

EXHIBIT C

Oracle America, Inc. v. Google Inc. Doc. 1192 Att. 3

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/1192/3.html
http://dockets.justia.com/

File: /623/OAGOOGLE0100209734_HIGHL…sses/java/lang/Comparable.java Page 1 of 2

1 /*
2 * @(#)Comparable.java 1.22 03/12/19
3 *
4 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.lang;
9

10 /**
11 * This interface imposes a total ordering on the objects of each class that
12 * implements it. This ordering is referred to as the class's <i>natural
13 * ordering</i>, and the class's <tt>compareTo</tt> method is referred to as
14 * its <i>natural comparison method</i>.<p>
15 *
16 * Lists (and arrays) of objects that implement this interface can be sorted
17 * automatically by <tt>Collections.sort</tt> (and <tt>Arrays.sort</tt>).
18 * Objects that implement this interface can be used as keys in a sorted map
19 * or elements in a sorted set, without the need to specify a comparator.<p>
20 *
21 * The natural ordering for a class <tt>C</tt> is said to be <i>consistent
22 * with equals</i> if and only if <tt>(e1.compareTo((Object)e2) == 0)</tt> has
23 * the same boolean value as <tt>e1.equals((Object)e2)</tt> for every
24 * <tt>e1</tt> and <tt>e2</tt> of class <tt>C</tt>. Note that <tt>null</tt>
25 * is not an instance of any class, and <tt>e.compareTo(null)</tt> should
26 * throw a <tt>NullPointerException</tt> even though <tt>e.equals(null)</tt>
27 * returns <tt>false</tt>.<p>
28 *
29 * It is strongly recommended (though not required) that natural orderings be
30 * consistent with equals. This is so because sorted sets (and sorted maps)
31 * without explicit comparators behave "strangely" when they are used with
32 * elements (or keys) whose natural ordering is inconsistent with equals. In
33 * particular, such a sorted set (or sorted map) violates the general contract
34 * for set (or map), which is defined in terms of the <tt>equals</tt>
35 * method.<p>
36 *
37 * For example, if one adds two keys <tt>a</tt> and <tt>b</tt> such that
38 * <tt>(!a.equals((Object)b) && a.compareTo((Object)b) == 0)</tt> to a sorted
39 * set that does not use an explicit comparator, the second <tt>add</tt>
40 * operation returns false (and the size of the sorted set does not increase)
41 * because <tt>a</tt> and <tt>b</tt> are equivalent from the sorted set's
42 * perspective.<p>
43 *
44 * Virtually all Java core classes that implement comparable have natural
45 * orderings that are consistent with equals. One exception is
46 * <tt>java.math.BigDecimal</tt>, whose natural ordering equates
47 * <tt>BigDecimal</tt> objects with equal values and different precisions
48 * (such as 4.0 and 4.00).<p>
49 *
50 * For the mathematically inclined, the <i>relation</i> that defines
51 * the natural ordering on a given class C is:<pre>
52 * {(x, y) such that x.compareTo((Object)y) <= 0}.
53 * </pre> The <i>quotient</i> for this total order is: <pre>
54 * {(x, y) such that x.compareTo((Object)y) == 0}.
55 * </pre>
56 *
57 * It follows immediately from the contract for <tt>compareTo</tt> that the
58 * quotient is an <i>equivalence relation</i> on <tt>C</tt>, and that the
59 * natural ordering is a <i>total order</i> on <tt>C</tt>. When we say that a
60 * class's natural ordering is <i>consistent with equals</i>, we mean that the
61 * quotient for the natural ordering is the equivalence relation defined by
62 * the class's <tt>equals(Object)</tt> method:<pre>
63 * {(x, y) such that x.equals((Object)y)}.
64 * </pre><p>
65 *
66 * This interface is a member of the
67 *

File: /623/OAGOOGLE0100209734_HIGHL…sses/java/lang/Comparable.java Page 2 of 2

68 * Java Collections Framework.
69 *
70 * @author Josh Bloch
71 * @version 1.22, 12/19/03
72 * @see java.util.Comparator
73 * @see java.util.Collections#sort(java.util.List)
74 * @see java.util.Arrays#sort(Object[])
75 * @see java.util.SortedSet
76 * @see java.util.SortedMap
77 * @see java.util.TreeSet
78 * @see java.util.TreeMap
79 * @since 1.2
80 */
81
82 public interface Comparable<T> {
83 /**
84 * Compares this object with the specified object for order. Returns a
85 * negative integer, zero, or a positive integer as this object is less
86 * than, equal to, or greater than the specified object.<p>
87 *
88 * In the foregoing description, the notation
89 * <tt>sgn(</tt><i>expression</i><tt>)</tt> designates the mathematical
90 * <i>signum</i> function, which is defined to return one of <tt>-1</tt>,
91 * <tt>0</tt>, or <tt>1</tt> according to whether the value of <i>expression</i>
92 * is negative, zero or positive.
93 *
94 * The implementor must ensure <tt>sgn(x.compareTo(y)) ==
95 * -sgn(y.compareTo(x))</tt> for all <tt>x</tt> and <tt>y</tt>. (This
96 * implies that <tt>x.compareTo(y)</tt> must throw an exception iff
97 * <tt>y.compareTo(x)</tt> throws an exception.)<p>
98 *
99 * The implementor must also ensure that the relation is transitive:

100 * <tt>(x.compareTo(y)>0 && y.compareTo(z)>0)</tt> implies
101 * <tt>x.compareTo(z)>0</tt>.<p>
102 *
103 * Finally, the implementer must ensure that <tt>x.compareTo(y)==0</tt>
104 * implies that <tt>sgn(x.compareTo(z)) == sgn(y.compareTo(z))</tt>, for
105 * all <tt>z</tt>.<p>
106 *
107 * It is strongly recommended, but <i>not</i> strictly required that
108 * <tt>(x.compareTo(y)==0) == (x.equals(y))</tt>. Generally speaking, any
109 * class that implements the <tt>Comparable</tt> interface and violates
110 * this condition should clearly indicate this fact. The recommended
111 * language is "Note: this class has a natural ordering that is
112 * inconsistent with equals."
113 *
114 * @param o the Object to be compared.
115 * @return a negative integer, zero, or a positive integer as this object
116 * is less than, equal to, or greater than the specified object.
117 *
118 * @throws ClassCastException if the specified object's type prevents it
119 * from being compared to this Object.
120 */
121 public int compareTo(T o);
122 }

