Tutorial.

« For a complete list of available DMA commands on the MFC, see chapter 7 of the Cell BE
Architecture Specification (1.01) and pages 508-510 of the Cell BE Programming Handbook

(1.0).

+ For more information on DMA. list commands, see pages 51-62, 124-125, 129-130, and 157-
158 of the Cell BE Architecture Specification (1.01) and pages 73, 459-460, 509-310, and 527-
530 of the Cell BE Programming Handbook (1.0).

» The transfer class ID and replacement class ID fields for MFC operations is described on pages
78 and 114 of the Cell BE Architecture Specification (1.01) and pages 155-158, 455-456, and
513-515 of the Cell BE Programming Handbook (1.0).

« Find all Cell BE-related articles, discussion fbrmns, downloads, and more at the IBM
developerWorks Cell Broadband Engine resource center: your definitive resource for all things

Cell BE.
= Stay abreast of all things Cell BE: subscribe 1o IBM microNews.

Get products and technologies

» (et Cell BE: Contact IBM about custom Cell-based or custom-processor based solutions.

» Get the alphaWorksCell Broadband Engine downloads -~ including the IBM Full System
Simulator, support libraries, toolchains, source code for libraries, and samples.

Discuss

» Take part in the IBM developerWorks Power Architecture Cell Broadband Engine discussion
forum.

About the author

BAKER 0000135
http://www.ibm.com/developerworks/power/library/pa-linuxps3-5/index html . 972072010

Programming high-performance applications on the Cell BE processor, Part 5; Program... Page 14 of 14

Jonathan Bartlett is the author of the book Programming from the Ground Up , an introduction to
programming using Linux assernbly language. He is the lead developer at New Media Worx,
responsible for developing Web, video, kiosk, and desktop applications for clients.

Trademarks | My developerWorks terms and conditions

BAKER 0090136

http:/’t’www.ibm,com/develaperworks/powerflibrary!pa—linu&pﬂ~5/index.html 9/20/2010

PS3 fab-to-lab, Part 1; Build Linux lab equipment from a Sony PLAYSTATION 3 Page 1 of 7

PS3 fab-t0~lab, Part 1: Build Linux lab
equipment from a Sony PLAYSTATION 3

Introducing how o generate and.analyze signals on your Cell/B.E.-based spectrumn analyzer
Lewin Edwards (sysadm@zws.cony), Design Enginéer, Freelance '

Swmmary: How do you take the Cell Broadband Engine™ (Cell/B.E.) processor from an off-the-
shelf Sony® PLAYSTATION® 3 (PS3) and use it fo construct a piece of Linux®-based laboratory
equipment (in essence, taking the Cell/B.E. from fab to hab to lab)? In this series, Lewin Edwards
shows you how to go from game console to simple audio-bandwidth spectrum analyzer and function
generator. First up, uncover the design intent of the project and then make a close inspection of the '
details of the user interface iaplementation as you start a journey to generate and analyze signals on

the Cell/B.E. processor.

Date: 15 May 2007
Level: Intermediate -
Also available in: Japanese

Activity: 16964 views :
Comments: 1 (View or add comments)

L 2 & & Average rating (based on 35 votes)

The Cell Broadband Engine (Cell/B.E.) processor has attracted a Jot of fashionable attention for
applications involving game playing and network data processing. However, there are many other,
arguably more entertaining uses for this technology. : '

In this series of articles I will be using a CelV/B.E. processor — resident within an off-the-shelf
PLAYSTATION 3 (PS3) — to build a Linux-hosted piece of laboratory equipment, namely a simple
andio-bandwidth spectrum analyzer and function generator. : C

In this first article, I'll describe the design intent of the project and go into details of the user interface
implementation. o - - S

The setup

The specific hardware and software combination I'm using is 2 60GB P83 rupning Yellow Dog Linux
5.0 (YDYL). I am using a standard NTSC television set as wy output device and 1 also added a vanilla
USB keyboard and mouse and a Griffin iMic to the system (more on that peripheral later).

Everything I am doing here should be compatible with both the 20GB version of the P83 and almost
any other compatible Linux distribution (the only other distro known fo work at the time of writing is
Fedora Core 5 for PowerPC®). The reason 1 chose YDL is purely because it offers the path of least =
resistance —- Terra Soft has assembled and certified it for use on the P83, and it includes everything
you'll need to get up and running with the development process and the hardware we intend to use. -

If you're more comtfortable with a different PowerPC Linux distribution, then feel free to use it — but
you might need to download some additional coraponents not mentioned explicitly in this text. & 00001
BAKE 37

http:/fwwer.ibm com/developerworks/library/pa-ps3iabl/ 9/20/2010

PS3 fab-to-lab, Part 1: Build Linux lab equipment from'a Sony PLAYSTATION 3 Page 2 of 7

Similarly, I chose the iMic because it is known to be well-supported by PowerPC Linux -— again,
you're free to use any USB audio input device you wish, but locating drivers is left as an exercise for
the reader. As a sidebar, note that you do not need to buy a PS3 game controller; you can control the
Sony operating system with a USB keyboard (at least enough to get Linux instailed, after which you'll
never need to interact with GameOS again). oo e ot

Please refer to the Resources section for Jinks to the products mentioned. If you plan to follow along
and build and test the example code, you should also begin by reading and following the instructions
in Jonathan Bartlett's article describing how to install Linux on the PS3 (see Resources). Thisis a
relatively well-documented and fairly simple Linux install compared to some I could name, but it's
not quite as simple as just inserting a DVD and clicking "Go." Some hand-holding is definitely
NeCcesSary. ‘

If you don't want to invest in a PS3, you can build most of the code inside the Cell simulator, but there
probably isn't a lot of point unless you're also willing fo write a front end to simulate the audio
input/output devices (perbaps using .WAYV files) and graphical display.

' The rationale

Now, you might ask: What is the rationale behind using Cell/B.E. processors in an application of this
type? More often than not these days, engineers need to be able to control test equipment from a PC
and get all test data acquired back into the computer to be imported into analysis software such as
Mathcad or Matlab, Given the increasing complexity and PC-centric nature of instrumentation, a
general trend for practically all modern standalone laboratory instruments is that they are based
around embedded PCs with some custom magic bolted onto the front end.

For example, a digital oscilloscope might contain a fairly low-end processor running a general-
purpose operating system -- this processor will handle the user interface, networking, mass-storage.
and so forth. One or more digital signal processors (DSPs) coupled to fast analog-digital converters
(ADCs) perform the signal acquisition and pre-processing, trigger generation, and so forth.

Functionality in a single package

With a Cell/B.E. processor, you can wrap most of that functionality up into a single chip — in the base
architecture, you already have a frisky main processor (the PPE) and eight DSP.like coprocessors (the
SPEs). Moreover, the chip includes all the necessary plumbing to move bite-size chunks of DMA data
around without any additional hardware design effort on your part.

The broad intent is that the software developer should use the PPE to herd data blocks from input
streams to the SPEs, where the real computational magic takes place, and thence back to the output
devices. '

Thé tools are still familiar

Once you get your software development team over the surprisingly gentle learning curve of

_ understanding the SPE programming interface, you can develop the whole system using familiar
tools. You therefore end up with a laboratory instrument whose characteristics are defined almost
entirely by software without any need to get involved with special-purpose DSP toolchains, tricky
DMA architectures, ASICs, or FPGA programming. _

Slight degree of customization

_ BAKER 0000138
http//www.ibm.com/developerworks/library/pa-ps3labl/ 9/20/2010

PS3 fab-to-lab, Part 1: Build Linux lab equipment from 4 Sony PLAYSTATION 3 . Page3of7

Note that while a from-soratch Cell/B.E. hardware design is definitely nontrivial, the degree of
hardware customization required to develop a special application from a working Cell/B.E. reference
design is comparatively small (since much of the device's important atfributes can be implemented in
software). Buried in this fact is the implication that significant functionality upgrades can be sold to
end-users as simple software updates without any need to develop and certify new hardware.

This seems 1o be a compelling set of advantages and I would not be surprised to see Cell/B.E.-based
specirum analyzers, waveform synthesizers, and other complex test equipment such as base station
simulators appearing in the near future.

The example
In this specific example, I'll start by looking at few things you need to know:

» Where's the Linux?

» Keeping the box from going up in flames.
« Working with the display

» Text-rendering code

Finding our inner Linux

When building an application around a P53, you are constrained quite severely by the PS3's hardware
and software design — in particular, the fact that Sony has sandboxed Linux away from much of the
hardware. A fully custom design — or even simply a generic Cell/B.E.-based mainboard with a
custom PCI Express card containing your data acquisition/output hardware ~ would be much more

flexible.

-However, in line with the modest capabilities of the iMic, our target for this series is to work with two
parallel (stereo) 44.1kHz 16-bit data streams, implying an audio bandwidth of 22.05kHz. =~ -

Quch! That's hot!

Before you start, an important note: The P83 hardware was designed to sit on a TV set or
entertainment center, not on a workbench. If generates a lot of heat which is extracted by a fan that
blows out the end of the unit closer to the Blu-Ray drive, as well as out the back. :

When I first unpacked the unit, I ran it on my workbench next to my laptop with the PS3's fan
blowing into the Japtop's exhaust vents — the laptop eventually went into thermal shutdown. So I
advise you to run the PS3 "standing up" (so the PLAYSTATION 3 text is right-side up; there are feet
on the bottom of the wnit to assist with this). In this configuration, it seems to run the coolest.

A picture's worth a thousand code lines

With that out of the way and Linux installed, the first task you need to tackle is working with the
display. The default display configuration for your PS3's Linux install will depend on how exactly
you installed it. If you're running with-a normal NTSC or PAL TV set (as opposed to HDTV ora
VGA converter connected to a monitor), it's not possible to use YDL's graphical install mode because
it tries to set one of the progressive scan resolutions,

Therefore, the default Linux install will come up without X and with a TV-resolution screen. You can
alter this behavior by editing /ete/kboot.conf — for the purposes of this article series, you'll want to
run in one of the RGB modes, either 480i for NTSC users or 5761 for PAL/SECAM users. Either of
BAKER 6000139
http://www'ibm.com/developcrworksliibmry/pa-ps?:iab1/ . - 9/20/2010

PS3 fab-to-lab, Part 1: Build Linux lab equipment from a Sony PLAYSTATION 3 Page 4 of 7

these will give you a screen sizé reported as 576x384 pixels by the framebuffer device; more on that a
little later.

The specific framebuffer video mode at boot time is set by parameters passed to the kernel by the
bootloader, kboot. (Note that this video mode setting is only examined after the ps3fb framebuffer
device loads, since it is a kernel parameter. The video mode between the moment you power on and
the moment the ps3fb device initializes is whatever you set in the Sony GameOS menus; by default, -
it's the interlaced SDTV resolution for the locale where your PS3 was purchased). The settings for
Kkboot are stored in /etc/kboot.conf — here's how I've configured my system. Most of this is taken
directly from the configuration generated by the YDL installer; I simply changed the video mode:

default=ydl

timeout=10

root=/dev/sdal

ydl=f/dav/sda1:/leinnxwz.6.16-20061110.yd1.2ps3
initrd=/dev/sdal:/initrd*Z.6.16—20061119.ydl.ZpsB.img root=/dev/sda3
init=/sbin/init video=psg3fb:mode:3I rhgh’

Changes made to kboot.conf take effect immediately from the next reboot; you don't need to do
anything special to propagate the new configuration into the bootloader.

If you're using a TV set and you're in Europe, you will probably want to run in mode 38; simply
change mode: 33 to mode: 38 in the previous listing. As a matter of interest, you can view a complete
list of available modes by using the ps3videcnode -h command. You can experiment with different
modes on the fly by running ps3videomode ~v <nurber>.

Now we'll do whatever it takes to write some pixels to that fresh new slate of blank video memory.

The PS3 video subsystem is heavily firewalled away from Limux by the Sony GameOS "hypervisor."
Tt is not clear how much of this is due to a generalized terror that someone, somewhere may someday
copy a PS3 game or see an unencrypted byte of HD video content, or how much is simply because
Sony needed to develop a method of exposing a video interface to Linux without releasing any
register-level documentation on the GPU (observe that this would potentially bring in all kinds of
GPL side effects such as requiring public disclosure of code that is covered by a nondisclosure
agreement with nVidia).

Whatever the motivations, the ps3fb video device works a litile differently from other Linux
framebuffers, which is both a curse and a blessing. An excellent, quite detailed Sony document on
how it works is provided in the Resources section, although it neglects to mention at least one
jrritating bug. The points you need to observe can be surmmarized succinetly: -

« Normally, framebuffer devices give you direct access 1o the video card's memory.
» Using the ps3fb devioe, your application writes to a main-memory (offscreen) buffer, Every
vertical blank, the hypervisor DMAs this buffer to the GPU memory, and then flips the GPU's
visible page to the new data synchronously with the vertical blank signal.
» The advantage to this system is that you never need to worry about "tearing" effects in
animations caused by updating the screen contents partway through a frame.
« ps3fb also exposes joctls that pexmit you to run the screen in a sort of single-buffered mode
where you stop the periodic inferrupts and explicitly dump new video data to the GPU when
your application feels it's appropriate (still through the hypervisor, of course). X uses this mode.
BAKER 0000140

http:r’/ww.ibm.com/developerworks!library/pa»ps?:labl/ | 9/20/2010

PS3 fab-to-lab, Part 1: Build Linux lab equipment from a Sony PLAYSTATION 3 Page 5 of 7

‘The irritating bug to which I referred is that the standard mode-info query loctls don't quite work
properly, at least for television resolutions. As 1 mentioned early on, the NTSC and PAL resolutions
both report a virtual/physical size of 576x384 pixels. This isn't even vaguely correct; the actual width
of the NTSC screen is 720 pixels and the height (as determined by mapping and poking progressively
larger shices of RAM) is actually something like 480 lines, though the framebuffer console seems to
stop at about 400 lines and the 480th line is somewhere off the bottom of the screen in the overscan

area, at least with the default video configuration.

Therefore, generic framebuffer code that doesn't explicitly understand the P83 will break
spectacularly if you simply compile it and let it run. My workaround is to coerce the code into
believing it's running on a 720x400-pixel screen, which seems to work nicely. You will want to

- change this if you're using something other than an NTSC TV set as your oulput device; though the
code will still operate, it probably won't generate a legible display.

Another definite oddity of the PS3's output is that the overscan color is whatever was being output in
the last pixel of the previous scanline. My theory on this is that the RAMDAC has a pixel latched into
it on each DMA cycle and this latch freezes when the raster moves outside the framebuffer area up
until the vertical blank interval, where it gets reloaded-with a black pixel value. Another pessibility is
that this phenomenon is cansed by some kind of subtle race condition with the hypervisor software.

The only reason I mention this is that if you draw a rectangle that touches the left edge of the screen,
you'll'see that the rectangle's color extends into the overscan area except in the upper-left corner of the
rectangle (since that corner inherited the color from the end of the previous scanline). The: + ™
phenomenon is easily noticeable even on a jow-resolution television set; I don't want you reporting
this as a bug in my code, because it isn't!

Make it legible -
Another feature you'll need for your instrument is text-rendering code. Rather than draw out a
character generator structure by hand, I've borrowed font_acorn_8x8.c from the Linux kernel (this is
part of the framebuffer driver tree). Note: This is legal only because the sample code I'm providing
here is GPL-licensed. If you need a character set that will allow youwclosed-source distribution, you'll
need to search a bit. Red Hat's eCos operating system, for example, includes a character set you can
use. The advantage of the Linux font is that it already inchudes all the hi-ASCII characters you might

want: Bmug

At this point you can take a look at the sample code which includes the initialization I described
earlier, as well as functions to plot single pixels, draw filled rectangles, and render text. The demo
code in main.c draws a few colorbars onscreen, as.well as a few lines of multicolor text, and prints
some potentially interesting debugging information to the console, You'll find that all the graphics
primitives I described above are in graphics.c and graphics.h, and are more or less self-documented.

A keyboard caveat

One final note which comes into focus when you run the sample code: I suggest you do notuse a
keyboard attached to the PS3 for your editing; do your development over ssh (the YDL install
includes a fully-functioning ssh daemon by default; you don't need to configure anything). That way
you can run the application on the ssh console and see useful debugging info on stdout without ‘
disturbing the graphics being displayed on the P83’ framebuffer. : - - f

Surprise! A functional grai:hics interface

BAKER 0000141
http://www.ibm-com/dtweloparworks/libmry/pa—ps3Iab1/ - 9/20/2010

P83 fab-to-lab, Part 1: Build Linux lab equipment from a Sony PLAYSTATION 3 Page 6 of 7

H you've been following along, you now have a functional graphics interface running on the PPE with
some useful groundwork priinitives ready to use in more advanced projects. '

In the next article, I'l describe how to use the iMic to gather an analog data stream, and I'll show you
how to use one of the SPEs to turn the system into a useful spectrum-analyzer. '

Downloads
The downibads for this article are being updated. Please try to download later.

Resources
Learn -
+ Jonathan Baifieﬂ's"’?fbgrarﬁming high»perfofmance applications on the Cell/B.E.
processor” (developerWorks, January 2007) article on installing Limux on the PS3 is essential
preliminary reading. -

« Sony has released a verj} good document describing, nter alia, how the ps3fb device interacts -
with the GPU and your Linux programs. Note that this is a mirror; there doesn't appear to be an
official copy of this document on Sony's sites. -

« Some (very!) old information on using Linux framebuffer devices is available at the Linux
Documeniation Project. Frankly, you're much better off looking at some sample code snippets,
Tinumx/fb.h, for information on the various data siructions, and the code and comments in the
ps3ib.c driver (drivers/video/ps3ib.c in the linux-2.6.16-20061110 tree provided by Terra Soft
Solutions).

+ The developerWorks Cell Broadband Engine Resource Center provides new documentation,
downloads, and community news for all things Cel/B.E.

+ News, news, and more news can be found in the Thursday roundups of the Power Architecture
blog.

Get products and technologies

« The Griffin iMic is our audio input device of choice. Note that the Web site shows a (newer)
white model of the product. The model I bave tested with PPC Linux is the older, translucent-
and-silver version with a switch between the input and output jacks.

+ You can get Yellow Dog Linux through free download from Terra Soft Solutions. My
experience is that all the mirrors are quite slow; I got the install ISO tmuch faster by searching a
P2P uetwork for the filename yellowdog—ﬁ.0-phoenix-2{)061208-?33.iso.

e You can download the Cell/B.E. SDK (latest version 2.1) from alphaWorks.

Discuss
BAKER (0060142

http:/fwww.ibm.com/developemorksliibrary/pa-ps’s'iabl/ 9/20/2010

+ -

PS3 fab-to-lab, Part 1; Build Linux lab equipment from a Sony PLAYSTATION 3 Page 7 of 7

» Participate in the discussion forum.,

» Got a question on how to leverage and program the processor? Pose your question in the Cell
Broadband Engine Architecture forum.

About the author

Lewin A.R.W. Edwards works for a Fortune 50 company as a wireless security/fire safety device
design engineer. Prior to that, he spent five years developing x86, ARM and PA-RISC-based
networked multimedia appliances at Digi-Frame Inc. He has extensive expetience in encryption and
security software and js the author of two books on embedded systems development.

Trademarks | My developerWorks terms and conditions

BAKER 0600143

http://www.ibm.com/deveIoperworks/library/pa»ps3lab1/ 9/20/2010

PS3 fab-to-lab, Part 2: Generating and analyzing signals Page 1 of 7

PS3 fab-to-lab, Part 2: Generating and
analyzing signals -

Try isochronous USB device audio data, extract spectrum information from.a DFT library, and

display the resulls ..

Lewin Bdwards (sysadm@zws.com), Design Engineer, Freelance’

Summary: How do you take the Cell Broadband Engine (Cell/B.E.) processor: from an off-the-shelf -
Sony PLAYSTATION 3 (PS3),and use it o constiuct a piece of Limx®-bs ed-laboratory ‘equipment

(in essence, take the Cell/B.E.from fab 0 hab to lab)? I this series, Lewin Edwards. shows you how °
o go from gathe vonsolg 16 simple audip-bandwidth spectrum analyzer an netion gen :
article, the author shows you how fo build'on the infrastructure from Part 1
fully operational, if primitive, spectrum analyzer. . -4 ' R

Date: 02 Oct 2007
Level: Intermediate

Activity: 11113 views
Comments: 0 (Add comments)

® dd ¥ pAverage rating (based on3 thés)

Introduction.

Part | mostly discussed infrastructure; support code needed in order to get something up on aPS3's
screen and an explanation of various platform-specific oddities you'll encounter with this particular
combination of hardware. In this article, you will see how to build on that infrastructure to make the

system into a fully operational, if somewhat primitive, spectrum analyzer. To download the sample
code referenced in this article, go to Part 1. T ‘ - YRS

The target technology

The basic function of a spectrumn analyzer is to decompose an input signal in the frequency domain
and display a representation of the energy levels of different frequencies of interest. There are several
approaches to building such a device depending on your needs and the acceptable project cost. The
simplest type can be seen in stereo sysiens that have an LED or VFD bar chart display showing the
output signal strength in a few discrete frequenicy bands (typically three to seven). The usual way of
jmplementing such a display is to feed the input signal inio a comb filter. Each tooth of the comb is
fed 1o a circuit that is, in essence, a low-pass filter. The output of this second filter is a slow-moving
average of the input signal Jevel for one frequency band. This average is fed into a stack of
comparators with progressively higher reference voltages, the outputs of which drive the display
segments in one colunm of the bar chart. ‘ , -

A traditional analog spectrum analyzer is a considerably more complex beast, but the basic design
principle is easy to understand. The front end is essentially a superheterodyne receiver with a wide
tuning range. The center frequency of this receiver is voltage-controlled (fypically by means of
varactor diodes in the receiver's local oscillator). The control input is driven with an internally

BAKER 0000144
http://www.ibm.oom/developerworks/powerflibrary/pa—ps?sIabZ/index.html ‘ 9/20/2010

PS3 fab-to-lab, Part 2: Generating and analyzing signals - Page 2 of 7

generated sawtooth waveform from an internal timebase. The same sawtooth drives the horizontal
deflection of an oscilloscope trace; the output of the recejver drives the vertical deflection. What you
actually see on the scope creen is therefore a graph of frequency (x) against signal energy (y). An
example of such a display is shown in Figure i N

The display shows a 20 Mz slice of the broadcast radio spectrum from, 90.3 MHZ o 110.3 MHz as
received by a rather badly mismatched anterma. WHTZ, 100,3 MHgz, is the peak at the center of the
trace. You can see various other FM radio stations at various signal strengths to either side of it.

The ron plus ultra of spectrum analyzers js the (mostly) all-digital design. At the high end, this
consists of an extremely high-speed, high-resolution analog-to-digital converter that acquires the input
signal in the time domain. A fast digital signal processor then converts this to frequency domain data
and displays the result on the screen, optionally performing various filtering or other processing. A
high-end digital spectrum analyzer can also perform other intelligent tasks to help you look at a signal
of interest. For example, the analyzer might fnow about frequency-hopping spread spectrum signaling
systems and allow you to set up the hop list and protocol timing in the analyzer itself to track an
ongoing communication session.

Complaints department

To prevent advanced readers from complaining: Tt would theoretically be possible to bring in signals
of any arbitrary frequency (even up in the multiple gigahertz range) by using an external mixer to
heterodyne the source down to the range of the iMic. In fact, some vendors of spectrum analyzers sell
expansion boxes that do precisely this. However, becanse the iMic's bandwidth is severely limited, it
would be irksome to scan across such high frequencies.

The system you are building is of the all-digital type. Unfortunately, the limiting performance factor
for this is right at the front end: the PS3 hardware does note have a convenient method of acquiring
high-speed signals. Therefore, this article helps you build something of a proof-of-concept device that
is Hmited to the audible signal range of approximately 20 Hz to 20 kHz, using the Griffin iMic as the

data acquisition device.

The four-step project list
BAKER ({00145

http:/fwww.ibm.com/developerworks!power/library/pa—psSlabzfindex.html 9/20/2010

PS3 fab-to-lab, Part 2: Generating and analyzing signals Page 3 of 7

It's time to get staried. The subtasks in this project include:

1. Filter the input signal, ’

2. Acquire (digitize) the input waveform. :
3. Convert the time domain data to the frequency domain.
4, Display the data attractively.

Step 2 (yes, 2): Digitizing the input waveform

The first thing to consider is how to funnel some data from the outside world into the PS3. You can
use the Griffin iMic for this purpose, and there is really not much to say about the installation process.
Recent Linux kernels include a compatible driver, so setting up the device on YDL is very much plug-
and-play. You can verify that the device was mounted successfully by using tail -10 /etc/dmesg
and checking for the appropriate USB messages, and then use the ALSA mixer to determine if you
can tinker with the volume settings for the device.

For the programming side, there are a few different APIs you can use to access audio devices in
Linux. The sample code presented with this article uses the Open Sound System API (OSS) mainly
because it is uncomplicated to use and becanse its old age means it is well supported on various
hardware and operating system flavors. The iMic is also supported by the Advanced Linux Sound
Architecture (ALSA) APL It would not be unreasonably difficult to modify this sample code to work

with ALSA. : ‘

The data stream will be sampled at 16 bits, 44,1 kHz. While this sampling frequency is not a
particularly nice round number from a calculation point of view, it's a safe choice for hardware that
was designed for audio recording. Because off-the-shelf hardware is often not tested rigorously
against all possible API call parameters, it's prudent to choose popular sample formats and data rates
when working with consumer hardware, This caveat basically restricts you to 11.025, 22.050, or the
CD-quality sample rate of 44,100 kHz (though 48 kHz is also usually supported by modern audio
hardware). | strongly advise you to stick to the upper end of this range, The reason for this is buried in
the fact (which some of you might have noticed) that X glossed over step one in my project list. It's
time to rectify that omission. ' ' ' S

OK, now Step 1. Filtering the input signal

Normally; a digital data acquisition system starts with level-matching and isolation components
followed by a sinc filter that rolls off, theoretically, to somewhere below the ADC's voltage
resolution, across the frequency span, between the highest-frequency signal of interest and half the

sample rate.

For the sample 16-bit ADC, that would theoretically mean 96 dB of attenuation (6 dB per bit)
between the audible range of about 20 kHz and half the CD-quality sampling rate, which is 22.05 0
kHz. This requirement is an unfeasibly tall order for an analog circuit. It would involve an
incomprehensibly high-order active filter network or a big compromise on performance parameters,
such as passband ripple (or, more likely, both). Observably, the iMic does not contain such analog
hardware. While it is possible that the device oversamples the input signal, filters it digitally, and
downsamples it, this is very unlikely. Griffin does not publish specifications online, so you can make
an educated guess that it is much more likely that the iMic compromises a bit by starting its rolloff
earlier, quite probably not reaching the full 96 dB by the 22.050 kHz mark. ‘

The net result of this discussion is that if you use a reduced sample rate, the iMic's front-end filter is

not going to know about this, so it will continue passing through signals at frequencies that cannot be
BAKER 0000146

http:/www.ibm.com/developerworks/power/library/pa-ps3lab2/index.himl : 19/20/2010

PS3 fab-to-lab, Part 2: Generating and analyzing signals

Page 4 of 7

captured by your Jower sample rate. This will cause aliasing artifacts to appear in your final output.
As a result, the best sirategy is to capture of a known-good sample rate. If you find that this generates
t0o much data for the FFT engine to handle in a timely manner, then your next best plan is still fo
capture af the higher rate, but to run a digital low-pass filter over the raw data then downsample it

before passing it on to the next stage.

Step 3. Converting data

When I planned this article, 1 was geared up to port an existing FFT algorithm to the Cel/B.E.
platform and thereby impress you with my elite porting skills, but it seems that IBM already beat me
to the punch, The latest alpha version of the FETW library (seé Resources) already includes explicit
support for the Cell/B.E. processor. Basically the only thing you need to do is build and install the
library, and then add ~1££tw3 and ~1m to the linker flags in your Makefile. The tutorials included in
the FFTW documentation are adeguate to get you started. Note the caveat in the documentation
regarding SPE usage. By default, the Cell/B.E. version chews up all available SPEs. Use the

£ftw _cell set nspe(n) call (it is in the documentation, but not right alongside the rest of the API

description) to scale back FFTW's usage to n SPEs.

Initializing the FFTW library is simaply a matter of completing the following two steps:

1. Allocate memory for the input and owtput buffer. it's best to use the £t _malloc{) function
for this instead of the regular malioc () because the fftw-specific function optimizes data

alignment. This is particularly important on platforms like the Cell/B.E. processor.

2. Develop and select a plan. There is actually a lot of arcane complexity in this step (well
explained in the documentation). At its simplest, you call ££tw_plan_dft_ld() and tell it the
array size, pointers to the input and output arrays, whether you want to go forward or backward,

and several flags that can be used to squeeze out optimal performance. For the example

application, FFrw_gSTIMATE is perfectly acceptable as the flags' parameter.

The iMic delivers a stream of time-domain samples in the range 0 to 65535, 22.68 microseconds
apart. You massage these (note that you are using only one chammel of the stereo data stream) and
place them in the FFT's input buffer. The example also plots a reduced-size, 128-pixel-high version of
the input signal onscreen so you can see what it Jooks like in an oscilloscope-style format. That's not
just a bit of eye candy, but rather to help you check that your input signal is properly connected and at
an appropriate level, You also see a Jittle snippet of code that you can uncomment if you don't have an

iMic or a reference frequency source: it stuffs a sine wave directly into the sample buffer.

Now it's time to call ££tw_execute (). This passes your sample data on to the SPEs, which crunch
them into frequency spectrum data, The 512 real sample points are turped into two groups of complex
spectrum data showing. symmetry around the center. As the references are fond of saying, the ¥'th
point in the output array represents the energy ata frequency of /n * Fs, where n is the number of

samples and Fy is the sample frequency.

The first entry in the table in memozy {0 }iz) is a special case. It represents the DC level of the input
signal, and hence is usually off the scale. The spectrum rendering code deliberately clamps the Y-
coordinate to allow for this condition, Note that this probably is not representative of the actual DC

level at the iMic's input pin. Most likely, the input is capacitively coupled, so there isn't any real DC

at the ADC. Rather, this bogus spike represents the fact that your input signal does not vary equally

positively and negatively about the O V line, but rather varies between 0 and +65535.

' http:f/www.ibm..com/deve}operworks/power/iibrary/pa—psBlabZ/indcx.html

BAKER 0000147
9/20/2010

PS3 fab-to-lab, Part 2: Generating and analyzing signals ‘ Page 5 of 7

Also note that, technically, you should use a logarithmic scale for the spectrum. The reason I don't do
this in the sample code is that the resolution is rather low, and you can get & betier idea of the signal
shape from the linear plot.

Some technical details are in order here, particularly if you are now looking at the source code in
puzzlement, Arbitrarily, I chose a 512-point FFT. FFTW does supporst arbitrary transform sizes, but
you can realize much better performance with a size that is a power of.2. Speaking of performance,
the generic complex one-dimensional transform I selecied is oot the optimal choice for your sort of
input data. The fastest would be £ftw_plan dft_r2c_1d() {one-dimensional, real). The reason I
went with the generic case is that is applicable to other sorts of data, and the additional computation

load is really child's play to the PS3.

By the way, you shouldn't think of the FFT algorithm as being just a monolithic mmmber-crunching
magical black box. Plenty of research lias gone into methods of computing FFTs and, among other
{hings, how to factor a given FFT operation across muktiple digital signal processors (DSPs). If, for
some reason, you find the FFT itself is a bottleneck, there is a great deal of existing code (including,
in this case, £fftw) that can accelerate your application by splitting it up, if you throw more cores at the
problem. y

Step 4. Makingapretty display | o ol e e

Now that you have sorted the input data into buckets, all that remains fo be done is to display it. To do
this, caloulate the magnitude of each complex output point using simple Pythagoras and plot that
number. If you wanted an actual power reading in dB, you should instead plot 20 times the base-10
Jog of the output point. This is not terribly useful information without some kind of reference marker
though. o . '

Observe that if you wéré to plot all 512 output points, you would see a lot of ixrelevant information.
Everything to the right of the 22,050 kiz mark is aliased and might not actually exist in the input
signal. Hence, the code accompanying this article only plots the first 256 points, and it doubles the
horizomtal size so the display fits neatly under the oscilloscope display.

At this point, experiment a bit with performance. In particular, try building the FETW tibraries *
without Cell/B.E. support so they use only the PPE. The improvement would be more poticeable if
you were doing a larger transform because the SPEs are much better at this sort of thing than the PPE.
The small size of your data set means the transd€tion Hvéihead is'a significant fraction of the
execution time. ‘ R '

1ty d- Ao atace N
talitaie IR T EECIE

Surprise! A useful spectrum apalyzer

So, you have now turned a P83 into a useful spectrum analyzer. The next article in the series
examines the other side of that equation and uses the same hardware as a function generator: the basis

of an audio synthesizer, among many other fhings.

Lo

Resources

Learn

. BAKER 0000148
http:/!www.ibm.com/deveIopexworksfpower/libra:y/paapsii1ab2/index‘htm1 9/20/2010

PS3 fab-to-lab, Part 2: Generating and analyzing signals Page 6 of 7

« Use an RSS feed to request notification for the upcoming articles in this series. (Find out more
‘about RSS feeds of developerWorks content.)

« Check out all the articles in the series. Part 1 uncovers the design intent of the project and
inspects the details of the user interface implementation.

« Refer to Advanced Linux Sound Architeciure (ALSA) (which kinda sounds like a band from
the 1980s) for audio and MIDI functionality to Linux with fully modularized sound drivers,
SMP and thread-safe design, support for the older OSS API, binary compatibility for most OSS
programs, and a user space library to simplify application programming and provide a higher
level functionality. '

« Read the Open Sound System (OSS) 4.0 Progranimer's Guide for a wealth of well-chosen tiny
demo applets that demonstrate recording, playback, and various mixer tweakage. Study this
code for the fastest way to get up to speed on the required steps.

« Qo to the home of the Poor Man's Spectrum Analyzer for just one of many sites for building
garage-project lab equipment.

« Find the latest 3.2alpha? prerelease version of the fftw Fast Fourier Transform library,
including IBM-supplied Cell/B.E. optimizations.

+ See "25 tips to optimal application performance” (deiréioperWorks, June 2006) for how you can
achieve near theoretical-maximum performance for real applications on the Cell/B.E. processor
by learning about the processor's architectural characteristics.

« Review Jonathan Bartlett's essential preliminary article "Programming high-performance
applications on the Cell/B.E. processor” (developerWorks, January 2007) about installing Linux
on the P83, ‘ .

» Check out the document Sony released describing inter alia how the ps3fb device interacts with
the GPU and your Linux programs. Note that this is a mirror document; there doesn't appear to
be an official copy of this document on Sony's sites.

+ Refer to the Cell Broadband Engine documentation section of the IBM Semiconductor
Solutions Techmical Library for a wealth of downloadable manuals, specifications, and more.

» Sign up for the developerWorks newsletter and get the latest developer news and Cell/B.E.
happenings delivered to your inbox each week. Check Power Architecture when you sign up o
receive Cell/B.E. news in your newsletter.

Get products and technelogies

« Jump over to Part 1 if you need to find the sample code referenced in this article.

« Look for the Griffin iMic: my audio input device of choice. Note that the Web site shows a
{newer) white model of the product. The mode! I have tested with PPC Linux is the older,
franslucent-and-silver version with a switch between the input and output jacks.

BAKER 0000149
http://www.ibm com/developerworks/power/library/pa-ps3lab2/index.html , 9/20/2010

? PS3 fab-to-lab, Part 2: Generating and analyzing signals Page 7 of 7

-+ Download Yellow Dog Limux through a free download from Terra Soft Selutions. My
experience is that all the mirrors are quite slow. 1 got the install ISO much faster by searching a

P2P network for the filename yellowdog-5.0-phoenix-20061208-PS3.iso.

« Find all Cell/B.E.-related articles, discussion forums, downloads, and more at the IBM
developerWorks Cell Broadband Engine resource center: your definitive resource for all things

Cell/B.E.

= Contact IBM about custom Cell/B.E.-based or custom-processor based solutions.

Piscuss
« Participate in the discussion forum.

» Check out the Cell Broadband Engine Architecture forum fo get your technical questions about
the processor answered. Juicy problems and answers from the forums are rounded up
periodically and highlighted in the "Forum watch” blog series,

« Go to the Power Architecture blog for news, downloads, instructional resources, and event
notifications for Cell/B.E. and other Power Architecture-related technologies. You can find the
popular "Forum watch” blog series (Q&A roundup) and the "FixIt" technology updates.

About the author

Lewin A.R.W. BEdwards works for a Fortune 50 company as a wireless security/fire safety device
design engineer. Prior to that, he spent five years developing x86, ARM and PA-RISC-based
networked multimedia appliances at Digi-Frame Inc. He has extensive experience in encryption and
security software and is the author of two books on embedded systems development.

Trademarks | My developerWorks terms and conditions

BAKER 0000150

htip://www.ibm.com/developerworks/power/library/pa-ps3lab2/index.html 9/20/2010

BAKER 0060151

BAKER 06003152

AR
Siateasyat) -
T T T T M L S e e e

ey Xty oy
oo aey

BAKER 0000153

e e A

BHA
PR

S BA)

B

" Uhwegpate: v
S catle b b £
Syt Lo : 8 =
- E ches it il
. Y o 3 g2 J9"88000 _m B nm.mmw._dmm@n.

R o P
1

i

’ * Serial r Repistration
7

POUR UTILISATEUR .

e 10
eI,

T

KER 0000154

-
M

SUINBU YIS FRUFTRIG S
FAPERSARIEG FACTURY X

2 "
g gk 30 STR/STHISBIKIAR
GHIRA

s

e o i P B i b

et

e RN

R S TS UG Y
e A

Iy
n»s\.:m

KER 0000155

BA

Nl e L S T

..H.Lwﬁ.@w%&ﬁm? JETESIR,
> ._B#A_mw.ﬁ

RSN RS LN T

o SRR T

RiEAT

duk_ﬁw..:qmﬂ&r aﬁsp SHDFIPRC A QSR DT R O
53y e T T TR Rt A

R

AL

B dﬂnrﬂnmmon«ﬁituu.rﬁn&ﬂwﬁ&
3)
e e e

S a.aw.».m“ﬁh

EamEt T

2B L
o7y SRR T

ST I

1
e
Fo

¥ G B R e e Kaﬁ.r-.—

IR S AT I CON 0p L RE

£ T O M AT IR S

T AR O R S,

"ol

2

L

et st

e TN

ﬁ%ﬁ%um:rﬁvv.&umfnw.

AR :
} - i

i . U e gnamn s
tenpieitn -pelng . e -
SRRGHNAPS ARIVERY .~ e - . ST s 1 i E

pusdsy

T N_u_wmzw:

S

T

R B

:!:\.1\«(.21@».9
.

