
u 7346884

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

March 21, 2012

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM

THE RECORDS OF THIS OFFICE OF:

U.S. PATENT: 6,061,520

ISSUE DATE: May 09, 2000

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

T. LAWRENCE

Certifying Officer

Trial Exhibit 4011, Page 1 of 15

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

TRIAL EXHIBIT
CASE NO. 10-03561 WHA

DATE ENTERED

BY
DEPUTY CLERK

4011

Oracle America, Inc. v. Google Inc. Doc. 1080 Att. 2

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/1080/2.html
http://dockets.justia.com/

United States Patent [19]

Yellin et al.

[54] METHOD AND SYSTEM FOR PERFORMING
STATIC INITIALIZATION

[75] Inventors: Frank Yellin, Redwood City; Richard
D. Thck, San Francisco, both of Calif.

[73] Assignee: Sun Microsystems, Inc., Palo Alto,
Calif.

[21] Appl. No.: 09/055,947

[22] Filed: Apr. 7, 1998

[51] Int. Cl.7
.......•.•••••••••.......•••••••• G06F 9/45; G06F 3/00

[52] U.S. Cl. 395/705; 395!704; 395/500.43;
709/100

[58] Field of Search 3951705, 707,
395!709

[56] References Cited

5,361,350
5,367,685
5,421,016
5,437,025
5,615,400
5,668,999
5,812,828
5,815,718
5,903,899
5,966,702
5,999,732
6,003,038

U.S. PATENT DOCUMENTS

11/1994 Conner et a!. 707/103
11/1994 Gosling 395/707
5/1995 Conner eta!. 395/707
7/1995 Bale eta!. 707/103
3/1997 Cowsar et a!. 709/305
9/1997 Gosling 395/704
9/1998 Kaufer eta!. 395/500.43
9/1998 Tock .. 395/705
5/1999 Steele, Jr 707/206

10/1999 Fresko eta!. 707/1
12/1999 Bak eta!. 395/705
12/1999 Chen 707/103

01HER PUBLICATIONS

Tyma, P;, "Tuning Java Performance". Dr. Dobb's Journal
[online], vol. 21, No. 4, pp. 52-58, Apr. 1996.
Cierniak et al., "Briki: an optimizing Java compiler". IEEE/
IEEE Electronic Library, Proceedings, IEEE Compean pp.
179-184, Feb. 1997.

111111 lll
US006061520A

[11] Patent Number:

[45] Date of Patent:

6,061,520
May 9, 2000

Bell, D.; "Make Java fast: Optimize!". Javaworld[online].
Cramer et al.; "Compiling Java just in time". IEEE Elec
tronic Library[online], vol. 17, Iss. 3, pp. 36-43, May 1997.
Lindholm, Timet al., The Java Virtual Machine Specifica
tion, 1997.
Co mar et al.; "Targeting GNAT to the Java virtual machine".
ACM Digital Library[online], Proceedings of the conference
on TRI-Ada '97, May 1997.
Hsieh et al.; "Compilers for improved Java Performance".
IEEE Electronic library[online]. Computer[online], vol. 30,
Iss. 6, pp. 67-75, Jun. 1997.
Armstrong, E.; "Hotspot: A new breed of virtual machine".
Javaworld[online].
Gosling et al.; The Java Language Specification. Reading,
MA, Addison-Wesley. Ch 12, pp. 215-236, Sep. 1996.

Primary Examiner-Tariq R. Hafiz
Assistant Examiner-Kelvin E. Booker
Attorney, Agent, or Firm-Finnegan, Henderson, Farabow,
Garrett & Dunner, L.L.P.

[57] ABSTRACT

The disclosed system represents an improvement over con
ventional systems for initializing static arrays by reducing
the amount of code executed by the virtual machine to
statically initialize an array. To realize this reduction, when
consolidating class files, the preloader identifies all <clinit>
methods and play executes these methods to determine the
static initialization performed by them. The preloader then
creates an expression indicating the static initialization per
formed by the <clinit> method and stores this expression in
the .mclass file, replacing the <clinit> method. As such, the
code of the <clinit> method, containing many instructions,
is replaced by a single expression instructing the virtual
machine to perform static initialization, thus saving a sig
nificant amount of memory. The virtual machine is modified
to recognize this expression and perform the appropriate
static initialization of an array.

23 Claims, 3 Drawing Sheets

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 2 of 15

U.S. Patent May 9, 2000 Sheet 1 of 3

BEGIN

COMPILE PROGRAM

CONSOLIDATE CLASS
FILES

RUN .m CLASS
FILE ON VM

END

FIG. 1
(PRIOR ART)

102

104

106

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

6,061,520

Trial Exhibit 4011, Page 3 of 15

U.S. Patent

N
0
N

0:: w
t
::J
a..
:2
0
(..)

(X)
0
N

" LU
>-(.)
a::>
<Cw oo
zw

8~
~0

t-en

<0
0
N

"
~
0
:2
w
:2

May 9, 2000

0
~

N

"
en

:2 LU

C2
.....J w
lLJ ::::>

(!) en u. a..

~ ~ E 0

a..
(.)

7!!
V<OOO
NNN
NNN

0::
LU
liD~~

:2
0:: w
w 0 t-:2
.....J <(zw
a.. 0 ::Jt-

0::(/)
:2J >-
0 w ~en 0:: (..) a.. ~ ...,

77-(
COOT"""
"""" N N NNN

Sheet 2 of 3

N
T""

N

"
w
0
> w
0
r-
::J
a..
z -

~
_J

a..
en
0
0 w
0
>

7

Copy provided by USPTO from the PIRS lma~e Database on 03/14/2012

6,061,520

j~

Trial Exhibit 4011, Page 4 of 15

U.S. Patent May 9, 2000 Sheet 3 of 3

READ CLASS FILE TO
OBTAIN A CLINIT METHOD

N

ALLOCATE VARIABLES

READ A BYTE CODE

PERFORM OPERATION
REFLECTED BY BYTE CODE

STORE DIRECTIVES IN
ITS CLASS FILE

FIG. 3

y

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

6,061,520

302

304

306

310

318

Trial Exhibit 4011, Page 5 of 15

6,061,520
1

METHOD AND SYSTEM FOR PERFORMING
STATIC INITIALIZATION

FIELD OF TilE INVENTION

The present invention relates generally to data processing
5 systems and, more particularly, to a method and system for

performing static initializati<;m.

BACKGROUND OF TilE INVENTION

Java™ describes both a programming language and a
programming environment for generating and running 10

platform-independent code. This platform-independent code
runs on a Java™ virtual machine, which is an abstract
computing machine that interprets the platform-independent
code. The Java TM virtual machine is described in greater
detail in Lindholm and Yellin, The Java Virtual Machine 15
Specification, Addison-Wesley (1997), which is hereby
incorporated by reference. The Java™ virtual machine does
not specifically recognize the Java™ programming language
or any other programming language; instead, the Java virtual
machine only recognizes a particular file format, the class 20
file format. A class file contains the Java virtual machine
instructions (or byte codes) that constitute the platform
independent code.

As part of running a Java program, a developer performs
a number of steps, as shown in FIG. 1. First, a developer 25

compiles a computer program (step 102). Typically, the
developer has developed a computer program containing
source code in a high-level language, such as the Java
programming language, and invokes the Java™ compiler to
compile the code. The Java compiler is part of the Java™ 30

software development kit available from Sun Microsystems
of Mountain View, Calif,. The Java compiler outputs one or
more class files containing byte codes suitable for execution
on the Java virtual machine. Each class file contains one type
of the Java programming language, either a class or an 35

interface. The class file format is described in greater detail
on pp. 83--137 of The Java Virtual Machine Specification.
Although the class file format is a robust file format, it is
unable to instruct the virtual machine to statically initialize
an array efficiently, thus posing a problem, discussed in 40

greater detail below.
After compiling the program, the developer consolidates

the class files output in step 102 into a single file, known as
a .mclass file, by using a preloader (step 104). The prcloader
also available from Sun Microsystems, Inc., concatenates 45

the class files and performs preprocessing to facilitate the
execution of the class files. After consolidating the class
files, the developer loads the .mclass file into a virtual
machine (step 106). In this step, the Java virtual machine
stores the .mclass file in memory and interprets the byte 50

codes contained in the .mclass file by reading the byte codes
and then processing and executing them. Until interpretation
of the byte codes is completed, the .mclass file is stored in
memory. The byte codes recognized by the Java virtual
machine are more clearly described on pp. 151-338 of The 55
Java Virtual Machine Specification.

As stated above, the class file format cannot instruct the
virtual machine to statically initialize arrays. To compensate
for this problem, the Java™ compiler generates a special
method, <clinit>, to perform class initialization, including 60

initialization of static arrays. An example of the initialization
of a static array follows:

Code Table #1

2
Given this static initialization, the Java ™ compiler creates a
<clinit> method that performs the static initialization as
functionally described below in pseudo-code:

temp=new int [4];
temp=[0]=1;

temp=[1]=2;
temp=[2]=3;

temp=[3]=4;
this.setup=temp;

Code Table #2

As the above code table shows, merely describing the
<clinit> method functionally requires a number of state
ments. More importantly, however, the actual processing of
the <clinit> method, performed by byte codes, requires
many more statements. These byte codes manipulate a stack
resulting in the requested static initialization. A stack is a
portion of memory used by the methods in the Java pro
gramming environment. The steps performed by the <clinit>
method for the example static initialization described above
are expressed below in byte codes.

Code Table #3

Method void <clinit>O
0 iconst_ 4 //push an integer value of 4 on the stack

1 newarray int //create a new array of integers and put it
on the stack.

3 dup //duplicate top of stack
4 iconst_O //push an integer value of 0 on the stack

5 iconst_1 //push an integer value of 1 on the stack

6 iastore //store a 1 at index 0 of array
7 dup //duplicate the top of the stack

8 iconst_1 //push an integer value of 1 on the stack

9 iconst_2 //push an integer value of 2 on the stack

10 iastore //store a 2 at index 1 of array

11 dup //duplicate top of stack

12 iconst_2 //push an integer value of 2 on the stack
13 iconst_3 //push an integer value of 3 on the stack
14 iastore //store a 3 at index 2 of array

15 dup //duplicate top of stack

16 iconst_3 //push an integer of value 3 on stack
17 iconst_ 4 //push an integer of value 4 on stack
18 iastore //store a 4 at index 3 of array
19 putstatic #3<Field foobar.setup [I> //modify set up

array according to new array on stack
22 return
Although using the <clinit> method provides the Java™

compiler with a way to instruct the virtual machine to
initialize a static array, the amount of code required to
initialize the array is many times the size of the array, thus
requiring a significant amount of memory. It is therefore
desirable to improve static initialization.

SUMMARY OF TilE INVENTION

The disclosed system represents an improvement over
conventional systems for initializing static arrays by reduc
ing the amount of code executed by the virtual machine to
statically initialize an array. To realize this reduction, when

static int setup[]={1, 2, 3, 4};
In this example, an array "setup" contains four integers
statically initialized to the following values: 1, 2, 3, and 4.

65 consolidating class files, the preloader identifies all <clinit>
methods and simulates executing ("play executes") these
methods to determine the static initialization performed by

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 6 of 15

6,061,520
3 4

them. The preloader then creates an expression indicating
the static initialization performed by the <clinit> method and
stores this expression in the .mclass file, replacing the
<clinit> method. As such, the code of the <clinit> method,
containing many instructions, is replaced by a single expres- 5

sion instructing the virtual machine to perform static
initialization, thus saving a significant amount of memory.
The virtual machine is modified to recognize this expression
and perform the appropriate static initialization of an array.

cause the same static initialization as the <clinit> method
and outputs these directives to the Java virtual machine, thus
replacing the <clinit> method. These directives are then read
at runtime by the Java virtual machine causing the Java
virtual machine to perform the same static initialization
performed by the <clinit> method. The directives require
significantly less memory space than the <clinit> method.
For example, the byte codes described above in code table
#3 could be reduced to the following directives contained

Methods consistent with the present invention receive
code to be run on a processing component to perform an
operation. The code is then play executed on the memory
without running the code on the processing component to
identify the operation if the code were run by the processing
component. Thereafter, a directive is created for the pro
cessing component to perform the operation.

A data processing system consistent with the present
invention contains a secondary storage device, a memory,
and a processor. The secondary storage device contains a
program with source code that statically initializes the data
structure and class files, where one of the class files contains
a <clinit> method that statically initializes the data structure.
The memory contains a compiler for compiling the program
and for generating the class files and a preloader for con
solidating the class files, for simulating execution of the
<clinit> method to determine the static initialization the
<clinit> method performs, and for creating an instruction to
perform the static initialization. The processor runs the
compiler and the preloader.

BRIEF DESCRIPTION OF TilE DRAWINGS

FIG. 1 depicts a flowchart of the steps performed when
developing a program in the Java™ programming environ
ment.

FIG. 2 depicts a data processing system consistent with
the present invention.

FIG. 3 depicts a flowchart of the steps performed by the
preloader depicted in FIG. 2.

DETAILED DESCRIPTION OF TilE
INVENTION

Systems and methods consistent with the present inven
tion provide an improved system for initializing static arrays

10 within the .mclass file indicating that an array of four
integers has the initial values 1, 2, 3, and 4:

CONSTANT___Array T_INT 4 1 2 3 4
The virtual machine of an exemplary embodiment recog
nizes this expression and statically initializes the array to the

15 appropriate values. As a result, the exemplary embodiment
reduces memory consumption over conventional systems
when initializing a static array.
Implementation Details

FIG. 2 depicts a data processing system 200 consistent
20 with the present invention. The data processing system 200

comprises a computer system 202 connected to the Internet
204. Computer system 202 contains a memory 206, a
secondary storage device 208, a central processing unit
(CPU) 210, an input device 212, and a video display 214.

25 The memory 206 further includes the Java™ compiler 218,
the Java™ preloader 220, and the Java™ runtime system
221. The Java™ runtime system 221 includes the Java™
virtual machine 222. The secondary storage device 208
contains a program 224 with source code, various class files

30 226, and a .mclass file 228. The Java™ compiler 218
compiles the program 224 into one or more class files 226.
The preloader 220 then receives the class files 226 and
generates a .mclass file 228 representing the consolidation of
all of the class files. After consolidation, the .mclass file 228

35 can be run on the virtual machine 222.
Processing consistent with the present invention is per

formed by the preloader 220 searching for a <clinit>
method, and when it is found, the preloader (1) simulates
execution of the <clinit> method to determine the effects it

40 would have on memory if it was interpreted by the virtual
machine 222, (2) creates static initialization directives to
replicate these effects, and (3) outputs these directives in the
.mclass file to replace the <clinit> method, thus saving
significant amounts of memory.

In addition, processing consistent with the present inven-
tion is performed by the virtual machine 222 because it is
modified to recognize the static initialization directives of
the preloader. Although an exemplary embodiment of the
present invention is described as being stored in memory

in the Java™ programming environment by replacing the 45

<clinit> method with one or more directives which, when
read by the virtual machine, causes the virtual machine to
perform the same static initialization performed by the
<clinit> method, except using a significantly less amount of
memory and significantly less time. As a result, such sys
tems and methods can significantly reduce memory utiliza
tion when statically initializing an array.

50 206, one skilled in the art will appreciate that it may also be
stored on other computer-readable media, such as secondary
storage devices like hard disks, floppy disks, or CD-Rom; a
carrier wave received from the Internet 204; or other forms
of RAM or ROM. Additionally, one skilled in the art will

Overview
Systems and methods consistent with the present inven

tion eliminate the need for the <clinit> method by perform
ing certain preprocessing in the preloader. Specifically, the
preloader receives class files for consolidation and scans
them looking for a <clinit> method. When the preloader
finds the <clinit method, it simulates execting ("play
executes") the <clinit> method against memory to determine
the effects that the <clinit> method would have on the
memory if interpreted by the Java virtual machine. That is,
the preloadef simulates execution of the <clinit> method to
identify the static initialization that would result had the
<clinit> method been executed by the Java™ virtual
machine. After identifying this static initialization, the pre
loader generates one or more directives (or instructions) to

55 appr~;;ciate that computer 202 may contain additional or
different components.
The Preloader

FIG. 3 depicts a flowchart of the steps performed by the
preloader 220 consistent with the present invention to per-

60 form initialization of a static array. The first step performed
by the preloader is to read a class file to obtain the <clinit>
method (step 302). After obtaining a <clinit> method, the
preloader allocates various variables for use during play
execution (step 304). When play executing, discussed below,

65 the preloader simulates execution of the byte codes con
tained in the <clinit> method by the virtual machine. These
byte codes manipulate various data structures associated

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 7 of 15

6,061,520
5

with the <clinit> method, such as the constant pool, the
stack, or local variables (or registers).

6
<clinit> method (step 314). If so, processing returns to step
306. However, if there are no more byte codes, the pre loader
stores directions in the .mclass file to statically initialize the
arrays (step 318). In this step, the preloader stores constant

The constant pool is a table of variable-length structures
representing various string constants, class names, field
names, and other constants referred to within the class file.
The stack is a portion of memory for use in storing operands
during the execution of the method. Thus, the size of the
stack is the largest amount of space occupied by the oper
ands at any point during execution of this method. The local
variables are the variables that are used by this method.

5 pool entries into the .mclass file like the following:

When allocating variables, the pre loader obtains a pointer
to the constant pool of the <clinit> method, allocates a stack
to the appropriate size, and allocates an array such that one
entry of the array corresponds to each of the local variables.

10

As described below, the play execution operates on these 15
variables.

After allocating the variables, the preloader reads a byte
code from the <clinit> method (step 306). Next, the pre
loader determines if it recognizes this byte code (step 308).
In this step, the preloader recognizes a subset of all byte 20

codes where this subset contains only those byte codes that
are generally used to perform static initialization of an array.
Following is a list of the byte codes recognized by the
preloader of an exemplary embodiment:

Tag Type Size Values

CONSTANT_Array T_INT 4 1234

This entry in the constant pool indicates that a particular
array has four integers that have the initial values of 1, 2, 3,
and 4. At run time, when the virtual machine initializes the
class .mclass file, it will encounter a reference to this
constant pool entry and create the appropriate array. As a
result, the many instructions contained in the <clinit>
method are reduced to this one expression, saving significant
amounts of memory and time.
Example Implementation of the Preloader

The following pseudo-code describes sample processing
of the pre loader of an exemplary embodiment. The preloader
receives as a parameter a method information data structure

aconst_null
iconst_m1
iconst_O
iconst_1
iconst_2
iconst_3
iconst_4
iconst_S
lconst_O
lconst_1
fconst_O
fconsL1
fconst_2
dconst_O
dconst_1
bipush
sipush

Code Table #4

iastore

25 that defines the <clinit> method, described in the Java™
Virtual Machine Specification at pp. 104-106, and play
executes the byte codes of this <clinil> method. It should be
noted that the processing described is only exemplary; as
such, only a few byte codes are described as being processed

las tore
fastore
dastore
aastore
bastore
lastore
sastore
dup
newarray
anewarray
return

30 by the preloader. However, one skilled in the art will
appreciate that all of the byte codes in code table #4 may be
processed by the exemplary embodiment.

Ide
ldc_w
ldc2_w
putstatic

35

40

Any byte codes other than those listed above are not
recognized. The appearance of other byte codes beyond 45

those described above indicates that the <clinit> method
performs functionality in addition to statically initializing an
array. In this case, the <clinit> method cannot be optimized.
If a byte code is not recognized, the preloader considers it
unsuitable for optimization (or play execution) and process- 50

ing continues to step 316.
If the preloader recognizes the byte code, however, the

pre loader performs the operation reflected by the byte code
(step 310). In this step, the preloader play executes the byte
code on the variables allocated in step 304, and as a result, 55

a value may be popped from the stack, a local variable may
be updated, or a value from the constant pool may be
retrieved. Additionally, the preloader may encounter a "put
static" byte code indicating that a particular static variable
(e.g., array) is to be initialized in a particular manner. If the 60

preloader receives such a byte code, it stores an indication
of the requested initialization into a hash table for later use.
An example of such an entry in the hash table follows:

Setup:=Array (1 ,2,3,4)

After performing the operation reflected by the byte code,
the pre loader determines if there are more byte codes in the

65

Code Table #5

void emulateByteCodes(Method_info mb)
int numberRegisters = mb.max_localsQ; //number of local variables
int stackSize = mb.max_stackQ; //stack size
byte byteCode [] = mb.codeQ; //get the byte code
ConstantPool constantPool = mb.constantPoolQ; // get constant pool
Object stack[] = new Object[stackSize]; //create stack for

play execution
Object registers[] = new Object[number Registers]; //create local

variables

/* Start with an empty stack. • I

for play
//execution

int stackTop = -1; //just below valid element
/* Map of static objects *I
Hashtable changes = new HashtableQ;

try {
boolean success;

execution_loop:
for (int codeOffset = 0, nextCodeOffset;

;codeOffset = nextCodeOffset) {
int opcode = byteCode[codeOffset] & OxFF; //0 .. 255
nextCodeOffset = codeOffset + 1; II the most usual value
switch(opcode) {

case opc_iconst_)Il1: //push -1 on the stack
stack[++stackTop] = new Integer(-1);
break;

case opc_bipush:
nextCodeOffset = codeOffset + 2;
stack[++stackTop] = new Integer(bytecode[codeOffset + 1 D;
break;

case opc_lload_3: //load the contents of register 3
stack[++stackTop] = (Long)register [3];
stack[++stackTop] = null; //longs use two words on stack
break;

case opc_fsub: { // subtract top of stack from item below
float b = stack[stackTop--].float\lllueQ;
float a= stack[stackTop].floatValueO;

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 8 of 15

6,061,520
7 8

-continued -continued

Code Table #5 Code Table #6

stack[stackTop] = new Float(a - b);
break;

5 ul type; I* see below *I

}
case opc_1dc:

nextCodeOffset = codeOffset + 2;
stack[++stackTop] =

constantPool.getitem(byteCode (codeOlfset + 1));
break;

10

u4 length; I* number of elements of the army *I
ux objects[length]; I* Actual values *I

I* The following field is included only if type ==
T_CLASS *I

u2 type2; I* index of CONSTANT_ Class in constant pool *I

case sastore: {// store the contents into a "short" array
short valne = (short) (stack[StackTop--].intValueQ);
int index = stack(StackTop--].intvalueQ;
short[] array = (short[]stack[StackTop--];
array[index] = value;

The ul type field is one of the values listed in the following

15 table:
break;

}
case opc_putstatic: {

nextCodeOffset = codeOffset + 3;
int index= ((byteCode[codeOffset + 1] & OxFF) « 8) +

(byteCode[codeOffset + 2] & OxFF);
Field f = constantPool.getitem(byteCode[codeOffset + 1];
if (f.getClassQ ! = mb.getClassQ) {

}

II we can on! y modify static's in our own class
throw new RuntimeExceptionQ;

Type t = f.getTypeQ;
if (t.isl.ongQ II t.isDoubleO)

++stackTop;
Object value = stack[++stackTop]
changes. put(f, value); II put entry into hashtable
break;

case opc_return:

20

25

Array Type Value

T_CLASS 2
T_BOOLEAN 4
T_CHAR 5
T_FLOIU 6
T_DOUBLE 7
T_BYTE 8
T_SHORr 9
T_INT 10
T_LONG 11

success = true; 30 The field ux objects[length] is an array of values, provid-

}
}

break execution_loop;
defan!t: II some byte code we do not understand

success = false;

}
}

break execution_loop;

} catch (RuntimeException) {

}

II any runtime exception indicates failure.
success = false;

if (success) {
<modify .class file as indicated by "changes" hashtable>
<Remove this <clinit> method from the class>

} else {
<ran into something we cannot understand>
<do not replace this method>

The Virtual Machine of the Exemplary Embodiment

35

40

45

ing the elements of the array. The number of elements in the
array is given by the length field of the constant pool entry.
The actual size of each of these values is shown below:

Type ux Meaning

T_BOOLEAN,T_BYTE u1 1 byte
T_CHAR, T_SHORT, T_CLASS u2 2 bytes
T_INT, T_FLOAT u4 4 bytes
T_LONG, T_DOUBLE u8 8 bytes

For all of the above types exceptforT_CLASS, the bytes
shown are the actual value that are stored in that element of
the array. ForT _CLASS, however, each u2 is itself an index
to an entry into the constant pool. The constant pool entry
referred to must itself be either a CONSTANT_Array,

50 CONSTANT_Object, or the special constant pool entry 0,
indicating a NULL value.

As stated above, the Java virtual machine 222 is an
otherwise standard Java virtual machine as defined in the
Java Virtual Machine Specification, except that it is modi
fied as will be described below. Conventional virtual
machines recognize various constant pool entries, such as
CONSTANT_Integer, CONSTANT_String, and
CONSTANT_Long. Constant pool entries of these types
store various variable information, including the initial 55
value. The virtual machine of an exemplary embodiment,
however, additionally recognizes the CONSTANT_Array
entry in the constant pool.

The format of the CONSTANT_Array constant pool
entry in the class file format follows:

Code Table #6

CONSTANT_lUrny_info{
ul tag; /*The literal value CONSTANT_lUrny *I

For example, to indicate the following array:

int[]={10, 20, 30, 40 };

the constant pool entry would be as follows:
60

Tag Type Size Initial Values

65
CONSTANT_lUrny T_INT 4 10 20 30 40

Copy provided by USPTO from the PIRS Image Database on 03/1412012

Trial Exhibit 4011, Page 9 of 15

6,061,520
9

As another example, to indicate the following array:

new Foo[3]/* all initialized to NULL */

the constant pool entry would be as follows:

Tag Type Size Initial Values Class

CONSTANT _Array T_CLASS 3 0 0 0 XX

where "xx" is an index into the constant pool indicating the
class Foo in the constant pool.

Two-dimensional arrays like the following:

new byte[I]={ {1,2,3,4 }, {5,6,7,8 }};

5

10

15

are encoded by having two constant pool entries encode the
sub-arrays and by having two additional entries indicate the
association between the subarrays. This encoding corre
sponds to the Java™ notion of an array as a type of object 20

and a multi-dimensional array as an array of arrays. The
constant pool entries of the above two-dimensional array
follows:

Entry1: CONSTANT_Array T_BYfE 4 1 2 3 4

Entry2: CONSTANT_Array T_BYfE 4 56 7 8

Entry3: CONSTANT_Class with name "[[B"

and then

Tag Type Size Initial Values Class

25

30

Entry4: CONSTANT _Array T_Class 2 Entry1 Entry2 Entry3 35

where each of Entryl, Entry2, and Entry3 are the two-byte
encodings of the index of the corresponding constant-pool
entry.

While the systems and methods of the present invention 40

have been described with reference to a preferred
embodiment, those skilled in the art will know of various
changes in form and detail which may be made without
departing from the spirit and scope of the present invention
as defined in the appended claims. 45

What is claimed is:
1. A method in a data processing system for statically

initializing an array, comprising the steps of:
compiling source code containing the array with static

values to generate a class file with a clinit method 50

containing byte codes to statically initialize the array to
the static values;

receiving the class file into a preloader;
simulating execution of the byte codes of the clinit

55
method against a memory without executing the byte
codes to identify the static initialization of the array by
the preloader;

storing into an output file an instruction requesting the
static initialization of the array; and

interpreting the instruction by a virtual machine to per
form the static initialization of the array.

2. The method of claim 1 wherein the storing step includes
step of: '

storing a constant pool entry into the constant pool.
3. The method of claim 1 wherein the play executing step

includes the steps of:

60

65

10
allocating a stack;
reading a byte code from the clinit method that manipu

lates the stack; and
performing the stack manipulation on the allocated stack.
4. The method of claim 1 wherein the play executing step

includes the steps of:
allocating variables;
reading a byte code from the clinit method that manipu

lates local variables of the clinit method; and
performing the manipulation of the local variables on the

allocated variables.
5. The method of claim 1 wherein the play executing step

includes the steps of:
obtaining a reference to a constant pool of the clinit

method;
reading a byte code from the clinit method that manipu

lates the constant pool; and
performing the constant pool manipulation.
6. A method in a data processing system, comprising the

steps of:
receiving code to be run on a processing component to

perform an operation;
play executing the code without running the code on the

processing component to identify the operation if the
code were run by the processing component; and

creating an instruction for the processing component to
perform the operation.

7. The method of claim 6 wherein the operation initializes
a data structure, and wherein the play executing step
includes the step of:

play executing the code to identify the initialization of the
data structure.

8. The method of claim 6 wherein the operation statically
initializes an array and wherein the play executing step
includes the step of:

play executing the code to identify the static initialization
of the array.

9. The method of claim 6 further including the step of:
running the created instruction on the processing compo

nent to perform the operation.
10. The method of claim 6 further including the step of:
interpreting the created instruction by a virtual machine to

perform the operation.
11. The method of claim 6 wherein the operation has an

effect on memory, and wherein the play executing step
includes the step of:

play executing the code to identify the effect on the
memory.

12. A data processing system comprising:
a storage device containing:

a program with source code that statically initializes a
data structure; ami

class files, wherein one of the class files contains a
clinit method that statically initializes the data struc
ture;

a memory containing:
a compiler for compiling the program and generating

the class files; and
a preloader for consolidating the class files, for play

executing the clinit method to determine the static
initialization the clinit method performs, and for
creating an instruction to perform the static initial
ization; and

a processor for running the compiler and the preloader.

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 10 of 15

6,061,520
11 12

simulating execution of the code to identify the initial
ization of the data structure.

13. The data processing system of claim U wherein the
pre loader includes a mechanism for generating an output file
containing the created instruction.

14. The data processing system of claim 13 wherein the
memory further includes a virtual machine that interprets the
created instruction to perform the static initialization.

20. The computer-readable medium of claim 18 wherein
the operation statically initializes an array and wherein the

5
simulating step includes the step of:

15. The data processing system of claim 12, wherein the
data structure is an array.

16. The data processing system of claim U wherein the
clinit method has byte codes that statically initialize the data 10

structure.
17. The data processing system of claim U wherein the

created instruction includes an entry into a constant pool.
18. A computer-readable medium containing instructions

for controlling a data processing system to perform a 15

method, comprising the steps of:
receiving code to be run on a processing component to

perform an operation;
simulating execution of the code without running the code

on the processing component to identify the operation 20

if the code were run by the processing component; and
creating an instruction for the processing component to

perform the operation.
19. The computer-readable medium of claim 18 wherein

25
the operation initializes a data structure, and wherein the
simulating step includes the step of:

simulating execution of the code to identify the static
initialization of the array.

21. The computer-readable medium of claim 18 further
including the step of:

running the created instruction on the processing compo
nent to perform the operation.

22. The computer-readable medium of claim 18 further
including the step of:

interpreting the created instruction by a virtual machine to
perform the operation.

23. The computer-readable medium of claim 18 wherein
the operation has an effect on memory, and wherein the
simulating step includes the step of:

simulating execution of the code to identify the effect on
the memory.

* * * * *

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 11 of 15

111111 111
US006061520Cl

c12) EX PARTE REEXAMINATION CERTIFICATE (8658th)
United States Patent cw) Number: US 6,061,520 Cl
Yellin et al. (45) Certificate Issued: Nov. 15, 2011

(54) METHOD AND SYSTEM FOR PERFORMING
STATIC INITIALIZATION

(75) Inventors: Frank Yellin, Redwood City, CA (US);
Richard D. Tuck, San Francisco, CA
(US)

(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA
(US)

Reexamination Request:
No. 90/011,489, Feb. 17, 2011

Reexamination Certificate for:
Patent No.: 6,061,520
Issued: May 9, 2000
Appl. No.: 09/055,947
Filed: Apr. 7, 1998

(51) Int. Cl.
G06F 9/45
G06F 91445

(2006.01)
(2006.01)

(52) U.S. Cl •.......................... 717/148; 703/22; 7171151;
718/100

(58) Field of Classification Search 395/705
See application file for complete search history.

(56) References Cited

To view the complete listing of prior art documents cited
during the proceeding for Reexamination Control Number
90/011,489, please refer to the USPTO's public Patent
Application Information Retrieval (PAIR) system under the
Display References tab.

Primary Examiner-Eric B Kiss

(57) ABSTRACT

The disclosed system represents an improvement over con
ventional systems for initializing static arrays by reducing
the amount of code executed by the virtual machine to stati
cally initialize an array. To realize this reduction, when con
solidating class files, the preloader identifies all <clinit>
methods and play executes these methods to determine the
static initialization performed by them. The preloader then
creates an expression indicating the static initialization per
formed by the <clinit> method and stores this expression in
the .mclass file, replacing the <clinit> method. As such, the
code of the <clinit> method, containing many instructions, is
replaced by a single expression instructing the virtual
machine to perform static initialization, thus saving a signifi
cant amount of memory. The virtual machine is modified to
recognize this expression and perform the appropriate static
initialization of an array.

304

306

310

318

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 12 of 15

US 6,061,520 Cl
1

EX PARTE
REEXAMINATION CERTIFICATE

ISSUED UNDER 35 U.S. C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

5

2
AS A RESULT OF REEXAMINATION, IT HAS BEEN

DETERMINED THAT:

The patentability of claims 1-4, 8, 10, 12-17, 20 and 22 is
confirmed.

Claims 6, 7, 9, 11, 18, 19,21 and 23 are cancelled.
Claim 5 was not reexamined.

* * * * *

Copy provided by USPTO from the PIRS Image Database on 03/14/2012

Trial Exhibit 4011, Page 13 of 15

Trial Exhibit 4011, Page 14 of 15

PT0-1683
(Rev. 7-96)

Trial Exhibit 4011, Page 15 of 15

