
pa-1455049 31 of 50 April 1, 2011

The ’720 Patent Infringed By

(Dalvik Presentation, Slide 13)

Corresponding Dalvik Video at 6:39:
“And then towards the bottom there are a series of class definitions. So a dex file contains
multiple classes….”

See, e.g., dalvik\vm\analysis\DexPrepare.c (in Gingerbread)
See, e.g., dalvik\vm\analysis\DexOptimize.c. (in earlier versions)

/*
 * Return the fd of an open file in the DEX file cache area. If the cache
* file doesn’t exist or is out of date, this will remove the old entry,
 * create a new one (writing only the file header), and return with the
* ”new file” flag set.
 *
…
 * On success, the file descriptor will be positioned just past the ”opt”
 * file header, and will be locked with flock. ”*pCachedName” will point
 * to newly-allocated storage.
 */
int dvmOpenCachedDexFile(const char* fileName, const char* cacheFileName,u4 modWhen, u4 crc, bool isBo
otstrap, bool* pNewFile, bool createIfMissing)
{
int fd, cc;

O
racle A

m
erica, Inc. v. G

oogle Inc.
D

oc. 172 A
tt. 1

D
ockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/172/1.html
http://dockets.justia.com/

pa-1455049 32 of 50 April 1, 2011

The ’720 Patent Infringed By
struct stat fdStat, fileStat;
bool readOnly = false;
*pNewFile = false;
retry:
/*
* Try to open the cache file. If we’ve been asked to,
* create it if it doesn’t exist.
*/
fd = createIfMissing ? open(cacheFileName, O_CREAT|O_RDWR, 0644) : -1;
if (fd < 0) {
fd = open(cacheFileName, O_RDONLY, 0);
 if (fd < 0) {
 if (createIfMissing) {
 LOGE(“Can’t open dex cache ’%s’: %s\n”,
 cacheFileName, strerror(errno));
 }
 return fd;
 }
 readOnly = true;
 }
…
}

6. A system according to claim 1,
further comprising: a process
cloning mechanism to instantiate
the child runtime system process by
copying the memory space of the
master runtime system process into
a separate memory space for the
child runtime system process.

Android includes a process cloning mechanism to instantiate a child runtime system process
by copying the memory space of a master runtime system process into a separate memory
space for the child runtime system process.

See

pa-1455049 33 of 50 April 1, 2011

The ’720 Patent Infringed By

(Android Presentation, Slide 82)

Corresponding Android Video at 44:30:
“The init process starts up a really neat process called zygote….It uses copy-on-write to
maximize re-use and minimize footprint so that data structures are shared and it won’t do a
full copy unless some of those data structures are to be modified.”

See also

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:

pa-1455049 34 of 50 April 1, 2011

The ’720 Patent Infringed By
“What we do with the zygote, as its name implies,…when it gets a command to start up a
new application, it does a normal Unix fork and then that child process becomes that target
application. And the result of that is this.”

(Dalvik Presentation, Slide 26)

Corresponding Dalvik Video at 14:40:
“So the zygote, again, has made, has made this heap of objects, it’s made this live dex
structure and then each application that then starts up, instead of having its own memory for
those things, it just shares it with the zygote and also with any other app that’s also on the
system.”

See also http://developer.android.com/guide/basics/what-is-android.html.
“Android Runtime
…The Dalvik VM relies on the Linux kernel for underlying functionality such as threading
and low-level memory management.

Linux Kernel
Android relies on Linux version 2.6 for core system services such as security, memory
management, process management, network stack, and driver model. The kernel also acts as

pa-1455049 35 of 50 April 1, 2011

The ’720 Patent Infringed By
an abstraction layer between the hardware and the rest of the software stack.”

See also, Lowe, Robert, Linux Kernel Process Management, April 15, 2005. Sample Chapter
is provided courtesy of Sams,
http://www.informit.com/articles/article.aspx?p=370047&seqNum=2&rll=1.
“Copy-on-Write
…In Linux, fork() is implemented through the use of copy-on-write pages. Copy-on-write
(or COW) is a technique to delay or altogether prevent copying of the data. Rather than
duplicate the process address space, the parent and the child can share a single copy. The
data, however, is marked in such a way that if it is written to, a duplicate is made and each
process receives a unique copy.”

Example source code files in
libcore\dalvik\src\main\java\dalvik\system\Zygote.java,
dalvik\vm\native\dalvik_system_Zygote.c,
linux-2.6\kernel\fork.c,
external\kernel-headers\original\linux\sched.h.

See, e.g., libcore\dalvik\src\main\java\dalvik\system\Zygote.java.

 /**
 * Forks a new Zygote instance, but does not leave the zygote mode.
 * The current VM must have been started with the -Xzygote flag. The
 * new child is expected to eventually call forkAndSpecialize()
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error
 */
 native public static int fork();

 /**

pa-1455049 36 of 50 April 1, 2011

The ’720 Patent Infringed By
 * Forks a new VM instance. The current VM must have been started
 * with the -Xzygote flag. NOTE: new instance keeps all
 * root capabilities. The new process is expected to call capset().
 *
 * @param uid the UNIX uid that the new process should setuid() to after
 * fork()ing and and before spawning any threads.
 * @param gid the UNIX gid that the new process should setgid() to after
 * fork()ing and and before spawning any threads.
 * @param gids null-ok; a list of UNIX gids that the new process should
 * setgroups() to after fork and before spawning any threads.
 * @param debugFlags bit flags that enable debugging features.
 * @param rlimits null-ok an array of rlimit tuples, with the second
 * dimension having a length of 3 and representing
 * (resource, rlim_cur, rlim_max). These are set via the posix
 * setrlimit(2) call.
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error.
 */
 native public static int forkAndSpecialize(int uid, int gid, int[] gids,
 int debugFlags, int[][] rlimits);

See, e.g., dalvik\vm\native\dalvik_system_Zygote.c.

/* native public static int forkAndSpecialize(int uid, int gid,
* int[] gids, int debugFlags);
*/
 static void Dalvik_dalvik_system_Zygote_forkAndSpecialize(const u4* args,
JValue* pResult)
{
 pid_t pid;
 pid = forkAndSpecializeCommon(args);
 RETURN_INT(pid);
}
…
/*
 * Utility routine to fork zygote and specialize the child process.
 */

pa-1455049 37 of 50 April 1, 2011

The ’720 Patent Infringed By
static pid_t forkAndSpecializeCommon(const u4* args, bool isSystemServer)
{
 pid_t pid;

 uid_t uid = (uid_t) args[0];
 gid_t gid = (gid_t) args[1];
 ArrayObject* gids = (ArrayObject *)args[2];
 u4 debugFlags = args[3];
 ArrayObject *rlimits = (ArrayObject *)args[4];
 int64_t permittedCapabilities, effectiveCapabilities;

 if (isSystemServer) {
 /*
 * Don't use GET_ARG_LONG here for now. gcc is generating code
 * that uses register d8 as a temporary, and that's coming out
 * scrambled in the child process. b/3138621
 */
 //permittedCapabilities = GET_ARG_LONG(args, 5);
 //effectiveCapabilities = GET_ARG_LONG(args, 7);
 permittedCapabilities = args[5] | (int64_t) args[6] << 32;
 effectiveCapabilities = args[7] | (int64_t) args[8] << 32;
 } else {
 permittedCapabilities = effectiveCapabilities = 0;
 }

 if (!gDvm.zygote) {
 dvmThrowException("Ljava/lang/IllegalStateException;",
 "VM instance not started with -Xzygote");

 return -1;
 }

 if (!dvmGcPreZygoteFork()) {
 LOGE("pre-fork heap failed\n");
 dvmAbort();
 }

 setSignalHandler();

pa-1455049 38 of 50 April 1, 2011

The ’720 Patent Infringed By
 dvmDumpLoaderStats("zygote");
 pid = fork();

 if (pid == 0) {
 int err;
 /* The child process */
….
 } else if (pid > 0) {
 /* the parent process */
 }
return pid;
}

See, e.g., linux-2.6\kernel\fork.c.

/*
 * Ok, this is the main fork-routine.
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 */
long do_fork(unsigned long clone_flags,
 unsigned long stack_start,
 struct pt_regs *regs,
 unsigned long stack_size,
 int __user *parent_tidptr,
 int __user *child_tidptr)
{
 struct task_struct *p;
 int trace = 0;
 long nr;
…
 p = copy_process(clone_flags, stack_start, regs, stack_size,
 wake_up_new_task(p, clone_flags);
…
 tracehook_report_clone_complete(trace, regs,
 clone_flags, nr, p);

pa-1455049 39 of 50 April 1, 2011

The ’720 Patent Infringed By
…
 return nr;
}

7. A system according to claim 1,
wherein the master runtime system
process is caused to sleep relative
to receiving the process request.

Android includes a master runtime system process that is caused to sleep relative to receiving
a process request.

See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, …it sort of sits on a socket and it waits for
commands….”

See also

pa-1455049 40 of 50 April 1, 2011

The ’720 Patent Infringed By

(Android Presentation, Slide 82)

Corresponding Android Video at 44:25:
“The init process starts up a really neat process called zygote….And so zygote is a nascent
VM process that initializes a Dalvik VM and preloads a lot of its libraries and it forks on
request to create new VM instances for managed processes….”

See, e.g., base\core\java\com\android\internal\os\ZygoteConnection.java.

 /**
 * Constructs instance from connected socket.
 *
 * @param socket non-null; connected socket
 * @throws IOException
 */
 ZygoteConnection(LocalSocket socket) throws IOException {
 mSocket = socket;
 mSocketOutStream
 = new DataOutputStream(socket.getOutputStream());
 mSocketReader = new BufferedReader(
 new InputStreamReader(socket.getInputStream()), 256);
 mSocket.setSoTimeout(CONNECTION_TIMEOUT_MILLIS);
 try {
 peer = mSocket.getPeerCredentials();

pa-1455049 41 of 50 April 1, 2011

The ’720 Patent Infringed By
 } catch (IOException ex) {
 Log.e(TAG, “Cannot read peer credentials”, ex);
 throw ex;
 }
 }

 /**
 * Returns the file descriptor of the associated socket.
 *
 * @return null-ok; file descriptor
 */
 FileDescriptor getFileDesciptor() {
 return mSocket.getFileDescriptor();
 }

/**
 * Reads start commands from an open command socket.
 * Start commands are presently a pair of newline-delimited lines
 * indicating a) class to invoke main() on b) nice name to set argv[0] to.
 * Continues to read commands and forkAndSpecialize children until
 * the socket is closed. This method is used in ZYGOTE_FORK_MODE
 *
 * @throws ZygoteInit.MethodAndArgsCaller trampoline to invoke main()
 * method in child process
 */
 void run() throws ZygoteInit.MethodAndArgsCaller {
 int loopCount = ZygoteInit.GC_LOOP_COUNT;
 while (true) {
 …
 if (runOnce()) {
 break;
 }
 }
 }

/**
 * Reads one start command from the command socket. If successful,
 * a child is forked and a {@link ZygoteInit.MethodAndArgsCaller}
 * exception is thrown in that child while in the parent process,

pa-1455049 42 of 50 April 1, 2011

The ’720 Patent Infringed By
 * the method returns normally. On failure, the child is not
 * spawned and messages are printed to the log and stderr. Returns
 * a boolean status value indicating whether an end-of-file on the command
 * socket has been encountered.
 *
 * @return false if command socket should continue to be read from, or
 * true if an end-of-file has been encountered.
 * @throws ZygoteInit.MethodAndArgsCaller trampoline to invoke main()
 * method in child process
 */
 boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {
 String args[];
 Arguments parsedArgs = null;
 FileDescriptor[] descriptors;
 try {
 args = readArgumentList();
 descriptors = mSocket.getAncillaryFileDescriptors();
 } catch (IOException ex) {
 Log.w(TAG, “IOException on command socket “ + ex.getMessage());
 closeSocket();
 return true;
 }
 if (args == null) {
 // EOF reached.
 closeSocket();
 return true;
 }
…
 int pid;
…
 pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,
 parsedArgs.gids, parsedArgs.debugFlags, rlimits);
 } catch (IllegalArgumentException ex) {
 logAndPrintError (newStderr, “Invalid zygote arguments”, ex);
 pid = -1;
 } catch (ZygoteSecurityException ex) {
 logAndPrintError(newStderr,
 “Zygote security policy prevents request: “, ex);
 pid = -1;

pa-1455049 43 of 50 April 1, 2011

The ’720 Patent Infringed By
 }
 if (pid == 0) {
 // in child
 handleChildProc(parsedArgs, descriptors, newStderr);
 // should never happen
 return true;
 } else { /* pid != 0 */
 // in parent...pid of < 0 means failure
 return handleParentProc(pid, descriptors, parsedArgs);
 }
 }
…
/**
 * Reads an argument list from the command socket/
 * @return Argument list or null if EOF is reached
 * @throws IOException passed straight through
 */
 private String[] readArgumentList()
 throws IOException {
 /**
 * See android.os.Process.zygoteSendArgsAndGetPid()
 * Presently the wire format to the zygote process is:
 * a) a count of arguments (argc, in essence)
 * b) a number of newline-separated argument strings equal to count
 *
 * After the zygote process reads these it will write the pid of
 * the child or -1 on failure.
 */
 int argc;
 try {
 String s = mSocketReader.readLine();
 if (s == null) {
 // EOF reached.
 return null;
 }
 argc = Integer.parseInt(s);
 } catch (NumberFormatException ex) {
 Log.e(TAG, “invalid Zygote wire format: non-int at argc”);
 throw new IOException(“invalid wire format”);

pa-1455049 44 of 50 April 1, 2011

The ’720 Patent Infringed By
 }
…
 String[] result = new String[argc];
 for (int i = 0; i < argc; i++) {
 result[i] = mSocketReader.readLine();
 if (result[i] == null) {
 // We got an unexpected EOF.
 throw new IOException(“truncated request”);
 }
 }
 return result;
 }

8. A system according to claim 1,
wherein the object-oriented
program code is written in the Java
programming language.

Android includes object-oriented program code that is written in the Java programming
language.

See Google I/O 2010 Video, entitled “A JIT Compiler for Android’s Dalvik VM,” presented
by Ben Cheng and Bill Buzbee (Google’s Android Team), available at
http://developer.android.com/videos/index.html#v=Ls0tM-c4Vfo (“JIT Video”) at time 1:58.
“Now, if you are going to write a program for Android, you are most likely going to write it
in the Java programming language and then push the source code through the SDK. And
what pops out at the end is an executable targeted to the Dalvik virtual machine.”

See also http://developer.android.com/guide/basics/what-is-android.html.
“What is Android?
Android is a software stack for mobile devices that includes an operating system,
middleware and key applications. The Android SDK provides the tools and APIs necessary
to begin developing applications on the Android platform using the Java programming
language.”

10.pre. A method for dynamic
preloading of classes through
memory space cloning of a master
runtime system process,
comprising:

Android and the Android SDK include methods for performing the steps described in the
claim. See claim 1.pre.

pa-1455049 45 of 50 April 1, 2011

The ’720 Patent Infringed By
10.a. executing a master runtime
system process;

See claim 1.c.

10.b. obtaining a representation of
at least one class from a source
definition provided as object-
oriented program code;

See claim 1.c.

10.c. interpreting and instantiating
the representation as a class
definition in a memory space of the
master runtime system process; and

See claim 1.d.

10.d. cloning the memory space as
a child runtime system process
responsive to a process request and
executing the child runtime system
process;

See claim 1.e.

10.e. wherein cloning the memory
space as a child runtime system
process involves instantiating the
child runtime system process by
copying references to the memory
space of the master runtime system
process into a separate memory
space for the child runtime system
process; and

See claim 1.f.

10.f. wherein copying references to
the memory space of the master
runtime system process defers
copying of the memory space of the
master runtime system process until
the child runtime system process
needs to modify the referenced
memory space of the master

See claim 1.f.

pa-1455049 46 of 50 April 1, 2011

The ’720 Patent Infringed By
runtime system process.
11. A method according to claim
10, further comprising: determining
whether the instantiated class
definition is available in a local
cache associated with the master
runtime system process.

See claim 2.

12. A method according to claim
11, further comprising: locating the
source definition if the instantiated
class definition is unavailable in the
local cache.

See claim 3.

13. A method according to claim
10, further comprising: resolving
the class definition.

See claim 4.

14. A method according to claim
10, further comprising: maintaining
the source definition as a class file
on at least one of a local and
remote file system.

See claim 5.

15. A method according to claim
10, further comprising:
instantiating the child runtime
system process by copying the
memory space of the master
runtime system process into a
separate memory space for the
child runtime system process.

See claim 6.

16. A method according to claim
10, further comprising: causing the
master runtime system process to
sleep relative to receiving the

See claim 7.

pa-1455049 47 of 50 April 1, 2011

The ’720 Patent Infringed By
process request.
17. A method according to claim
10, wherein the object-oriented
program code is written in the Java
programming language.

See claim 8.

19. A computer-readable storage
medium holding code for
performing the method according
to claim 10.

The Accused Instrumentalities include storage devices that store, distribute, or run code for
Android or the Android SDK. They encompass a computer-readable storage medium
holding code for performing the method according to claim 10. See claim 10.

20.pre. An apparatus for dynamic
preloading of classes through
memory space cloning of a master
runtime system process,
comprising:

The Accused Instrumentalities include devices that run Android or the Android SDK. An
Android-based device is an apparatus. See claim 1.pre.

20.a. A processor; See claim 1.a.
20.b. A memory See claim 1.b.
20.c. means for executing a master
runtime system process;

See claim 1.c.

See also, e.g., ’720 patent, 8:14-17, 38-44, FIGs. 2, 6, 7:
“The method 100 [FIG. 6] is described as a sequence of process operations or steps, which
can be executed, for instance, by the runtime environment 31 of FIG. 2 or other
components.”

“FIG. 7 is a flow diagram showing the routine 120 for loading a master JVM process 33 for
use in the method 100 of FIG. 6. One purpose of the routine is to invoke the master JVM
process 33 and to preload classes into the prewarmed state 41 for inheritance by cloned JVM
processes 34. Initially, the master JVM process 33 begins execution at device boot time
(block 121).”

20.d. means for obtaining a
representation of at least one class
from a source definition provided
as object-oriented program code;

See claim 1.c.

See also, e.g., ’720 patent, 6:46-54, FIGs. 2, 10:
“A set of core Java foundation classes is specified in a bootstrap class loader 39 and

pa-1455049 48 of 50 April 1, 2011

The ’720 Patent Infringed By
application classes in a system application class loader 40. Class loading requires identifying
a binary form of a class type as identified by specific name, as further described below with
reference to FIG. 10. Depending upon whether the class was previously loaded or
referenced, class loading can include retrieving a binary representation from source and
constructing a class object to represent the class in memory.”

20.e. means for interpreting and
means for instantiating the
representation as a class definition
in a memory space of the master
runtime system process; and

See claim 1.d.

See also, e.g., ’720 patent, 6:61-67, FIG. 2:
“The master JVM process 33 invokes the bootstrap class loader 39 and system application
class loader 40 for every class likely to be requested by the applications. Thus, the
prewarmed state 41 includes the class loading for applications prior to actual execution and
the initialized and loaded classes are inherited by each cloned JVM process 34 as the
inherited prewarmed state 42.”

20.f. means for cloning the memory
space as a child runtime system
process responsive to a process
request and means for executing
the child runtime system process;

See claim 1.e.

See also, e.g., ’720 patent, 5:33-37, FIG. 2:
“The runtime environment 31 executes an application framework that spawns multiple
independent and isolated user application process instances by preferably cloning the
memory space of a master runtime system process.”

20.g. wherein the means for
cloning the memory space is
configured to clone the memory
space of a child runtime system
process using a copy-on-write
process cloning mechanism that
instantiates the child runtime
system process by copying
references to the memory space of
the master runtime system process
into a separate memory space for
the child runtime system process
and that defers copying of the

See claim 1.f.

See also, e.g., ’720 patent, 6:12-19, FIGs. 2, 5A, 5B:
“When implemented with copy-on-write semantics, the process cloning creates a logical
copy of only the references to the master JVM process context. Segments of the referenced
master JVM process context are lazily copied only upon an attempt by the cloned JVM
process to modify the referenced context. Therefore as long as the cloned JVM process does
not write into a memory segment, the segment remains shared between parent and child
processes.”

pa-1455049 49 of 50 April 1, 2011

The ’720 Patent Infringed By
memory space of the master
runtime system process until the
child runtime system process needs
to modify the referenced memory
space of the master runtime system
process.
21. A system according to claim 1,
further comprising: a resource
controller to set operating system
level resource management
parameters on the child runtime
system process.

Android includes a resource controller to set operating system level resource management
parameters on the child runtime system process.

See, e.g., libcore\dalvik\src\main\java\dalvik\system\Zygote.java.

 /**
 * Forks a new VM instance. The current VM must have been started
 * with the -Xzygote flag. NOTE: new instance keeps all
 * root capabilities. The new process is expected to call capset().
 *
 * @param uid the UNIX uid that the new process should setuid() to after
 * fork()ing and and before spawning any threads.
 * @param gid the UNIX gid that the new process should setgid() to after
 * fork()ing and and before spawning any threads.
 * @param gids null-ok; a list of UNIX gids that the new process should
 * setgroups() to after fork and before spawning any threads.
 * @param debugFlags bit flags that enable debugging features.
 * @param rlimits null-ok an array of rlimit tuples, with the second
 * dimension having a length of 3 and representing
 * (resource, rlim_cur, rlim_max). These are set via the posix
 * setrlimit(2) call.
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error.
 */
 native public static int forkAndSpecialize(int uid, int gid, int[] gids,
 int debugFlags, int[][] rlimits);

22. A method according to claim
10, further comprising: setting
operating system level resource

Android includes methods for performing the step described in this claim. See claim 21.

pa-1455049 50 of 50 April 1, 2011

The ’720 Patent Infringed By
management parameters on the
child runtime system process.

 1

Exhibit F

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street – Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

Attorneys for Defendant
GOOGLE INC.

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. 3:10-cv-03561-WHA

Honorable Judge William Alsup

DEFENDANT GOOGLE INC.’S
FOURTH SUPPLEMENTAL RESPONSES
TO PLAINTIFF’S INTERROGATORIES,
SET ONE, NO. 3

1
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 Pursuant to Rule 33 of the Federal Rules of Civil Procedure, Defendant Google Inc.

(“Google”), through its attorneys, provides its Fourth Supplemental Responses to Plaintiff’s

Interrogatories to Defendant Google Inc., Set One, No. 3, which interrogatories were served by

plaintiff Oracle America, Inc. (“Plaintiff” or “Oracle”) on December 2, 2010, as follows.

GENERAL OBJECTIONS (SUPPLEMENTED)

1. Google responds generally that discovery has not yet completed and its

investigations of the facts relevant to this litigation are ongoing. Google’s responses herein are

given without prejudice to Google’s right to amend or supplement in accordance with Rule 26(e)

of the Federal Rules of Civil Procedure, the Civil Local Rules, the Court’s Supplemental Order

to Order Setting Initial Case Management Conference, any applicable Standing Orders, and the

Case Management Order entered by the Court.

2. Google generally objects to Plaintiff’s Interrogatories, and the “Definitions and

Instructions” related thereto, to the extent they are inconsistent with or impose obligations

beyond those required by the Federal Rules of Civil Procedure, the Civil Local Rules, the Patent

Local Rules, the Court’s Supplemental Order to Order Setting Initial Case Management

Conference, any applicable Standing Orders, and the Case Management Order entered by the

Court. In responding to each Interrogatory, Google will respond as required under Rule 33 of the

Federal Rules of Civil Procedure.

3. Google objects to Oracle’s definition of “Java Platform” on the grounds that the

definition is overbroad and misleading to the extent it purports to include “the Java programming

language,” as to which Oracle does not own proprietary rights. When used in Google’s

responses, the phrase “Java Platform” shall not include “the Java programming language” and,

without acknowledging or agreeing that Oracle owns any proprietary rights in any elements

thereof, shall have the meaning ascribed to that phrase in paragraph 9 of Oracle’s Amended

Complaint, namely “a bundle of related programs, specifications, reference implementations, and

developer tools and resources that allow a user to deploy applications written in the Java

programming language on servers, desktops, mobile devices, and other devices,” including but

not limited to the Java compiler, the Java Virtual Machine, the Java Development Kit, the Java

2
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Runtime Environment, the Just-In-Time compiler, Java class libraries, Java application

programming interfaces, and Java specifications and reference implementations.

4. Google generally objects to Plaintiff’s Interrogatories to the extent (a) they are not

reasonably calculated to lead to the discovery of admissible evidence that is relevant to any claim

of defense of any party; (b) they are unreasonably cumulative or duplicative; (c) they seek

information that is obtainable from some other source that is more convenient, less burdensome,

or less expensive; or (d) the burden or expense of the proposed discovery outweighs any likely

benefit.

5. Google generally objects to Plaintiff’s Interrogatories to the extent they seek

information, documents, and/or things protected from discovery by the attorney-client privilege,

the work product doctrine, the common-interest privilege, and/or any other applicable privilege,

immunity, or protection. Nothing contained in Google’s responses is intended to be, or in any

way shall be deemed, a waiver of any such applicable privilege or doctrine.

6. Google generally objects to Plaintiff’s Interrogatories to the extent they request

information, documents, and/or things not within the possession, custody, or control of Google,

that are as readily available to Plaintiff as to Google, or that are otherwise in the possession of

Plaintiff, on the grounds that such requests are unduly burdensome.

7. Google objects to Interrogatory No. 3 as ambiguous due to the reference to

“Google’s pleading.” This literally reads as a request for Google’s bases for its defenses at the

time of pleading either its Answer to Oracle’s Complaint or Answer to Oracle’s Amended

Complaint, but does not specify the pleading to which it is referring. Oracle has clarified in

writing that it is seeking “Google’s factual and legal bases for its defense known to it as of

October 4, 2010, November 10, 2010, and now.” (January 12, 2011 Letter, Jacobs to

Weingaertner.) Google objects that, with this interpretation, Oracle has in effect propounded

three separate interrogatories for each of Interrogatories Nos. 3 through 16, for a total of 54

interrogatories, far exceeding the 25 permitted under Rule 33(a) of the Federal Rules. Google

further objects that the burden of responding to a request going to its bases for its October 4,

3
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2010 pleading, which has been replaced as the operative pleading in the case, greatly outweighs

any benefit.

 Notwithstanding the foregoing and the fact that reading each interrogatory as two

separate interrogatories still exceeds the limits of Rule 33, Google will respond with respect to

when it filed its operative pleading in the case, namely Google Inc.’s Answer to Plaintiff’s

Amended Complaint for Patent and Copyright Infringement and Amended Counterclaims on

November 10, 2010 (Doc. #51) (“Answer and Counterclaims”), as well as its bases for its

defenses generally, subject to Google’s general objection that discovery has just begun, and

Google is still developing its defenses. Google reserves the right to object to any additional

interrogatories propounded by Oracle due to their already exceeding the limitations, and in view

of the Court’s admonition that “no enlargements of the limitations on discovery in the Federal

Rules of Civil Procedure will be allowed until after counsel have demonstrated that they will

behave reasonably in the discovery already authorized.”

8. Google further objects to Interrogatory No. 3 due to the use of the phrase

“affirmative defense.” Google’s Answer and Counterclaims does not refer to the defenses as

“affirmative defenses,” and Google objects to the use of the term to the extent Oracle is

attempting to suggest any burden in relation to any of the defenses beyond what is required by

any applicable statute or case law.

9. Google further objects to Interrogatory No. 3 for specifically seeking attorney

work product and attorney-client privileged information.

10. Google further objects to Interrogatory No. 3 as unduly burdensome and not

reasonably calculated to lead to the discovery of admissible evidence. The bases for Google’s

pleading of its defenses is of little value at this point because its bases for maintaining its

allegations have changed since the filing of Google’s Answer and Counterclaims due to, for

example, the receipt of Oracle’s Patent Local Rule 3-1 disclosures and subsequent

supplementation, including Oracle’s final supplementation received on April 1, 2011. Google’s

bases may and likely will continue to change as discovery unfolds. Google further notes that

courts in this District have expressed skepticism as to the use of contention interrogatories,

4
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

particularly early in discovery.

11. Google further objects to Interrogatory No. 3 for implying any pleading

obligations on Google beyond those required by the Federal Rules of Civil Procedure, the Civil

Local Rules, the Patent Local Rules and any applicable Standing Orders.

12. Google further objects to Interrogatory No. 3 for seeking the bases for pleading in

response to Oracle’s Amended Complaint, which was deficient in many respects, or for seeking

Google’s current positions on its defenses in view of Oracle’s Patent Local Rule 3-1 disclosures,

which remain deficient. (See Oracle’s Second Supplemental Patent Local Rule 3-1 Disclosure of

Asserted Claims and Infringement Contentions served on April 1, 2011 (hereinafter “Final Patent

L.R. 3-1 Contentions”).) Oracle’s Amended Complaint did not identify any asserted claims of

the Patents-in-Suit; Oracle’s Final Patent L.R. 3-1 Contentions do not identify accused products

with any reasonable specificity on a claim by claim basis; and both documents failed to include

any factual allegation for many elements as to which Oracle has the burden of proof. Any

response below does not constitute a waiver of any work product or attorney-client privileged

material relating to Google’s interpretation of the numerous ambiguities contained in Oracle’s

Amended Complaint and Final Patent L.R. 3-1 Contentions. Further, any response below should

not be considered any affirmative representation that Oracle has presented a cognizable claim,

met its Rule 8 obligations or met its obligations under Patent Local Rule 3-1, or that particular

information in the response will represent an applicable basis in the future as further clarity as to

Oracle’s allegations is attained. Google further objects to each patent-related Interrogatory as

unnecessary in view of the specific disclosures contemplated by the Patent Local Rules as well

as premature at least because claim terms have not been finally construed.

13. Oracle supplemented its Patent Local Rule 3-1 contentions for the final time on

April 1, 2011. Remarkably, months after being explicitly put on notice that its contentions were

deficient for failing to identify actual use in accused devices, and after multiple supplementations

allowed by Google, Oracle has still refused to analyze an actual Accused Instrumentality of

“mobile devices running Android” and instead relies on unsupported conclusions based on an

emulator. After a meet and confer at the Court on April 6, 2011, Oracle agreed in front of the

5
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Court that “Oracle has declined Google’s offer to allow Oracle to supplement its infringement

contentions again. Oracle has chosen to rely on its infringement contentions as currently

framed.” Google’s supplemental response to Interrogatory No. 3 is therefore expressly subject

to, and without waiver of, Google’s position that Oracle’s disclosures and contentions are

deficient and is made to the best of Google’s ability based on Oracle’s contentions as Google

presently understands them. Google has withdrawn its offer to consent to an amendment of the

contentions and reserves the right to move to strike or dismiss claims due to the deficiencies in

Oracle’s Final Patent L.R. 3-1 Contentions.

14. Despite the fact that Oracle is seeking to combine multiple distinct interrogatories

into one in Interrogatories No. 3 through 16 and thereby exceeding its permitted number of

interrogatories, Google provides the following responses with respect to its bases for both

pleading its defenses in its Amended Answer and Counterclaims, as well as its bases for

maintaining them. Google explicitly preserves its work product and attorney-client privileged

information and other relevant objections. Google has conducted a reasonable inquiry sufficient

to comply with any obligations with respect to these Interrogatories, and makes no representation

that these responses include an exhaustive list of all facts relevant to the defenses identified in

these Interrogatories. Inclusion of Oracle’s allegations in a list of facts in any response herein

does not mean that Google agrees with the veracity of the allegation, but merely references the

fact that particular allegations were made. Google expressly maintains all objections made in

responsive pleadings. Google makes no representation that its responses below completely set

forth all of its bases for its defenses, as Google objects that such a response would be unduly

burdensome, premature, and require the unwarranted disclosures of attorney work product and

attorney-client privileged information.

15. Google incorporates by reference these General Objections into the specific

objections and responses set forth below. While Google may repeat a General Objection for

emphasis or some other reason, the failure to specifically refer to any General Objection does not

constitute a waiver of any sort. Moreover, subject to the requirements of Rule 33 of the Federal

6
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Rules, Google reserves the right to alter or amend its objections and responses set forth herein as

additional facts are ascertained and analyzed.

16. Google remains willing to meet and confer with respect to any of its objections to

assist Plaintiff in clarifying or narrowing the scope of the requested discovery, and reserves the

right to move for a protective order if agreement cannot be reached.

SPECIFIC OBJECTIONS AND RESPONSES

 Google’s responses to Plaintiff’s Interrogatories are based upon Google’s current

information and belief as a result of reasonable searches and inquiries. Google reserves its right

to amend and supplement its responses as it learns additional facts.

INTERROGATORY NO. 3:

 Please explain the factual and legal bases for Google’s pleading of its first affirmative

defense: No Patent Infringement.

FOURTH SUPPLEMENTAL RESPONSE:

 In addition to its General Objections, Google objects to this Interrogatory as it seeks

information protected by the attorney-client privilege, the work product doctrine, and/or any

other applicable privilege, immunity, or protection. Google further objects to this Interrogatory

as unduly burdensome as it is not reasonably calculated to lead to the discovery of admissible

information. Google further objects to the request to “explain” factual bases as vague and

ambiguous. Google further objects to any implication in this Interrogatory that Google has any

burden beyond what is required by any applicable statute or case law. Google further objects

that Oracle has not complied with its Patent Local Rule 3-1 obligations and Oracle’s Final Patent

L.R. 3-1 Contentions remain unclear and incomplete. Oracle has also included new conclusory

statements regarding how the Android Compatibility Test Suite and emulator purportedly

support Oracle’s contentions. Although still plainly deficient, as discussed below, Oracle should

have provided this information at the outset rather than four months after it initially served its

contentions. Further, Oracle did not provide any of the underlying evidence and instead included

7
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

only conclusions with no facts or evidentiary support. After prompting, on April 26, 2011,

Oracle provided “lists of Android routines that, in the manner described in Oracle's infringement

contentions, we observed in operation.” Notably this response provides a single set of two lists

without specificity as to a particular release of Android, despite Oracle being on notice that there

are very significant differences in certain releases, further demonstrating Oracle’s lack of support

for its contentions. Google will analyze this information and supplement accordingly.

 Because Oracle has now stated on the record that it considers these contentions final and

refused additional supplementation, Google will endeavor to provide complete responses to the

best of its ability in view of the lack of clarity provided by Oracle. This analysis will take longer

than the short period of time provided for this supplementation pursuant to the agreement and

Google will supplement again as it continues to conduct its analysis of Oracle’s Final Patent L.R.

3-1 Contentions.

 In view of Oracle’s insistence for supplementation of this interrogatory response prior to

the Court’s claim construction ruling, Google provides this response subject to the caveat that its

positions may change significantly with Google’s continued analysis and development of its

claim construction positions through the processes contemplated by Patent Local Rules and this

Court’s schedule.

 Inclusion of Oracle’s allegations in the list of facts in this response does not mean that

Google agrees with the veracity of the allegation, but merely references the fact that particular

allegations were made. Google expressly maintains all objections made in responsive pleadings.

Google further objects to this Interrogatory as unnecessary in view of the specific disclosures

contemplated by the Patent Local Rules as well as premature at least because no claim terms

have been finally construed and any response herein is made in view of the lack of certainty with

respect to the resolution of the meaning of claim terms.

 Subject to the foregoing objections and the General Objections, without waiver or

limitation thereof, Google states that the following facts relevant to this defense were in its

possession or accessible to Google at the time it pleaded this defense in its Answer and

Counterclaims:

8
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 Allegations contained in Oracle’s Complaint and Exhibits (Doc. #1).

 Allegations contained in Oracle’s Amended Complaint and Exhibits (Doc. #36).

 Allegations contained in presentation materials received from Oracle pursuant to Fed. R.

Evid. 408.

 The patents-in-suit and their prosecution histories.

 Android source code.

 Android documentation, including public documentation located at

http://source.android.com/; http://developer.android.com/; http://code.google.com/android/;

http://sites.google.com/site/io/dalvik-vm-internals.

 The information cited above, coupled with the positions stated in Google’s Amended

Answer and Counterclaims, provides Oracle with fair notice of the bases for Google’s defenses

at the time of the pleading in view of the fact that at the time, Oracle had not disclosed any

specific theory of infringement or identified a single asserted claim. Google objects to any

further explication of it bases at the time of the pleading as unduly burdensome.

 General Allegations in Oracle’s Final Patent L.R. 3-1 Contentions

 As an initial matter, Oracle continues to assert over 130 claims, making this analysis time

consuming and inefficient. This stands in stark contrast to its continued demands for complete

supplementation and purported intent to proceed efficiently. Also, as noted by the Court, Oracle

will have to reduce its claims to one or two claims and yet so far has not dropped a single claim.

 With respect to Oracle’s identification of Accused Instrumentalities, Oracle does not

provide the requisite specificity, instead merely identifying “Android,” the “Android Platform,”

“mobile devices running Android,” and providing “representative examples” of devices running

Android. (See Section “Patent Local Rule 3-1(b) – Accused Instrumentalities”, Oracle’s Final

Patent L.R. 3-1 Contentions at p. 2.) This does not provide fair notice of each of the purported

Accused Instrumentalities and further, certain of the Exhibits, such as Exhibit F, identify, for

example, “computers running the Android SDK,” which contradicts the list of Accused

Instrumentalities on page 2 of its cover document. Oracle also identifies “Google Dev Phones,

the Google Nexus One, and the Google Nexus S” as purported “Google devices running

9
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Android.” For one, Oracle did not analyze a single one of these devices. Further, Oracle’s

support for the fact that the Samsung Nexus S is purportedly a Google device is a link from a

web site speculating that the Nexus S is the successor to the Nexus One. Oracle ignores the fact

that the device is manufactured by Samsung. Oracle also added “the Google Dev Phones” for

the first time in its last supplementation without providing any further explanation as to what

these devices are or what basis it has for it allegations. Therefore, each of these allegations is

deficient on its face. Similarly, the allegations for the “other mobile devices” are deficient for

the reasons stated herein.

 In its Final Patent L.R. 3-1 Contentions Oracle included an allegation of inducement

pursuant to 35 U.S.C. § 271(b) because Google purportedly “contracts with, instructs, and

otherwise induces others. . . .” (Id. at 3.) In Section D, “Indirect Infringement,” the entirety of

the purported inducing acts are described in vague generalities:

On information and belief, Google purposely and actively distributes the Accused
Instrumentalities to manufacturers of products and application developers with the
intention that they be used, copied, and distributed to consumers, who in turn use them.
Google induces and contributes to the infringement of the asserted claims of each
asserted patent, because Google encourages manufacturers, application developers, and
service providers (including the members of the Open Handset Alliance), as well as end
users, to copy, sell, distribute, re-distribute, and use products that embody or incorporate
the Accused Instrumentalities.

(Id. at 7.) This section does not even distinguish between purported inducement and purported

contributory infringement. It also fails to identify inducing acts specific to each purported

Accused Instrumentality as Oracle identifies them in Section B. Oracle does not even allege that

Google “distributes,” the Accused Instrumentalities identified as “other mobile devices running

Android” making the first sentence of the block quote plainly incorrect. Further, Oracle fails to

connect any purportedly inducing act with the purported direct infringers. For example, to the

extent the user of “other mobile devices running Android” is purportedly a direct infringer,

Oracle cannot maintain an inducement allegation against Google with a third party between

Google and the user (Oracle’s own allegation states only that Google distributes to

“manufacturers of products” and “application developers”). This provision thus fails to provide

the requisite specificity of inducing acts for each type of Accused Instrumentality and without an

10
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

inducing act, Oracle cannot prevail on a claim pursuant to 35 U.S.C. § 271(b). Further, Oracle

has not made an allegation or provided any evidence that Google had the requisite scienter

required for a claim pursuant to 35 U.S.C. § 271(b). Oracle alleges only that Google purportedly

“purposely and actively distributes the Accused Instrumentalities to manufacturers of products

and application developers with the intention that they be used” (Id. at 7.) Notably this

statement at best suggests a purported intent that certain instrumentalities be used, not an intent

to infringe. Further, Oracle includes a single statement that Google “has actual knowledge of

Oracle’s patents” (see id. at 8) at the end of the indirect infringement allegation, but this

statement is deficient at least because it does not even allege Google “had” knowledge and

specific intent required for inducement. Further, the purported “evidence” of knowledge, such as

imputing the knowledge of inventors on Google is facially deficient to establish specific intent.

 Oracle also includes an allegation of contributory infringement pursuant to

35 U.S.C. § 271(c). Oracle alleges only that Google purportedly “offers to sell, sells, or imports

part or all of the Accused Instrumentalities within or into the United States.” (Id. at 8.) This

statement provides no specificity as to the component that Google is accused of offering to sell,

which component Google is accused of selling, or which component Google is accused of

importing. The statement similarly fails to identify with specificity if each allegation goes to

“part” or “all” of a particular Accused Instrumentality. Oracle cannot prevail on a claim

pursuant to 35 U.S.C. § 271(c) for any Accused Instrumentalities that are downloadable source

files because they are not “components” within the meaning of 35 U.S.C. § 271(c). Oracle

cannot prevail on a claim pursuant to 35 U.S.C. § 271(c) for any Accused Instrumentalities that

are made available for download because they are not sold or offered for sale within the meaning

of 35 U.S.C. § 271(c).

 Oracle has not demonstrated that the Accused Instrumentalities are not capable of

substantial non-infringing uses. Notably, Oracle provides a sole example of a discussion of the

“dx tool from the Android SDK,” in the context of substantial non-infringing uses, but the dx

tool is not even listed as an Accused Instrumentality in the preceding paragraph. For one, this

statement focuses on the dx tool even though the Android SDK is identified as the Accused

11
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Instrumentality. Further, setting aside Google’s position that all uses of the dx tool are non-

infringing, Oracle’s contentions are still factually incorrect as the dx tool has a myriad of

substantial non-infringing uses, which are not even purported to be infringing by Oracle. The dx

tool can translate Dalvik assembly language into Dalvik bytecode; it contains a .class file

dumper/disassembler; it can perform partial translations of .class files; it can generate a human-

readable dump of .dex files; and it provides a code annotation mode called “annotool.” This is

merely an exemplary list and an example of how, if Oracle made an effort to meet its burden on

this issue, Google could provide a response. Additional examples of substantial non-infringing

uses were cited Google’s Answer to Oracle’s Amended Complaint (Dkt. 51) at ¶ 18 in that

various programming languages that can be used to create software applications. Additionally,

the Android NDK (http://developer.android.com/sdk/ndk/index.html) allows Android developers

to implement applications or parts of applications using native-code languages such as C and

C++. This does not use the Java programming language and therefore constitutes a substantial

non-infringing use of the Android platform as a whole. Finally, as presently understood, all uses

are noninfringing uses for the reasons cited herein.

 Oracle also includes an allegation of a purported violation of 35 U.S.C. § 271(f) because

Google purportedly “supplies part or all of the Accused Instrumentalities in or from the United

States to foreign contractors, including HTC. . . .” (Final Patent L.R. 3-1 Contentions at 3.)

Oracle fails to identify with specificity which Accused Instrumentalities it is referring to and if

each allegation goes to “part” or “all” of a particular Accused Instrumentality. Oracle cannot

prevail on a claim pursuant to 35 U.S.C. § 271(f) for any Accused Instrumentalities that are

downloadable source files because they are not “components” within the meaning of 35 U.S.C. §

271(f) . See Microsoft Corp. v. AT&T Corp., 550 U.S. 437 (2007).

 Oracle also fails to provide evidence of purported infringement by devices such as third

party devices, instead relying on conjecture and conclusion as to their operation as opposed to

investigation. Oracle’s citation in Footnote 10 of its Final Patent L.R. 3-1 Contentions

contradicts Oracle’s own assumptions that implementers cannot modify Android code, as the

cited language states that “Device implementers MAY modify the underlying implementation of

12
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the APIs” As discussed below, Oracle relies on voluntary application level compatibility using

the Android compatibility test suite (CTS) to draw incorrect and unsupported inferences about

lower level functionality that Google specifically states can be modified even by third parties

seeking compatibility approval. Oracle also fails to provide evidence for each of the versions of

Android that Oracle purports to accuse and instead relies on representative evidence, despite

having access to multiple versions that are freely available to the public via the public git

repository. Perhaps the most notable flaw, however, is that Oracle made a specific, calculated

decision to forego examination of actual devices. Although the CTS can be run against an

emulator, as Oracle did, it is designed to test actual devices. (See

http://source.android.com/compatibility/cts-intro.html (“Attach at least one device (or emulator)

to your machine.”).) Yet Oracle inexplicably chose not to run the CTS against even a single one

of the exemplary devices identified in its Final Patent L.R. 3-1 Contentions as Accused

Instrumentalities and instead continues to rely on an unsupported assumption as to behavior of

actual devices.

 Oracle’s statement that “[t]o the extent that any element or limitation of the asserted

claims is not found to have literal correspondence in the Accused Instrumentalities, Oracle

alleges, on information and belief, that any such elements or limitations are present under the

doctrine of equivalents in the Accused Instrumentalities” is deficient as a matter of law and, as

these are Oracle’s Final Patent L.R. 3-1 Contentions, Oracle is barred from raising doctrine of

equivalents arguments in the future. See Optimumpath LLC v. Belkin International Inc., et. al.,

4-09-cv-01398 (N.D. Cal., April 12, 2011, Order) (Wilken, J.) (catch-all doctrine of equivalents

allegation fails to comply with Patent Local Rules).

 Oracle's Final Patent L.R. 3-1 Contentions contains an irrelevant contention purporting

that “Android [is] not an open platform.” As a threshold matter, this statement is plainly

irrelevant and immaterial to the infringement contentions as whether a platform is “open” or not

has no bearing on this inquiry. Further, the statement is misleading as it cites purported “recent

actions,” but references an “anti-fragmentation program” that has been in place for four years -

since 2007. Oracle further attempts to mischaracterize the delay in the release of the open source

13
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

of Honeycomb - a version of Android for tablet devices that has not been accused in the current

litigation. This is a temporary delay while the Android team works to bring the Honeycomb

features to mobile phones, after which the open source will be made available, consistent with

Android’s open strategy. Google remains firmly committed to providing Android as an open

source platform across many device types.

 Further, with respect to Google’s other bases for maintaining its defense that Oracle

cannot establish infringement of any asserted claim, Google states the following based on

Oracle’s contentions as presently understood, with reference to Oracle’s Final Patent L.R. 3-1

Contentions:

The ‘104 Reissue Patent

 General: For direct infringement Oracle accuses “device[s] running Android,” for apparatus

and system claims, “storage devices containing Android code,” for “computer program

product, memory, and computer-readable medium claims,” and “[a]nyone who uses a device

running Android code” for method claims. (See Ex. A to Oracle’s Final Patent L.R. 3-1

Contentions at 2.) Oracle has not provided evidence of actual operation on an actual device,

identification of specific storage devices, or evidence of an actual performance of the

method. Instead, Oracle states that 1) “Oracle has determined that Android devices execute

much of the code cited below every time the devices start up” and 2) “Oracle determined that

many of these code portions are executed even before a user can interact with a device”

based on analysis using the Android Compatibility Test Suite (CTS) and a “mobile device

emulator” included with the Android SDK. (See Ex. A at 1-2.) Oracle does not provide any

of the factual evidence of this analysis and the analysis does not support the conclusion that

Oracle draws regarding the operation of actual devices. First, even if true, executing “much”

of the code, and “many of the[] code portions,” cannot demonstrate infringement particularly

when Oracle does not provide any break down of what code or code portions it cites in its

claim charts are admittedly not executed based in its own analysis. Second, although a trace

log of the emulator may show that certain methods are called, it does not mean the CTS

checks for the existence of these methods, and, as such, a device could pass compatibility

14
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

testing with modifications that would result in those methods not being called. Google is

continuing to perform its own analysis, which is hampered by Oracle’s failure to timely

provide any factual basis and continued failure to provide the complete factual basis for its

contentions and Google will supplement these responses as necessary.

 Claims 11, 19, 21, 22, 25, 28, 31, 34, 37, 40, and all dependent claims that depend

therefrom: For these claims, Oracle has failed to identify on a claim by claim basis in

Exhibit A any specific device that allegedly infringes, and has instead relied on general

statements referring to unidentified “devices that run Android” or “devices that run Android

and the Android SDK.” The latter statement is inconsistent with the recitation of Accused

Instrumentalities in the top of the Exhibit A, which does not include Android SDK. (See Ex.

A at 1-2.) Oracle has not made a showing of infringement because it has not identified any

specific alleged infringing device or purported direct infringer for these claims, and as

discussed above, Oracle’s reliance on the CTS and emulator as evidence of actual operation

of any actual device is flawed.

 Claims 12, 13, 17-18, 20, 23-24, 26, 27, 29-30, 32-33, 35-36, 38-39, and 41, and all

dependent claims that depend therefrom: For these claims, Oracle has failed to identify

on a claim by claim basis in Exhibit A the actual performance of any allegedly infringing

method, and has instead relied on general statements such as “Android includes methods . .

.,” “devices that run Android and the Android SDK,” or “devices that store, distribute, or run

Android or the Android SDK, including websites, servers, and mobile devices.” The

statements regarding Android SDK are inconsistent with the recitation of Accused

Instrumentalities at the top of the Exhibit A, which does not include Android SDK. (See Ex.

A at 1-2.) All of these claims implicate the performance of a method and the charts in

Exhibit A are devoid of any example of any method being performed, thereby precluding a

finding of infringement. Oracle has not made a showing of infringement because it has not

identified any alleged infringing act or purported direct infringer for these claims and as

discussed above, Oracle’s reliance on the CTS and emulator as evidence of actual operation

of a device is flawed.

15
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 All asserted claims: As presently understood, Oracle has not made a showing of

infringement at least because the material cited for element 11-b, “a processor configured to

execute said instructions containing one or more symbolic references by determining a

numerical reference corresponding to said symbolic reference, storing said numerical

references, and obtaining data in accordance to said numerical references,” on pages 12-65 of

Exhibit A does not meet the claim element even if it were implemented and used in a device

in the form it is recited in Exhibit A because (1) it would not employ a numerical reference as

recited in that it would not use or store a direct reference to the data itself; and/or (2) it would

not employ a symbolic reference as recited in that it would not use a non-numeric reference

to the data. Each other independent claim in Exhibit A references a similar citation for a

similar element and the same basis applies to each of those claims. (See, e.g., Claim 12

(“See Claim 11-b, supra” in chart for “resolving a symbolic reference . . .” element).) In

view of the fact that Oracle has served its Final Patent L.R. 3-1 Contentions, it is no longer

necessary for Google to provide the preceding “if it were implemented” hypothetical

response. Because Oracle still has not provided any evidence of actual performance of a

method on devices, however, Google is left with only the emulator example to analyze.

Google believes the same reasoning applies to the emulator example and will supplement as

it continues its investigation.

 All asserted claims: As presently understood, Oracle has not made a showing of

infringement at least because the material cited for element 11-b, “a processor configured to

execute said instructions containing one or more symbolic references by determining a

numerical reference corresponding to said symbolic reference, storing said numerical

references, and obtaining data in accordance to said numerical references,” on pages 12-65 of

Exhibit A does not meet the claim element even if it were implemented and used in a device

in the form it is recited in Exhibit A because it would not perform the “determining,”

“storing,” and “obtaining” steps as recited in that it would not perform these steps during

execution of the instructions. Each other independent claim in Exhibit A references a similar

citation for a similar element and the same basis applies to each of those claims. For

16
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

example, Claim 12 recites “interpreting said instructions” and “resolving a symbolic

reference in an instruction being interpreted.” Accordingly, and as described above, the

material cited in Exhibit A does not perform the “resolving” step as recited in that it would

not perform this step while the instruction is being interpreted. While the other independent

claims may employ different language, they require the resolving step to occur while an

instruction is being executed and/or interpreted. (See, e.g., Claim 13 (“[a] computer-

implemented method for executing instructions . . .”), Claim 17 (“a method for executing

said program . . .”), Claim 19 (“a memory for use in executing a program . . .”), Claim 21

(“such that when the program is executed by the processor each symbolic field reference is

resolved . . .”), Claim 24 (“determining immediately prior to execution whether a bytecode of

the program contains a symbolic reference”).) In view of the fact that Oracle has served its

Final Patent L.R. 3-1 Contentions, it is no longer necessary for Google to provide the

preceding “if it were implemented” hypothetical response. Because Oracle still has not

provided any evidence of actual performance of a method on devices, however, Google is left

with only the emulator example to analyze. Google believes the same reasoning applies to

the emulator example, and that Oracle’s allegations in its Final Patent L.R. 3-1 Contentions

support Google’s reasoning. More specifically, Oracle states that 1) “Oracle has determined

that Android devices execute much of the code cited below every time the devices start up”

and 2) “Oracle determined that many of these code portions are executed even before a user

can interact with a device.” (See Ex. A at 1-2.) These statements evidence that the steps

recited in these claims, if performed at all, are not performed during execution of the

instructions, but at some other time, such as at boot time. Regardless, Google’s investigation

into Oracle’s recent allegations related to the emulator is ongoing, and Google will

supplement as it continues its investigation.

 All asserted claims: As presently understood, Oracle has not made a showing of

infringement at least because the material cited in Exhibit A relates to a hybrid compiler-

interpreter, which is not within the scope of the asserted claims because the patentee

explicitly disclaimed such claim scope during prosecution of the asserted claims.

17
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 Claims 11, 22, and 25: As presently understood, Oracle has not made a showing of

infringement at least because the material cited for element 11-b, “a processor configured to

execute said instructions containing one or more symbolic references by determining a

numerical reference corresponding to said symbolic reference, storing said numerical

references, and obtaining data in accordance to said numerical references,” on pages 12-65 of

Exhibit A does not meet the claim element even if it were implemented and used in a device

in the form it is recited in Exhibit A because it would not employ a processor configured to

execute an instruction as recited in that the listed devices do not have processors for

executing intermediate form object code. Independent claims 22 and 25 in Exhibit A

reference a similar citation for a similar element and the same basis applies to each of those

claims. (See, e.g., Claim 22 (“See Claim 11-b, supra” in chart for “a processor configured to

execute the instruction . . .” element); Claim 25 (“See Claim 11, supra” in chart for

“instructions for causing the processor to . . . execute thereafter the bytecode . . .” element).)

In view of the fact that Oracle has served its Final Patent L.R. 3-1 Contentions, it is no longer

necessary for Google to provide the preceding “if it were implemented” hypothetical

response. Because Oracle still has not provided any evidence of actual performance of a

method on devices, however, Google is left with only the emulator example to analyze.

Google believes the same reasoning applies to the emulator example and will supplement as

it continues its investigation.

 Claims 12-21, 23-32, and 36-41: As presently understood, Oracle has not made a showing

of infringement at least because the material cited for the “resolving a symbolic reference in

an instruction being interpreted, said step of resolving said symbolic reference including the

substeps of” element on page 69 of Exhibit A—which is simply a reference to the materials

cited for element 11-b at pages 12-65—does not meet the claim element even if it were

implemented and used in a device in the form it is recited in Exhibit A because it would not

employ resolving in that it would not rewrite the instruction with the numeric reference.

Each other independent claim listed references a similar citation for similar claim elements

and the same basis applies to each of those claims. (See, e.g., Claim 13 “See Claim 11-b,

18
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

supra” in chart for “resolving a symbolic reference . . .” element).) In view of the fact that

Oracle has served its Final Patent L.R. 3-1 Contentions, it is no longer necessary for Google

to provide the preceding “if it were implemented” hypothetical response. Because Oracle

still has not provided any evidence of actual performance of a method on devices, however,

Google is left with only the emulator example to analyze. Google believes the same

reasoning applies to the emulator example and will supplement as it continues its

investigation.

 Claims 24-26, 30-32, 36-38: As presently understood, Oracle has not made a showing of

infringement at least because the material cited for the “when it is determined that the

bytecode of the program contains a symbolic data reference, invoking a dynamic field

reference routine to resolve the symbolic data reference” element on page 79 of Exhibit A—

which is simply a reference to the materials cited for element 11-b at pages 12-65—does not

meet the claim element even if it were implemented and used in a device in the form it is

recited in Exhibit A because it would not employ a dynamic field reference routine in that it

would not (1) rewrite the symbolic reference in the in bytecode with a numeric reference,

and/or (2) execute the bytecode with the numeric reference prior to advancing to the next

instruction. Each other independent claim listed references a similar citation for similar

claim elements and the same basis applies to each of those claims. (See, e.g., Claim 25

(“See Claim 11, supra” in chart for “a memory comprising a program . . .” element).) In

view of the fact that Oracle has served its Final Patent L.R. 3-1 Contentions, it is no longer

necessary for Google to provide the preceding “if it were implemented” hypothetical

response. Because Oracle still has not provided any evidence of actual performance of a

method on devices, however, Google is left with only the emulator example to analyze.

Google believes the same reasoning applies to the emulator example and will supplement as

it continues its investigation.

 Claims 27-29: As presently understood, Oracle has not made a showing of infringement at

least because the material cited for the “generating a set of new instructions for the program

that contain numeric references resulting from invocation of a routine to resolve any

19
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

symbolic data references in the set of original instructions” element on page 83 of Exhibit

A—which is simply a reference to the materials cited for element 11-b at pages 12-65—does

not meet the claim element even if it were implemented and used in a device in the form it is

recited in Exhibit A because it would not employ generating a set of new instructions that

contain numeric references as recited. Each other independent claim listed references a

similar citation for similar claim elements and the same basis applies to each of those claims.

(See, e.g., Claim 28 (“See Claim 11, supra” in chart for “a memory comprising a control

program . . .” element).) In view of the fact that Oracle has served its Final Patent L.R. 3-1

Contentions, it is no longer necessary for Google to provide the preceding “if it were

implemented” hypothetical response. Because Oracle still has not provided any evidence of

actual performance of a method on devices, however, Google is left with only the emulator

example to analyze. Google believes the same reasoning applies to the emulator example

and will supplement as it continues its investigation.

 Claims 30-32: As presently understood, Oracle has not made a showing of infringement at

least because the material cited for the “replacing each instruction in the program with a

symbolic data reference with a new instruction containing a numeric reference resulting from

invocation of a dynamic field reference routine to resolve the symbolic data reference”

element on page 85 of Exhibit A—which is simply a reference to the materials cited for

Claim 11 at pages 1-65—does not meet the claim element even if it were implemented and

used in a device in the form it is recited in Exhibit A because it would not replace

instructions in the program as recited. Each other independent claim listed references a

similar citation for similar claim elements and the same basis applies to each of those claims.

(See., e.g., Claim 31 (“See Claim 11, supra” in chart for “a memory comprising a control

program for causing the processor to . . . replace each instruction in the program with a

symbolic data reference . . .” element).) In particular, the identified DEX optimization does

not replace any instructions at run-time in the matter required by the claims, to the extent that

any replacement of instructions may occur. In view of the fact that Oracle has served its

Final Patent L.R. 3-1 Contentions, it is no longer necessary for Google to provide the

20
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

preceding “if it were implemented” hypothetical response. Because Oracle still has not

provided any evidence of actual performance of a method on devices, however, Google is left

with only the emulator example to analyze. Google believes the same reasoning applies to

the emulator example and will supplement as it continues its investigation.

 All Asserted Claims: Oracle has not made any showing or specific allegation of indirect

infringement attributable to Google through inducement or contributory infringement.

Further, uses such as the Android NDK are substantial non-infringing uses as they do not

implicate the accused subject matter cited in Oracle’s charts. Oracle has not demonstrated

that the code identified is actually used to perform a method by any direct infringer, thereby

precluding indirect infringement. Further, Oracle has not demonstrated that Google had

specific knowledge of this patent sufficient for either inducement or contributory

infringement. Oracle’s claims of indirect and contributory infringement also fail for reasons

cited above under the General Allegations heading.

 All Asserted Claims: Google served its Invalidity Contentions on January 18, 2011,

detailing its bases for the invalidity of each asserted claim of this patent. Google contends

that each asserted claim is invalid and therefore Google cannot infringe such a claim.

The ‘205 Patent

 General: For direct infringement Oracle accuses “device[s] running Android,” for apparatus

claims, and “[a]nyone who uses a device running Android” for method claims. (See Ex. B-1

to Oracle’s Final Patent L.R. 3-1 Contentions at 1; Ex. B-2 at 2.)

 All Asserted Claims: For these claims, Oracle has not provided evidence of actual

operation on an actual device or evidence of an actual performance of the method. Instead,

Oracle states that 1) “versions of Android . . . have the Jit.c code activated by default” (Ex.

B-1 at 1), or 2) “Oracle has determined that Android devices execute much of the code cited

below every time the devices start up” and 3) “Oracle determined that many of these code

portions are executed even before a user can interact with a device” (Ex. B-2 at 1-2), the

latter two statements are based on analysis using the Android Compatibility Test Suite (CTS)

and a “mobile device emulator” included with the Android SDK. Oracle does not provide

21
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

any of the factual evidence of this analysis and the analysis does not support the conclusion

that Oracle draws regarding the operation of actual devices. With respect to Jit.c, whether or

not it is activated by default does not establish how third parties use it and does not amount to

proof of the use in any device. With respect to Ex. B-2, even if true, executing “much” of the

code, and “many of the[] code portions,” cannot demonstrate infringement particularly when

Oracle does not provide any break down of what code or code portions it cites in its claim

charts are admittedly not executed based in its own analysis. Second, although a trace log of

the emulator may show that certain methods are called, it does not mean the CTS checks for

the existence of these methods, and, as such, a device could pass compatibility testing with

modifications that would result in those methods not being called. Google is continuing to

perform its own analysis, which is hampered by Oracle’s failure to timely provide any factual

basis and continued failure to provide the complete factual basis for its contentions and

Google will supplement these responses as necessary.

 Claims 1-4: As presently understood, Oracle has not made a showing of infringement, even

if the materials cited in Exhibits B-1 or B-2 were implemented and used in a device in the

form recited at least because:

o It would not employ a method in a computer system where a virtual machine

instruction was generated at runtime because a virtual machine instruction (“[a]

machine instruction for a software emulated microprocessor or computer

architecture (also called virtual code)”) is never generated in the functionality

identified in Ex. B-1, and the functionality identified in Ex. B-2 is not

implemented at runtime.

o It would not employ a method in a computer system where a virtual machine

instruction represents or references one or more native instructions because no

new virtual machine instruction represents or references one or more native

instructions (“[a] machine instruction that is designed for a specific

microprocessor or computer architecture (also called native code)”). (See Exs. B-

1 and B-2.)

22
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

o It would not employ a method in a computer system where a new virtual machine

instruction was executed instead of a first virtual machine instruction, because a

new virtual machine instruction is not generated in the functionality identified in

Ex. B-1 and a new virtual machine instruction is not executed in the functionality

identified in Ex. B-2.

In view of the fact that Oracle has served its Final Patent L.R. 3-1 Contentions, it is no longer

necessary for Google to provide the preceding “if it were implemented” hypothetical

response. Because Oracle still has not provided any evidence of actual performance of a

method on devices, however, Google is left with only the emulator example to analyze.

Google believes the same reasoning applies to the emulator example and will supplement as

it continues its investigation.

 Claim 8: As presently understood, Oracle has not made a showing of infringement, even if

the materials cited in Exhibits B-1 or B-2 were implemented and used in a device in the form

recited at least because:

o Claim 8 includes claim elements similar to those in claim 1 and, to that extent, the

same bases cited above apply to this claim.

o It would not employ a method in a computer system for compiling a portion of the

function into at least one native machine instruction so that the function includes

both virtual and native machine instruction because no portion of a function is

compiled into a native machine instruction. (See Ex. B-2.)

o It would not employ a method in a computer system where at least one native

machine instruction with a new virtual machine instruction is executed after the

compiling of the function because a native machine instruction is not represented

by a new virtual machine code. (See Ex. B-1.)

In view of the fact that Oracle has served its Final Patent L.R. 3-1 Contentions, it is no

longer necessary for Google to provide the preceding “if it were implemented”

hypothetical response. Because Oracle still has not provided any evidence of actual

performance of a method on devices, however, Google is left with only the emulator

23
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

example to analyze. Google believes the same reasoning applies to the emulator example

and will supplement as it continues its investigation.

 All Asserted Claims: Oracle has not made any showing or specific allegation of indirect

infringement attributable to Google through inducement or contributory infringement.

Further, uses such as the Android NDK are substantial non-infringing uses as they do not

implicate the accused subject matter cited in Oracle’s charts. Oracle has not demonstrated

that the code identified is actually used to perform a method by any direct infringer, thereby

precluding indirect infringement. Further, Oracle has not demonstrated that Google had

specific knowledge of this patent sufficient for either inducement or contributory

infringement. Oracle’s claims of indirect and contributory infringement also fail for reasons

cited above under the General Allegations heading.

 All Asserted Claims: Google served its Invalidity Contentions on January 18, 2011,

detailing its bases for the invalidity of each asserted claim of this patent. Google contends

that each asserted claim is invalid and therefore Google cannot infringe such a claim.

The ‘702 Patent

 General: For direct infringement Oracle accuses “computers running the Android SDK” for

apparatus claims, “storage devices containing the Android SDK,” for computer-readable

medium claims, and “anyone who uses the Android SDK” for method claims. (See Ex. C to

Oracle’s Final Patent L.R. 3-1 Contentions at 1.) Oracle has not provided evidence of actual

operation on an actual device, identification of specific storage devices, or evidence of an

actual performance of the method. Instead, Oracle states that 1) “[D]evelopers must run the

Android dx tool to build Android applications, and generate Android bytecode and .dex files,

and run the Dalvik virtual machine to test them” and 2) “The Android SDK is a tool used

purely to build and test Android programs.” (See Ex. C at 1.) In its Final Patent L.R. 3-1

Contentions Oracle provides only an illustrative example in its cover document of the dx tool

as purportedly having no substantial non-infringing uses. For one, this statement focuses on

the dx tool even though the Android SDK is identified as the Accused Instrumentality.

Further, setting aside Google’s position that all uses of the dx tool are non-infringing,

24
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Oracle’s contentions are still factually incorrect as the dx tool has a myriad of substantial

non-infringing uses, which are not even purported to be infringing by Oracle. The dx tool

can translate Dalvik assembly language into Dalvik bytecode; it contains a .class file

dumper/disassembler; it can perform partial translations of .class files; it can generate a

human-readable dump of.dex files; and it provides a code annotation mode called “annotool.”

This is merely an exemplary list and an example of how, if Oracle made an effort to meet its

burden on this issue, Google could provide a response. Oracle has changed its contention

from being limited to the dx tool to being targeted to the “Android SDK including the dx

tool.” Google is continuing to perform its own analysis on this change and will supplement

these responses as necessary.

 Claims 1 and 7, and all dependent claims that depend therefrom: For these claims,

Oracle has failed to identify on a claim by claim basis in Exhibit C the actual performance of

any allegedly infringing method and instead relied on a general statement including “Android

dx tool involves a method” or “Android dx tool [performs steps].” All of these claims

implicate the performance of a method and the charts in Exhibit C are devoid of any example

of any method being performed, thereby precluding a finding of infringement. Oracle has

not made a showing of infringement because Oracle’s bare assertion that “developers must

run the Android dx tool to build Android applications,” (see Ex. C at 1) does not amount to

proof of an actual use that the dx tool and associated code shown in the charts has been

executed in the manner alleged.

 Claims 13, and all dependent claims that depend therefrom: For these claims, Oracle

failed to identify on a claim by claim basis in Exhibit C any specific device that allegedly

infringes and instead relied on a general statement including “[a]ny device or computer

which can run the Android dx tool.” Oracle has not made a showing of infringement because

Oracle’s bare assertion that “developers must run the Android dx tool to build Android

applications,” (see Ex. C at 1) does not amount to proof of an actual use that the dx tool and

associated code shown in the charts has been executed in a device in the manner alleged.

25
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 All Asserted Claims: As presently understood, Oracle has not made a showing of

infringement at least because the material cited for the “removing said duplicated elements

from said plurality of class files to obtain a plurality of reduced class files” element on pages

13-17 of Exhibit C does not meet the claim element even if it were implemented and used in

a device in the form it is recited in Exhibit C because it would not employ a method of

obtaining a plurality of reduced class files in that there would be no intermediate step of

removing duplicated elements from class files to obtain a plurality of reduced class files prior

to forming a multi-class file. Similarly, Oracle has not made a showing of infringement at

least because the material cited for the “forming a multi-class file comprising said plurality of

reduced class files” element at pages 17-20 of Exhibit C does not meet the claim element

even if it were implemented and used in a device in the form it is recited in Exhibit C

because it would not employ a method of forming a multi-class file in that no multi-class file

would be formed from reduced class files obtained prior to forming the multi-class file. Each

other independent claim in Exhibit C references Oracle’s citation for claim 1 for similar

elements and the same basis applies to those claims. Oracle has changed is contention from

being limited to the dx tool to being targeted to the “Android SDK including the dx tool.”

Google is continuing to perform its own analysis on this change and will supplement these

responses as necessary.

 All Asserted Claims: As presently understood, Oracle has not made a showing of

infringement at least because the material cited for “determining plurality of duplicated

elements in a plurality of class files” elements on pages 2–9 of Exhibit C does not meet the

claim element even if it were implemented and used in a device in the form it is recited in

Exhibit C because it would not employ a method of determining a plurality of duplicated

elements in a plurality of class files in that the classes cited do not determine whether a

duplicated element is duplicated within a single class file or across two class files or whether

the duplicated is one of many or the only one. Each other independent claim in Exhibit C

references Oracle’s citation for claim 1 for similar elements and the same basis applies to

those claims. Oracle has changed is contention from being limited to the dx tool to being

26
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

targeted to the “Android SDK including the dx tool.” Google is continuing to perform its

own analysis on this change and will supplement these responses as necessary.

 All Asserted Claims: Oracle has not made any showing or specific allegation of indirect

infringement attributable to Google through inducement or contributory infringement. The

dx tool has substantial non-infringing uses as discussed above. Oracle has not demonstrated

that the code identified is actually used to perform a method by any direct infringer, thereby

precluding indirect infringement. Further, Oracle has not demonstrated that Google had

specific knowledge of this patent sufficient for either inducement or contributory

infringement. Oracle’s claims of indirect and contributory infringement also fail for reasons

cited above under the General Allegations heading.

 All Asserted Claims: Google served its Invalidity Contentions on January 18, 2011,

detailing its bases for the invalidity of each asserted claim of this patent. Google contends

that each asserted claim is invalid and therefore Google cannot infringe such a claim.

 The ‘447 PatentGeneral: For direct infringement Oracle accuses “device[s] running

Android,” for system claims, “storage devices containing Android code,” for “computer-

readable medium claims,” and “[a]nyone who uses a device running Android code” for

method claims. (See Ex. D to Oracle’s Final Patent L.R. 3-1 Contentions at 2.) Oracle has

not provided evidence of actual operation on an actual device, identification of specific

storage devices, or evidence of an actual performance of the method. Instead, Oracle states

that 1) “Oracle has determined that Android devices execute much of the code cited below

when a developer runs the Android Compatibility Test Suite (CTS)” and 2) “Oracle

determined that many of these code sections are executed as part of Google’s CTS testing.”

(See Ex. D at 1-2.) Oracle does not provide any of the factual evidence of this analysis and

the analysis does not support the conclusion that Oracle draws regarding the operation of

actual devices. First, even if true, executing “much” of the code, and “many of the[] code

sections,” cannot demonstrate infringement particularly when Oracle does not provide any

break down of what code or code portions it cites in its claim charts are admittedly not

executed based in its own analysis. Further, Oracle appears to now be limiting its allegation

27
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

to testing only and not alleging that any third party device runs a program that uses this

functionality outside of the testing context. Google is continuing to perform its own analysis,

which is hampered by Oracle’s failure to timely provide any factual basis and continued

failure to provide the complete factual basis for its contentions and Google will supplement

these responses as necessary. As an initial matter, however, Oracle’s statements are plainly

false with respect to the Gingerbread release. Further, to the extent the CTS checks for the

existence of certain files, that in and of itself does not amount to executing the functionality.

 Claims 1, 7, 10, and 16, and all dependent claims that depend therefrom: For these

claims, Oracle has failed to identify on a claim by claim basis in Exhibit D the actual

performance of any allegedly infringing method and has instead relied on general statements

such as “Android includes methods . . .,” or “devices that store, distribute, or run Android or

the Android SDK, including websites, servers, and mobile devices.” All of these claims

implicate the performance of a method and the charts in Exhibit D are devoid of any example

of any method being performed, thereby precluding a finding of infringement. Oracle has

not made a showing of infringement because it has not identified any alleged infringing act

or purported direct infringer for these claims and as discussed above, Oracle’s reliance on the

CTS and emulator as evidence of actual operation of a device is flawed.

 Claims 10, and 16, and all dependent claims that depend therefrom: These claims recite

the practice of steps in a closed rather than open manner i.e., without the benefit of inclusive

phrasing such as “comprising” in connection with the recitation of the steps. The material

cited by Oracle, even if it were implemented and used in a device in the form it is recited in

Exhibit D, would include steps not contained in the recited methods, thereby precluding

infringement of these claims. In view of the fact that Oracle has served its Final Patent L.R.

3-1 Contentions, it is no longer necessary for Google to provide the preceding “if it were

implemented” hypothetical response. Because Oracle still has not provided any evidence of

actual performance of a method on devices, however, Google is left with only the emulator

example to analyze. Google believes the same reasoning applies to the emulator example

and will supplement as it continues its investigation.

28
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 Claims 19, and all dependent claims that depend therefrom: For these claims, Oracle has

failed to identify on a claim by claim basis in Exhibit D any specific device that allegedly

infringes and has instead relied on general statements referring to “devices that run Android

or the Android SDK.” Oracle has not made a showing of infringement because it has not

identified any specific alleged infringing device or purported direct infringer for these claims,

and as discussed above, Oracle’s reliance on the CTS and emulator as evidence of actual

operation on a device is flawed.

 All Asserted Claims: Oracle has not made, and cannot make, a showing of infringement of

any asserted claim. Oracle has not identified any evidence of direct infringement of this

patent, i.e., any evidence that any user performs all of the elements of any valid and

enforceable claim. For example, Oracle's Infringement Contentions for this patent identifies

the class java.lang.SecurityManager as a requisite part of the allegedly infringing behavior.

(See, e.g., Exhibit D at p. 12.) However, Oracle has not identified any user or application

program that uses SecurityManager. Google does not use SecurityManager, and is not aware

of any third party that uses or has ever used SecurityManager. Google further states that,

prior to the commencement of this litigation, Google had already implemented changes to

disable SecurityManager-related functionality for the Gingerbread version of Android

(version 2.3), which was released on December 6, 2010. In the current version of Android,

as of December 6, 2010, users and application programs are prevented from even installing

an instance of SecurityManager. See java.lang.System.setSecurityManager().

 All Asserted Claims: For these claims, Oracle has failed to identify on a claim by claim

basis in Exhibit D how each claim is even capable of infringing in the absence of further

programming and/or configuration. All of these claims implicate the existence of “protection

domains” and “permissions” and the charts in Exhibit D, which only point to class

definitions, are devoid of any example of code written to create protection domains or

permissions, thereby precluding a finding of infringement. At most, the material referenced

in Exhibit D may provide a mechanism that would allow a programmer to write code that

29
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

may satisfy one or more elements of these claims, but such a finding would not provide

evidence of infringement even under a capable of infringing analysis.

 All Asserted Claims: Oracle has not made any showing or specific allegation of indirect

infringement attributable to Google through inducement or contributory infringement.

Oracle has not demonstrated that the code identified is actually used to perform a method by

any direct infringer, thereby precluding indirect infringement. Further, Oracle has not

demonstrated that Google had specific knowledge of this patent sufficient for either

inducement or contributory infringement. Oracle’s claims of indirect and contributory

infringement also fail for reasons cited above under the General Allegations heading.

 Oracle’s position is especially implausible given that Google does not use the identified

SecurityManager, and is not aware of any third party that uses or has ever used

SecurityManager, and prior to the commencement of this litigation, Google had already

implemented changes to disable SecurityManager-related functionality for the Gingerbread

version of Android (version 2.3), which was released on December 6, 2010 and that in the

current version of Android, as of December 6, 2010, users and application programs are

prevented from even installing an instance of SecurityManager. See

java.lang.System.setSecurityManager(). Rather than attempt to demonstrate that this accused

functionality is actually used, or indeed necessarily used, in Accused Instrumentalities,

Oracle has instead represented that its position is that “the statement that ‘Google does not

use SecurityManager’ is not true.” (March 13, 2011 Letter, Peters to Weingaertner.) The

letter lacks any explanation of how Google (or anyone else for that matter) allegedly uses

SecurityManager. As a result, Oracle cannot establish infringement as a matter of law.

Indeed, it appears Oracle has acquiesced and is no longer alleging that SecurityManager is

used as intended in any non-testing scenario and has changed it allegations to be limited to

“when a developer runs the Android Compatability Test Suite” and “as part of Google’s CTS

testing,” (see Ex. D at 1-2) although its allegations relating to the testing scenario are flawed

as well for the reasons stated herein. Google continues to analyze this new allegation and

will supplement as it continues its investigation.

30
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 All Asserted Claims: Google served its Invalidity Contentions on January 18, 2011,

detailing its bases for the invalidity of each asserted claim of this patent. Google contends

that each asserted claim is invalid and therefore Google cannot infringe such a claim.

The ‘476 Patent

 General: For direct infringement Oracle accuses “device[s] running Android,” for system

claims, “storage devices containing Android code,” for “computer-readable medium claims,”

and “[a]nyone who uses a device running Android code” for method claims. (See Ex. E to

Oracle’s Final Patent L.R. 3-1 Contentions at 2.) Oracle has not provided evidence of actual

operation on an actual device, identification of specific storage devices, or evidence of an

actual performance of the method. Instead, Oracle states that 1) “Oracle has determined that

Android devices execute much of the code cited below when a developer runs the Android

Compatibility Test Suite (CTS)” and 2) “Oracle determined that many of these code sections

are executed as part of Google’s CTS testing.” (See Ex. E at 1-2.) Oracle does not provide

any of the factual evidence of this analysis and the analysis does not support the conclusion

that Oracle draws regarding the operation of actual devices. First, even if true, executing

“much” of the code, and “many of the[] code sections,” cannot demonstrate infringement

particularly when Oracle does not provide any break down of what code or code portions it

cites in its claim charts are admittedly not executed based in its own analysis. Further,

Oracle appears to now be limiting its allegation to testing only and not alleging that any third

party device runs a program that uses this functionality outside of the testing context. Google

is continuing to perform its own analysis, which is hampered by Oracle’s failure to timely

provide any factual basis and continued failure to provide the complete factual basis for its

contentions and Google will supplement these responses as necessary. As an initial matter,

however, Oracle’s statements are plainly false with respect to the Gingerbread release.

Further, to the extent the CTS checks for the existence of certain files, that in and of itself

does not amount to executing the functionality.

 Claims 1, 5, 6, 10, 14, and 15, and all dependent claims that depend therefrom: For

these claims, Oracle has failed to identify on a claim by claim basis in Exhibit E the actual

31
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

performance of any allegedly infringing method and has instead relied on general statements

such as “Android includes methods . . .,” or “devices that store, distribute, or run Android or

the Android SDK, including websites, servers, and mobile devices.” All of these claims

implicate the performance of a method and the charts in Exhibit E are devoid of any example

of any method being performed, thereby precluding a finding of infringement. Oracle has

not made a showing of infringement because it has not identified any alleged infringing act

or purported direct infringer for these claims and as discussed above, Oracle’s reliance on the

CTS and emulator as evidence of actual operation of a device is flawed.

 Claims 10, 14, and 15, and all dependent claims that depend therefrom: These claims

recite the practice of steps in a closed rather than open manner, i.e., without the benefit of

inclusive phrasing such as “comprising” in connection with the recitation of the steps. The

material cited by Oracle, even if it were implemented and used in a device in the form it is

recited in Exhibit D, would include steps not contained in the recited methods, thereby

precluding infringement of these claims. In view of the fact that Oracle has served its Final

Patent L.R. 3-1 Contentions, it is no longer necessary for Google to provide the preceding “if

it were implemented” hypothetical response. Because Oracle still has not provided any

evidence of actual performance of a method on devices, however, Google is left with only

the emulator example to analyze. Google believes the same reasoning applies to the

emulator example and will supplement as it continues its investigation.

 Claims 19, and all dependent claims that depend therefrom: For these claims, Oracle

has failed to identify on a claim by claim basis in Exhibit E any specific device that allegedly

infringes and has instead relied on a reference to claim 1 which contains a general statement

that “Android includes methods. . . .” Oracle has not made a showing of infringement

because it has not identified any specific alleged infringing device or purported direct

infringer for these claims, and as discussed above, Oracle’s reliance on the CTS and emulator

as evidence of actual operation of a device is flawed.

 All Asserted Claims: Oracle has not made, and cannot make, a showing of infringement of

any asserted claim. Oracle has not identified any evidence of direct infringement of this

32
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

patent, i.e., any evidence that any user performs all of the elements of any valid and

enforceable claim. For example, Oracle's Infringement Contentions for this patent identifies

the class java.lang.SecurityManager as a requisite part of the allegedly infringing behavior.

See, e.g., Exhibit E at p. 13. However, Oracle has not identified any user or application

program that uses SecurityManager. Google does not use SecurityManager, and is not aware

of any third party that uses or has ever used SecurityManager. Google further states that,

prior to the commencement of this litigation, Google had already implemented changes to

disable SecurityManager-related functionality for the Gingerbread version of Android

(version 2.3), which was released on December 6, 2010. In the current version of Android,

as of December 6, 2010, users and application programs are prevented from even installing

an instance of SecurityManager. See java.lang.System.setSecurityManager().

 All Asserted Claims: For these claims, Oracle has failed to identify on a claim by claim

basis in Exhibit E how each claim is even capable of infringing in the absence of further

programming and/or configuration. All of these claims implicate the existence of a

“protection domain” and “permissions” and the charts in Exhibit E, which only point to class

definitions, are devoid of any example of code written to create a protection domain or

permissions, thereby precluding a finding of infringement. At most, the material referenced

in Exhibit E may provide a mechanism that would allow a programmer to write code that

may satisfy one or more elements of these claims, but such a finding would not provide

evidence of infringement even under a capable of infringing analysis.

 All Asserted Claims: Oracle has not made any showing or specific allegation of indirect

infringement attributable to Google through inducement or contributory infringement.

Oracle has not demonstrated that the code identified is actually used to perform a method by

any direct infringer, thereby precluding indirect infringement. Further, Oracle has not

demonstrated that Google had specific knowledge of this patent sufficient for either

inducement or contributory infringement. Oracle’s claims of indirect and contributory

infringement also fail for reasons cited above under the General Allegations heading.

33
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 Oracle’s position is especially implausible given that Google does not use the identified

SecurityManager, and is not aware of any third party that uses or has ever used

SecurityManager, and prior to the commencement of this litigation, Google had already

implemented changes to disable SecurityManager-related functionality for the Gingerbread

version of Android (version 2.3), which was released on December 6, 2010 and that in the

current version of Android, as of December 6, 2010, users and application programs are

prevented from even installing an instance of SecurityManager. See

java.lang.System.setSecurityManager(). Rather than attempt to demonstrate that this accused

functionality is actually used, or indeed necessarily used, in Accused Instrumentalities,

Oracle has instead represented that its position is that “the statement that ‘Google does not

use SecurityManager’ is not true.” (March 13, 2011 Letter, Peters to Weingaertner.) The

letter lacks any explanation of how Google (or anyone else for that matter) allegedly uses

SecurityManager. As a result, Oracle cannot establish infringement as a matter of law.

Indeed, it appears Oracle has acquiesced and is no longer alleging that SecurityManager is

used as intended in any non-testing scenario and has changed it allegations to be limited to

“when a developer runs the Android Compatability Test Suite” and “as part of Google’s CTS

testing,” (see Ex. E at 1-2) although its allegations relating to the testing scenario are flawed

as well for the reasons stated herein. Google continues to analyze this new allegation and

will supplement as it continues its investigation.

 All Asserted Claims: Google served its Invalidity Contentions on January 18, 2011,

detailing its bases for the invalidity of each asserted claim of this patent. Google contends

that each asserted claim is invalid and therefore Google cannot infringe such a claim.

The ‘520 Patent

 For direct infringement Oracle accuses “computers running the Android SDK” for apparatus

claims, “storage devices containing the Android SDK,” for computer-readable medium

claims, and “[a]nyone who uses the Android SDK” for method claims. (See Ex. F to

Oracle’s Final Patent L.R. 3-1 Contentions at 1.) Oracle has not provided evidence of actual

operation on an actual device, identification of specific storage devices, or evidence of an

34
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

actual performance of the method. Instead, Oracle states that 1) “[t]he Android code cited

below necessarily infringes because developers must run javac and the Android dx tool to

build Android applications and run the Dalvik virtual machine to test them,” 2) “the bytecode

execution simulator in the dxtool will always process each <clinit> method, including those

that initialize static arrays” and 3) “[t]he Android SDK is a tool used purely to build and test

Android programs.” (See Ex. F at 1.) In its Final Patent L.R. 3-1 Contentions Oracle

provides only an illustrative example in its cover document of the dx tool as purportedly

having no substantial non-infringing uses. For one, this statement focuses on the dx tool

even though the Android SDK is identified as the Accused Instrumentality. Further, setting

aside Google’s position that all uses of the dx tool are non-infringing, Oracle’s contentions

are still factually incorrect as the dx tool has a myriad of substantial non-infringing uses,

which are not even purported to be infringing by Oracle. The dx tool can translate Dalvik

assembly language into Dalvik bytecode; it contains a .class file dumper/disassembler; it can

perform partial translations of .class files; it can generate a human-readable dump of.dex

files; and it provides a code annotation mode called “annotool.” This is merely an exemplary

list and an example of how, if Oracle made an effort to meet its burden on this issue, Google

could provide a response. Although the bulk of the claim chart refers only to the dx tool,

Oracle has changed its allegations to purport to accuse the Android SDK. Google is

continuing to perform its own analysis on this change and will supplement these responses as

necessary.

 Claims 1, 6, and 18, and all dependent claims that depend therefrom: For these claims,

Oracle has failed to identify on a claim by claim basis in Exhibit F the actual performance of

any allegedly infringing method and has instead relied on general statements referring to

“Android and its development environment” All of these claims implicate the

performance of a method and the charts in Exhibit F are devoid of any example of any

method being performed, thereby precluding a finding of infringement. Oracle has not made

a showing of infringement because it has not identified any allegedly infringing act or

purported direct infringer for these claims. Oracle’s bare assertion that “[t]he Android code

35
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

cited below necessarily infringes because developers must run javac and the Android dx tool

to build Android applications and run the Dalvik virtual machine to test them,” (see Ex. F at

1) does not amount to proof of an actual use that the dx tool and associated code shown in the

charts has been executed in the manner alleged.

 Claims 12, and all dependent claims that depend therefrom: For these claims, Oracle has

failed to identify on a claim by claim basis in Exhibit F any specific device that allegedly

infringes and has instead relied on general statements referring to “[a]ny device or computer

which can run the Android dx tool.” Oracle has not made a showing of infringement because

it has not identified any specific allegedly infringing device or purported direct infringer for

these claims and has yet to provide them in supplemental disclosures under the Patent Local

Rules. Oracle’s bare assertion that “[t]he Android code cited below necessarily infringes

because developers must run javac and the Android dx tool to build Android applications and

run the Dalvik virtual machine to test them,” (see Ex. F at 1) does not amount to proof of an

actual use that the dx tool and associated code shown in the charts has been executed in a

device in the manner alleged.

 Claim 1 and all dependent claims that depend therefrom: Oracle accuses its own javac

compiler as an element of its allegations for United States Patent No. 6,061,520. Further, to

the extent Oracle is relying on a joint infringement theory for these claims, Oracle cannot

establish the requisite direction or control. Upon information and belief, Google continues to

expect that discovery will reveal that alleged direct infringers, if specifically identified,

would be licensed to use that product. Until Oracle identifies on a claim by claim basis the

identity of alleged direct infringers performing each step of each claim and Google receives

complete production of Oracle’s licenses, Google cannot respond completely.

 All Asserted Claims: As presently understood, Oracle has not made a showing of

infringement of claim 1 at least because the material cited for the “simulating execution of

the byte codes of the clinit method against a memory without executing the byte codes to

identify the static initialization of the array by the preloader” element at pages 9-19 of

Exhibit F does not meet the claim element even if it were implemented and used in a device

36
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

in the form it is recited in Exhibit F and Oracle has not made a showing of infringement of

claim 6 because the material cited for the “play executing the code without running the code

on the component to identify the operation if the code were run by the processing

component” element at pages 39-44 of Exhibit F does not meet the claim element even if it

were implemented and used in a device in the form it is recited in Exhibit F because it would

not employ a method of simulating execution or play executing in that there would be no

actual execution of the byte codes while identifying an array initialization instruction. The

material cited for this element is a pattern matching algorithm in which bytecodes are not

executed and/or in which there is no simulation of execution of the bytecodes. Each other

independent claim in Exhibit F references Oracle’s citation for claim 1 or claim 6 for a

similar element and the same basis applies to those claims. (See, e.g., Claim 12 (“See claim

1, supra” in chart for “play executing the clinit method . . .” element), Claim 18 (“See claim

6, supra” in chart for “simulating execution . . .” element).) Although the bulk of the claim

chart refers only to the dx tool, Oracle has changed its allegations to purport to accuse the

Android SDK. Google is continuing to perform its own analysis on this change and will

supplement these responses as necessary.

 All Asserted Claims: As presently understood, Oracle has not made a showing of

infringement for any of the asserted claims at least because the material cited in Exhibit F for

elements requiring creating or storing an instruction to perform a particular function, e.g.,

Claim 1 (“storing . . . an instruction requesting the static initialization of the array), Claims 6,

18 (“creating an instruction for the processing component to perform the operation”), Claim

12 (“creating an instruction to perform the static initialization”), does not meet the claim

elements even if it were implemented and used in a device in the form it is recited in Exhibit

F because (1) it would not employ a method that creates or stores a single instruction to

perform each of the respective accused functions in that there are multiple instructions

identified in Exhibit F, and none of them alone can be used to create and initialize the recited

data structure with values contained in the instruction; and/or (2) it would not employ a

method that creates or stores a constant pool entry. Although the bulk of the claim chart

37
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

refers only to the dx tool, Oracle has changed its allegations to purport to accuse the Android

SDK. Google is continuing to perform its own analysis on this change and will supplement

these responses as necessary.

 All Asserted Claims: Oracle has not made any showing or specific allegation of indirect

infringement attributable to Google through inducement or contributory infringement. The

dx tool has a myriad of substantial non-infringing uses, which are not even purported to be

infringing by Oracle. Oracle has not demonstrated that the code identified is actually used to

perform a method by any direct infringer, thereby precluding indirect infringement. Further,

Oracle has not demonstrated that Google had specific knowledge of this patent sufficient for

either inducement or contributory infringement. Oracle’s claims of indirect and contributory

infringement also fail for reasons cited above under the General Allegations heading.

 All Asserted Claims: Google served its Invalidity Contentions on January 18, 2011,

detailing its bases for the invalidity of each asserted claim of this patent. Google contends

that each asserted claim is invalid and therefore Google cannot infringe such a claim.

The ‘720 Patent

 General: For direct infringement Oracle accuses “device[s] running Android,” for system

claims, “storage devices containing Android code,” for computer-readable medium claims,

and “[a]nyone who uses a device running Android code” for method claims. (See Ex. G to

Oracle’s Final Patent L.R. 3-1 Contentions at 2.) Oracle has not provided evidence of actual

operation on an actual device, identification of specific storage devices, or evidence of an

actual performance of the method. Instead, Oracle states that 1) “Oracle has determined that

Android devices execute much of the code cited below every time the devices start up,” 2)

“Other cited code is invoked when a developer runs the Android Compatibility Test Suite

(CTS),” and 3) “Oracle determined that many of these code portions are executed even

before a user can interact with a device” based on analysis using the Android Compatibility

Test Suite (CTS) and a “mobile device emulator” included with the Android SDK. (See Ex.

G at 1.) Oracle does not provide any of the factual evidence of this analysis and the analysis

does not support the conclusion that Oracle draws regarding the operation of actual devices.

38
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

First, even if true, executing “much” of the code, and “many of the[] code portions,” cannot

demonstrate infringement particularly when Oracle does not provide any break down of what

code or code portions it cites in its claim charts are admittedly not executed based in its own

analysis. Second, although a trace log of the emulator may show that certain methods are

called, it does not mean the CTS checks for the existence of these methods, and, as such, a

device could pass compatibility testing with modifications that would result in those methods

not being called. Google is continuing to perform its own analysis, which is hampered by

Oracle’s failure to timely provide any factual basis and continued failure to provide the

complete factual basis for its contentions and Google will supplement these responses as

necessary.

 Claims 1 and 20, and all dependent claims that depend therefrom: For these claims,

Oracle has failed to identify on a claim by claim basis in Exhibit G any specific device that

allegedly infringes and has instead relied on general statements referring to “[a] system

running Android.” Oracle has not made a showing of infringement because it has not

identified any specific alleged infringing device or purported direct infringer for these claims,

and as discussed above, Oracle’s reliance on the CTS and emulator as evidence of actual

operation of a device is flawed.

 Claim 10, and all dependent claims that depend therefrom: For these claims, Oracle has

failed to identify on a claim by claim basis in Exhibit G the actual performance of any

allegedly infringing method and has instead relied on a reference to claim 1, which contains a

general statement “[a] system running Android” Because claim 10 is a method claim,

this allegation is deficient on its face. All of these claims implicate the performance of a

method and the charts in Exhibit G are devoid of any example of any method being

performed, thereby precluding a finding of infringement. Oracle has not made a showing of

infringement because it has not identified any alleged infringing act or purported direct

infringer for these claims and as discussed above, Oracle’s reliance on the CTS and emulator

as evidence of actual operation of a device is flawed.

39
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 All Asserted Claims: As presently understood, Oracle has not made a showing of

infringement of claim 1 even if the materials cited in Exhibit G were implemented and used

in a device in the form recited at least because:

o The identified functionality, e.g., for element 1-c, does not dynamically identify

classes to be preloaded.

o The identified functionality does not both (i) “clone the [master runtime system

process] memory space as a child runtime system process” and at the same time

also (ii) “defer copying of the memory space of the master runtime system

process.”

o The identified fork functionality does not clone the clone the memory space of the

master runtime system process as a child runtime system process.

In view of the fact that Oracle has served its Final Patent L.R. 3-1 Contentions, it is no longer

necessary for Google to provide the preceding “if it were implemented” hypothetical

response. Because Oracle still has not provided any evidence of actual performance of a

method on devices, however, Google is left with only the emulator example to analyze.

Google believes the same reasoning applies to the emulator example and will supplement as

it continues its investigation.

 All Asserted Claims: Oracle has not made any showing or specific allegation of indirect

infringement attributable to Google through inducement or contributory infringement.

Oracle has not demonstrated that the code identified is actually used to perform a method by

any direct infringer, thereby precluding indirect infringement. Further, Oracle has not

demonstrated that Google had specific knowledge of this patent sufficient for either

inducement or contributory infringement. Oracle’s claims of indirect and contributory

infringement also fail for reasons cited above under the General Allegations heading.

 All Asserted Claims: Google served its Invalidity Contentions on January 18, 2011,

detailing its bases for the invalidity of each asserted claim of this patent. Google contends

that each asserted claim is invalid and therefore Google cannot infringe such a claim.

40
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

All Patents and Asserted Claims

 Oracle has not made any showing or any specific allegation that Google directed and

controlled other parties to the extent multiple parties are required to infringe a claim. As

presently understood, Oracle cannot make this showing. Because Oracle has served its Final

Patent L.R. 3-1 Contentions without identifying specific examples of direct infringement,

Google is left with significant ambiguity. For example, it is believed that Oracle’s

allegations regarding the ‘520 patent and in particular that developers must run Oracle’s

javac.exe, implicate joint infringement issues and that Oracle cannot show Google exerts

direction and control over Oracle such that Google is a direct infringer as claimed by Oracle.

Google reiterates that the above contentions are being made prematurely in view of

Oracle’s substantive supplementation three weeks ago—which contained some substantial

departures from prior positions held for months—in view of inadequate disclosures by Oracle, as

well as in advance of any final claim construction rulings. Google reserves the right to amend

and supplement this response as it obtains additional information regarding Oracle’s contentions,

as well as after any claim construction order.

41
DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO PLAINTIFF’S INTERROGATORIES,

SET ONE, NO. 3, CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

DATED: April 27, 2011

KING & SPALDING LLP

By: /s/ Scott T. Weingaertner

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street – Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

ATTORNEYS FOR DEFENDANT
GOOGLE INC.

CERTIFICATE OF SERVICE CIVIL ACTION NO. CV 10-03561

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

CERTIFICATE OF SERVICE

 I hereby certify that on this day, April 27, 2011, I served a true and correct copy of

DEFENDANT GOOGLE INC.’S FOURTH SUPPLEMENTAL RESPONSES TO

PLAINTIFF’S INTERROGATORIES, SET ONE, NO. 3 via e-mail on the following

individuals:

David Boies
Boies Schiller and Flexner
333 Main Street
Armonk, NY 10504
914-749-8201
Fax: 914-749-8300
Email: Dboies@bsfllp.com

Deborah Kay Miller
Oracle USA, Inc Legal Department
500 Oracle Parkway
Redwood Shores, CA 94065
(650) 506-0563
Email: Deborah.Miller@oracle.com

Dorian Estelle Daley
500 Oracle Parkway
Redwood City, CA 94065
(650) 506-5200
Fax: (650) 506-7114
Email: Dorian.daley@oracle.com

Matthew M. Sarboraria
500 Oracle Parkway
Redwood City, CA 94065
Fax: (650) 506-7114
Email: matthew.sarboraria@oracle.com

Steven Christopher Holtzman
Boies, Schiller & Flexner LLP
1999 Harrison Street
Suite 900
Oakland, CA 94612
510-874-1000
Fax: 510-874-1460
Email: Sholtzman@bsfllp.com

Counsel of record for Morrison Foerster:
Michael A. Jacobs
Marc. David Peters
Daniel P. Muino
Roman A. Swoopes
Ruchika Agrawal
Email: OracleMoFoServiceList@mofo.com

April 27, 2011. /s/ Steven T. Snyder
 Steven T. Snyder

 1

Exhibit G

The Android NDK is a companion tool to the Android SDK that lets you build performance-critical portions of your apps in
native code. It provides headers and libraries that allow you to build activities, handle user input, use hardware sensors,
access application resources, and more, when programming in C or C++. If you write native code, your applications are
still packaged into an .apk file and they still run inside of a virtual machine on the device. The fundamental Android
application model does not change.

Using native code does not result in an automatic performance increase, but always increases application complexity. If
you have not run into any limitations using the Android framework APIs, you probably do not need the NDK. Read What is
the NDK? for more information about what the NDK offers and whether it will be useful to you.

The NDK is designed for use only in conjunction with the Android SDK. If you have not already installed and setup the
Android SDK, please do so before downloading the NDK.

Revisions

The sections below provide information and notes about successive releases of the NDK, as denoted by revision number.

 Android NDK, Revision 5c (June 2011)

This release of the NDK does not include any new features compared to r5b. The r5c release addresses the
following problems in the r5b release:

Important bug fixes:

 ndk-build: Fixed a rare bug that appeared when trying to perform parallel builds of debuggable
projects.

 Fixed a typo that prevented LOCAL_WHOLE_STATIC_LIBRARIES to work correctly with the new
toolchain and added documentation for this in docs/ANDROID-MK.html.

 Fixed a bug where code linked against gnustl_static crashed when run on platform releases
older than API level 8 (Android 2.2).

 ndk-gdb: Fixed a bug that caused a segmentation fault when debugging Android 3.0 or newer
devices.

 <android/input.h>: Two functions that were introduced in API level 9 (Android 2.3) were incorrect
and are fixed. While this breaks the source API, the binary interface to the system is unchanged. The
incorrect functions were missing a history_index parameter, and the correct definitions are shown

Download the Android NDK

Platform Package Size MD5 Checksum

Windows android-ndk-r5c-windows.zip 61627716 bytes 2c7423842fa0f46871eab118495d4b45

Mac OS X (intel) android-ndk-r5c-darwin-x86.tar.bz2 50714712 bytes 183bfbbd85cf8e4c0bd7531e8803e75d

Linux 32/64-bit (x86) android-ndk-r5c-linux-x86.tar.bz2 44539890 bytes 7659dfdc97026ed1d913e224d0531f61

6/14/2011Android NDK | Android Developers

Page 1of6http://developer.android.com/sdk/ndk/index.html

below:

float AMotionEvent_getHistoricalRawX(const AInputEvent* motion_event,
 size_t pointer_index,
 size_t history_index);
float AMotionEvent_getHistoricalRawY(const AInputEvent* motion_event,
 size_t pointer_index,
 size_t history_index);

 Updated the C library ARM binary for API level 9 (Android 2.3) to correctly expose at link time new
functions that were added in that API level (for example, pthread_rwlock_init).

Minor improvements and fixes:

 Object files are now always linked in the order they appear in LOCAL_SRC_FILES. This was not the
case previously because the files were grouped by source extensions instead.

 When import-module fails, it now prints the list of directories that were searched. This is useful to
check that the NDK_MODULE_PATH definition used by the build system is correct.

 When import-module succeeds, it now prints the directory where the module was found to the log
(visible with NDK_LOG=1).

 Increased the build speed of debuggable applications when there is a very large number of include
directories in the project.

 ndk-gdb: Better detection of adb shell failures and improved error messages.

 <pthread.h>: Fixed the definition of PTHREAD_RWLOCK_INITIALIZER for API level 9 (Android
2.3) and higher.

 Fixed an issue where a module could import itself, resulting in an infinite loop in GNU Make.

 Fixed a bug that caused the build to fail if LOCAL_ARM_NEON was set to true (typo in
build/core/build-binary.mk).

 Fixed a bug that prevented the compilation of .s assembly files (.S files were okay).

 Android NDK, Revision 5b (January 2011)

This release of the NDK does not include any new features compared to r5. The r5b release addresses the
following problems in the r5 release:

 The r5 binaries required glibc 2.11, but the r5b binaries are generated with a special toolchain that targets
glibc 2.7 or higher instead. The Linux toolchain binaries now run on Ubuntu 8.04 or higher.

 Fixes a compiler bug in the arm-linux-androideabi-4.4.3 toolchain. The previous binary generated invalid
thumb instruction sequences when dealing with signed chars.

 Adds missing documentation for the "gnustl_static" value for APP_STL, that allows you to link against a
static library version of GNU libstdc++.

 The following ndk-build issues are fixed:

 A bug that created inconsistent dependency files when a compilation error occured on Windows. This
prevented a proper build after the error was fixed in the source code.

 A Cygwin-specific bug where using very short paths for the Android NDK installation or the project
path led to the generation of invalid dependency files. This made incremental builds impossible.

 A typo that prevented the cpufeatures library from working correctly with the new NDK toolchain.

 Builds in Cygwin are faster by avoiding calls to cygpath -m from GNU Make for every source or
object file, which caused problems with very large source trees. In case this doesn't work properly,
define NDK_USE_CYGPATH=1 in your environment to use cygpath -m again.

 The Cygwin installation now notifies the user of invalid installation paths that contain spaces.
Previously, an invalid path would output an error that complained about an incorrect version of GNU

6/14/2011Android NDK | Android Developers

Page 2of6http://developer.android.com/sdk/ndk/index.html

Make, even if the right one was installed.

 Fixed a typo that prevented the NDK_MODULE_PATH environment variable from working properly when it
contained multiple directories separated with a colon.

 The prebuilt-common.sh script contains fixes to check the compiler for 64-bit generated machine
code, instead of relying on the host tag, which allows the 32-bit toolchain to rebuild properly on Snow
Leopard. The toolchain rebuild scripts now also support using a 32-bit host toolchain.

 A missing declaration for INET_ADDRSTRLEN was added to <netinet/in.h>.

 Missing declarations for IN6_IS_ADDR_MC_NODELOCAL and IN6_IS_ADDR_MC_GLOBAL were added to
<netinet/in6.h>.

 'asm' was replaced with '__asm__' in <asm/byteorder.h> to allow compilation with -std=c99.

 Android NDK, Revision 5 (December 2010)

This release of the NDK includes many new APIs, most of which are introduced to support the development of
games and similar applications that make extensive use of native code. Using the APIs, developers have direct
native access to events, audio, graphics and window management, assets, and storage. Developers can also
implement the Android application lifecycle in native code with help from the new NativeActivity class. For
detailed information describing the changes in this release, read the CHANGES.HTML document included in the
downloaded NDK package.

General notes:

 Adds support for native activities, which allows you to implement the Android application lifecycle in
native code.

 Adds native support for the following:

 Input subsystem (such as the keyboard and touch screen)

 Access to sensor data (accelerometer, compass, gyroscope, etc).

 Event loop APIs to wait for things such as input and sensor events.

 Window and surface subsystem

 Audio APIs based on the OpenSL ES standard that support playback and recording as well as
control over platform audio effects

 Access to assets packaged in an .apk file.

 Includes a new toolchain (based on GCC 4.4.3), which generates better code, and can also now be
used as a standalone cross-compiler, for people who want to build their stuff with ./configure &&
make. See docs/STANDALONE-TOOLCHAIN.html for the details. The binaries for GCC 4.4.0 are still
provided, but the 4.2.1 binaries were removed.

 Adds support for prebuilt static and shared libraries (docs/PREBUILTS.html) and module exports and
imports to make sharing and reuse of third-party modules much easier (docs/IMPORT-MODULE.html
explains why).

 Provides a default C++ STL implementation (based on STLport) as a helper module. It can be used
either as a static or shared library (details and usage examples are in
sources/android/stlport/README). Prebuilt binaries for STLport (static or shared) and GNU libstdc++
(static only) are also provided if you choose to compile against those libraries instead of the default
C++ STL implementation. C++ Exceptions and RTTI are not supported in the default STL
implementation. For more information, see docs/CPLUSPLUS-SUPPORT.HTML.

 Includes improvements to the cpufeatures helper library that improves reporting of the CPU type
(some devices previously reported ARMv7 CPU when the device really was an ARMv6). We
recommend developers that use this library to rebuild their applications then upload to Market to
benefit from the improvements.

 Adds an EGL library that lets you create and manage OpenGL ES textures and services.

6/14/2011Android NDK | Android Developers

Page 3of6http://developer.android.com/sdk/ndk/index.html

 Adds new sample applications, native-plasma and native-activity, to demonstrate how to
write a native activity.

 Includes many bugfixes and other small improvements; see docs/CHANGES.html for a more detailed
list of changes.

 Android NDK, Revision 4b (June 2010)

NDK r4b notes:

Includes fixes for several issues in the NDK build and debugging scripts — if you are using NDK r4, we
recommend downloading the NDK r4b build. For detailed information describing the changes in this
release, read the CHANGES.TXT document included in the downloaded NDK package.

General notes:

 Provides a simplified build system through the new ndk-build build command.

 Adds support for easy native debugging of generated machine code on production devices through
the new ndk-gdb command.

 Adds a new Android-specific ABI for ARM-based CPU architectures, armeabi-v7a. The new ABI
extends the existing armeabi ABI to include these CPU instruction set extensions:

 Thumb-2 instructions

 VFP hardware FPU instructions (VFPv3-D16)

 Optional support for ARM Advanced SIMD (NEON) GCC intrinsics and VFPv3-D32. Supported
by devices such as Verizon Droid by Motorola, Google Nexus One, and others.

 Adds a new cpufeatures static library (with sources) that lets your app detect the host device's
CPU features at runtime. Specifically, applications can check for ARMv7-A support, as well as VFPv3-
D32 and NEON support, then provide separate code paths as needed.

 Adds a sample application, hello-neon, that illustrates how to use the cpufeatures library to
check CPU features and then provide an optimized code path using NEON instrinsics, if supported by
the CPU.

 Lets you generate machine code for either or both of the instruction sets supported by the NDK. For
example, you can build for both ARMv5 and ARMv7-A architectures at the same time and have
everything stored to your application's final .apk.

 To ensure that your applications are available to users only if their devices are capable of running
them, Android Market now filters applications based on the instruction set information included in your
application — no action is needed on your part to enable the filtering. Additionally, the Android system
itself also checks your application at install time and allows the installation to continue only if the
application provides a library that is compiled for the device's CPU architecture.

 Adds support for Android 2.2, including a new stable API for accessing the pixel buffers of Bitmap
objects from native code.

 Android NDK, Revision 3 (March 2010)

General notes:

 Adds OpenGL ES 2.0 native library support.

 Adds a sample application,hello-gl2, that illustrates the use of OpenGL ES 2.0 vertex and
fragment shaders.

 The toolchain binaries have been refreshed for this release with GCC 4.4.0, which should generate
slightly more compact and efficient machine code than the previous one (4.2.1). The NDK also still
provides the 4.2.1 binaries, which you can optionally use to build your machine code.

 Android NDK, Revision 2 (September 2009)

6/14/2011Android NDK | Android Developers

Page 4of6http://developer.android.com/sdk/ndk/index.html

Originally released as "Android 1.6 NDK, Release 1".

General notes:

 Adds OpenGL ES 1.1 native library support.

 Adds a sample application, san-angeles, that renders 3D graphics through the native OpenGL ES
APIs, while managing activity lifecycle with a GLSurfaceView object.

 Android NDK, Revision 1 (June 2009)

Originally released as "Android 1.5 NDK, Release 1".

General notes:

 Includes compiler support (GCC) for ARMv5TE instructions, including Thumb-1 instructions.

 Includes system headers for stable native APIs, documentation, and sample applications.

Installing the NDK

Installing the NDK on your development computer is straightforward and involves extracting the NDK from its download
package.

Before you get started make sure that you have downloaded the latest Android SDK and upgraded your applications and
environment as needed. The NDK is compatible with older platform versions but not older versions of the SDK tools. Also,
take a moment to review the System and Software Requirements for the NDK, if you haven't already.

To install the NDK, follow these steps:

1. From the table at the top of this page, select the NDK package that is appropriate for your development computer and
download the package.

2. Uncompress the NDK download package using tools available on your computer. When uncompressed, the NDK files
are contained in a directory called android-ndk-<version>. You can rename the NDK directory if necessary and
you can move it to any location on your computer. This documentation refers to the NDK directory as <ndk>.

You are now ready to start working with the NDK.

Getting Started with the NDK

Once you've installed the NDK successfully, take a few minutes to read the documentation included in the NDK. You can
find the documentation in the <ndk>/docs/ directory. In particular, please read the OVERVIEW.HTML document
completely, so that you understand the intent of the NDK and how to use it.

If you used a previous version of the NDK, take a moment to review the list of NDK changes in the CHANGES.HTML
document.

Here's the general outline of how you work with the NDK tools:

1. Place your native sources under <project>/jni/...

2. Create <project>/jni/Android.mk to describe your native sources to the NDK build system

3. Optional: Create <project>/jni/Application.mk.

4. Build your native code by running the 'ndk-build' script from your project's directory. It is located in the top-level NDK

6/14/2011Android NDK | Android Developers

Page 5of6http://developer.android.com/sdk/ndk/index.html

directory:

cd <project>
<ndk>/ndk-build

The build tools copy the stripped, shared libraries needed by your application to the proper location in the
application's project directory.

5. Finally, compile your application using the SDK tools in the usual way. The SDK build tools will package the shared
libraries in the application's deployable .apk file.

For complete information on all of the steps listed above, please see the documentation included with the NDK package.

Sample Applications

The NDK includes sample Android applications that illustrate how to use native code in your Android applications. For
more information, see Sample Applications.

Discussion Forum and Mailing List

If you have questions about the NDK or would like to read or contribute to discussions about it, please visit the android-
ndk group and mailing list.

Except as noted, this content is licensed under Creative Commons Attribution 2.5. For details and restrictions, see the Content
License.
Site Terms of Service - Privacy Policy - Brand Guidelines

6/14/2011Android NDK | Android Developers

Page 6of6http://developer.android.com/sdk/ndk/index.html

Exhibit H
FILED UNDER SEAL

Exhibit I
FILED UNDER SEAL

Exhibit J
FILED UNDER SEAL

 1

Exhibit K

