Oracle America, Inc. v. Google Inc. Doc. 36 Att. 4

EXHIBIT D

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/36/4.html
http://dockets.justia.com/

US007426720B1

a2 United States Patent

Fresko

US 7,426,720 B1
*Sep. 16, 2008

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)
(1)
(52)

(58)

(56)

SYSTEM AND METHOD FOR DYNAMIC
PRELOADING OF CLASSES THROUGH
MEMORY SPACE CLONING OF A MASTER
RUNTIME SYSTEM PROCESS

Inventor: Nedim Fresko, San Francisco, CA (US)

Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 745 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 10/745,023

Filed: Dec. 22,2003

Int. CL.

GO6F 9/45 (2006.01)

US.CL ... 717/140, 717/151; 717/152;

717/153;718/1

717/151-153,
717/140; 718/1
See application file for complete search history.

Field of Classification Search

References Cited

U.S. PATENT DOCUMENTS

6,823,509 B2* 11/2004 Webbccoovviiinininnnn. 718/1
6,829,761 B1* 12/2004 Sextonetal. 717/165
2003/0088604 Al* 5/2003 Kucketal.cccoonns 709/1

* cited by examiner

Primary Examiner—WeiY. Zhen

Assistant Examiner—Junchun Wu

(74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
LLP

(57) ABSTRACT

A system and method for dynamic preloading of classes
through memory space cloning of a master runtime system
process is presented. A master runtime system process is
executed. A representation of at least one class is obtained
from a source definition provided as object-oriented program
code. The representation is interpreted and instantiated as a
class definition in a memory space of the master runtime
system process. The memory space is cloned as a child runt-
ime system process responsive to a process request and the
child runtime system process is executed, inheriting the
memory state of the parent, which reflects the data structures
and state corresponding to the preloaded classes.

6,374,286 B1* 4/2002 Geeetal.c.coovvuene.... 718/108 22 Claims, 11 Drawing Sheets
0 35
/’5\ 31
v S.
ot Runtime
| orage Environment
] Application 38
. Manager ~T 32
A
Classes (- Master VM | |
N A Process icati
q Applications
L (— N Launched
N ¥ | Prewarmed | |
:L‘ = State M-T 41
L4
37 Class Libs { Cloned JVM
q Process T 34
~
N Inherited
Prewarmed |- 42
System App State
40 | Class A
Loader |V
Bootstrap
Class A
39 7 Loader |¥

US 7,426,720 B1

Sheet 1 of 11

Sep. 16, 2008

U.S. Patent

) F) m _ m \\\|}
saleIqi
LI sse)D
OOO L
e — 14 8% EIR.| 5 sosse|
AN ETES] gl eI N
___J obelo)g
\\\l}
Sl
(o)
58 ee
ENR:| ¥c
030 F _‘
}lompauiayu|
cl A
9¢
8l Q
5 (314 | a1s
saleiql
aobelo
198 Janag
ol

U.S. Patent

Sep. 16, 2008

Storage

~N

ERs

Sheet 2 of 11

31

S

l Cl &
asses \‘_1

Runtime
Environment

Application
Manager

Master JVM
Process

US 7,426,720 B1

38

Applications

Prewarmed

R I ¢ State

Launched

‘ Class Libs

L

System App
Class

<

Loader

Bootstrap
Class

Cloned JVM
Process

Inherited
Prewarmed
State

-

Loader

U.S. Patent Sep. 16, 2008 Sheet 3 of 11 US 7,426,720 B1

Fig. 3.
60
Memory
62 AN
>64d
Page Table
61 N /\/
}640
~ 33
Master 7
JVM) 63
Process YA AAP. /\/
OOOOC) }64b
>64a
0x0000

U.S. Patent Sep. 16, 2008 Sheet 4 of 11 US 7,426,720 B1

Fig. 4.

70
Memory
62
Soey
Page Table 2
61 N
Cloned 34 //\\;
JVM YA 71
Process A OINY _~ 72b
64c
. 33 e i72a
Master /\/
JVM e 63 /\/
Process PAAAA SIS, 5
\ B R RS } 64b
>64a
0x0000

U.S. Patent Sep. 16, 2008 Sheet 5 of 11 US 7,426,720 B1

Fig. 5A.

80
Memory
62 N
>82d
Page Table
61 N
N\ 34 /\/
Cloned A A A
JVM AT 81
WA
Process AIAAIAAIY,
>82¢c
~ 33
Master /\/
JVM V. 63
Process VT
N } 82b
>82a
0x0000

U.S. Patent Sep. 16, 2008 Sheet 6 of 11 US 7,426,720 B1

Fig. 5B.
90
Memory
62
""""""""""" >82d
Page Table — N e
61 N
. 34 /\/
Cloned
JVM 4 81 v
Process AL
} 82c
N 33
Master /\/
JVM W 63
Process AL LIAIAIIL, %
>82b
>82a
0x0000

U.S. Patent Sep. 16, 2008 Sheet 7 of 11 US 7,426,720 B1

Fig. 6.

100 1 Start)

A

101« Load application manager

\ 4

Load master
1021 JVM process
v
103 N Sleep

104 Request?

105 N Wake up

v

106 . Check net connection 1D

v

107 <~ Determine request type

108 No
Yes
Clone child
1091 JVM process

U.S. Patent Sep. 16, 2008 Sheet 8 of 11 US 7,426,720 B1

Load Master
JVM Process

Fig. 7.

120
Execute master
1214 JVM process
A 4
122 AN Preload Classes
A
123 AN Complete warmup
Return
Fig. 8.
130
Clone Process
(without COW)
Copy memory space of
1314 master JVM process
132 A Perform resource
management
A 4
Execute child
13317 JVM process

134

No

Completed?

Yes

U.S. Patent Sep. 16, 2008 Sheet 9 of 11 US 7,426,720 B1
Fig. 9.
140
Clone Process
(with COW)
Copy references to
141 <~ memory space of master
JVM process
142 A Perform resource
management
y
Execute child
1431 JVM process
145 146
Q 144 C
Copy memory Yes No Use master
segment JVM copy
147
No

Completed?

Yes

U.S. Patent

Sep. 16, 2008 Sheet 10 of 11

Preload
Classes

Invoke bootstrap and system
application class loaders

v

152 \j For each class, do \

Look up class in system
class dictionary

151 N

153 "

154
Yes

Found?

No

165 Attempt to locate class

156

Load bytes for class
157 <~ from source associated
with class loader

158
No

Yes

Create instance of class and

160 1 install in local code cache

h 4

®

US 7,426,720 B1

159

S

Throw class not found
exception

®

U.S. Patent Sep. 16, 2008 Sheet 11 of 11 US 7,426,720 B1

Fig. 10 (Cont.).

No

Resolve?

162 N Resolve class

-
Rl

A

163 ‘x Next /* class */ /
y
‘ Return)

US 7,426,720 B1

1

SYSTEM AND METHOD FOR DYNAMIC
PRELOADING OF CLASSES THROUGH
MEMORY SPACE CLONING OF A MASTER
RUNTIME SYSTEM PROCESS

FIELD OF THE INVENTION

The invention relates in general to class preloading and, in
particular, to a system and method for dynamic preloading of
classes through memory space cloning of a master runtime
system process.

BACKGROUND OF THE INVENTION

Recent advances in microprocessor design and component
integration have enabled a wide range of devices to offer
increasingly complex functionality and “soft” features. Soft
features include software applications that enhance and cus-
tomize the operation of a device. These devices include stan-
dard computing devices, such as desktop and laptop comput-
ers, portable computing devices, such as personal data
assistants, and consumer devices, such as cellular telephones,
messaging pagers, gaming consoles, and set top boxes. Most
devices now include an operating system to support the soft
features and other extensions.

The increased capabilities offered by these software-up-
gradeable devices have also created certain user expectations.
Often, users are not technically savvy and are intolerant of
performance compromises occasioned by architectural chal-
lenges, such as slow or inconsistent application performance.
Similarly, users generally expect to be able to access a host of
separate applications, which are implemented at the system
level through multitasking. For users, widely available soft-
ware applications assure a positive experience through con-
sistency and increased exposure across multiple platforms.
However, for software developers, engineering software
applications for disparate computing platforms entails
increased development costs and on-going support and
upgrade commitments for each supported architecture.

Managed code platforms provide one solution to software
developers seeking to support multiple platforms by present-
ing a machine-independent and architecture-neutral operat-
ing environment. Managed code platforms include program-
ming language compilers and interpreters executed by an
operating system as user applications, but which provide
virtual runtime environments within which compatible appli-
cations can operate. For instance, applications written in the
Java programming language, when combined with a Java
virtual machine (JVM) runtime environment, can operate on
heterogeneous computer systems independent of machine-
specific environment and configuration settings. An overview
of the Java programming language is described in P. van der
Linden, “Just Java,” Ch. 1, Sun Microsystems, Inc. (2d ed.
1997), the disclosure of which is incorporated by reference.
JVMs are a critical component to the overall Java operating
environment, which can be ported to the full range of com-
putational devices, including memory-constrained consumer
devices.

Managed code platforms are generally designed for the
monotonic execution of a single application instance. Mul-
tiple instances of a managed code platform are executed to
simulate multitasking behavior. Such forced concurrency,
however, creates several performance problems. First, each
instance incurs a startup transient. Executable and startup
data must be read from slow persistent storage, which results
in slow initial application performance. Similarly, memory is
not shared between instances and each additional instance

20

25

30

35

40

45

50

55

60

65

2

increases the overall memory footprint of the platform by
separately loading and instantiating classes, generally prob-
lematic in memory-constrained systems. Moreover, data
dependencies and deferred initialization of system state can
result in non-deterministic execution patterns. Finally, each
instance independently determines the relative importance of
executing methods and compiles machine code on an ad hoc
basis, often causing inconsistent application performance.

Deferred class loading is sometimes necessitated by the
dynamic nature of the object oriented languages involved.
Dynamic class loading can also adversely affect performance
and cause nondeterministic execution behavior. To help
improve runtime performance, managed code platforms
lazily defer class loading until a class is actually referenced.
Deferred class loading conserves the time required to load a
class by delaying class loading and compilation until, and if,
the class is actually needed. Deferred class loading sacrifices
runtime performance for improved application startup. How-
ever, for near real time applications, deferred class loading
causes non-deterministic execution behavior that increases
worst case performance by the longest class loading execu-
tion thread. Similarly, deferred class loading exacerbates the
resource usage of multiple application instances that each
requires the same classes by duplicatively performing iden-
tical operations and needlessly consuming memory that could
be conserved, if the memory state were shared.

Static preloading of classes and interfaces is currently sup-
ported in many Java virtual machines, which allows a build-
time tool to pre-process and preload classes and to link the
classes into the JVM static executable image before JVM
startup. However, static preloading can result in large execut-
able sizes and can be problematic for resource constrained
devices, where boot startup time is critical and a combination
of slower processor and persistent storage and modest
memory can cause significant boot times.

Therefore, there is a need for an approach to providing
class preloading in a managed code platform, such as the Java
operating environment, to provide concurrently executable
applications that share warmed up memory state and to mini-
mize worst case performance.

SUMMARY OF THE INVENTION

A managed code platform is executed in an application
framework that supports the spawning of multiple and inde-
pendent isolated user applications. Preferably, the application
framework supports the cloning of the memory space of each
user application using copy-on-write semantics. The man-
aged code platform includes a master runtime system process,
such as a virtual machine, to interpret machine-portable code
defining compatible applications. An application manager
also executes within the application framework and is com-
municatively interfaced to the master runtime system process
through an inter-process communication mechanism. The
application framework logically copies the master runtime
system process context upon request by the application
framework to create a child runtime system process through
process cloning. The context of the master runtime system
process stored in memory is inherited by the child runtime
system process as prewarmed state and cached code. When
implemented with copy-on-write semantics, the process
cloning creates a logical copy of references to the master
runtime system process context. Segments of the referenced
master runtime system process context are lazily copied only
upon an attempt by the child runtime system process to
modify the referenced context. During initialization, the mas-
ter runtime system process preloads classes and interfaces

US 7,426,720 B1

3

likely to be required by user applications at runtime. The
classes and interfaces are identified through profiling by rank-
ing a set of classes according to a predetermined criteria, such
as described in commonly-assigned U.S. patent application
Ser. No. 09/970,661, filed Oct. 5, 2001, pending, the disclo-
sure of which is incorporated by reference. An example of a
suitable managed code platform and runtime system process
are the Java operating environment and Java virtual machine
(JVM) architecture, as licensed by Sun Microsystems, Inc.,
Palo Alto, Calif.

One embodiment provides a system and method for
dynamic preloading of classes through memory space clon-
ing of a master runtime system process. A master runtime
system process is executed. A representation of at least one
class is obtained from a source definition provided as object-
oriented program code. The representation is interpreted and
instantiated as a class definition in a memory space of the
master runtime system process. The memory space is cloned
as a child runtime system process responsive to a process
request and the child runtime system process is executed.

The use of the process cloning mechanism provided by the
underlying application framework provides several benefits
in addition to resolving the need for efficient concurrent
application execution of machine portable code. The inherit-
ance of prewarmed state through the cloning of the master
runtime process context provides inter-process sharing of
preloaded classes. Similarly, each child runtime system pro-
cess executes in isolation of each other process, thereby pro-
viding strong resource control through the system level ser-
vices of' the application framework. Isolation, reliable process
invocation and termination, and resource reclamation are
available and cleanly provided at an operating system level. In
addition, process cloning provides fast user application ini-
tialization and deterministic runtime behavior, particularly
for environments providing process cloning with copy-on-
write semantics. Finally, for non-shareable segments of the
master runtime system process context, actual copying is
deferred until required through copy-on-write semantics,
which avoids impacting application performance until, and if,
the segment is required.

Still other embodiments of the invention will become
readily apparent to those skilled in the art from the following
detailed description, wherein are described embodiments of
the invention by way of illustrating the best mode contem-
plated for carrying out the invention. As will be realized, the
invention is capable of other and different embodiments and
its several details are capable of modifications in various
obvious respects, all without departing from the spirit and the
scope of the invention. Accordingly, the drawings and
detailed description are to be regarded as illustrative in nature
and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram showing, by way of
example, runtime environments implemented on a plurality
of heterogeneous devices.

FIG. 2 is a block diagram showing a system for dynamic
preloading of classes through memory space cloning of a
master runtime system process, in accordance with the inven-
tion.

FIG. 3 is a block diagram showing, by way of example, a
master JVM process mapped into memory.

FIG. 4 is a block diagram showing, by way of example, a
master JVM process and a cloned JVM process mapped into
memory through memory space cloning.

20

25

30

35

40

45

50

55

60

65

4

FIGS. 5A-B are block diagrams showing, by way of
example, a master JVM process and a cloned JVM process
mapped into memory through memory space cloning with
copy-on-write semantics.

FIG. 6 is a flow diagram showing a method for dynamic
preloading of classes through memory space cloning of a
master runtime system process, in accordance with the inven-
tion.

FIG. 7 is a flow diagram showing the routine for loading a
master JVM process for use in the method of FIG. 6.

FIG. 8 is a flow diagram showing the routine for cloning a
process without copy-on-write semantics for use in the
method of FIG. 6.

FIG. 9 is a flow diagram showing the routine for cloning a
process with copy-on-write semantics for use in the method
of FIG. 6.

FIG. 10 is a flow diagram showing the routine for preload-
ing a class for use in the routine of FIG. 7.

DETAILED DESCRIPTION

System Overview

FIG. 1 is a functional block diagram 10 showing, by way of
example, runtime environments (RTEs) 14, 22, 24, 26 imple-
mented on a plurality of heterogeneous devices 11. Each
heterogeneous device 11 provides a managed code platform,
such as the Java operating environment, executing in a runt-
ime environment 14, 22, 24, 26, as further described below
with reference to FIG. 2. The heterogeneous devices 11
include, nonexclusively, a client computer system 13, such as
a desktop or laptop computer system. Each client 13 is opera-
tively coupled to a storage device 15 and maintains a set of
classes 16 and class libraries 17, which respectively define
code modules that specify data structures and sets of methods
that operate on the data, and shareable collections of the
modules. The heterogeneous devices 11 also include portable
computing devices, including personal data assistants 21, and
consumer devices, such as cellular telephones 23 and set top
boxes (STB) 25. Finally, a server 18 is operatively coupled to
a storage device 19 in which globally shareable class libraries
20 are maintained. Each of the heterogeneous devices 11 can
interface via a network 12, which includes conventional hard-
wired and wireless network configurations. Other types of
heterogeneous devices 11 and various network configura-
tions, arrangements, and topologies are possible.

Each heterogeneous device 11 includes an operating sys-
tem to manage resources, provide access to peripheral
devices, allocate memory resources, and control program
execution and termination. Each operating system supports a
process cloning mechanism that spawns multiple and inde-
pendent isolated user applications by cloning the memory
space of specifiable processes. An example of a process clon-
ing mechanism suitable for use in the present invention is the
fork() system call provided by the Unix or Linux operating
systems, such as described in M. J. Bach, “The Design Of The
Unix Operating System,” Ch. 7, Bell Tele. Labs., Inc. (1986),
the disclosure of which is incorporated by reference. The
process invoking the fork() system call is known as the parent
process and the newly created process is called the child
process. The operating system assigns a separate process
identifier to the child process, which executes as a separate
process. The operating system also creates a logical copy of
the context of the parent process by copying the memory
space of the parent process into the memory space of the child
process. In a copy-on-write variant of the fork() system call,
the operating system only copies references to the memory

US 7,426,720 B1

5

space and defers actually copying individual memory space
segments until, and if; the child process attempts to modity
the referenced data of the parent process context. The copy-
on-write fork() system call is faster than the non-copy-on-
write fork() system call and implicitly shares any data not
written into between the parent and child processes.

System for Preloading Classes

FIG. 2 is ablock diagram 30 showing a system for dynamic
preloading of classes through memory space cloning of a
master runtime system process 33, in accordance with the
invention. Although described with specific reference to
classes, other forms of structured static data could also be
preloaded, including data structures, processes, functions,
subroutines, interfaces, and the like. The system consists of a
runtime environment 31 and individual classes 36 and class
libraries 37 that form the overall core managed code platform.
By way of example, the system is described with reference to
the Java operating environment, although other forms of man-
aged code platforms that execute applications preferably
written in an object oriented programming language, such as
the Java programming language, could also be used.

The exemplary runtime environment 31 includes an appli-
cation manager 32, master Java virtual machine (JVM) pro-
cess 33 and zero or more cloned JVM processes 34. The
master JVM process 33 and cloned JVM processes 34 respec-
tively correspond to a master runtime system process and
child runtime system processes. The master runtime system
process, preferably provided as a virtual machine, interprets
machine-portable code defining compatible applications. The
runtime environment 31 need not execute cloned JVM pro-
cesses 34, which are only invoked upon request by the appli-
cation manager 32.

The runtime environment 31 executes an application
framework that spawns multiple independent and isolated
user application process instances by preferably cloning the
memory space of a master runtime system process. The
example of an application framework suitable for use in the
present invention is the Unix operating system, such as
described generally in M. J. Bach, supra at Ch. 2, the disclo-
sure of which is incorporated by reference.

The application manager 32 presents a user interface
through which individual applications can be selected and
executed. The application manager 32 and master JVM pro-
cess 33 preferably communicate via an inter-process commu-
nication (IPC) mechanism, such as a pipe or a socket. The
master JVM process 33 is started at device boot time.

Upon initialization, the master JVM process 33 reads an
executable process image from the storage device 35 and
performs bootstrapping operations. These operations include
preloading the classes 36 and classes defined in the class
libraries 37, as further described below with reference to FIG.
10. Thus, upon completion of initialization, the memory
image of the master JVM process 33 resembles that of an
initialized, primed and warmed up JVM process with key
classes stored in the master JVM process context as pre-
warmed state 41. Preferably, the prewarmed state 41 is stored
as read only data.

Following the initialization, the master JVM process 33
idles, that is, “sleeps” in an inactive state, while awaiting
further instructions from the application manager 32. The
master JVM process 33 awakens in response to requests
received from the application manager 32 to execute applica-
tions. The application manager 32 sends a request to the
master JVM process 33, including standard command line
parameters, such as application name, class path, and appli-
cation arguments. The master JVM process 33 awakens and

20

25

30

35

40

45

50

55

60

65

6

creates a cloned JVM process 34 as a new cloned process
instance of the master JVM process 33 using the process
cloning mechanism of the underlying operating system. The
context of the master JVM process 33 stored in memory as
prewarmed state 41 is inherited by the cloned JVM process 34
as inherited prewarmed state 42, thereby saving initialization
and runtime execution times and providing deterministic
execution behavior. Following the “cloning” of the cloned
JVM process 34, the master JVM process 33 records the
launched application in an applications launched list 38 and
returns to an inactive sleep state.
When implemented with copy-on-write semantics, the
process cloning creates a logical copy of only the references
to the master JVM process context. Segments of the refer-
enced master JVM process context are lazily copied only
upon an attempt by the cloned JVM process to modify the
referenced context. Therefore, as long as the cloned JVM
process does not write into a memory segment, the segment
remains shared between parent and child processes.
The master JVM process 33 recognizes the following basic
commands received from the application manager 32 through
the IPC mechanism:
(1) list: Provides a list of applications launched in response
to requests received from the application manager 32.

(2) jexec: Invokes the process cloning mechanism, parses
command line arguments and executes a new instance of
the master JVM process 33 as the cloned JVM process
34. Preferably adopts a syntax compatible to standard
JVM processes.

(3) kill: Terminates the application identified by an appli-

cation handle or process identifier.

Other commands are possible, such as described in com-
monly-assigned U.S. patent application Ser. No. 10/745,164,
entitled “System And Method For Performing Incremental
Initialization Of A Master Runtime System Process,” filed 22
Dec. 2003, pending, the disclosure of which is incorporated
by reference.

During initialization, the master JVM process 33 also pre-
loads classes 36 and classes defined in the class libraries 37
that are likely to be required by applications at runtime. The
classes and interfaces are identified through profiling by rank-
ing a set of classes according to a predetermined criteria, such
as described in commonly-assigned U.S. patent application
Ser. No. 09/970,661, filed Oct. 5, 2001, pending, the disclo-
sure of which is incorporated by reference. A set of core Java
foundation classes is specified in a bootstrap class loader 39
and application classes in a system application class loader
40. Class loading requires identifying a binary form of a class
type as identified by specific name, as further described below
with reference to FIG. 10. Depending upon whether the class
was previously loaded or referenced, class loading can
include retrieving a binary representation from source and
constructing a class object to represent the class in memory.
The master JVM process 33 maintains an internal symbol
table (not shown) of classes previously loaded to resolve
symbolic references. If the internal symbol table does not
already contain an entry for the class name or class loader, the
class loader responsible for loading the class is identified,
invoked and given the name of the class.

The master JVM process 33 invokes the bootstrap class
loader 39 and system application class loader 40 for every
class likely to be requested by the applications. Thus, the
prewarmed state 41 includes the class loading for applications
prior to actual execution and the initialized and loaded classes
are inherited by each cloned JVM process 34 as the inherited
prewarmed state 42.

US 7,426,720 B1

7

Master JVM Process Mapping

FIG. 3 is a block diagram 60 showing, by way of example,
amaster JVM process 33 mapped into memory 62. Generally,
the context for an executing process includes a data space,
user stack, kernel stack, and a user area that lists open files,
current directory and supervisory permission settings. Other
types of context can also be provided. The context is stored
and managed in the memory 62 by the operating system. At
device boot time, the operating system instantiates a repre-
sentation of the executable master JVM process 33 into the
memory 62, possibly in non-contiguous pages 64a-d, and
records the allocation of the memory space as page table
entries 63 into the page table 61 prior to commencing execu-
tion of the master JVM process 33. As well, the master JVM
process context could similarly be mapped using other
memory management systems, such as using demand paging,
swapping and similar process memory allocation schemes
compatible with process cloning, particularly process cloning
with copy-on-write semantics.

Cloned JVM Process Mapping

FIG. 4 is a block diagram 70 showing, by way of example,
a master JVM process 33 and a cloned JVM process 34
mapped into memory 62 through memory space cloning. In a
system with process cloning that does not provide copy-on-
write semantics, physical copies of the pages 64a-c in the
memory 62 storing the parent process context are created for
each child process. In response to a process cloning request,
the operating system instantiates a copy of the representation
of'the executable master JVM process 33 for the cloned JVM
process 34 into the memory 62, possibly in non-contiguous
pages 72a-d, and records the allocation of the memory space
as page table entries 71 into the page table 61 prior to com-
mencing execution of the cloned JVM process 34. Thus, the
cloned JVM process 34 is created with a physical copy of the
context of the master JVM process 33. Since a new, separate
physical copy of the master JVM process context is created,
the cloned JVM process 34 inherits the prewarmed state 41,
including the preloaded classes of the master JVM process
33. However, the overall memory footprint of the runtime
environment 31 is increased by the memory space required to
store the additional copy of the master JVM process context.

Cloned JVM Process Mapping with Copy-On-Write

FIGS. 5A-B are block diagrams 80, 90 showing, by way of
example, a master JVM process 33 and a cloned JVM process
34 mapped into memory 62 through memory space cloning
with copy-on-write semantics. In a system with process clon-
ing that provides copy-on-write semantics, only copies of the
references, typically page table entries, to the memory space
storing the parent process context are created for each child
process. Referring first to FIG. 5A, in response to a process
cloning request, the operating system copies only the page
table entries 63 referencing the memory space of the execut-
able master JVM process 33 as a new set of page table entries
81 for the cloned JVM process 34. Thus, the cloned JVM
process 34 uses the same references to the possibly non-
contiguous pages 64a-d storing the master JVM process con-
text as the master JVM process 34. Initialization and execu-
tion of the application associated with the cloned JVM
process 34 requires less time, as only the page table entries 62
are copied to clone the master JVM process context. Further-
more, until the cloned JVM process 34 attempts to modify the
master JVM process context, the memory space is treated as
read only data, which can be shared by other processes.

Referring next to FIG. 5B, the cloned JVM process 34 has
attempted to modify one of the pages 82¢ in the memory
space of the master JVM process context. In response, the

20

25

30

35

40

45

55

60

65

8

operating system creates a physical copy of the to-be-modi-
fied memory space page 82¢ as a new page 91 and updates the
allocation in the page table entries 81 for the cloned JVM
process 34. Through copy-on-write semantics, the overall
footprint of the runtime environment 31 is maintained as
small as possible and only grows until, and if, each cloned
JVM process 34 actually requires additional memory space
for application-specific context.

Method for Preloading Classes

FIG. 6 is a flow diagram, showing a method 100 for
dynamic preloading of classes through memory space clon-
ing of a master runtime system process, in accordance with
the invention. The method 100 is described as a sequence of
process operations or steps, which can be executed, for
instance, by the runtime environment 31 of FIG. 2 or other
components.

Initially, the application manager 32 is loaded (block 101).
The master JVM process 33 is loaded and initialized at device
boot time (block 102), as further described below with refer-
ence to FIG. 7. Following loading and initialization, the mas-
ter JVM process 33 enters an inactive sleep mode (block 103).
Upon receiving a request from the application manager 32
(block 104), the master JVM process 33 awakens (block 105).
If necessary, the master JVM process 33 checks the network
connection identifier (ID) (block 106) for the application
manager 32 and determines the type of request (block 107).
The master JVM process 33 recognizes the commands list,
jexec, and kill, as described above with reference to FIG. 2. If
the request type corresponds to a jexec request, instructing the
master JVM process 33 to initiate an execution of an appli-
cation through process cloning (block 108), a cloned JVM
process 34 is cloned and executed (block 109), as further
described below with reference to FIGS. 8 and 9. Processing
continues indefinitely until the master JVM process 33 and
the runtime environment 31 are terminated.

Routine for Loading Master JVM Process

FIG. 7 is a flow diagram showing the routine 120 for
loading a master JVM process 33 for use in the method 100 of
FIG. 6. One purpose of the routine is to invoke the master
JVM process 33 and to preload classes into the prewarmed
state 41 for inheritance by cloned JVM processes 34.

Initially, the master JVM process 33 begins execution at
device boot time (block 121). The master JVM process 33
then preloads classes as a part of the initialization process
(block 122), as further described below with reference to FIG.
10. Briefly, preloading classes involves executing the boot-
strap class loader 39 and system application class loader 40 to
create and resolve classes likely required by one or more of
the applications. The master JVM process 33 completes any
other warmup operations (block 123) and the routine returns.

Routine for Process Cloning without Copy-On-Write

FIG. 8 is a flow diagram showing the routine 130 for
cloning a process without copy-on-write for use in the method
100 of FIG. 6. One purpose of the routine is to create and
initiate execution of a cloned JVM process 34 through pro-
cess cloning that does not provide copy-on-write semantics.

Initially, the memory space containing the context of the
master JVM process 33 is physically copied into a new
memory space for the cloned JVM process 34 (block 131).
Optionally, the master JVM process 33 can set operating
system level resource management parameters over the
cloned JVM process 34 (block 132), including setting sched-
uling priorities and limiting processor and memory consump-
tion. Other types of resource management controls are pos-
sible. The cloned JVM process 34 is then executed by the

US 7,426,720 B1

9

runtime environment 31 (block 133) using the duplicated
master JVM process context. The routine returns upon the
completion (block 134) of the cloned JVM process 34.

Routine for Process Cloning with Copy-On-Write

FIG. 9 is a flow diagram showing the routine 140 for
cloning a process with copy-on-write for use in the method
100 of FIG. 6. One purpose of the routine is to create and
initiate execution of a cloned JVM process 34 through pro-
cess cloning that provides copy-on-write semantics.

Initially, references to the memory space containing the
context of the master JVM process 33 are copied for the
cloned JVM process 34 (block 141). Optionally, the master
JVM process 33 can set operating system level resource man-
agement parameters over the cloned JVM process 34 (block
142), including setting scheduling priorities and limiting pro-
cessor and memory consumption. Other types of resource
management controls are possible. The cloned JVM process
34 is then executed by the runtime environment 31 (block
143) using the referenced master JVM process context. Each
time the cloned JVM process 34 attempts to write into the
memory space referenced to the master JVM process context
(block 144), the operating system copies the applicable
memory segment (block 145). Otherwise, the cloned JVM
process 34 continues to use the referenced master JVM pro-
cess context (block 146), which is treated as read only data.
The routine returns upon the completion (block 147) of the
cloned JVM process 34.

Routine for Preloading Class

FIG. 10 is a flow diagram showing the routine 150 for
preloading a class 36 for use in the routine 120 of FIG. 7. One
purpose of the routine is to find and instantiate prewarmed
instances of classes 36 and classes defined in the class librar-
ies 37 as specified in the bootstrap class loader 39 and system
application class loader 40 as prewarmed state 41 in the
master JVM process 33 for inheritance by a cloned JVM
process 34.

Initially, the bootstrap class loader 39 and system applica-
tion class loader 40 is located and invoked by the master JVM
process 33 (block 151). Each class 36 and class contained in
a class library 37 is then iteratively processed (blocks 152-
163) as follows. First, the master JVM process 33 attempts to
locate the class in a system class dictionary (block 153). If the
class is found (block 154), no further class loading need be
performed. Otherwise, the master JVM process 33 attempts
to locate the class (block 155) through standard Java class
pathlocation. Ifthe class is found (block 156), no further class
loading need be performed. Otherwise, the master JVM pro-
cess 33 attempts to load the bytes for the class from the source
associated with the applicable bootstrap class loader 39 and
system application class loader 40 (block 157). If successful
(block 158), an instance of the class is created by compiling
the source and the class instance is installed in the system
class dictionary (block 160). If the bytes for the class cannot
be loaded from the source (block 158), the master JVM pro-
cess 33 throws a class not found exception (block 159). Fol-
lowing the loading or attempted loading of the class, if the
class requires resolution with respect to symbolic references
(block 161), the class is resolved by identifying the applicable
class loader for the fully qualified class (block 162). Process-
ing continues with the next class (block 163), after which the
routine returns.

While the invention has been particularly shown and
described as referenced to the embodiments thereof, those
skilled in the art will understand that the foregoing and other
changes in form and detail may be made therein without
departing from the spirit and scope of the invention.

20

25

30

35

40

45

50

55

60

65

10

What is claimed is:

1. A system for dynamic preloading of classes through
memory space cloning of a master runtime system process,
comprising:

A processor; A memory a class preloader to obtain a rep-
resentation of at least one class from a source definition
provided as object-oriented program code;

a master runtime system process to interpret and to instan-
tiate the representation as a class definition in a memory
space of the master runtime system process;

a runtime environment to clone the memory space as a
child runtime system process responsive to a process
request and to execute the child runtime system process;
and

a copy-on-write process cloning mechanism to instantiate
the child runtime system process by copying references
to the memory space of the master runtime system pro-
cess into a separate memory space for the child runtime
system process, and to defer copying of the memory
space of the master runtime system process until the
child runtime system process needs to modify the refer-
enced memory space of the master runtime system pro-
cess.

2. A system according to claim 1, further comprising:

a cache checker to determine whether the instantiated class
definition is available in a local cache associated with the
master runtime system process.

3. A system according to claim 2, further comprising:

a class locator to locate the source definition if the instan-
tiated class definition is unavailable in the local cache.

4. A system according to claim 1, further comprising:

a class resolver to resolve the class definition.

5. A system according to claim 1, further comprising:

at least one of a local and remote file system to maintain the
source definition as a class file.

6. A system according to claim 1, further comprising:

a process cloning mechanism to instantiate the child runt-
ime system process by copying the memory space of the
master runtime system process into a separate memory
space for the child runtime system process.

7. A system according to claim 1, wherein the master
runtime system process is caused to sleep relative to receiving
the process request.

8. A system according to claim 1, wherein the object-
oriented program code is written in the Java programming
language.

9. A system according to claim 8, wherein the master
runtime system process and the child runtime system process
are Java virtual machines.

10. A method for dynamic preloading of classes through
memory space cloning of a master runtime system process,
comprising:

executing a master runtime system process;

obtaining a representation of at least one class from a
source definition provided as object-oriented program
code;

interpreting and instantiating the representation as a class
definition in a memory space of the master runtime
system process; and

cloning the memory space as a child runtime system pro-
cess responsive to a process request and executing the
child runtime system process;

wherein cloning the memory space as a child runtime sys-
tem process involves instantiating the child runtime sys-
tem process by copying references to the memory space
of the master runtime system process into a separate
memory space for the child runtime system process; and

US 7,426,720 B1

11

wherein copying references to the memory space of the
master runtime system process defers copying of the
memory space of the master runtime system process
until the child runtime system process needs to modity
the referenced memory space of the master runtime sys-
tem process.

11. A method according to claim 10, further comprising:

determining whether the instantiated class definition is

available in a local cache associated with the master
runtime system process.

12. A method according to claim 11, further comprising:

locating the source definition if the instantiated class defi-

nition is unavailable in the local cache.

13. A method according to claim 10, further comprising:

resolving the class definition.

14. A method according to claim 10, further comprising:

maintaining the source definition as a class file on at least

one of a local and remote file system.

15. A method according to claim 10, further comprising:

instantiating the child runtime system process by copying

the memory space of the master runtime system process
into a separate memory space for the child runtime sys-
tem process.

16. A method according to claim 10, further comprising:

causing the master runtime system process to sleep relative

to receiving the process request.

17. A method according to claim 10, wherein the object-
oriented program code is written in the Java programming
language.

18. A method according to claim 17, wherein the master
runtime system process and the child runtime system process
are Java virtual machines.

19. A computer-readable storage medium holding code for
performing the method according to claim 10.

20

25

30

12

20. An apparatus for dynamic preloading of classes

through memory space cloning of a master runtime system
process, comprising:

A processor; A memory means for executing a master
runtime system process;

means for obtaining a representation of at least one class
from a source definition provided as object-oriented pro-
gram code;

means for interpreting and means for instantiating the rep-
resentation as a class definition in a memory space of the
master runtime system process; and

means for cloning the memory space as a child runtime
system process responsive to a process request and
means for executing the child runtime system process;

wherein the means for cloning the memory space is con-
figured to clone the memory space of a child runtime
system process using a copy-on-write process cloning
mechanism that instantiates the child runtime system
process by copying references to the memory space of
the master runtime system process into a separate
memory space for the child runtime system process and
that defers copying of the memory space of the master
runtime system process until the child runtime system
process needs to modify the referenced memory space of
the master runtime system process.

21. A system according to claim 1, further comprising:

a resource controller to set operating system level resource
management parameters on the child runtime system
process.

22. A method according to claim 10, further comprising:

setting operating system level resource management
parameters on the child runtime system process.

#* #* #* #* #*

