

DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street – Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

Attorneys for Defendant
GOOGLE INC.

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

ROBERT A. VAN NEST - #84065
rvannest@kvn.com
CHRISTA M. ANDERSON - #184325
canderson@kvn.com
KEKER & VAN NEST LLP
710 Sansome Street
San Francisco, CA 94111-1704
Telephone: (415) 391-5400
Facsimile: (415) 397-7188

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. 3:10-cv-03561-WHA

Honorable Judge William Alsup

DECLARATION OF SCOTT T.
WEINGAERTNER IN SUPPORT OF
GOOGLE, INC.’S DAUBERT MOTION

HIGHLY CONFIDENTIAL --
ATTORNEYS’ EYES ONLY

Oracle America, Inc. v. Google Inc. Doc. 172

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/172/
http://dockets.justia.com/

1
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

I, Scott T. Weingaertner, declare as follows:

I am a partner in the law firm of King & Spalding LLP, counsel to Google Inc. in the

present case. I submit this declaration in support of the Google Inc.’s Daubert Motion. I make

this declaration based on my own personal knowledge. If called as a witness, I could and would

testify competently to the matters set forth herein.

1. Attached to this declaration as Exhibit A is a true and correct copy of the Expert

Report of Iain M. Cockburn (including exhibits and appendices), served by Oracle America, Inc.

(“Oracle”) on May 21, 2011. [FILED UNDER SEAL]

2. Attached to this declaration as Exhibit B is a true and correct copy of Oracle’s

Technology Tutorial Supplement, dated April 6, 2011.

3. Attached to this declaration as Exhibit C is a true and correct copy of the cover

document of Oracle’s Second Supplemental Patent Local Rule 3-1 Disclosure of Asserted

Claims and Infringement Contentions (“Oracle’s Infringement Contentions”), served by Oracle

on April 1, 2011.

4. Attached to this declaration as Exhibit D is a true and correct copy of Exhibit D to

Oracle’s Infringement Contentions, served by Oracle on April 1, 2011.

5. Attached to this declaration as Exhibit E is a true and correct copy of Exhibit G to

Oracle’s Infringement Contentions, served by Oracle on April 1, 2011.

6. Attached to this declaration as Exhibit F is a true and correct copy of Defendant

Google Inc.’s Fourth Supplemental Responses to Plaintiff’s Interrogatories, Set One, No. 3,

served by Google Inc. (“Google”) on April 27, 2011.

7. Attached to this declaration as Exhibit G is a true and correct copy of an Android

Native Development Kit webpage, downloaded from

http://developer.android.com/sdk/ndk/index.html on June 14, 2011.

8. Attached to this declaration as Exhibit H is a true and correct copy of

OAGOOGLE0000140295 - OAGOOGLE0000140499, entitled “Form CO relating to the

notification of a concentration under Council Regulation (EC) No. 139/2004.” [FILED UNDER

SEAL]

2
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9. Attached to this declaration as Exhibit I is a true and correct copy of

OAGOOGLE0002796883, a spreadsheet originally produced in its native format by Oracle.

[FILED UNDER SEAL]

10. Attached to this declaration as Exhibit J is a true and correct copy of

OAGOOGLE0100030742 - OAGOOGLE0100031130, entitled “Oracle Corporation Estimation

of the Fair Value of Certain Assets and Liabilities of Sun Microsystems, inc. as of January 26,

2010.” [FILED UNDER SEAL]

11. Attached to this declaration as Exhibit K is a true and correct copy of

OAGOOGLE0000062503 - OAGOOGLE0000062726, Oracle Corporation’s Form 10-K, filed

with the U.S. Securities and Exchange Commission on July 1, 2010.

12. Attached to this declaration as Exhibit L is a true and correct copy of excerpts

from OAGOOGLE0000062097, a spreadsheet originally produced in its native format by Oracle.

[FILED UNDER SEAL].

13. Attached to this declaration as Exhibit M is a true and correct copy of

OAGOOGLE0100071840 - OAGOOGLE0100071986, entitled “SW OEM Pricebook.” [FILED

UNDER SEAL]

14. Attached to this declaration as Exhibit N is a true and correct copy of a January

23, 2001 news press release entitled “Microsoft Reaches Agreement to Settle Contract Dispute

With Sun Microsystems,” downloaded from

http://www.microsoft.com/presspass/press/2001/jan01/01-23sunpr.mspx on June 14, 2011.

15. Attached to this declaration as Exhibit O is a true and correct copy of a Settlement

Agreement and Mutual Limited Release downloaded from

http://www.microsoft.com/presspass/legal/01-23settlement.mspx on June 14, 2011.

16. Attached to this declaration as Exhibit P is a true and correct copy of

OAGOOGLE0100003277 - OAGOOGLE0100003291, a “Stand-Alone TCK License

Agreement” entered into by Sun Microsystems, Inc. and Oracle Corporation on March 25, 2004.

[FILED UNDER SEAL]

3
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

17. Attached to this declaration as Exhibit Q is a true and correct copy of

OAGOOGLE0100005211 - OAGOOGLE0100005221, a “Stand-Alone TCK License

Agreement” entered into by Sun Microsystems, Inc. and SAP AG on May 16, 2005. [FILED

UNDER SEAL]

18. Attached to this declaration as Exhibit R is a true and correct copy of

OAGOOGLE0100165699 - OAGOOGLE0100165746, a July 6, 2010 Oracle presentation

entitled “Q1 FY11 Java Sales Review.” [FILED UNDER SEAL]

19. Attached to this declaration as Exhibit S is a true and correct copy of an Android

timeline, downloaded from http://www.android.com/timeline.html on June 14, 2011.

20. Attached to this declaration as Exhibit T is a true and correct copy of

http://www.javaworld.com/javaworld/jw-02-2011/110204-android-market.html, downloaded on

June 14, 2011.

21. Attached to this declaration as Exhibit U is a true and correct copy of

http://www.betanews.com/article/Google-unveils-10-huge-improvements-in-FroYo-Android-

22/1274374860, downloaded on June 14, 2011.

22. Attached to this declaration as Exhibit V is a true and correct copy of

http://www.tabletsquad.com/top-5-improvements-in-android-3-0/, downloaded f on June 14,

2011.

23. Attached to this declaration as Exhibit W is a true and correct copy of

OAGOOGLE0000140115 - OAGOOGLE0000140130, a March 12, 2009 letter from Oracle

Corporation Chief Executive Officer Lawrence J. Ellison to the Sun Microsystems, Inc. Board of

Directors. [FILED UNDER SEAL]

24. Attached to this declaration as Exhibit X is a true and correct copy of

http://discussion.forum.nokia.com/forum/showthread.php?11133-j2me-compatibility-between-

different-manufacuturers, downloaded f on June 14, 2011.

25. Attached to this declaration as Exhibit Y is a true and correct copy of

http://www.russellbeattie.com/blog/1005717, downloaded on June 14, 2011.

4
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

26. Attached to this declaration as Exhibit Z is a true and correct copy of

http://www.odi.ch/weblog/posting.php?posting=135, downloaded on June 14, 2011.

27. Attached to this declaration as Exhibit AA is a true and correct copy of

http://www.oracle.com/technetwork/articles/javame/stateoftheunion-138337.html, downloaded

on June 14, 2011.

28. Attached to this declaration as Exhibit BB is a true and correct copy of

http://news.cnet.com/8301-13580_3-9800679-39.html?part=rss&subj=news&tag=2547-1_3-0-

20, downloaded on June 14, 2011.

29. Attached to this declaration as Exhibit CC is a true and correct copy of

http://portal.acm.org/citation.cfm?id=1839348, downloaded on June 14, 2011.

I declare under penalty of perjury that the foregoing facts are true and correct.

Executed on June 14, 2011 in New York, New York.

 /s/ Scott T. Weingaertner /s/
 Scott T. Weingaertner

DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street – Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

Attorneys for Defendant
GOOGLE INC.

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

ROBERT A. VAN NEST - #84065
rvannest@kvn.com
CHRISTA M. ANDERSON - #184325
canderson@kvn.com
KEKER & VAN NEST LLP
710 Sansome Street
San Francisco, CA 94111-1704
Telephone: (415) 391-5400
Facsimile: (415) 397-7188

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. 3:10-cv-03561-WHA

Honorable Judge William Alsup

DECLARATION OF SCOTT T.
WEINGAERTNER IN SUPPORT OF
GOOGLE, INC.’S DAUBERT MOTION

HIGHLY CONFIDENTIAL --
ATTORNEYS’ EYES ONLY

1
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

I, Scott T. Weingaertner, declare as follows:

I am a partner in the law firm of King & Spalding LLP, counsel to Google Inc. in the

present case. I submit this declaration in support of the Google Inc.’s Daubert Motion. I make

this declaration based on my own personal knowledge. If called as a witness, I could and would

testify competently to the matters set forth herein.

1. Attached to this declaration as Exhibit A is a true and correct copy of the Expert

Report of Iain M. Cockburn (including exhibits and appendices), served by Oracle America, Inc.

(“Oracle”) on May 21, 2011. [FILED UNDER SEAL]

2. Attached to this declaration as Exhibit B is a true and correct copy of Oracle’s

Technology Tutorial Supplement, dated April 6, 2011.

3. Attached to this declaration as Exhibit C is a true and correct copy of the cover

document of Oracle’s Second Supplemental Patent Local Rule 3-1 Disclosure of Asserted

Claims and Infringement Contentions (“Oracle’s Infringement Contentions”), served by Oracle

on April 1, 2011.

4. Attached to this declaration as Exhibit D is a true and correct copy of Exhibit D to

Oracle’s Infringement Contentions, served by Oracle on April 1, 2011.

5. Attached to this declaration as Exhibit E is a true and correct copy of Exhibit G to

Oracle’s Infringement Contentions, served by Oracle on April 1, 2011.

6. Attached to this declaration as Exhibit F is a true and correct copy of Defendant

Google Inc.’s Fourth Supplemental Responses to Plaintiff’s Interrogatories, Set One, No. 3,

served by Google Inc. (“Google”) on April 27, 2011.

7. Attached to this declaration as Exhibit G is a true and correct copy of an Android

Native Development Kit webpage, downloaded from

http://developer.android.com/sdk/ndk/index.html on June 14, 2011.

8. Attached to this declaration as Exhibit H is a true and correct copy of

OAGOOGLE0000140295 - OAGOOGLE0000140499, entitled “Form CO relating to the

notification of a concentration under Council Regulation (EC) No. 139/2004.” [FILED UNDER

SEAL]

2
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9. Attached to this declaration as Exhibit I is a true and correct copy of

OAGOOGLE0002796883, a spreadsheet originally produced in its native format by Oracle.

[FILED UNDER SEAL]

10. Attached to this declaration as Exhibit J is a true and correct copy of

OAGOOGLE0100030742 - OAGOOGLE0100031130, entitled “Oracle Corporation Estimation

of the Fair Value of Certain Assets and Liabilities of Sun Microsystems, inc. as of January 26,

2010.” [FILED UNDER SEAL]

11. Attached to this declaration as Exhibit K is a true and correct copy of

OAGOOGLE0000062503 - OAGOOGLE0000062726, Oracle Corporation’s Form 10-K, filed

with the U.S. Securities and Exchange Commission on July 1, 2010.

12. Attached to this declaration as Exhibit L is a true and correct copy of excerpts

from OAGOOGLE0000062097, a spreadsheet originally produced in its native format by Oracle.

[FILED UNDER SEAL].

13. Attached to this declaration as Exhibit M is a true and correct copy of

OAGOOGLE0100071840 - OAGOOGLE0100071986, entitled “SW OEM Pricebook.” [FILED

UNDER SEAL]

14. Attached to this declaration as Exhibit N is a true and correct copy of a January

23, 2001 news press release entitled “Microsoft Reaches Agreement to Settle Contract Dispute

With Sun Microsystems,” downloaded from

http://www.microsoft.com/presspass/press/2001/jan01/01-23sunpr.mspx on June 14, 2011.

15. Attached to this declaration as Exhibit O is a true and correct copy of a Settlement

Agreement and Mutual Limited Release downloaded from

http://www.microsoft.com/presspass/legal/01-23settlement.mspx on June 14, 2011.

16. Attached to this declaration as Exhibit P is a true and correct copy of

OAGOOGLE0100003277 - OAGOOGLE0100003291, a “Stand-Alone TCK License

Agreement” entered into by Sun Microsystems, Inc. and Oracle Corporation on March 25, 2004.

[FILED UNDER SEAL]

3
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

17. Attached to this declaration as Exhibit Q is a true and correct copy of

OAGOOGLE0100005211 - OAGOOGLE0100005221, a “Stand-Alone TCK License

Agreement” entered into by Sun Microsystems, Inc. and SAP AG on May 16, 2005. [FILED

UNDER SEAL]

18. Attached to this declaration as Exhibit R is a true and correct copy of

OAGOOGLE0100165699 - OAGOOGLE0100165746, a July 6, 2010 Oracle presentation

entitled “Q1 FY11 Java Sales Review.” [FILED UNDER SEAL]

19. Attached to this declaration as Exhibit S is a true and correct copy of an Android

timeline, downloaded from http://www.android.com/timeline.html on June 14, 2011.

20. Attached to this declaration as Exhibit T is a true and correct copy of

http://www.javaworld.com/javaworld/jw-02-2011/110204-android-market.html, downloaded on

June 14, 2011.

21. Attached to this declaration as Exhibit U is a true and correct copy of

http://www.betanews.com/article/Google-unveils-10-huge-improvements-in-FroYo-Android-

22/1274374860, downloaded on June 14, 2011.

22. Attached to this declaration as Exhibit V is a true and correct copy of

http://www.tabletsquad.com/top-5-improvements-in-android-3-0/, downloaded f on June 14,

2011.

23. Attached to this declaration as Exhibit W is a true and correct copy of

OAGOOGLE0000140115 - OAGOOGLE0000140130, a March 12, 2009 letter from Oracle

Corporation Chief Executive Officer Lawrence J. Ellison to the Sun Microsystems, Inc. Board of

Directors. [FILED UNDER SEAL]

24. Attached to this declaration as Exhibit X is a true and correct copy of

http://discussion.forum.nokia.com/forum/showthread.php?11133-j2me-compatibility-between-

different-manufacuturers, downloaded f on June 14, 2011.

25. Attached to this declaration as Exhibit Y is a true and correct copy of

http://www.russellbeattie.com/blog/1005717, downloaded on June 14, 2011.

4
DECLARATION OF SCOTT T. WEINGAERTNER IN SUPPORT OF GOOGLE INC’S DAUBERT MOTION

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

26. Attached to this declaration as Exhibit Z is a true and correct copy of

http://www.odi.ch/weblog/posting.php?posting=135, downloaded on June 14, 2011.

27. Attached to this declaration as Exhibit AA is a true and correct copy of

http://www.oracle.com/technetwork/articles/javame/stateoftheunion-138337.html, downloaded

on June 14, 2011.

28. Attached to this declaration as Exhibit BB is a true and correct copy of

http://news.cnet.com/8301-13580_3-9800679-39.html?part=rss&subj=news&tag=2547-1_3-0-

20, downloaded on June 14, 2011.

29. Attached to this declaration as Exhibit CC is a true and correct copy of

http://portal.acm.org/citation.cfm?id=1839348, downloaded on June 14, 2011.

I declare under penalty of perjury that the foregoing facts are true and correct.

Executed on June 14, 2011 in New York, New York.

 /s/ Scott T. Weingaertner /s/
 Scott T. Weingaertner

Exhibit A
FILED UNDER SEAL

Exhibit B

Oracle v. Google
Oracle’s Technology Tutorial Supplement

April 6, 2011

DRAFT

1

Inventions for Performance and Security
Improved performance

• RE38,104 (Reference Resolution)
“intermediate form [object] code”
“resolve” and “resolving”
“symbolic [data/field] reference”

• 6,910,205 (Hybrid Code Execution)
• 5,966,702 (Class File Redundancy Removal)

“reduced class files”

• 6,061,520 (Play Execution)
“play executing step”

• 7,426,720 (Copy-on-Write Process)
Improved security

• 6,125,447 (Fine-Grained Security)
• 6,192,476 (Call Stack Inspection)

2

6,910,205 (Hybrid Code Execution)

Inventors: Lars Bak, Robert
Griesemer

Title: “Interpreting functions
utilizing a hybrid of virtual and
native machine instructions”

Filed: July 12, 2002 (priority
date June 30, 1997)

Asserted Claims: 1, 2, 3, 4,
and 8

3

6,910,205: Hybrid Code Execution

4

6,910,205: Illustrative Claim

1. In a computer system, a method for increasing the
execution speed of virtual machine instructions at
runtime, the method comprising:

receiving a first virtual machine instruction;
generating, at runtime, a new virtual machine

instruction that represents or references one or more
native instructions that can be executed instead of
said first virtual machine instruction; and

executing said new virtual machine instruction instead
of said first virtual machine instruction.

1. In a computer system, a method for increasing the
execution speed of virtual machine instructions at
runtime, the method comprising:

receiving a first virtual machine instruction;
generating, at runtime, a new virtual machine

instruction that represents or references one or more
native instructions that can be executed instead of
said first virtual machine instruction; and

executing said new virtual machine instruction instead
of said first virtual machine instruction.

5

7,426,720 (Copy-on-Write Process)

Inventor: Nedim Fresko

Title: “System and method for
dynamic preloading of classes
through memory space cloning of
a master runtime system process”

Filed: December 22, 2003

Asserted Claims: 1-8, 10-17, and
19-22

6

7,426,720: Copy-on-Write Process

7

7,426,720: Illustrative Claim

1. A system for dynamic preloading of classes through memory
space cloning of a master runtime system process, comprising:

A processor;
A memory
a class preloader to obtain a representation of at least one class

from a source definition provided as object-oriented program code;
a master runtime system process to interpret and to instantiate the

representation as a class definition in a memory space of the
master runtime system process;

a runtime environment to clone the memory space as a child runtime
system process responsive to a process request and to execute
the child runtime system process; and

a copy-on-write process cloning mechanism to instantiate the child
runtime system process by copying references to the memory
space of the master runtime system process into a separate
memory space for the child runtime system process,

and to defer copying of the memory space of the master runtime
system process until the child runtime system process needs to
modify the referenced memory space of the master runtime
system process.

1. A system for dynamic preloading of classes through memory
space cloning of a master runtime system process, comprising:

A processor;
A memory
a class preloader to obtain a representation of at least one class

from a source definition provided as object-oriented program code;
a master runtime system process to interpret and to instantiate the

representation as a class definition in a memory space of the
master runtime system process;

a runtime environment to clone the memory space as a child runtime
system process responsive to a process request and to execute
the child runtime system process; and

a copy-on-write process cloning mechanism to instantiate the child
runtime system process by copying references to the memory
space of the master runtime system process into a separate
memory space for the child runtime system process,

and to defer copying of the memory space of the master runtime
system process until the child runtime system process needs to
modify the referenced memory space of the master runtime
system process.

8

6,125,447 (Fine-Grained Security)

Inventor: Li Gong

Title: “Protection domains to
provide security in a computer
system”

Filed: December 11, 1997

Asserted Claims: 1-24

9

6,125,447 (Fine-Grained Security)
End-users download applications from various sources

• May want to trust applications from certain sources
• Can’t assess whether code is “malicious” (e.g., steal data)

Executing code may try to perform unauthorized action

10

6,125,447: Fine-Grained Security

11

6,125,447: Illustrative Claim

1. A method for providing security, the method
comprising the steps of:

establishing one or more protection domains, wherein
a protection domain is associated with zero or more
permissions;

establishing an association between said one or more
protection domains and one or more classes of one
or more objects; and

determining whether an action requested by a
particular object is permitted based on said
association between said one or more protection
domains and said one or more classes.

1. A method for providing security, the method
comprising the steps of:

establishing one or more protection domains, wherein
a protection domain is associated with zero or more
permissions;

establishing an association between said one or more
protection domains and one or more classes of one
or more objects; and

determining whether an action requested by a
particular object is permitted based on said
association between said one or more protection
domains and said one or more classes.

12

6,192,476 (Call Stack Inspection)

Inventor: Li Gong

Title: “Controlling access to a
resource”

Filed: December 11, 1997

Asserted Claims: 1-21

13

6,192,476 (Call Stack Inspection)
Untrusted malicious code may try to invoke trusted code to
bypass security protections

Change
password

Prevent malicious code from changing password

14

6,192,476: Call Stack Inspection

15

6,192,476: Illustrative Claim

1. A method for providing security, the method
comprising the steps of:

detecting when a request for an action is made by a
principal; and

in response to detecting the request, determining
whether said action is authorized based on
permissions associated with a plurality of routines in
a calling hierarchy associated with said principal,
wherein said permissions are associated with said
plurality of routines based on a first association
between protection domains and permissions.

1. A method for providing security, the method
comprising the steps of:

detecting when a request for an action is made by a
principal; and

in response to detecting the request, determining
whether said action is authorized based on
permissions associated with a plurality of routines in
a calling hierarchy associated with said principal,
wherein said permissions are associated with said
plurality of routines based on a first association
between protection domains and permissions.

Exhibit C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA
pa-1456177

MORRISON & FOERSTER LLP
MICHAEL A. JACOBS (Bar No. 111664)
mjacobs@mofo.com
MARC DAVID PETERS (Bar No. 211725)
mdpeters@mofo.com
DANIEL P. MUINO (Bar No. 209624)
dmuino@mofo.com
755 Page Mill Road
Palo Alto, CA 94304-1018
Telephone: (650) 813-5600 / Facsimile: (650) 494-0792

BOIES, SCHILLER & FLEXNER LLP
DAVID BOIES (Admitted Pro Hac Vice)
dboies@bsfllp.com
333 Main Street
Armonk, NY 10504
Telephone: (914) 749-8200 / Facsimile: (914) 749-8300
STEVEN C. HOLTZMAN (Bar No. 144177)
sholtzman@bsfllp.com
1999 Harrison St., Suite 900
Oakland, CA 94612
Telephone: (510) 874-1000 / Facsimile: (510) 874-1460

ORACLE CORPORATION
DORIAN DALEY (Bar No. 129049)
dorian.daley@oracle.com
DEBORAH K. MILLER (Bar No. 95527)
deborah.miller@oracle.com
MATTHEW M. SARBORARIA (Bar No. 211600)
matthew.sarboraria@oracle.com
500 Oracle Parkway
Redwood City, CA 94065
Telephone: (650) 506-5200 / Facsimile: (650) 506-7114

Attorneys for Plaintiff
ORACLE AMERICA, INC.

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE, INC.

Defendant.

Case No. 3:10-cv-03561-WHA

ORACLE’S SECOND
SUPPLEMENTAL PATENT LOCAL RULE
3-1 DISCLOSURE OF ASSERTED
CLAIMS AND INFRINGEMENT
CONTENTIONS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 1
pa-1456177

Pursuant to Patent Local Rule 3-1 and agreement between the parties, Plaintiff Oracle

America, Inc. (“Oracle”) hereby submits the following Second Supplemental Disclosure of

Asserted Claims and Infringement Contentions.

Fact discovery is ongoing, and Google has yet to produce substantial quantities of

information that may affect Oracle’s infringement contentions. In addition, depositions that are

directly relevant to Oracle’s claims of infringement will be scheduled for after the date of this

statement. Not all information about the various versions of the Accused Instrumentalities is

publicly available. For example, Google has neither released nor produced the source code for

Honeycomb, preventing Oracle from analyzing it. Further still, Oracle understands that Google

plans to release future versions of the Accused Instrumentalities.1

As such, Oracle’s investigation into the extent of infringement by Google is ongoing, and

Oracle makes these disclosures based on present knowledge of Google’s infringing activities. In

light of the foregoing, Oracle reserves the right to supplement or amend these disclosures as

further facts are revealed during the course of this litigation.

I. DISCLOSURE OF ASSERTED CLAIMS AND INFRINGEMENT
CONTENTIONS.

A. Patent Local Rule 3-1(a) — Asserted Claims.

Oracle asserts that Defendant Google is liable under Title 35 U.S.C. § 271(a), (b), (c), and

(f) for infringement of:

• Claims 11-41 of United States Patent No. RE38,104 (“the ’104 reissue patent”)

(infringement claim chart attached as Exhibit A);

• Claims 1, 2, 3, 4, and 8 of United States Patent No. 6,910,205 (“the ’205 patent”)

(infringement claim charts attached as Exhibits B-1 and Exhibit B-2);

• Claims 1, 5-7, 11-13, 15, and 16 of United States Patent No. 5,966,702 (“the ’702

patent”) (infringement claim chart attached as Exhibit C);

1 See, e.g., http://en.wikipedia.org/wiki/Android_(operating_system) (last visited March 31, 2011)
(Android version “Ice Cream” scheduled for 2011 launch).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 2
pa-1456177

• Claims 1-24 of United States Patent No. 6,125,447 (“the ’447 patent”)

(infringement claim chart attached as Exhibit D);

• Claims 1-21 of United States Patent No. 6,192,476 (“the ’476 patent”)

(infringement claim chart attached as Exhibit E);

• Claims 1-4 and 6-23 of United States Patent No. 6,061,520 (“the ’520 patent”)

(infringement claim chart attached as Exhibit F); and

• Claims 1-8, 10-17, and 19-22 of United States Patent No. 7,426,720 (“the ’720

patent”) (infringement claim chart attached as Exhibit G).

B. Patent Local Rule 3-1(b) — Accused Instrumentalities.

Based on Oracle’s investigation thus far, Oracle accuses the following Accused

Instrumentalities of infringing the asserted claims specified above in the manner described in

Exhibits A-G: (i) “Android” or “the Android Platform”;2 (ii) Google devices running Android;

and (iii) other mobile devices running Android. Representative examples of Google devices

running Android include the Google Dev Phones, the Google Nexus One, and the Google Nexus

S.3 Representative examples of other mobile devices running Android include HTC’s EVO 4G,

HTC’s Droid Incredible, HTC’s G2, Motorola’s Droid, and Samsung’s Captivate. Android

applications, including those written by Google, when built or run will necessarily use the

infringing functionality in the manner described in Exhibits A-G. For example, application

developers like Google use the Google-provided dx tool from the Android SDK to convert .class

2 “Android” or “the Android Platform” means “Android” as referred to in Google’s Answer
(Docket No. 32) at Background ¶ 12 and in Google’s Answer to Amended Complaint (Docket
No. 51) at Background ¶ 12 and at Factual Background ¶¶ 11-17, and includes any versions
thereof (whether released or unreleased) and related public or proprietary source code, executable
code, and documentation.
3 See, e.g., JR Raphael, The Nexus S and Google: Everything There Is To Know, PCWORLD (Nov.
11, 2010), available at
http://www.pcworld.com/article/210460/the_nexus_s_and_google_everything_there_is_to_know.
html (last visited Nov. 29, 2010) (“Today’s buzz is all about the Samsung Nexus S -- a still-
under-wraps smartphone believed to be the successor to Google’s Nexus One. According to
various leaks, the Nexus S will be a ‘Google experience’ device, meaning it’ll run a stock version
of Android without any of those baked-in manufacturer UIs. And, if the latest rumors prove to be
true, the Samsung Nexus S will be rocking the as-of-yet-unannounced Android Gingerbread
release.”). The “leaks” proved to be true: the Nexus S runs a stock version of Gingerbread.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 3
pa-1456177

files to a .dex file when building their applications, and thereby infringe the ’520 and ’702

patents. That is the intended use of the dx tool, and there is no substantial non-infringing use of

the dx tool.

Google directly infringes the asserted claims enumerated above under 35 U.S.C. § 271(a)

because Google, without authority, makes, uses, offers to sell, sells, or imports the Accused

Instrumentalities within or into the United States. Further, Google induces the infringement of

others under 35 U.S.C. § 271(b) because it contracts with, instructs, and otherwise induces others

to make, use, offer to sell, sell, or import the Accused Instrumentalities within or into the United

States. Google also contributes to the infringement of others under 35 U.S.C. § 271(c) because it

offers to sell, sells, or imports part or all of the Accused Instrumentalities within or into the

United States. With respect to the asserted non-method claims of the asserted patents, the

Accused Instrumentalities are specially made or adapted for infringement, and are not a staple

article suitable for substantial non-infringing use. Further, Google supplies part or all of the

Accused Instrumentalities in or from the United States to foreign contractors, including HTC, in

violation of 35 U.S.C. § 271(f).

Oracle is not aware of any evidence indicating that anyone, such as a Google partner,

OHA member, or downstream licensee, has altered the infringing portions of Google’s Android

or Android Platform in any way that is material to the infringement. To the contrary, all available

evidence suggests that device manufacturers do not alter the Android operating system in general

or the Dalvik virtual machine in particular; and that the changes they do make are generally

aimed at the kernel and device drivers (to account for the manufacturer’s particular hardware

platform).

The manufacturers’ websites confirm this. Google advertises the Nexus S as “Pure

Google” and “The new Android phone from Google.”4 Samsung states that “Beacuse Nexus S is

google experience device, source codes are opened by Google. So, You can find source code for

4 http://www.google.com/nexus/#/index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 4
pa-1456177

the Nexus S at Android Open Source Project site.”5 With respect to Samsung’s Captivate, as far

as Oracle has been able to determine, for those Android source code files identified in Exhibits A-

G that were present in the source code archive for Samsung’s Captivate, those files were identical

to those from Google’s Éclair version of Android.6 With respect to the source code for the

Motorola Droid, Motorola states “All Droid source consists entirely of code found at the Android

repo site.”7 With respect to the particular HTC-manufactured devices listed above, the only

source code provided by HTC8 was for the Linux kernel, WebKit and BlueZ, and there was none

for Dalvik, the core libraries, or development tools.

Developers have no reason to modify the infringing tools provided by Google for

developing Android applications, and Google discourages them from doing so. Google’s

Android SDK license states:

3.3 Except to the extent required by applicable third party licenses,
you may not copy (except for backup purposes), modify, adapt,
redistribute, decompile, reverse engineer, disassemble, or create
derivative works of the SDK or any part of the SDK. Except to the
extent required by applicable third party licenses, you may not load
any part of the SDK onto a mobile handset or any other hardware
device except a personal computer, combine any part of the SDK
with other software, or distribute any software or device
incorporating a part of the SDK.9

Google actively discourages modifications to core Android features through a variety of

licensing schemes. For example, Google prohibits anyone from using the Android trademark on

a device unless the device is determined to be “Android compatible.” Through this requirement,

Google ensures that Android devices sold by others will function in the same manner as if they

5 http://opensource.samsung.com/
6 There was just one exception: the Captivate version of the file fork.c in the Linux kernel was
identical to the default linux 2.6.29 fork.c; there were minor differences with respect to the
version of fork.c in http://android.git.kernel.org/?p=kernel/linux-2.6.git. These differences had no
relation to the infringement by Android that is detailed in Exhibits A-G.
7 https://opensource.motorola.com/sf/sfmain/do/viewProject/projects.droid
8 http://developer.htc.com/
9 http://developer.android.com/sdk/terms.html

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 5
pa-1456177

were running pure-Google Android, whether or not any modifications were made.10 Most,

perhaps all, of the Accused Instrumentalities bear an Android trademark.

Google makes it clear that there is no need for anyone to modify the infringing code.

According to the New York Times just this week, Andy Rubin said that “Android provided the

‘basic tools’ to allow phone makers to create new models faster, since they did not have to worry

about the phone’s software. ‘They can just focus on innovating a better design,’ he said. ‘They

don’t have to worry about adding multitasking and managing memory.’” Jenna Wortham,

Phones Try To Stand Out In a Crowd, N.Y. TIMES, February 16, 2011. Mr. Rubin is correct that

phone makers need not worry about providing multitasking and memory management features,

because Google has already provided them in Android. It happens, however, that Google’s

implementation of these features infringes the ’720 patent, among others.

Google’s recent actions in the marketplace demonstrate that Android not an open platform

but is instead under Google’s control. Google has so far refused to release the Honeycomb code

as open source. Instead, Google has provided Honeycomb only to its preferred partners, to their

mutual advantage, and the disadvantage of everyone else. And according to a recent article,

“Google has been demanding that Android licensees abide by ‘non-fragmentation clauses’ that

give Google the final say on how they can tweak the Android code—to make new interfaces and

add services—and in some cases whom they can partner with.” Ashlee Vance and Peter

Burrows, Do Not Anger the Alpha Android, BLOOMBERG BUSINESSWEEK, March 30, 2011.

C. Patent Local Rule 3-1(c) — Claim Charts for the Accused Instrumentalities.

Served as Exhibits A-G are claim charts that identify where each element of each asserted

claim of the asserted patents is found within the Accused Instrumentalities, based on the

information currently available to Oracle.

10 http://source.android.com/compatibility/android-2.2-cdd.pdf at 8 (“To ensure compatibility
with third-party applications, device implementers MUST NOT make any prohibited
modifications . . . to these package namespaces: java.*; javax.*; sun.*; android.*;
com.android. Device implementers MAY modify the underlying implementation of the
APIs, but such modifications MUST NOT impact the stated behavior and Java-language signature
of any publicly exposed APIs.”)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 6
pa-1456177

The infringement evidence cited in Exhibits A-G is exemplary and not exhaustive. The

cited examples are taken from Android 2.2 or 2.311 and Google’s Android websites. Oracle’s

infringement contentions apply to all versions of Android having similar or nearly identical code

or documentation, including past and expected future releases. Past releases include the Android

SDK Preview, 0.9 beta, 1.0, 1.1, 1.5 (“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2

(“Froyo”), and 2.3 (“Gingerbread”). Oracle’s investigation of “Gingerbread” is ongoing, but

Oracle notes that Google has not removed the code Oracle previously identified as infringing.12

Although Oracle’s investigation is ongoing, the following summary indicates which

versions of Android infringe the asserted claims of the specified patents:13

• the ’104 reissue patent (infringement claim chart previously served as Exhibit A):

infringed by all versions of Android subsequent to Oct. 21, 2008, including Android

1.1, 1.5 (“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3

(“Gingerbread”);

• the ’205 patent (infringement claim chart previously served as Exhibit B-1): infringed

by all versions of Android subsequent to January 28, 2010, including at least Android

2.2 (“Froyo”) and 2.3 (“Gingerbread”);

• the ’205 patent (infringement claim chart previously served as Exhibit B-2): infringed

by all versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3

(“Gingerbread”);

• the ’702 patent (infringement claim chart previously served as Exhibit C): infringed

by all versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

11 Accessed through http://android.git.kernel.org/ or from Google’s production.
12 Gingerbread continues to not yet be significant in the market when compared to previous
versions. As of April 1, 2011, only 2.5% of Android devices checking in with Google were
running Gingerbread. http://developer.android.com/resources/dashboard/platform-versions.html
(visited Apr. 1, 2011). Most devices are running Froyo or Éclair.
13 It appears that the Android git source code repository was created on or around Oct. 21, 2008.
As such, the following list of infringing Android versions may be expanded based on what Oracle
learns about earlier Android versions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 7
pa-1456177

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3

(“Gingerbread”);

• the ’447 patent (infringement claim chart previously served as Exhibit D): infringed

by all versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3

(“Gingerbread”);

• the ’476 patent (infringement claim chart previously served as Exhibit E): infringed

by all versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3

(“Gingerbread”);

• the ’520 patent (infringement claim chart previously served as Exhibit F): infringed

by all versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3

(“Gingerbread”); and

• the ’720 patent (infringement claim chart previously served as Exhibit G): infringed

by all versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3

(“Gingerbread”).

D. Patent Local Rule 3-1(d) — Indirect Infringement.

In addition to the acts of direct infringement described above, Google actively contributes

to and induces infringement by third parties of each of the asserted claims of the asserted patents.

On information and belief, Google purposely and actively distributes the Accused

Instrumentalities to manufacturers of products and application developers with the intention that

they be used, copied, and distributed to consumers, who in turn use them. Google induces and

contributes to the infringement of the asserted claims of each asserted patent, because Google

encourages manufacturers, application developers, and service providers (including the members

of the Open Handset Alliance), as well as end users, to copy, sell, distribute, re-distribute, and use

products that embody or incorporate the Accused Instrumentalities. Google’s admissions in its

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 8
pa-1456177

Amended Counterclaims prove its intent and encouragement of others. (See, e.g., Google’s

Amended Counterclaims ¶¶ 6-7, 13.) Google contributes to the infringement of others because it

offers to sell, sells, or imports part or all of the Accused Instrumentalities within or into the

United States. With respect to the asserted non-method claims of the asserted patents, the

Accused Instrumentalities are specially made or adapted for infringement, and are not a staple

article suitable for substantial non-infringing use.

By providing infringing code and discouraging (and even preventing) modifications,

Google further demonstrates the intent necessary for indirect infringement. As discussed below,

Google has actual knowledge of Oracle’s patents and its infringement is willful.

E. Patent Local Rule 3-1(e) — Nature of Infringement.

Oracle asserts that each element or limitation of each asserted claim of each asserted

patent is literally present in the Accused Instrumentalities, except where explicitly indicated. To

the extent that any element or limitation of the asserted claims is not found to have literal

correspondence in the Accused Instrumentalities, Oracle alleges, on information and belief, that

any such elements or limitations are present under the doctrine of equivalents in the Accused

Instrumentalities.

F. Patent Local Rule 3.1(f) — Priority Dates.

The ’104 reissue patent has a priority date of Dec. 22, 1992, being a continuation of

08/755,764 (filed Nov. 21, 1996) resulting in RE36,204 which is a Reissue of 07/994,655 (filed

Dec. 22, 1992) which is U.S. Patent No. 5,367,685.

The ’205 patent is a continuation of U.S. Pat. No. 6,513,156, having a priority date of Jun.

30, 1997, the filing date of U.S. patent application number 08/884,856.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 9
pa-1456177

G. Patent Local Rule 3.1(g) — Patentee’s Asserted Practice of the Claimed
Inventions.14

1. The ’104 Reissue Patent

The following instrumentalities of Oracle practice the asserted claims of the ’104 reissue

patent:

• JDK 1.0 and subsequent versions;

• JRE 1.1.1 and subsequent versions;

• HotSpot 1.0 and subsequent versions;

• Java SE for Embedded 1.4.2_11 and subsequent versions;

• CDC RI 1.0 and CDC-HI 1.0 and subsequent versions of each;

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• CLDC RI 1.0 and CLDC-HI 1.0 and subsequent versions;

• Foundation Profile 1.0 and subsequent versions;

• J2EE 1.2 (later called Java EE) and subsequent versions;

• WTK 1.0 / Java ME SDK 1.0, and subsequent versions of each;

• Java Real Time 1.0 and all subsequent versions;

• Personal Profile HI and RI 1.0 and subsequent versions;

• Personal Basis Profile-HI and RI 1.0 and subsequent versions;

• PersonalJava 1.0 and subsequent versions;

• EmbeddedJava 1.0 and subsequent versions;

• JavaOS 1.0 (all variants, including Java PC) and subsequent versions;

• Java Card connected platform 3.0 and subsequent versions;

• Oracle Java Wireless Client (formerly Sun Java Wireless Client) 1.0 and

subsequent versions;

14 Oracle’s investigation concerning the identification of instrumentalities that practice the
asserted claims of the asserted patents is ongoing. There have been many different products
relating to the Java Platform over the years, each having many versions or variants, and the lists
presented below reflect Oracle’s diligent efforts in identifying instrumentalities that practice the
asserted claims of the asserted patents.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 10
pa-1456177

• MIDP 1.0 and subsequent versions.

2. The ’205 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’205 patent:

• JDK 1.2 and subsequent versions;

• JRE 1.2 and subsequent versions;

• HotSpot 1.0 and subsequent versions;

• Java SE for Embedded 1.4.2 and subsequent versions;

• CDC RI 1.0.1 and CDC-HI 1.0 and subsequent versions of each;

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• CLDC RI 1.1.1;

• CLDC-HI 1.0 and subsequent versions;

• Foundation Profile 1.0.2 and subsequent versions;

• J2EE 1.2 (later called Java EE) and subsequent versions;

• Java ME SDK 3.0 EA and subsequent versions;

• Java Real-Time System 1.0 and all subsequent versions;

• Personal Profile HI and RI 1.0 and subsequent versions; and

• Personal Basis Profile HI and RI 1.0 and subsequent versions.

3. The ’702 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’702 patent:

• PersonalJava (“PJava”) 1.0 and subsequent versions;

• EmbeddedJava (“EJava”) 1.0 and subsequent versions;

• JavaOS 1.0 (and all variants, including Java PC) and subsequent versions;

• CDC RI 1.0 and CDC-HI 1.0, and all subsequent versions of each;

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• CLDC RI 1.1.1 and CLDC-HI 1.0.1, and all subsequent versions of each;

• Personal Profile HI and RI 1.0 and subsequent versions;

• Personal Basis Profile HI and RI 1.0 and subsequent versions;

• Foundation Profile 1.0 and subsequent versions; and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 11
pa-1456177

• Java Card platform 2.1 and subsequent versions.

4. The ’447 and ’476 Patents

The following instrumentalities of Oracle practice the asserted claims of the ’447 and ’446

patents:

• JDK 1.2 and subsequent versions;

• JRE 1.2 and subsequent versions;

• Java SE for Embedded 1.4.2_11 and subsequent versions;

• CDC RI 1.0 and CDC-HI 1.0, and all subsequent versions of each;

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• Foundation Profile 1.0.2 and subsequent versions;

• J2EE 1.2 (later called Java EE) and subsequent versions;

• Java ME SDK 3.0 EA and subsequent versions;

• Java Real-Time System 1.0 and all subsequent versions;

• Personal Profile HI and RI 1.0 and subsequent versions;

• Personal Basis Profile HI and RI 1.0 and subsequent versions;

• Java Card connected platform 3.0 and subsequent versions.

Additionally, the following instrumentalities of Oracle practice the asserted claims of the

’447 patent:

• Oracle Java Wireless Client (formerly Sun Java Wireless Client) 1.1.3 and

subsequent versions.

5. The ’520 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’520 patent:

• CLDC RI 1.1.1;

• Java Card platform 2.1 and subsequent versions; and

• CLDC-HI 1.1.3 and subsequent versions.

6. The ’720 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’720 patent:

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 12
pa-1456177

H. Patent Local Rule 3-1(h) — Willful Infringement.

Google has willfully infringed the patents-in-suit, which are directed to inventions

incorporated in the Java Platform. Many factors reveal that Google acted recklessly, i.e., despite

a high likelihood that Google’s actions infringed a valid and enforceable patent, and that Google

actually knew or should have known that its actions constituted an unjustifiably high risk of

infringement of a valid and enforceable patent. These factors include:

• Google is a member of the Java Community Process (JCP) and has a seat on the Java

SE/EE Executive Committee. See Java Community Process homepage, available at

http://www.jcp.org/en/participation/committee (last visited Dec. 1, 2010). Through its

lengthy participation in the JCP, Google is well aware of the need to obtain a license

from Oracle in order to make use of Oracle’s Java Platform technologies as Google

does in Android. Google’s admissions in its Amended Counterclaims prove this

awareness. (See, e.g., Google’s Amended Counterclaims ¶¶ 6-7, 13.)

• At least three of the seven inventors named in the patents-in-suit, Robert Griesemer,

Lars Bak, and Frank Yellin, have left Oracle and work at Google. Their knowledge is

attributable to Google.

• Andy Rubin, Google’s VP of Mobile Platforms, previously worked at Danger, Inc.,

which he founded. He understood the need to obtain a license from Oracle (then Sun)

to use Java Platform technologies in Danger’s Hiptop operating system, and Danger

did obtain a commercial license. When Rubin left Danger and founded Android, Inc.,

he approached Sun about obtaining a commercial license to Java Platform

technologies on behalf of Android, Inc. Those discussions ended without Android

having obtained a commercial license. Rubin’s knowledge is attributable to Google.

• Google has consistently resisted taking a license from Sun for Sun’s patented Java

Platform technologies.

• In copying Oracle’s Java Platform technologies, Google deliberately disregarded a

known risk that Oracle had protective patents covering Java Platform technologies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 13
pa-1456177

• Google’s Android source code and documentation directly references and copies Java

Platform technology specifications, documentation, and source code. See, e.g.,

mydroid\libcore\security\src\main\java\java\security\CodeSource.java;

mydroid\libcore\support\src\test\java\org\apache\harmony\security\tests\support\cert\P

olicyNodeImpl.java. Google admits that Android incorporates a subset of Apache

Harmony, which it asserts is “an implementation of Sun’s Java.” (See, e.g., Google’s

Amended Counterclaims ¶¶ 6-7, 13.)

• Google’s website content directly references and demonstrates use of Java Platform

technologies. See, e.g., “What is Android?”, available at

http://developer.android.com/guide/basics/what-is-android.html (last visited Dec. 1,

2010) (“Android includes a set of core libraries that provides most of the functionality

available in the core libraries of the Java programming language.”); Package Index,

available at http://developer.android.com/reference/packages.html (last visited Dec. 1,

2010), and subsidiary webpages.

• Google’s Android videos directly reference and demonstrate use of Java Platform

technologies. See, e.g., Google I/O 2008 Video entitled “Dalvik Virtual Machine

Internals,” presented by Dan Bornstein (Google), available at

http://developer.android.com/videos/index.html#v=ptjedOZEXPM (last visited Dec. 1,

2010).

• As noted above, Google has not removed the code Oracle identified as infringing;

Google’s direct and indirect infringement is ongoing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 14
pa-1456177

II. DOCUMENT PRODUCTION ACCOMPANYING DISCLOSURES.15

A. Patent Local Rule 3-2(a) — Documents Evidencing Pre-Application
Disclosure.16

Copies of documents produced pursuant to Patent Local Rule 3-2(a) are at

OAGOOGLE0000052860-53265, OAGOOGLE0000053266 -53749, OAGOOGLE0000053750-

53759, OAGOOGLE0000059578, and OAGOOGLE0000059579-60385. Oracle also directs

Google to three public websites: developer.sun.com, java.sun.com, and www.sun.com. Oracle’s

proprietary commercial releases will be made available for inspection subject to a Protective

Order entered in this case or by agreement of the parties.

B. Patent Local Rule 3-2(b) — Documents Evidencing Conception and
Reduction to Practice.

Copies of documents evidencing conception, reduction to practice, design and

development of the claimed inventions are produced at OAGOOGLE0000000001-52022,

OAGOOGLE0000053793-57166, and OAGOOGLE0000059571-59577. Oracle also directs

Google to three public websites: developer.sun.com, java.sun.com, and www.sun.com. Oracle’s

proprietary commercial releases will be made available for inspection subject to a Protective

Order entered in this case or by agreement of the parties.

C. Patent Local Rule 3-2(c) — File Histories for the Patents-in-Suit.

Copies of the patent file histories are produced at OAGOOGLE0000052023-52859 and

OAGOOGLE0000057167-59570. Certified copies of the patents and file histories are produced

at OAGOOGLE0000052023-52169, OAGOOGLE0000052194-52253,

OAGOOGLE0000052270-52424, OAGOOGLE0000052602-52859, OAGOOGLE0000102583-

105959, and OAGOOGLE0000111357-114304.

15 Oracle will make available source code pursuant to Patent Local Rule 3-2 for inspection by
Google in accordance with the protective order. Where different versions of specific Oracle
source code do not vary with respect to the claimed inventions in suit (including variants and
customized versions for specific customers), Oracle will produce the earliest general version
practicing the claimed invention to avoid or minimize any duplicative productions.
16 As Patent Local Rule 3-2(a) states, Oracle’s production of a document as required by the rule
shall not constitute an admission that such document evidences or is prior art under 35 U.S.C.
§ 102.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S SECOND SUPPLEMENTAL INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 15
pa-1456177

D. Patent Local Rule 3-2(d) — Ownership of the Patents-in-Suit.

Copies of documents evidencing ownership of the patent rights are produced at

OAGOOGLE0000053760-53792 and OAGOOGLE0000056022-56028.

E. Patent Local Rule 3-2(e) — Patentee’s Asserted Practice of the Claimed
Inventions.

Copies of documents sufficient to show the operation of any aspects or elements of

instrumentalities Oracle relies upon as embodying the asserted claims can be found at the

following three public websites: developer.sun.com, java.sun.com, and www.sun.com. Oracle’s

proprietary commercial releases will be made available for inspection subject to the Protective

Order entered in this case or by agreement of the parties.

Dated: April 1, 2011

MICHAEL A. JACOBS
MARC DAVID PETERS
MORRISON & FOERSTER LLP

By: /s/ Marc David Peters

Attorneys for Plaintiff
ORACLE AMERICA, INC.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 CERTIFICATE OF SERVICE
CASE NO. 3:10-CV-03561-WHA 1
pa- 1456177pa-14

CERTIFICATE OF SERVICE

I declare that I am employed with the law firm of Morrison & Foerster LLP, whose address
is 755 Page Mill Road, Palo Alto, California 94304-1018. I am not a party to the within cause,
and I am over the age of eighteen years.

I further declare that on April 1, 2011, I served a copy of:

ORACLE’S SECOND SUPPLEMENTAL PATENT LOCAL RULE
3-1 DISCLOSURE OF ASSERTED CLAIMS AND PRELIMINARY
INFRINGEMENT CONTENTIONS

 BY ELECTRONIC SERVICE [Fed. Rule Civ. Proc. rule 5(b)] by electronically
mailing a true and correct copy through Morrison & Foerster LLP's electronic mail
system to the e-mail address(es) set forth below, or as stated on the attached service
list per agreement in accordance with Federal Rules of Civil Procedure rule 5(b).

Robert F. Perry
Scott T. Weingaertner
Bruce W. Baber
Mark H. Francis
Christopher C. Carnaval
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003

RPerry@kslaw.com
SWeingaertner@kslaw.com
bbaber@kslaw.com
mfrancis@kslaw.com
ccarnaval@kslaw.com

Fax: 212.556.2222

Timothy T. Scott
Geoffrey M. Ezgar
Leo Spooner III
KING & SPALDING, LLP
333 Twin Dolphin Drive, Suite 400
Redwood Shores, CA 94065

TScott@kslaw.com
GEzgar@kslaw.com
LSpooner@kslaw.com

Fax: 650.590.1900

Donald F. Zimmer, Jr.
Cheryl Z. Sabnis
KING & SPALDING LLP
101 Second Street, Suite 2300
San Francisco, CA 94105

fzimmer@kslaw.com
csabnis@kslaw.com

Fax: 415.318.1300

Steven Snyder
KING & SPALDING LLP
100 N. Tryon Street, Suite 3900
Charlotte, NC 28202

ssnyder@kslaw.com

Fax: 704.503.2622

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Certificate of Service 2
pa-1456177

Renny F. Hwang
GOOGLE INC.
1600 Amphitheatre Parkway
Mountain View, CA 94043

rennyhwang@google.com

Fax: 650.618.1806

Ian C. Ballon
Heather Meeker
GREENBERG TRAURIG LLP
1900 University Avenue, 5th Floor
East Palo Alto, CA 94303

ballon@gtlaw.com
meekerh@gtlaw.com

Fax: 650.328.8508

Joseph R. Wetzel
Dana K. Powers
GREENBERG TRAURIG, LLP
153 Townsend Street, 8th Floor
San Francisco, CA 94107

wetzelj@gtlaw.com
powersdk@gtlaw.com

Fax: 415.707.2010

I declare under penalty of perjury that the foregoing is true and correct.

Executed at Palo Alto, California, this 1st day of April, 2011.

Marc David Peters
(typed)

/s/ Marc David Peters
(signature)

 1

Exhibit D

pa-1435236 1 of 43 April 1, 2011

EXHIBIT D
Supplemental Infringement Contentions for the ’447 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2,
2.3, and Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or nearly
identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the ’447
patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6
(“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3 (“Gingerbread”)1.

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

Oracle has determined that Android devices execute much of the code cited below when a developer runs the Android Compatibility
Test Suite (CTS), which Google requires manufacturers to execute to certify devices as Android-compatible.2 The mobile device
emulator that Google includes with the Android SDK3 supports Oracle’s conclusion. The emulator displays log messages to inform
developers of what is running on the virtual device. If the developer includes a logging command in part of a program, the emulator
will output a log entry every time that part of the program is executed. A developer might use this feature, for example, to test
whether an application starts to execute a particular section of code before failing. By adding logging commands to key portions of
the Android source code cited below, building an Android system image, and loading the code into Google’s emulator, Oracle

1 Oracle’s investigation into the extent of Gingerbread’s infringement is still ongoing. Gingerbread infringes at least the computer readable medium claims as the
code cited in the chart below appears in Gingerbread. For example, the GIT repository, a computer readable medium, is maintained by Google and carries the
sequences of instructions listed in the chart below. Oracle continues testing to determine the circumstances under which code from the different versions of
Android is executed.
2 http://source.android.com/compatibility/android-2.2-cdd.pdf at 10 (“To be considered compatible with Android 2.2, device implementations . . . MUST pass the
most recent version of the Android Compatibility Test Suite (CTS) available at the time of the device implementation's software is completed.”).
3 See http://developer.android.com/guide/developing/devices/emulator.html (“The Android SDK includes a virtual mobile device emulator that runs on your
computer. The emulator lets you prototype, develop, and test Android applications without using a physical device. The Android emulator mimics all of the
hardware and software features of a typical mobile device, except that it cannot place actual phone calls.”).

pa-1435236 2 of 43 April 1, 2011

determined that many of these code sections are executed as part of Google’s CTS testing. Thus, Android-compatible devices, when
used as Google intends, execute infringing code.

The asserted claims include system, computer-readable medium, and method claims. Anyone who makes, uses, offers to sell, sells, or
imports a device running Android within or into the United States directly infringes the system claims. This includes Google and its
downstream licensees, including device manufacturers, carriers, application developers, and end users. Similarly, anyone who
engages in the above conduct with respect to storage devices containing Android code directly infringes the computer-readable
medium claims. This includes Google and its downstream licensees, including device manufacturers and application developers.
Anyone who uses a device running Android code directly infringes the method claims. This includes Google and its downstream
licensees, including device manufacturers, carriers, application developers, and end users. Google induces and contributes to
infringement of all asserted claims by distributing Android code with the intention that it will be executed on mobile devices and by
requiring that device manufacturers certify their products by running the CTS as a prerequisite for obtaining access to the Android
Market software and branding, among other things. Oracle has confirmed that much of the cited code below is executed when the
CTS is run. Google selectively included certain Java APIs in Android while excluding others. The fact that Google selected Java
security code for inclusion in Android and has continued to include Java security code in its recent Android releases reflects the
functional necessity of this code to the Android platform as a whole. Thus the code cited below is not a staple article suitable for
substantial non-infringing use. Google supplies its Android code in and from the United States.

When infringement evidence first presented with respect to one claim is referred to with respect to another, the evidence is applicable
because it is not limited to a particular form of infringement.

The ’447 Patent Infringed By
[1-pre] 1. A method for
providing security, the
method comprising the steps
of:

Android includes methods for providing security.

See generally, e.g.:

• dalvik\vm\native\InternalNative.c
• dalvik\vm\native\java_security_AccessController.c
• dalvik\vm\native\java_lang_VMClassLoader.c
• For Froyo:

o source code files in dalvik\libcore\security\src\main\java\java\security
o source code files in dalvik\libcore\security-kernel\src\main\java\java\security
o dalvik\libcore\security\src\main\java\org\apache\harmony\security

pa-1435236 3 of 43 April 1, 2011

• For Gingerbread
o source code files in libcore\luni\src\main\java\java\security
o libcore\luni\src\main\java\org\apache\harmony\security

See also, e.g.:

• Android APIs for “java.security,” available at
http://developer.android.com/reference/java/security/package-summary.html

• Android Framework Topics for “Security and Permissions,” available at
http://developer.android.com/guide/topics/security/security.html

• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml
File,” http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml
File,” http://developer.android.com/guide/topics/manifest/application-element.html

• Android Framework Topics for “The AndroidManifest.xml File,” available at
http://developer.android.com/guide/topics/manifest/manifest-intro.html

See also, e.g.:

• libcore\security\src\test

[1-a] establishing one or
more protection domains,
wherein a protection domain
is associated with zero or
more permissions;

Android’s security framework establishes one or more protection domains, wherein a protection
domain is associated with zero or more permissions.

See, e.g.:

In Froyo, dalvik\libcore\security\src\main\java\java\security\ProtectionDomain.java
In Gingerbread, libcore\luni\src\main\java\java\security\ProtectionDomain.java:

/**
 * {@code ProtectionDomain} represents all permissions that are granted to a
 * specific code source. The {@link ClassLoader} associates each class with the
 * corresponding {@code ProtectionDomain}, depending on the location and the
 * certificates (encapsulates in {@link CodeSource}) it loads the code from.
 * <p>
 * A class belongs to exactly one protection domain and the protection domain

pa-1435236 4 of 43 April 1, 2011

 * can not be changed during the lifetime of the class.
 */
public class ProtectionDomain {

 // CodeSource for this ProtectionDomain
 private CodeSource codeSource;

 // Static permissions for this ProtectionDomain
 private PermissionCollection permissions;

 // ClassLoader
 private ClassLoader classLoader;

 // Set of principals associated with this ProtectionDomain
 private Principal[] principals;

 // false if this ProtectionDomain was constructed with static
 // permissions, true otherwise.
 private boolean dynamicPerms;

 /**
 * Constructs a new instance of {@code ProtectionDomain} with the specified
 * code source and the specified static permissions.
 * <p>
 * If {@code permissions} is not {@code null}, the {@code permissions}
 * collection is made immutable by calling
 * {@link PermissionCollection#setReadOnly()} and it is considered as
 * granted statically to this {@code ProtectionDomain}.
 * <p>
 * The policy will not be consulted by access checks against this {@code
 * ProtectionDomain}.
 * <p>
 * If {@code permissions} is {@code null}, the method {@link

pa-1435236 5 of 43 April 1, 2011

 * ProtectionDomain#implies(Permission)} always returns {@code false}.
 *
 * @param cs
 * the code source associated with this domain, maybe {@code
 * null}.
 * @param permissions
 * the {@code PermissionCollection} containing all permissions to
 * be statically granted to this {@code ProtectionDomain}, maybe
 * {@code null}.
 */
 public ProtectionDomain(CodeSource cs, PermissionCollection permissions) {
 this.codeSource = cs;
 if (permissions != null) {
 permissions.setReadOnly();
 }
 this.permissions = permissions;
 //this.classLoader = null;
 //this.principals = null;
 //dynamicPerms = false;
 }

 /**
 * Constructs a new instance of {@code ProtectionDomain} with the specified
 * code source, the permissions, the class loader and the principals.
 * <p>
 * If {@code permissions} is {@code null}, and access checks are performed
 * against this protection domain, the permissions defined by the policy are
 * consulted. If {@code permissions} is not {@code null}, the {@code
 * permissions} collection is made immutable by calling
 * {@link PermissionCollection#setReadOnly()}. If access checks are
 * performed, the policy and the provided permission collection are checked.
 * <p>
 * External modifications of the provided {@code principals} array has no

pa-1435236 6 of 43 April 1, 2011

 * impact on this {@code ProtectionDomain}.
 *
 * @param cs
 * the code source associated with this domain, maybe {@code
 * null}.
 * @param permissions
 * the permissions associated with this domain, maybe {@code
 * null}.
 * @param cl
 * the class loader associated with this domain, maybe {@code
 * null}.
 * @param principals
 * the principals associated with this domain, maybe {@code
 * null}.
 */
 public ProtectionDomain(CodeSource cs, PermissionCollection permissions,
 ClassLoader cl, Principal[] principals) {
 this.codeSource = cs;
 if (permissions != null) {
 permissions.setReadOnly();
 }
 this.permissions = permissions;
 this.classLoader = cl;
 if (principals != null) {
 this.principals = new Principal[principals.length];
 System.arraycopy(principals, 0, this.principals, 0,
 this.principals.length);
 }
 dynamicPerms = true;
 }
…
 /**
 * Returns the static permissions that are granted to this {@code

pa-1435236 7 of 43 April 1, 2011

 * ProtectionDomain}.
 *
 * @return the static permissions that are granted to this {@code
 * ProtectionDomain}, maybe {@code null}.
 */
 public final PermissionCollection getPermissions() {
 return permissions;
 }

See also, e.g.:

• Android APIs for “java.security,” available at
http://developer.android.com/reference/java/security/package-summary.html

• Android Framework Topics for “Security and Permissions,” available at
http://developer.android.com/guide/topics/security/security.html

• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml
File,” http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml
File,” http://developer.android.com/guide/topics/manifest/application-element.html

• Android Framework Topics for “The AndroidManifest.xml File,” available at
http://developer.android.com/guide/topics/manifest/manifest-intro.html

[1-b] establishing an
association between said one
or more protection domains
and one or more classes of
one or more objects; and

Android’s security framework establishes an association between said one or more protection
domains and one or more classes of one or more objects.

See Claim 1-a, supra.

See also, e.g.:
dalvik\vm\native\dalvik_system_DexFile.c:

/*
 * private static Class defineClass(String name, ClassLoader loader,
 * int cookie, ProtectionDomain pd)
 *
 * Load a class from a DEX file. This is roughly equivalent to defineClass()

pa-1435236 8 of 43 April 1, 2011

 * in a regular VM -- it's invoked by the class loader to cause the
 * creation of a specific class. The difference is that the search for and
 * reading of the bytes is done within the VM.
 *
 * The class name is a "binary name", e.g. "java.lang.String".
 *
 * Returns a null pointer with no exception if the class was not found.
 * Throws an exception on other failures.
 */
static void Dalvik_dalvik_system_DexFile_defineClass(const u4* args,
 JValue* pResult)
{
 StringObject* nameObj = (StringObject*) args[0];
 Object* loader = (Object*) args[1];
 int cookie = args[2];
 Object* pd = (Object*) args[3];
 ClassObject* clazz = NULL;
 DexOrJar* pDexOrJar = (DexOrJar*) cookie;
 DvmDex* pDvmDex;
 char* name;
 char* descriptor;

 name = dvmCreateCstrFromString(nameObj);
 descriptor = dvmDotToDescriptor(name);
 LOGV("--- Explicit class load '%s' 0x%08x\n", descriptor, cookie);
 free(name);

 if (!validateCookie(cookie))
 RETURN_VOID();

 if (pDexOrJar->isDex)
 pDvmDex = dvmGetRawDexFileDex(pDexOrJar->pRawDexFile);
 else

pa-1435236 9 of 43 April 1, 2011

 pDvmDex = dvmGetJarFileDex(pDexOrJar->pJarFile);

 /* once we load something, we can't unmap the storage */
 pDexOrJar->okayToFree = false;

 clazz = dvmDefineClass(pDvmDex, descriptor, loader);
 Thread* self = dvmThreadSelf();
 if (dvmCheckException(self)) {
 /*
 * If we threw a "class not found" exception, stifle it, since the
 * contract in the higher method says we simply return null if
 * the class is not found.
 */
 Object* excep = dvmGetException(self);
 if (strcmp(excep->clazz->descriptor,
 "Ljava/lang/ClassNotFoundException;") == 0 ||
 strcmp(excep->clazz->descriptor,
 "Ljava/lang/NoClassDefFoundError;") == 0)
 {
 dvmClearException(self);
 }
 clazz = NULL;
 }

 /*
 * Set the ProtectionDomain -- do we need this to happen before we
 * link the class and make it available? If so, we need to pass it
 * through dvmDefineClass (and figure out some other
 * stuff, like where it comes from for bootstrap classes).
 */
 if (clazz != NULL) {
 //LOGI("SETTING pd '%s' to %p\n", clazz->descriptor, pd);
 dvmSetFieldObject((Object*) clazz, gDvm.offJavaLangClass_pd, pd);

pa-1435236 10 of 43 April 1, 2011

 }

 free(descriptor);
 RETURN_PTR(clazz);
}

dalvik\vm\native\java_lang_VMClassLoader.c:

/*
 * java.lang.VMClassLoader
 */
…
/*
 * static Class defineClass(ClassLoader cl, String name,
 * byte[] data, int offset, int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 StringObject* nameObj = (StringObject*) args[1];
 const u1* data = (const u1*) args[2];
 int offset = args[3];
 int len = args[4];
 Object* pd = (Object*) args[5];
 char* name = NULL;

 name = dvmCreateCstrFromString(nameObj);
 LOGE("ERROR: defineClass(%p, %s, %p, %d, %d, %p)\n",
 loader, name, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",

pa-1435236 11 of 43 April 1, 2011

 "can't load this type of class file");

 free(name);
 RETURN_VOID();
}

/*
 * static Class defineClass(ClassLoader cl, byte[] data, int offset,
 * int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object. Deprecated version of
 * previous method, lacks name parameter.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass2(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 const u1* data = (const u1*) args[1];
 int offset = args[2];
 int len = args[3];
 Object* pd = (Object*) args[4];

 LOGE("ERROR: defineClass(%p, %p, %d, %d, %p)\n",
 loader, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 RETURN_VOID();
}

[1-c] determining whether an
action requested by a

Android’s security framework determines whether an action requested by a particular object is
permitted based on said association between said one or more protection domains and said one or

pa-1435236 12 of 43 April 1, 2011

particular object is permitted
based on said association
between said one or more
protection domains and said
one or more classes.

more classes.

See Claim 1-a and 1-b, supra.

See also, e.g.:

In Froyo, dalvik\libcore\security\src\main\java\java\security\ProtectionDomain.java
In Gingerbread, libcore\luni\src\main\java\java\security\ProtectionDomain.java::

 /**
 * Indicates whether the specified permission is implied by this {@code
 * ProtectionDomain}.
 * <p>
 * If this {@code ProtectionDomain} was constructed with
 * {@link #ProtectionDomain(CodeSource, PermissionCollection)}, the
 * specified permission is only checked against the permission collection
 * provided in the constructor. If {@code null} was provided, {@code false}
 * is returned.
 * <p>
 * If this {@code ProtectionDomain} was constructed with
 * {@link #ProtectionDomain(CodeSource, PermissionCollection, ClassLoader,
Principal[])}
 * , the specified permission is checked against the policy and the
 * permission collection provided in the constructor.
 *
 * @param permission
 * the permission to check against the domain.
 * @return {@code true} if the specified {@code permission} is implied by
 * this {@code ProtectionDomain}, {@code false} otherwise.
 */
 public boolean implies(Permission permission) {
 // First, test with the Policy, as the default Policy.implies()
 // checks for both dynamic and static collections of the
 // ProtectionDomain passed...

pa-1435236 13 of 43 April 1, 2011

 if (dynamicPerms
 && Policy.getAccessiblePolicy().implies(this, permission)) {
 return true;
 }

 // ... and we get here if
 // either the permissions are static
 // or Policy.implies() did not check for static permissions
 // or the permission is not implied
 return permissions == null ? false : permissions.implies(permission);
 }

Android APIs for “ProtectionDomain,” available at
http://developer.android.com/reference/java/security/ProtectionDomain.html:

public ProtectionDomain (CodeSource cs, PermissionCollection permissions)
Since: API Level 1
Constructs a new instance of ProtectionDomain with the specified code source and the
specified static permissions.

If permissions is not null, the permissions collection is made immutable by calling
setReadOnly() and it is considered as granted statically to this ProtectionDomain.

The policy will not be consulted by access checks against this ProtectionDomain.

If permissions is null, the method implies(Permission) always returns false.

Parameters
cs the code source associated with this domain, maybe null.

permissions the PermissionCollection containing all permissions to be

pa-1435236 14 of 43 April 1, 2011

statically granted to this ProtectionDomain, maybe null.

public ProtectionDomain (CodeSource cs, PermissionCollection permissions,
ClassLoader cl, Principal[] principals)
Since: API Level 1
Constructs a new instance of ProtectionDomain with the specified code source, the
permissions, the class loader and the principals.

If permissions is null, and access checks are performed against this protection domain,
the permissions defined by the policy are consulted. If permissions is not null, the
permissions collection is made immutable by calling setReadOnly(). If access checks
are performed, the policy and the provided permission collection are checked.

External modifications of the provided principals array has no impact on this
ProtectionDomain.

Parameters
cs the code source associated with this domain, maybe null.

permissions the permissions associated with this domain, maybe null.

cl the class loader associated with this domain, maybe null.

principals the principals associated with this domain, maybe null.

In Froyo, dalvik\libcore\security\src\main\java\java\security\Policy.java
In Gingerbread, libcore\luni\src\main\java\java\security\Policy.java:

 /**

pa-1435236 15 of 43 April 1, 2011

 * Indicates whether the specified {@code Permission} is implied by the
 * {@code PermissionCollection} of the specified {@code ProtectionDomain}.
 *
 * @param domain
 * the {@code ProtectionDomain} for which the permission should
 * be granted.
 * @param permission
 * the {@code Permission} for which authorization is to be
 * verified.
 * @return {@code true} if the {@code Permission} is implied by the {@code
 * ProtectionDomain}, {@code false} otherwise.
 */

In Froyo, dalvik\libcore\security\src\main\java\java\security\Policy.java

public boolean implies(ProtectionDomain domain, Permission permission) {
 if (domain != null) {
 PermissionCollection total = getPermissions(domain);
 PermissionCollection inherent = domain.getPermissions();
 if (total == null) {
 total = inherent;
 } else if (inherent != null) {
 for (Enumeration<Permission> en = inherent.elements(); en.hasMoreElements();) {
 total.add(en.nextElement());
 }
 }
 if (total != null && total.implies(permission)) {
 return true;
 }
 }
 return false;
 }

In Gingerbread, libcore\luni\src\main\java\java\security\Policy.java:

pa-1435236 16 of 43 April 1, 2011

 public boolean implies(ProtectionDomain domain, Permission permission) {
 return spiImpl == null ? defaultImplies(domain, permission) : spiImpl
 .engineImplies(domain, permission);
 }

 private boolean defaultImplies(ProtectionDomain domain, Permission permission) {
 if (domain == null && permission == null) {
 throw new NullPointerException();
 }
 boolean implies = false;
 if (domain != null) {
 PermissionCollection total = getPermissions(domain);
 PermissionCollection inherent = domain.getPermissions();
 if (inherent != null) {
 Enumeration<Permission> en = inherent.elements();
 while (en.hasMoreElements()) {
 total.add(en.nextElement());
 }
 }
 try {
 implies = total.implies(permission);
 } catch (NullPointerException e) {
 // return false instead of throwing the NullPointerException
 implies = false;
 }
 }
 return implies;
 }

In Froyo, dalvik\libcore\luni\src\main\java\java\lang\SecurityManager.java
In Gingerbread, libcore\luni\src\main\java\java\lang\SecurityManager.java:

/**
 * Warning: security managers do not provide a

pa-1435236 17 of 43 April 1, 2011

 * secure environment for executing untrusted code. Untrusted code cannot be
 * safely isolated within the Dalvik VM.
 *
 * <p>Provides security verification facilities for applications. {@code
 * SecurityManager} contains a set of {@code checkXXX} methods which determine
 * if it is safe to perform a specific operation such as establishing network
 * connections, modifying files, and many more. In general, these methods simply
 * return if they allow the application to perform the operation; if an
 * operation is not allowed, then they throw a {@link SecurityException}. The
 * only exception is {@link #checkTopLevelWindow(Object)}, which returns a
 * boolean to indicate permission.
 */
public class SecurityManager {
…
 /**
 * Checks whether the calling thread is allowed to access the resource being
 * guarded by the specified permission object.
 *
 * @param permission
 * the permission to check.
 * @throws SecurityException
 * if the requested {@code permission} is denied according to
 * the current security policy.
 */
 public void checkPermission(Permission permission) {
 try {
 inCheck = true;
 AccessController.checkPermission(permission);
 } finally {
 inCheck = false;
 }
 }

pa-1435236 18 of 43 April 1, 2011

 /**
 * Checks whether the specified security context is allowed to access the
 * resource being guarded by the specified permission object.
 *
 * @param permission
 * the permission to check.
 * @param context
 * the security context for which to check permission.
 * @throws SecurityException
 * if {@code context} is not an instance of {@code
 * AccessControlContext} or if the requested {@code permission}
 * is denied for {@code context} according to the current
 * security policy.
 */
 public void checkPermission(Permission permission, Object context) {
 try {
 inCheck = true;
 // Must be an AccessControlContext. If we don't check
 // this, then applications could pass in an arbitrary
 // object which circumvents the security check.
 if (context instanceof AccessControlContext) {
 ((AccessControlContext) context).checkPermission(permission);
 } else {
 throw new SecurityException();
 }
 } finally {
 inCheck = false;
 }
 }
}

In Froyo, dalvik\libcore\security-kernel\src\main\java\java\security\AccessController.java
In Gingerbread, libcore\luni\src\main\java\java\security\AccessController.java:

pa-1435236 19 of 43 April 1, 2011

 /**
 * Checks the specified permission against the VM's current security policy.
 * The check is performed in the context of the current thread. This method
 * returns silently if the permission is granted, otherwise an {@code
 * AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * the current execution context has been granted the specified permission.
 * If privileged operations are on the execution context, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * This method delegates the permission check to
 * {@link AccessControlContext#checkPermission(Permission)} on the current
 * callers' context obtained by {@link #getContext()}.
 *
 * @param permission
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessControlContext#checkPermission(Permission)
 *
 */
 public static void checkPermission(Permission permission)
 throws AccessControlException {
 if (permission == null) {
 throw new NullPointerException("permission == null");
 }

 getContext().checkPermission(permission);
 }

pa-1435236 20 of 43 April 1, 2011

In Froyo, dalvik\libcore\security-kernel\src\main\java\java\security\AccessControlContext.java
In Gingerbread, libcore\luni\src\main\java\java\security\AccessControllerContext.java:

// List of ProtectionDomains wrapped by the AccessControlContext
// It has the following characteristics:
// - 'context' can not be null
// - never contains null(s)
// - all elements are unique (no dups)
ProtectionDomain[] context;
…
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted

pa-1435236 21 of 43 April 1, 2011

 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }
 }

The ’447 Patent Infringed By
2. The method of claim 1, wherein: See Claim 1, supra.
at least one protection domain of
said one or more protection domains
is associated with a code identifier;

See Claim 1-a and 1-b, supra.

E.g.:
dalvik\vm\native\dalvik_system_DexFile.c:

/*
 * private static Class defineClass(String name, ClassLoader loader,
 * int cookie, ProtectionDomain pd)
 *
 * Load a class from a DEX file. This is roughly equivalent to defineClass()
 * in a regular VM -- it's invoked by the class loader to cause the

pa-1435236 22 of 43 April 1, 2011

The ’447 Patent Infringed By
 * creation of a specific class. The difference is that the search for and
 * reading of the bytes is done within the VM.
 *
 * The class name is a "binary name", e.g. "java.lang.String".
 *
 * Returns a null pointer with no exception if the class was not found.
 * Throws an exception on other failures.
 */
static void Dalvik_dalvik_system_DexFile_defineClass(const u4* args,
 JValue* pResult)
{
 StringObject* nameObj = (StringObject*) args[0];
 Object* loader = (Object*) args[1];
 int cookie = args[2];
 Object* pd = (Object*) args[3];
 ClassObject* clazz = NULL;
 DexOrJar* pDexOrJar = (DexOrJar*) cookie;
 DvmDex* pDvmDex;
 char* name;
 char* descriptor;

 name = dvmCreateCstrFromString(nameObj);
 descriptor = dvmDotToDescriptor(name);
 LOGV("--- Explicit class load '%s' 0x%08x\n", descriptor, cookie);
 free(name);

 if (!validateCookie(cookie))
 RETURN_VOID();

 if (pDexOrJar->isDex)
 pDvmDex = dvmGetRawDexFileDex(pDexOrJar->pRawDexFile);
 else

pa-1435236 23 of 43 April 1, 2011

The ’447 Patent Infringed By
 pDvmDex = dvmGetJarFileDex(pDexOrJar->pJarFile);

 /* once we load something, we can't unmap the storage */
 pDexOrJar->okayToFree = false;

 clazz = dvmDefineClass(pDvmDex, descriptor, loader);
 Thread* self = dvmThreadSelf();
 if (dvmCheckException(self)) {
 /*
 * If we threw a "class not found" exception, stifle it, since the
 * contract in the higher method says we simply return null if
 * the class is not found.
 */
 Object* excep = dvmGetException(self);
 if (strcmp(excep->clazz->descriptor,
 "Ljava/lang/ClassNotFoundException;") == 0 ||
 strcmp(excep->clazz->descriptor,
 "Ljava/lang/NoClassDefFoundError;") == 0)
 {
 dvmClearException(self);
 }
 clazz = NULL;
 }

 /*
 * Set the ProtectionDomain -- do we need this to happen before we
 * link the class and make it available? If so, we need to pass it
 * through dvmDefineClass (and figure out some other
 * stuff, like where it comes from for bootstrap classes).
 */
 if (clazz != NULL) {
 //LOGI("SETTING pd '%s' to %p\n", clazz->descriptor, pd);

pa-1435236 24 of 43 April 1, 2011

The ’447 Patent Infringed By
 dvmSetFieldObject((Object*) clazz, gDvm.offJavaLangClass_pd, pd);
 }

 free(descriptor);
 RETURN_PTR(clazz);
}

E.g.:
dalvik\vm\native\java_lang_VMClassLoader.c:

/*
 * java.lang.VMClassLoader
 */
…
/*
 * static Class defineClass(ClassLoader cl, String name,
 * byte[] data, int offset, int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 StringObject* nameObj = (StringObject*) args[1];
 const u1* data = (const u1*) args[2];
 int offset = args[3];
 int len = args[4];
 Object* pd = (Object*) args[5];
 char* name = NULL;

 name = dvmCreateCstrFromString(nameObj);

pa-1435236 25 of 43 April 1, 2011

The ’447 Patent Infringed By
 LOGE("ERROR: defineClass(%p, %s, %p, %d, %d, %p)\n",
 loader, name, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 free(name);
 RETURN_VOID();
}

/*
 * static Class defineClass(ClassLoader cl, byte[] data, int offset,
 * int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object. Deprecated version of
 * previous method, lacks name parameter.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass2(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 const u1* data = (const u1*) args[1];
 int offset = args[2];
 int len = args[3];
 Object* pd = (Object*) args[4];

 LOGE("ERROR: defineClass(%p, %p, %d, %d, %p)\n",
 loader, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 RETURN_VOID();

pa-1435236 26 of 43 April 1, 2011

The ’447 Patent Infringed By
}

See also, e.g.:

In Froyo, dalvik\libcore\security\src\main\java\java\security\CodeSource.java
In Gingerbread, libcore\luni\src\main\java\java\security\CodeSource.java:

/**
 * {@code CodeSource} encapsulates the location from where code is loaded and
 * the certificates that were used to verify that code. This information is used
 * by {@code SecureClassLoader} to define protection domains for loaded classes.
 *
 * @see SecureClassLoader
 * @see ProtectionDomain
 */
public class CodeSource implements Serializable {

 private static final long serialVersionUID = 4977541819976013951L;

 // Location of this CodeSource object
 private URL location;

 // Array of certificates assigned to this CodeSource object
 private transient java.security.cert.Certificate[] certs;

 // Array of CodeSigners
 private transient CodeSigner[] signers;

 // SocketPermission() in implies() method takes to many time.
 // Need to cache it for better performance.
 private transient SocketPermission sp;

 // Cached factory used to build CertPath-s in <code>getCodeSigners()</code>.

pa-1435236 27 of 43 April 1, 2011

The ’447 Patent Infringed By
 private transient CertificateFactory factory;

 /**
 * Constructs a new instance of {@code CodeSource} with the specified
 * {@code URL} and the {@code Certificate}s.
 *
 * @param location
 * the {@code URL} representing the location from where code is
 * loaded, maybe {@code null}.
 * @param certs
 * the {@code Certificate} used to verify the code, loaded from
 * the specified {@code location}, maybe {@code null}.
 */
 public CodeSource(URL location, Certificate[] certs) {
 this.location = location;
 if (certs != null) {
 this.certs = new Certificate[certs.length];
 System.arraycopy(certs, 0, this.certs, 0, certs.length);
 }
 }

 /**
 * Constructs a new instance of {@code CodeSource} with the specified
 * {@code URL} and the {@code CodeSigner}s.
 *
 * @param location
 * the {@code URL} representing the location from where code is
 * loaded, maybe {@code null}.
 * @param signers
 * the {@code CodeSigner}s of the code, loaded from the specified
 * {@code location}. Maybe {@code null}.
 */

pa-1435236 28 of 43 April 1, 2011

The ’447 Patent Infringed By
 public CodeSource(URL location, CodeSigner[] signers) {
 this.location = location;
 if (signers != null) {
 this.signers = new CodeSigner[signers.length];
 System.arraycopy(signers, 0, this.signers, 0, signers.length);
 }
 }
…

at least one class of said one or more
classes is associated with said code
identifier; and

See Claim 1-b, supra, and above.

the step of establishing an
association between said one or
more protection domains and said
one or more classes of one or more
objects further includes the step of
associating said one or more
protection domains and said one or
more classes based on said code
identifier.

See Claim 1, supra, and above.

The ’447 Patent Infringed By
3. The method of claim 2, wherein
said code identifier indicates a
source of code used to define each
class of said one or more classes.

See Claim 2, supra.

The ’447 Patent Infringed By

4. The method of claim 2, wherein
said code identifier indicates a key

See Claim 2, supra.

pa-1435236 29 of 43 April 1, 2011

The ’447 Patent Infringed By
associated with each class of said
one or more classes.

The certificate mentioned in Claim 2, supra, includes a key.

See, e.g.:

In Froyo, dalvik\libcore\security\src\main\java\java\security\CodeSource.java
In Gingerbread, libcore\luni\src\main\java\java\security\CodeSource.java:

/**
 * {@code CodeSource} encapsulates the location from where code is loaded and
 * the certificates that were used to verify that code. This information is used
 * by {@code SecureClassLoader} to define protection domains for loaded classes.
 *
 * @see SecureClassLoader
 * @see ProtectionDomain
 */
…
 // Array of certificates assigned to this CodeSource object
 private transient java.security.cert.Certificate[] certs;

…
 /**
 * Constructs a new instance of {@code CodeSource} with the specified
 * {@code URL} and the {@code Certificate}s.
 *
 * @param location
 * the {@code URL} representing the location from where code is
 * loaded, maybe {@code null}.
 * @param certs
 * the {@code Certificate} used to verify the code, loaded from
 * the specified {@code location}, maybe {@code null}.
 */
 public CodeSource(URL location, Certificate[] certs) {
 this.location = location;

pa-1435236 30 of 43 April 1, 2011

The ’447 Patent Infringed By
 if (certs != null) {
 this.certs = new Certificate[certs.length];
 System.arraycopy(certs, 0, this.certs, 0, certs.length);
 }
 }
…
 /**
 * Returns the certificates of this {@code CodeSource}. If the
 * {@link #CodeSource(URL, CodeSigner[])} constructor was used to create
 * this instance, the certificates are obtained from the supplied signers.
 * <p>
 * External modifications of the returned {@code Certificate[]} has no
 * impact on this {@code CodeSource}.
 *
 * @return the certificates of this {@code CodeSource} or {@code null} if
 * there is none.
 */
 public final Certificate[] getCertificates() {
 getCertificatesNoClone();
 if (certs == null) {
 return null;
 }
 Certificate[] tmp = new Certificate[certs.length];
 System.arraycopy(certs, 0, tmp, 0, certs.length);
 return tmp;
 }
…

In Froyo, dalvik\libcore\security\src\main\java\java\security\Certificate.java
In Gingerbread, libcore\luni\src\main\java\java\security\Certificate.java:

/**
 * {@code Certificate} represents an identity certificate, such as X.509 or PGP.

pa-1435236 31 of 43 April 1, 2011

The ’447 Patent Infringed By
 * Note: A {@code Certificate} instances does not make any statement about the
 * validity of itself. It's in the responsibility of the application to verify
 * the validity of its certificates.
 *
 * @deprecated Replaced by behavior in {@link java.security.cert}
 * @see java.security.cert.Certificate
 */

X.509 is an internet standard certificate format. See, e.g., RFC2459, available at
www.ietf.org/rfc/rfc2459.txt (discussing keys and certificates).

Information about PGP certificates is available at, e.g., www.pgpi.org;
http://en.wikipedia.org/wiki/Pretty_Good_Privacy (and references cited therein).

See also, e.g.:
In Froyo, dalvik\libcore\security\src\main\java\java\security\Key.java
In Gingerbread, libcore\luni\src\main\java\java\security\Key.java:

/**
 * {@code Key} is the common interface for all keys.
 *
 * @see PublicKey
 * @see PrivateKey
 */
public interface Key extends Serializable {
…

See also, e.g., Android APIs for “java.security.cert,” available at
http://developer.android.com/reference/java/security/cert/package-summary.html.

See also, e.g.:

• Android Framework Topics for “Security and Permissions,” available at
http://developer.android.com/guide/topics/security/security.html

pa-1435236 32 of 43 April 1, 2011

The ’447 Patent Infringed By
• Android Framework Topics for “Security and Permissions” under “The

AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The
AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/application-element.html

• Android Framework Topics for “The AndroidManifest.xml File,” available at
http://developer.android.com/guide/topics/manifest/manifest-intro.html

The ’447 Patent Infringed By
5. The method of claim 2, wherein
said code identifier indicates a
source of code used to define each
class of said one or more classes and
indicates a key associated with each
class of said one or more classes.

See Claims 2 and 4, supra.

The ’447 Patent Infringed By
6. The method of claim 2, wherein
the step of associating said one or
more protection domains and said
one or more classes based on said
code identifier further includes
associating said one or more
protection domains and said one or
more classes based on data
persistently stored, wherein said data
associates code identifiers with a set
of one or more permissions.

See Claim 2, supra.

See also, e.g.:

In Froyo, dalvik\libcore\security\src\main\java\java\security\CodeSource.java
In Gingerbread, libcore\luni\src\main\java\java\security\CodeSource.java:

/**
 * {@code CodeSource} encapsulates the location from where code is loaded and
 * the certificates that were used to verify that code. This information is used
 * by {@code SecureClassLoader} to define protection domains for loaded classes.
 *
 * @see SecureClassLoader

pa-1435236 33 of 43 April 1, 2011

 * @see ProtectionDomain
 */
public class CodeSource implements Serializable {

In Froyo, dalvik\libcore\security\src\main\java\java\security\Permission.java
In Gingerbread, libcore\luni\src\main\java\java\security\Permission.java:

/**
 * {@code Permissions} represents a {@code PermissionCollection} where the
 * contained permissions can be of different types. The permissions are
 * organized in their appropriate {@code PermissionCollection} obtained by
 * {@link Permission#newPermissionCollection()}. For permissions which do not
 * provide a dedicated {@code PermissionCollection}, a default permission
 * collection, based on a hash table, will be used.
 */
public final class Permissions extends PermissionCollection implements

Serializable {

See also, e.g.:
In Froyo, dalvik\libcore\security\src\main\java\java\security\Key.java
In Gingerbread, libcore\luni\src\main\java\java\security\Key.java:

/**
 * {@code Key} is the common interface for all keys.
 *
 * @see PublicKey
 * @see PrivateKey
 */
public interface Key extends Serializable {
…

E.g., “Serializable” is generally understood as:

In computer science, in the context of data storage and transmission, serialization is

pa-1435236 34 of 43 April 1, 2011

the process of converting a data structure or object into a sequence of bits so that it can
be stored in a file or memory buffer, or transmitted across a network connection link
to be "resurrected" later in the same or another computer environment.[1] When the
resulting series of bits is reread according to the serialization format, it can be used to
create a semantically identical clone of the original object. For many complex objects,
such as those that make extensive use of references, this process is not straightforward.

http://en.wikipedia.org/wiki/Serialization (footnote omitted).

Android APIs for “java.io.Serializable,” available at
http://developer.android.com/reference/java/io/Serializable.html:

Class Overview
An empty marker interface for classes that want to support serialization and
deserialization based on the ObjectOutputStream and ObjectInputStream classes.
Implementing this interface is enough to make most classes serializable. If a class
needs more fine-grained control over the serialization process (for example to
implement compatibility with older versions of the class), it can achieve this by
providing the following two methods (signatures must match exactly):

private void writeObject(java.io.ObjectOutputStream out) throws IOException

private void readObject(java.io.ObjectInputStream in) throws IOException,
ClassNotFoundException

See also, e.g.:
• Android Framework Topics for “Security and Permissions,” available at

http://developer.android.com/guide/topics/security/security.html
• Android Framework Topics for “Security and Permissions” under “The

AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The
AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/application-element.html

pa-1435236 35 of 43 April 1, 2011

• Android Framework Topics for “The AndroidManifest.xml File,” available at
http://developer.android.com/guide/topics/manifest/manifest-intro.html

The ’447 Patent Infringed By
7. A method for providing security,
the method comprising the steps of:

See Claim 1-pre, supra.

establishing one or more protection
domains, wherein a protection
domain is associated with zero or
more permissions;

See Claim 1-a, supra.

establishing an association between
said one or more protection domains
and one or more sources of code;
and

See Claim 1-a and 1-b, supra.

in response to executing code
making a request to perform an
action, determining whether said
request is permitted based on a
source of said code making said
request and said association between
said one or more protection domains
and said one or more sources of
code.

See Claim 1-c, supra.

The ’447 Patent Infringed By

8. The method of claim 7, wherein
the step of establishing an
association between said one or
more protection domains and said
one or more sources of code further
includes establishing an association
between said one or more protection

See Claims 2, 4, and 7, supra.

pa-1435236 36 of 43 April 1, 2011

The ’447 Patent Infringed By
domains and said one or more
sources of code and one or more
keys associated with said one or
more sources of code.

The ’447 Patent Infringed By
9. The method of claim 8, wherein
the step of establishing an
association between said one or
more protection domains and said
one or more sources of code and
said one or more keys associated
with said one or more sources of
code further includes establishing
said association between said one or
more protection domains and said
one or more sources of code and
said one or more keys associated
with said one or more sources of
code based on data persistently
stored, wherein said data associates
particular sources of code and
particular keys with a set of one or
more permissions.

See Claims 6 and 8, supra.

The ’447 Patent Infringed By

10. A computer-readable medium
carrying one or more sequences of
one or more instructions, the one or
more sequences of the one or more
instructions including instructions
which, when executed by one or

The Accused Instrumentalities include devices that store, distribute, or run Android or the
Android SDK, including websites, servers, and mobile devices. These encompass a computer
readable medium carrying one or more sequences of one or more instructions, the one or more
sequences of the one or more instructions including instructions which, when executed by one
or more processors, causes the one or more processors to perform the steps described in the
claim. See Claim 1-pre, supra.

pa-1435236 37 of 43 April 1, 2011

The ’447 Patent Infringed By
more processors, causes the one or
more processors to perform the steps
of:
establishing one or more protection
domains, wherein a protection
domain is associated with zero or
more permissions;

See Claim 1-a, supra.

establishing an association between
said one or more protection domains
and one or more classes of one or
more objects; and

See Claim 1-b, supra.

determining whether an action
requested by a particular object is
permitted based on said association
between said one or more protection
domains and said one or more
classes.

See Claim 1-c, supra.

The ’447 Patent Infringed By

11. The computer readable medium
of claim 10, wherein:

See Claim 10, supra.

at least one protection domain of
said one or more protection domains
is associated with a code identifier;

See Claims 1-a and 2, supra.

at least one class of said one or more
classes is associated with said code
identifier; and

See Claims 1-b and 2, supra.

the step of establishing an
association between said one or
more protection domains and said
one or more classes of one or more
objects further includes the step of

See Claim 1-c and 2, supra.

pa-1435236 38 of 43 April 1, 2011

The ’447 Patent Infringed By
associating said one or more
protection domains and said one or
more classes based on said code
identifier.

The ’447 Patent Infringed By
12. The computer readable medium
of claim 11, wherein said code
identifier indicates a source of code
used to define each class of said one
or more classes.

See Claim 11, supra.

The ’447 Patent Infringed By

13. The computer readable medium
of claim 11, wherein said code
identifier indicates a key associated
with each class of said one or more
classes.

See Claims 2, 4, and 11, supra.

The ’447 Patent Infringed By

14. The computer readable medium
of claim 11, wherein said code
identifier indicates a source of code
used to define each class of said one
or more classes and indicates a key
associated with each class of said
one or more classes.

See Claims 2, 4, and 11, supra.

The ’447 Patent Infringed By
15. The computer readable medium
of claim 14, wherein the step of

See Claims 6 and 14, supra.

pa-1435236 39 of 43 April 1, 2011

The ’447 Patent Infringed By
associating said one or more
protection domains and said one or
more classes based on said code
identifier further includes
associating said one or more
protection domains and said one or
more classes based on data
persistently stored, wherein said data
associates code identifiers with a set
of one or more permissions.

The ’447 Patent Infringed By

16. A computer-readable medium
carrying one or more sequences of
one or more instructions, wherein
the execution of the one or more
sequences of the one or more
instructions causes the one or more
processors to perform the steps of:

The Accused Instrumentalities include devices that store, distribute, or run Android or the
Android SDK, including websites, servers, and mobile devices. These encompass a computer
readable medium carrying one or more sequences of one or more instructions, the one or more
sequences of the one or more instructions including instructions which, when executed by one
or more processors, causes the one or more processors to perform the steps described in the
claim. See Claim 1-pre, supra.

establishing one or more protection
domains, wherein a protection
domain is associated with zero or
more permissions;

See Claim 1 and 1-a, supra.

establishing an association between
said one or more protection domains
and one or more sources of code;
and

See Claim 1, 1-a, and 1-b, supra.

in response to executing code
making a request to perform an
action, determining whether said
request is permitted based on a
source of said code making said

See Claim 1 and 1-c, supra.

pa-1435236 40 of 43 April 1, 2011

The ’447 Patent Infringed By
request and said association between
said one or more protection domains
and said one or more sources of
code.

The ’447 Patent Infringed By
17. The computer readable medium
of claim 16, wherein the step of
establishing an association between
said one or more protection domains
and said one or more sources of
code further includes establishing an
association between said one or
more protection domains and said
one or more sources of code and one
or more keys associated with said
one or more sources of code.

See Claim 16, supra.

The ’447 Patent Infringed By
18. The computer readable medium
of claim 17, wherein the step of
establishing an association between
said one or more protection domains
and said one or more sources of
code and said one or more keys
associated with said one or more
sources of code further includes
establishing said association
between said one or more protection
domains and said one or more
sources of code and said one or

See Claim 17, supra.

pa-1435236 41 of 43 April 1, 2011

The ’447 Patent Infringed By
more keys associated with said one
or more sources of code based on
data persistently stored, wherein said
data associates particular sources of
code and particular keys with a set
of one or more permissions.

The ’447 Patent Infringed By

19. A computer system comprising: The Accused Instrumentalities include devices that run Android or the Android SDK.
Devices running Android or the Android SDK are computer systems. See Claim 1, supra.

a processor; Devices running Android and computers running the Android SDK have processors.
a memory coupled to said processor; Devices running Android and computers running the Android SDK have a memory coupled to

said processor.
one or more protection domains
stored as objects in said memory,
wherein each protection domain is
associated with zero or more
permissions;

See Claim 1 and 1-a, supra.

a domain mapping object stored in
said memory, said domain mapping
object establishing an association
between said one or more protection
domains and one or more classes of
one or more objects; and

See Claim 1, 1-a, and 1-b, supra.

said processor being configured to
determine whether an action
requested by a particular object is
permitted based on said association
between said one or more protection
domains and said one or more
classes.

See Claim 1 and 1-c, supra.

pa-1435236 42 of 43 April 1, 2011

The ’447 Patent Infringed By

20. The computer system of claim
19, wherein:

See Claim 19, supra.

at least one protection domain of
said one or more protection domains
is associated with a code identifier;

See Claim 2, supra.

at least one class of said one or more
classes is associated with said code
identifier; and

See Claim 2, supra.

said computer system further
comprises said processor configured
to establish an association between
said one or more protection domains
and said one or more classes of one
or more objects by associating said
one or more protection domains and
said one or more classes based on
said code identifier.

See Claim 2, supra.

The ’447 Patent Infringed By

21. The computer system of claim
20, wherein said code identifier
indicates a source of code used to
define each class of said one or more
classes.

See Claims 2 and 20, supra.

The ’447 Patent Infringed By

22. The computer system of claim
20, wherein said code identifier
indicates a key associated with each
class of said one or more classes.

See Claims 2, 4, and 20, supra.

pa-1435236 43 of 43 April 1, 2011

The ’447 Patent Infringed By
23. The computer system of claim
20, wherein said code identifier
indicates a source of code used to
define each class of said one or more
classes and indicates a key
associated with each class of said
one or more classes.

See Claims 2, 4, and 20, supra.

The ’447 Patent Infringed By
24. The computer system of claim
20, further comprising said
processor configured to associate
said one or more protection domains
and said one or more classes based
on said code identifier by
associating said one or more
protection domains and said one or
more classes based on data
persistently stored in said computer
system, wherein said data associates
code identifiers with a set of one or
more permissions.

See Claims 2, 6, and 20, supra.

 1

Exhibit E

pa-1455049 1 of 50 April 1, 2011

EXHIBIT G
Supplemental Infringement Contentions for US 7,426,720 (’720 Patent)

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.3 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or
nearly identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the
’720 patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6
(“Donut”), 2.0/2.1 (“Éclair”), 2.2 (“Froyo”), and 2.3 (“Gingerbread”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

Oracle has determined that Android devices execute much of the code cited below every time the devices start up. Other cited code is
invoked when a developer runs the Android Compatibility Test Suite (CTS), which Google requires manufacturers to execute to
certify devices as Android-compatible.1 The mobile device emulator that Google includes with the Android SDK2 supports Oracle’s
conclusion. The emulator displays log messages to inform developers of what is running on the virtual device. If the developer
includes a logging command in part of a program, the emulator will output a log entry every time that part of the program is executed.
A developer might use this feature, for example, to test whether an application starts to execute a particular section of code before
failing. By adding logging commands to key portions of the Android source code cited below, building an Android system image, and
loading it into Google’s emulator, Oracle determined that many of these code portions are executed even before a user can interact
with a device. Thus, Android-compatible devices, when used as Google intends, execute infringing code.

1 http://source.android.com/compatibility/android-2.2-cdd.pdf at 10 (“To be considered compatible with Android 2.2, device implementations . . . MUST pass the
most recent version of the Android Compatibility Test Suite (CTS) available at the time of the device implementation's software is completed.”).
2 See http://developer.android.com/guide/developing/devices/emulator.html (“The Android SDK includes a virtual mobile device emulator that runs on your
computer. The emulator lets you prototype, develop, and test Android applications without using a physical device. The Android emulator mimics all of the
hardware and software features of a typical mobile device, except that it cannot place actual phone calls.”).

pa-1455049 2 of 50 April 1, 2011

The asserted claims include system, method, and computer-readable storage medium claims. Anyone who makes, uses, offers to sell,
sells, or imports a device running Android within or into the United States directly infringes the system claims. This includes Google
and its downstream licensees, including device manufacturers, carriers, application developers, and end users. Similarly, anyone who
engages in the above conduct with respect to storage devices containing Android code directly infringes the computer-readable storage
medium claim. This includes Google and its downstream licensees, including device manufacturers, carriers, application developers,
and end users. Anyone who uses a device running Android code directly infringes the method claims. This includes Google and its
downstream licensees, including device manufacturers, carriers, application developers, and end users. Google induces and
contributes to infringement of all asserted claims by distributing Android code with the intention that it will be executed on mobile
devices. The Android code cited below necessarily infringes when it runs because its zygote process performs copy-on-write process
cloning. Moreover, much of the code cited below is executed not only as applications run, but every time a device running Android
starts up. Thus Android is not a staple article suitable for substantial non-infringing use. Google supplies its Android code in and from
the United States.

When infringement evidence first presented with respect to one claim is referred to with respect to another, the evidence is applicable
because it is not limited to a particular form of infringement.

The ’720 Patent Infringed By
1.pre. A system for dynamic
preloading of classes through
memory space cloning of a master
runtime system process,
comprising:

The Accused Instrumentalities include systems that run Android or the Android SDK. They
encompass a system running Android for dynamic preloading of classes through memory
space cloning of a master runtime system process. An example of a master runtime system
process is a zygote process, which creates a Dalvik virtual machine instance and which forks
upon request to create new Dalvik virtual machine instances for various applications.

1.a. A processor; A processor of a computer or smartphone running Android.
1.b. A memory A memory of a computer or smartphone running Android.
1.c. a class preloader to obtain a
representation of at least one class
from a source definition provided
as object-oriented program code;

Android includes a class preloader to obtain a representation of at least one class from a
source definition provided as object-oriented program code.

See Presentation slides corresponding to the Dalvik Video: “Dalvik Virtual Machine
Internals, Google I/O 2008,” by Dan Bornstein, http://sites.google.com/site/io/dalvik-vm-
internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf (“Dalvik Presentation”), at
slide 25; and
corresponding Video: “Google I/O 2008 - Dalvik Virtual Machine Internals,” by Dan
Bornstein, http://developer.android.com/videos/index.html#v=ptjedOZEXPM (“Dalvik

pa-1455049 3 of 50 April 1, 2011

The ’720 Patent Infringed By
Video”), at time 13:50-15:20.

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into existence fairly early on
during the boot of an Android system and its job is to load up those classes that we believe
will be used across many applications. So it goes and creates, it goes and creates a heap, it
goes and creates that dirty memory for all, to represent those classes and methods ….”

See also Presentation slides corresponding to the Android Video: “Anatomy and Physiology
of an Android, Google I/O 2008,” by Patrick Brady, http://sites.google.com/site/io/anatomy--
physiology-of-an-android/Android-Anatomy-GoogleIO.pdf (“Android Presentation”), at
slide 82; and
corresponding Video: “Google I/O 2008 – Anatomy and Physiology of an Android,” by
Patrick Brady, http://developer.android.com/videos/index.html#v=G-36noTCaiA (“Android
Video”), at time 43:15-49:00.

pa-1455049 4 of 50 April 1, 2011

The ’720 Patent Infringed By

(Android Presentation, Slide 82)

Corresponding Android Video at 44:30:
“The init process starts up a really neat process called zygote. As its name implies, zygote is
really just the beginning of all of the rest of the Android platform. And so zygote is a
nascent VM process that initializes a Dalvik VM and preloads a lot of its libraries….”

Example source code files in
base\preloaded-classes,
base\core\java\com\android\internal\os\ZygoteInit.java

See, e.g., base\preloaded-classes.

Classes which are preloaded by com.android.internal.os.ZygoteInit.
Automatically generated by frameworks/base/tools/preload/WritePreloadedClassFile.java.
MIN_LOAD_TIME_MICROS=1250
MIN_PROCESSES=10
android.R$styleable
android.accounts.Account
…
dalvik.system.Zygote
java.beans.PropertyChangeEvent

pa-1455049 5 of 50 April 1, 2011

The ’720 Patent Infringed By
java.beans.PropertyChangeListener
…

See, e.g., base\core\java\com\android\internal\os\ZygoteInit.java.

/**
 * Performs Zygote process initialization. Loads and initializes
 * commonly used classes.
 *
 * Most classes only cause a few hundred bytes to be allocated, but
 * a few will allocate a dozen Kbytes (in one case, 500+K).
 */
 private static void preloadClasses() {
 final VMRuntime runtime = VMRuntime.getRuntime();

 InputStream is = ZygoteInit.class.getClassLoader().getResourceAsStream(
 PRELOADED_CLASSES);
 if (is == null) {
 Log.e(TAG, “Couldn’t find “ + PRELOADED_CLASSES + “.”);
 } else {
 Log.i(TAG, “Preloading classes...”);
 …

 try {
 BufferedReader br
 = new BufferedReader(new InputStreamReader(is), 256);

 int count = 0;
 String line;
 String missingClasses = null;
 while ((line = br.readLine()) != null) {
 // Skip comments and blank lines.
 line = line.trim();
 if (line.startsWith(“#”) || line.equals(““)) {
 continue;
 }

pa-1455049 6 of 50 April 1, 2011

The ’720 Patent Infringed By
 try {
 if (Config.LOGV) {
 Log.v(TAG, “Preloading “ + line + “...”);
 }
 Class.forName(line);
 if (Debug.getGlobalAllocSize() > PRELOAD_GC_THRESHOLD) {
 if (Config.LOGV) {
 Log.v(TAG,
 “ GC at “ + Debug.getGlobalAllocSize());
 }
 runtime.gcSoftReferences();
 runtime.runFinalizationSync();
 Debug.resetGlobalAllocSize();
 }
 count++;
 …
 }
 }
 }

1.d. a master runtime system
process to interpret and to
instantiate the representation as a
class definition in a memory space
of the master runtime system
process;

Android includes a master runtime system process to interpret and to instantiate the
representation as a class definition in a memory space of the master runtime system process.

See

(Android Presentation, Slide 80)

pa-1455049 7 of 50 April 1, 2011

The ’720 Patent Infringed By
Corresponding Android Video at 43:28:
“Like any Linux-based or Unix-based system, at startup, the bootloader is gonna boot Linux
and it’s gonna kick off the init process. This is similar to how any Linux system really starts
up.”

(Android Presentation, Slide 81)

Corresponding Android Video at 43:41:
“The first thing init is going to do on Android is start some low level, ah, processes called
Linux daemons. And these are typically used to handle things like low level hardware
interfaces, um, and they would sit on top of the abstraction layer and run and listen on
sockets for things like USB connections or, you know, Android Debug Bridge or ADB
connections, the Debugger connections and also the Radio Interface Layer daemon, which
will sit on top of, um, on top of the radio baseband and interface with the baseband modem.”

pa-1455049 8 of 50 April 1, 2011

The ’720 Patent Infringed By

(Android Presentation, Slide 82)

Corresponding Android Video at 44:25:
“Ah, after starting up the Linux daemons, and we’ll collapse those in the corner of the screen
here to save some space, the init process starts up a really neat process called zygote. And as
its name implies, zygote is really just the beginning of all of the rest of the Android platform.
And so zygote is a nascent, ah, VM process that initializes a Dalvik VM and preloads a lot of
these libraries….”

See also

(Dalvik Presentation, Slide 25)

pa-1455049 9 of 50 April 1, 2011

The ’720 Patent Infringed By

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into existence fairly early on
during the boot of an Android system and its job is to load up those classes that we believe
will be used across many applications. So it goes and creates, it goes and creates a heap, it
goes and creates that dirty memory for all, to represent those classes and methods ….”

Example source code files in
base\core\jni\AndroidRuntime.cpp,
base\cmds\app_process\app_main.cpp,
base\core\java\com\android\internal\os\ZygotInit.java.

Example code call chain,
Class AppRuntime in app_main.cpp passes ZygoteInit class name to
AndroidRuntime::startVm,
AndroidRuntime::start(className) calls startVm,
AndroidRuntime::startVm calls JNI_CreateJavaVM(),
AndroidRuntime::start calls CallStaticVoidMethod(ZygoteInit className.main).

See, e.g., base\core\java\com\android\internal\os\ZygoteInit.java.

/**
 * Startup class for the zygote process.
 *
 * Pre-initializes some classes, and then waits for commands on a UNIX domain
 * socket. Based on these commands, forks of child processes that inherit
 * the initial state of the VM.
 *
 * Please see {@link ZygoteConnection.Arguments} for documentation on the
 * client protocol.
 *
 * @hide

pa-1455049 10 of 50 April 1, 2011

The ’720 Patent Infringed By
 */
…
 public static void main(String argv[]) {
 try {
 VMRuntime.getRuntime().setMinimumHeapSize(5 * 1024 * 1024);

 // Start profiling the zygote initialization.
 SamplingProfilerIntegration.start();

 registerZygoteSocket();
 EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
 SystemClock.uptimeMillis());
 preloadClasses();
 //cacheRegisterMaps();
 preloadResources();
 EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
 SystemClock.uptimeMillis());

 // Finish profiling the zygote initialization.
 SamplingProfilerIntegration.writeZygoteSnapshot();

 // Do an initial gc to clean up after startup
 gc();

 // If requested, start system server directly from Zygote
 if (argv.length != 2) {
 throw new RuntimeException(argv[0] + USAGE_STRING);
 }

 if (argv[1].equals("true")) {
 startSystemServer();
 } else if (!argv[1].equals("false")) {
 throw new RuntimeException(argv[0] + USAGE_STRING);
 }

 Log.i(TAG, "Accepting command socket connections");

 if (ZYGOTE_FORK_MODE) {
 runForkMode();

pa-1455049 11 of 50 April 1, 2011

The ’720 Patent Infringed By
 } else {
 runSelectLoopMode();
 }

 closeServerSocket();
 } catch (MethodAndArgsCaller caller) {
 caller.run();
 } catch (RuntimeException ex) {
 Log.e(TAG, "Zygote died with exception", ex);
 closeServerSocket();
 throw ex;
 }
 }

1.e. a runtime environment to clone
the memory space as a child
runtime system process responsive
to a process request and to execute
the child runtime system process;
and

Android includes a runtime environment to clone the memory space as a child runtime
system process responsive to a process request and to execute the child runtime system
process.

See

(Android Presentation, Slide 55)

Corresponding Android Video at 33:40:
“So we’ve covered the native libraries, we’ve covered everything down to the Linux kernel,
and the real magic of the Android platform happens in the layers above this. And that’s what
we’ll go into now, starting with the Android runtime. The Android runtime sits on top of the

pa-1455049 12 of 50 April 1, 2011

The ’720 Patent Infringed By
libraries and Linux kernel and it provides (1) the Dalvik virtual machine and the core
libraries, here written in blue, because they are exposed through the Java programming
languages.”

(Android Presentation, Slide 56)

Corresponding Android Video at 34:04:
“So Dalvik virtual machine. Remember Android is not Linux. We don’t have a native
windowing system. All of the applications and services that you run, will be running inside a
virtual environment powered by the Dalvik virtual machine….”

See also

pa-1455049 13 of 50 April 1, 2011

The ’720 Patent Infringed By

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies,…when it gets a command to start up a
new application, it does a normal Unix fork and then that child process becomes that target
application. And the result of that is this.”

See also claim 1.f. below.

1.f. a copy-on-write process
cloning mechanism to instantiate
the child runtime system process by
copying references to the memory
space of the master runtime system
process into a separate memory
space for the child runtime system
process, and to defer copying of the
memory space of the master
runtime system process until the
child runtime system process needs
to modify the referenced memory
space of the master runtime system
process.

Android includes a copy-on-write process cloning mechanism to instantiate the child runtime
system process by copying references to the memory space of the master runtime system
process into a separate memory space for the child runtime system process, and to defer
copying of the memory space of the master runtime system process until the child runtime
system process needs to modify the referenced memory space of the master runtime system
process.

See

pa-1455049 14 of 50 April 1, 2011

The ’720 Patent Infringed By

(Android Presentation, Slide 82)

Corresponding Android Video at 44:30:
“The init process starts up a really neat process called zygote….It uses copy-on-write to
maximize re-use and minimize footprint so that data structures are shared and it won’t do a
full copy unless some of those data structures are to be modified.”

See also

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:

pa-1455049 15 of 50 April 1, 2011

The ’720 Patent Infringed By
“What we do with the zygote, as its name implies,…when it gets a command to start up a
new application, it does a normal Unix fork and then that child process becomes that target
application. And the result of that is this.”

(Dalvik Presentation, Slide 26)

Corresponding Dalvik Video at 14:40:
“So the zygote, again, has made, has made this heap of objects, it’s made this live dex
structure and then each application that then starts up, instead of having its own memory for
those things, it just shares it with the zygote and also with any other app that’s also on the
system.”

See also http://developer.android.com/guide/basics/what-is-android.html.
“Android Runtime
…The Dalvik VM relies on the Linux kernel for underlying functionality such as threading
and low-level memory management.

Linux Kernel
Android relies on Linux version 2.6 for core system services such as security, memory
management, process management, network stack, and driver model. The kernel also acts as

pa-1455049 16 of 50 April 1, 2011

The ’720 Patent Infringed By
an abstraction layer between the hardware and the rest of the software stack.”

See also, Lowe, Robert, Linux Kernel Process Management, April 15, 2005. Sample Chapter
is provided courtesy of Sams,
http://www.informit.com/articles/article.aspx?p=370047&seqNum=2&rll=1.
“Copy-on-Write
…In Linux, fork() is implemented through the use of copy-on-write pages. Copy-on-write
(or COW) is a technique to delay or altogether prevent copying of the data. Rather than
duplicate the process address space, the parent and the child can share a single copy. The
data, however, is marked in such a way that if it is written to, a duplicate is made and each
process receives a unique copy.”

Example source code files in
libcore\dalvik\src\main\java\dalvik\system\Zygote.java,
dalvik\vm\native\dalvik_system_Zygote.c,
linux-2.6\kernel\fork.c.

Example code call chain
forkAndSpecialize calls forkAndSpecializeCommon,
forkAndSpecializeCommon calls fork,
Linux fork process do_fork calls copy_process.

See, e.g., libcore\dalvik\src\main\java\dalvik\system\Zygote.java.

 /**
 * Forks a new Zygote instance, but does not leave the zygote mode.
 * The current VM must have been started with the -Xzygote flag. The
 * new child is expected to eventually call forkAndSpecialize()
 *
 * @return 0 if this is the child, pid of the child

pa-1455049 17 of 50 April 1, 2011

The ’720 Patent Infringed By
 * if this is the parent, or -1 on error
 */
 native public static int fork();

 /**
 * Forks a new VM instance. The current VM must have been started
 * with the -Xzygote flag. NOTE: new instance keeps all
 * root capabilities. The new process is expected to call capset().
 *
 * @param uid the UNIX uid that the new process should setuid() to after
 * fork()ing and and before spawning any threads.
 * @param gid the UNIX gid that the new process should setgid() to after
 * fork()ing and and before spawning any threads.
 * @param gids null-ok; a list of UNIX gids that the new process should
 * setgroups() to after fork and before spawning any threads.
 * @param debugFlags bit flags that enable debugging features.
 * @param rlimits null-ok an array of rlimit tuples, with the second
 * dimension having a length of 3 and representing
 * (resource, rlim_cur, rlim_max). These are set via the posix
 * setrlimit(2) call.
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error.
 */
 native public static int forkAndSpecialize(int uid, int gid, int[] gids,
 int debugFlags, int[][] rlimits);

See, e.g., dalvik\vm\native\dalvik_system_Zygote.c.

/* native public static int forkAndSpecialize(int uid, int gid,
* int[] gids, int debugFlags);
*/
 static void Dalvik_dalvik_system_Zygote_forkAndSpecialize(const u4* args,
JValue* pResult)
{
 pid_t pid;
 pid = forkAndSpecializeCommon(args);
 RETURN_INT(pid);

pa-1455049 18 of 50 April 1, 2011

The ’720 Patent Infringed By
}
…
/*
 * Utility routine to fork zygote and specialize the child process.
 */
static pid_t forkAndSpecializeCommon(const u4* args, bool isSystemServer)
{
 pid_t pid;

 uid_t uid = (uid_t) args[0];
 gid_t gid = (gid_t) args[1];
 ArrayObject* gids = (ArrayObject *)args[2];
 u4 debugFlags = args[3];
 ArrayObject *rlimits = (ArrayObject *)args[4];
 int64_t permittedCapabilities, effectiveCapabilities;

 if (isSystemServer) {
 /*
 * Don't use GET_ARG_LONG here for now. gcc is generating code
 * that uses register d8 as a temporary, and that's coming out
 * scrambled in the child process. b/3138621
 */
 //permittedCapabilities = GET_ARG_LONG(args, 5);
 //effectiveCapabilities = GET_ARG_LONG(args, 7);
 permittedCapabilities = args[5] | (int64_t) args[6] << 32;
 effectiveCapabilities = args[7] | (int64_t) args[8] << 32;
 } else {
 permittedCapabilities = effectiveCapabilities = 0;
 }

 if (!gDvm.zygote) {
 dvmThrowException("Ljava/lang/IllegalStateException;",
 "VM instance not started with -Xzygote");

 return -1;
 }

 if (!dvmGcPreZygoteFork()) {
 LOGE("pre-fork heap failed\n");

pa-1455049 19 of 50 April 1, 2011

The ’720 Patent Infringed By
 dvmAbort();
 }

 setSignalHandler();

 dvmDumpLoaderStats("zygote");
 pid = fork();

 if (pid == 0) {
 int err;
 /* The child process */
….
 } else if (pid > 0) {
 /* the parent process */
 }
return pid;
}

See, e.g., linux-2.6\kernel\fork.c.

/*
 * Ok, this is the main fork-routine.
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 */
long do_fork(unsigned long clone_flags,
 unsigned long stack_start,
 struct pt_regs *regs,
 unsigned long stack_size,
 int __user *parent_tidptr,
 int __user *child_tidptr)
{
 struct task_struct *p;
 int trace = 0;
 long nr;
…
 p = copy_process(clone_flags, stack_start, regs, stack_size,

pa-1455049 20 of 50 April 1, 2011

The ’720 Patent Infringed By
 wake_up_new_task(p, clone_flags);
…
 tracehook_report_clone_complete(trace, regs,
 clone_flags, nr, p);
…
 return nr;
}

2. A system according to claim 1,
further comprising: a cache checker
to determine whether the
instantiated class definition is
available in a local cache
associated with the master runtime
system process.

Android includes a cache checker to determine whether the instantiated class definition is
available in a local cache associated with the master runtime system process.

See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into existence fairly early on
during the boot of an Android system and its job is to load up those classes that we believe
will be used across many applications. So it goes and creates, it goes and creates a heap, it
goes and creates that dirty memory for all, to represent those classes and methods….”

Example source code files in
dalvik\vm\oo\Class.c,
dalvik\vm\native\java_lang_Class.c,

pa-1455049 21 of 50 April 1, 2011

The ’720 Patent Infringed By
dalvik\vm\native\java_lang_VMClassLoader.c,
dalvik\vm\native\dalvik_system_DexFile.c,
dalvik\vm\native\InternalNative.c.

Example code call chain for application classloader,
Class.forName calls Class.classForName,
Class.classForName calls dvmFindClassByName,
dvmFindClassByName calls dvmFindClass,
dvmFindClass calls dvmFindClassNoInit,
dvmFindClassNoInit calls findClassFromLoaderNoInit,
findClassFromLoaderNoInit calls dvmLookupClass,
dvmLookupClass returns class from gDvm.loadedClasses (a table of loaded classes).

Example code call chain for boot classloader,
Class.forName calls Class.classForName,
Class.classForName calls dvmFindClassByName,
dvmFindClassByName calls dvmFindClass,
dvmFindClass calls dvmFindClassNoInit,
dvmFindClassNoInit calls dvmFindSystemClassNoInit,
dvmFindSystemClassNoInit calls findClassNoInit,
findClassNoInit calls dvmLookupClass,
dvmLookupClass returns class from gDvm.loadedClasses (a table of loaded classes).

See, e.g., dalvik\vm\oo\Class.c.

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.
 *
 * The class will be loaded and initialized if it has not already been.
 * If necessary, the superclass will be loaded.
 *
 * If the class can’t be found, returns NULL with an appropriate exception

pa-1455049 22 of 50 April 1, 2011

The ’720 Patent Infringed By
 * raised.
 */
ClassObject* dvmFindClass(const char* descriptor, Object* loader)
{
 ClassObject* clazz;
 clazz = dvmFindClassNoInit(descriptor, loader);
 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
 /* initialize class */
 if (!dvmInitClass(clazz)) {
 /* init failed; leave it in the list, marked as bad */
 assert(dvmCheckException(dvmThreadSelf()));
 assert(clazz->status == CLASS_ERROR);
 return NULL;
 }
 }
 return clazz;
}

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.
 *
 * The class will be loaded if it has not already been, as will its
 * superclass. It will not be initialized.
 *
 * If the class can’t be found, returns NULL with an appropriate exception
 * raised.
 */
ClassObject* dvmFindClassNoInit(const char* descriptor,
 Object* loader)
{
 assert(descriptor != NULL);
 //assert(loader != NULL);
 LOGVV(“FindClassNoInit ‘%s’ %p\n”, descriptor, loader);
 if (*descriptor == ‘[‘) {
 /*
 * Array class. Find in table, generate if not found.
 */

pa-1455049 23 of 50 April 1, 2011

The ’720 Patent Infringed By
 return dvmFindArrayClass(descriptor, loader);
 } else {
 /*
 * Regular class. Find in table, load if not found.
 */
 if (loader != NULL) {
 return findClassFromLoaderNoInit(descriptor, loader);
 } else {
 return dvmFindSystemClassNoInit(descriptor);
 }
 }
}

3. A system according to claim 2,
further comprising: a class locator
to locate the source definition if the
instantiated class definition is
unavailable in the local cache.

Android includes a class locator to locate the source definition if the instantiated class
definition is unavailable in the local cache.

See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into existence fairly early on
during the boot of an Android system and its job is to load up those classes that we believe
will be used across many applications. So it goes and creates, it goes and creates a heap, it
goes and creates that dirty memory for all, to represent those classes and methods….”

pa-1455049 24 of 50 April 1, 2011

The ’720 Patent Infringed By

Example source code files in
dalvik\vm\oo\Class.c,
dalvik\vm\native\java_lang_Class.c,
dalvik\vm\native\java_lang_VMClassLoader.c,
dalvik\vm\native\dalvik_system_DexFile.c,
dalvik\vm\native\InternalNative.c.

Example code call chain for application classloader or boot classloader,
dvmLookupClass returns NULL, calls ClassLoader.loadClass.

See, e.g., dalvik\vm\oo\Class.c.

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.
 *
 * The class will be loaded and initialized if it has not already been.
 * If necessary, the superclass will be loaded.
 *
 * If the class can’t be found, returns NULL with an appropriate exception
 * raised.
 */
ClassObject* dvmFindClass(const char* descriptor, Object* loader)
{
 ClassObject* clazz;
 clazz = dvmFindClassNoInit(descriptor, loader);
 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
 /* initialize class */
 if (!dvmInitClass(clazz)) {
 /* init failed; leave it in the list, marked as bad */
 assert(dvmCheckException(dvmThreadSelf()));
 assert(clazz->status == CLASS_ERROR);
 return NULL;
 }

pa-1455049 25 of 50 April 1, 2011

The ’720 Patent Infringed By
 }
 return clazz;
}

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.
 *
 * The class will be loaded if it has not already been, as will its
 * superclass. It will not be initialized.
 *
 * If the class can’t be found, returns NULL with an appropriate exception
 * raised.
 */
ClassObject* dvmFindClassNoInit(const char* descriptor,
 Object* loader)
{
 assert(descriptor != NULL);
 //assert(loader != NULL);
 LOGVV(“FindClassNoInit ‘%s’ %p\n”, descriptor, loader);
 if (*descriptor == ‘[‘) {
 /*
 * Array class. Find in table, generate if not found.
 */
 return dvmFindArrayClass(descriptor, loader);
 } else {
 /*
 * Regular class. Find in table, load if not found.
 */
 if (loader != NULL) {
 return findClassFromLoaderNoInit(descriptor, loader);
 } else {
 return dvmFindSystemClassNoInit(descriptor);
 }
 }
}

4. A system according to claim 1,
further comprising: a class resolver

Android includes a class resolver to resolve the class definition.

pa-1455049 26 of 50 April 1, 2011

The ’720 Patent Infringed By
to resolve the class definition. See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into existence fairly early on
during the boot of an Android system and its job is to load up those classes that we believe
will be used across many applications. So it goes and creates, it goes and creates a heap, it
goes and creates that dirty memory for all, to represent those classes and methods….”

Example source code files in
dalvik\vm\oo\Class.c,
dalvik\vm\oo\Resolve.c,
dalvik\vm\native\java_lang_Class.c,
dalvik\vm\native\java_lang_VMClassLoader.c,
dalvik\vm\native\dalvik_system_DexFile.c,
dalvik\vm\native\InternalNative.c.

Example code call chain for application classloader or boot classloader,
dvmLookupClass calls dvmLinkClass,
dvmLinkClass calls dvmResolveClass,
dvmResolveClass returns resolved class.

pa-1455049 27 of 50 April 1, 2011

The ’720 Patent Infringed By

See, e.g., dalvik\vm\oo\Class.c.

/*
 * Link (prepare and resolve). Verification is deferred until later.
 *
 * This converts symbolic references into pointers. It's independent of
 * the source file format.
 *
 * If clazz->status is CLASS_IDX, then clazz->super and interfaces[] are
 * holding class reference indices rather than pointers. The class
 * references will be resolved during link. (This is done when
 * loading from DEX to avoid having to create additional storage to
 * pass the indices around.)
 *
 * Returns "false" with an exception pending on failure.
 */
bool dvmLinkClass(ClassObject* clazz)
{
 u4 superclassIdx = 0;
 u4 *interfaceIdxArray = NULL;
 bool okay = false;
 int i;

 assert(clazz != NULL);
 assert(clazz->descriptor != NULL);
 assert(clazz->status == CLASS_IDX || clazz->status == CLASS_LOADED);
 if (gDvm.verboseClass)
 LOGV("CLASS: linking '%s'...\n", clazz->descriptor);

 assert(gDvm.classJavaLangClass != NULL);
 assert(clazz->obj.clazz == gDvm.classJavaLangClass);
 if (clazz->classLoader == NULL &&
 (strcmp(clazz->descriptor, "Ljava/lang/Class;") == 0))
 {
 if (gDvm.classJavaLangClass->ifieldCount > CLASS_FIELD_SLOTS) {
 LOGE("java.lang.Class has %d instance fields (expected at most %d)",

pa-1455049 28 of 50 April 1, 2011

The ’720 Patent Infringed By
 gDvm.classJavaLangClass->ifieldCount, CLASS_FIELD_SLOTS);
 dvmAbort();
 }
 if (gDvm.classJavaLangClass->sfieldCount != CLASS_SFIELD_SLOTS) {
 LOGE("java.lang.Class has %d static fields (expected %d)",
 gDvm.classJavaLangClass->sfieldCount, CLASS_SFIELD_SLOTS);
 dvmAbort();
 }
 }
 /* "Resolve" the class.
 *
 * At this point, clazz's reference fields may contain Dex file
 * indices instead of direct object references. Proxy objects are
 * an exception, and may be the only exception. We need to
 * translate those indices into real references, and let the GC
 * look inside this ClassObject.
 */
 if (clazz->status == CLASS_IDX) {
 if (clazz->interfaceCount > 0) {
 /* Copy u4 DEX idx values out of the ClassObject* array
 * where we stashed them.
 */
 assert(sizeof(*interfaceIdxArray) == sizeof(*clazz->interfaces));
 size_t len = clazz->interfaceCount * sizeof(*interfaceIdxArray);
 interfaceIdxArray = malloc(len);
 if (interfaceIdxArray == NULL) {
 LOGW("Unable to allocate memory to link %s", clazz->descriptor);
 goto bail;
 }
 memcpy(interfaceIdxArray, clazz->interfaces, len);

 dvmLinearReadWrite(clazz->classLoader, clazz->interfaces);
 memset(clazz->interfaces, 0, len);
 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
 }

 assert(sizeof(superclassIdx) == sizeof(clazz->super));
 superclassIdx = (u4) clazz->super;
 clazz->super = NULL;

pa-1455049 29 of 50 April 1, 2011

The ’720 Patent Infringed By
 /* After this line, clazz will be fair game for the GC. The
 * superclass and interfaces are all NULL.
 */
 clazz->status = CLASS_LOADED;

 if (superclassIdx != kDexNoIndex) {
 ClassObject* super = dvmResolveClass(clazz, superclassIdx, false);
 if (super == NULL) {
 assert(dvmCheckException(dvmThreadSelf()));
 if (gDvm.optimizing) {
 /* happens with "external" libs */
 LOGV("Unable to resolve superclass of %s (%d)\n",
 clazz->descriptor, superclassIdx);
 } else {
 LOGW("Unable to resolve superclass of %s (%d)\n",
 clazz->descriptor, superclassIdx);
 }
 goto bail;
 }
 dvmSetFieldObject((Object *)clazz,
 offsetof(ClassObject, super),
 (Object *)super);
 }
 …
 /*
 * There are now Class references visible to the GC in super and
 * interfaces.
 */
…

 /*
 * Done!
 */
 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED))
 clazz->status = CLASS_VERIFIED;
 else
 clazz->status = CLASS_RESOLVED;
 okay = true;
 if (gDvm.verboseClass)

pa-1455049 30 of 50 April 1, 2011

The ’720 Patent Infringed By
 LOGV("CLASS: linked '%s'\n", clazz->descriptor);

 /*
 * We send CLASS_PREPARE events to the debugger from here. The
 * definition of "preparation" is creating the static fields for a
 * class and initializing them to the standard default values, but not
 * executing any code (that comes later, during "initialization").
 *
 * We did the static prep in loadSFieldFromDex() while loading the class.
 *
 * The class has been prepared and resolved but possibly not yet verified
 * at this point.
 */
 if (gDvm.debuggerActive) {
 dvmDbgPostClassPrepare(clazz);
 }

bail:
 if (!okay) {
 clazz->status = CLASS_ERROR;
 if (!dvmCheckException(dvmThreadSelf())) {
 dvmThrowException("Ljava/lang/VirtualMachineError;", NULL);
 }
 }
 if (interfaceIdxArray != NULL) {
 free(interfaceIdxArray);
 }
 return okay;
}

5. A system according to claim 1,
further comprising: at least one of a
local and remote file system to
maintain the source definition as a
class file.

Android includes at least one of a local and remote file system to maintain a source
definition as a class file.

See

