
 
 
 
 
 
 
 
 

EXHIBIT 2-8 

Oracle America, Inc. v. Google Inc. Doc. 509 Att. 20

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/509/20.html
http://dockets.justia.com/


pa-1474101  

UNITED STATES DISTRICT COURT 

NORTHERN DISTRICT OF CALIFORNIA 

SAN FRANCISCO DIVISION 

 

ORACLE AMERICA, INC. 

Plaintiff, 

v. 

GOOGLE INC. 

Defendant. 

Case No. CV 10-03561 WHA 

 

 

SUMMARY AND REPORT OF NOEL POORE 

SUBMITTED ON BEHALF OF PLAINTIFF 
ORACLE AMERICA, INC. 

 
 
 

EXHIBIT 2-8



 

 2 
 

II. BACKGROUND AND QUALIFICATIONS  

8. In 1985, I received a BA in Computer Science from Cambridge University, 

Cambridge, England. 

9. I have many years experience of working with system software for mobile 

devices. From 2001 to 2008 I worked as a senior technical executive for SavaJe Technologies, a 

company which developed a complete Java platform for smartphones. SavaJe was acquired by 

Sun, which was later acquired by Oracle. Both in this role and in previous roles I gained a lot of 

experience of measuring and optimizing the execution time and memory consumption of code 

for mobile devices. 

10. I am currently the lead architect for embedded middleware in JDK8 Embedded. I 

am also the technical lead of a group which provides Java technology for iOS and Android 

applications. 

11. I am qualified to conduct performance analysis and analyze the results obtained 

because I have many years experience of developing, performance testing, benchmarking, and 

optimizing embedded Java software. At SavaJe I both supervised and took part in software 

performance testing and analysis to maximize execution speed and minimize the memory 

footprint of the SavaJe OS.  

III. PERFORMANCE ANALYSIS OF UNITED STATES PATENT NO. 5,966,702  

A. Introduction 

12. I performed experiments to estimate the benefits to Android from using the 

functionality that Oracle accuses of infringing the ’702 patent, including disabling that 

functionality in Android. 

13. The baseline code for these experiments was the Froyo release of Android, pulled 

from the public Google git repository as follows 

repo init –u git://android.git.kernel.org/platform/manifest.git –b froyo 
repo sync 

14. Modifications (as detailed below) were made to the source in the local repository 

to implement the experiments.   
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B. Methodology – Experiment 1 

15. I modified the dx tool to estimate the size of a dex file if duplicate constant pool 

entries are not removed.  Below are the steps I followed: 

(1) Download Android 2.2 (Froyo) source code. 

(2) Identify the source code that processes Java class files and packages the 
output as Dalvik class files (also known as dex files). 

(3) Modify this source code to prevent the removal of duplicate constant pool 
entries when multiple Java classes are combined into a single dex file. 

(4) Build the modified source code to create a modified dx.jar 

(5) Use the modified dx.jar to create dex files for several different jar files. Each 
jar file was processed multiple times, controlling the duplicate removal 
process to provide better measurement of the advantage gained by duplicate 
removal. 

 

The results are shown in the spreadsheet attached as Exhibit B.   
 

C. Methodology – Experiment 2 

16. Here, I aimed to estimate the size of a dex file if duplicate constant pool entries 

are not removed, by extrapolation from Java class sizes.  Below are the steps I followed: 

(1) I wrote an application to measure the amount of byte code contained in  
one or more Java class files. This allows a simple calculation of the size of the 
metadata contained in the class files. 

(2) I used the --statistics command line argument to the dx tool to determine the 
amount of Dalvik code contained in the output dex file. 

(3) Making the assumption that in the absence of duplicate removal, the amount 
of metadata in the amalgamated class file will be the same as the amount of 
metadata in the separate class files, I performed a simple calculation to 
estimate the size of the resulting dex file. 

(4) The estimated dex file size is 
Size of Java classes – Java byte code size + Dalvik code size 

The results are shown in the spreadsheet attached as Exhibit C.   

D. Methodology – Experiment 3 

17. Here, my goal was to analyze the contents of dexdump files to estimate the 

amount of space saved by removing duplicate constant pool entries. 
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(1) I was provided with a set of dexdump files which were produced by running 
the standard Android dexdump tool on optimized dex (“odex”) files taken 
from an actual Android device.  These are attached as Exhibit D.   

(2) I wrote a perl script which identifies the method and field definitions and the 
method, field, type and string references in the dexdump file.  I have attached 
the perl script as Exhibit E.  [INTERNAL NOTE – filename: analyze.pl] 

(3) The perl script identifies the number of each type of constant pool entry that 
have been removed by the duplicate removal process, and estimates the 
memory size of the removed duplicates. 

(4) The perl script outputs a number of statistics about the dexdump, including the 
total amount of space saved by duplicate removal. 

(5) The output of the perl script was imported into a spreadsheet. 

The results are shown in the spreadsheet attached as Exhibit F.  
 

E. Source Code Modifications – Experiment 1 

18. The modifications made to implement experiment 1 are contained in Appendix A. 

19. The dex file format differs from the Java classfile format in the sense that instead 

of a single constant pool, the constant pool is broken up into five sections. As input classes are 

read, the dx tool accumulates the contents of each class (constants, fields, methods, code etc) into 

an in-memory data structure. Each input class is processed independently and at this stage there 

is no identification or removal of duplicate constants. Once all of the input classes have been 

processed then the five constant pool sections are created by iterating through all of the constants 

in the in-memory representation of the input classes. Each constant pool section has an 

associated in-memory data structure where the constants of that kind are accumulated. It is in the 

accumulation process that the removal of duplicate constant pool entries happens. The in-

memory representation of the constant pool sections uses a Java TreeMap data structure, which 

implements the Map interface. As the Javadoc for the Map interface states (see 

http://download.oracle.com/javase/1.5.0/docs/api/java/util/Map.html): “A map cannot contain 

duplicate keys; each key can map to at most one value.” 

20. The duplicate constant removal is essentially performed as a result of this 

property of the TreeMap. The existing code checks to see if a constant already exists in the map 

and returns that as the interned value of the constant if it does. This means that it is not possible 
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to simply allow duplicate constant pool entries to accumulate without widespread modifications 

to the way in which the dx tool is architected. To get around this, I forced the creation of 

duplicate entries and made each duplicate unique by inserting a unique number into the value of 

the duplicate. For example, the type “Ljava/lang/String;” could be duplicated as 

“Ljava/lang/String123;”. The number is made unique by incrementing it each time a duplicate is 

created within a specific section of the constant pool. Since this process lengthens the string and 

therefore inserts extra bytes into the generated dex file, I modified the code to count the number 

of bytes added so that they could be subtracted from the final file size to get more accurate 

results. 

21. I made this modification to the following classes, each of which represents one of 

the five sections of the constant pool: 

com.android.dx.dex.file.FieldIdsSection 
com.android.dx.dex.file.MethodIdsSection 
com.android.dx.dex.file.ProtoIdsSection 
com.android.dx.dex.file.StringIdsSection 
com.android.dx.dex.file.TypeIdsSection 

22. Two points should be noted about this approach. Firstly, the different sections of 

the constant pool are not completely independent from each other. For example, creating a 

duplicate type “Ljava/lang/Object2;” causes an additional string constant “L/java/lang/Object2;” 

to be created as well. If the experiment is carried out in a simplistic way where all five of the 

constant pool sections are “re-duplicated” at the same time, then because of the renaming, 

duplicates of duplicates are created, inflating the total number of constant pool entries and thus 

the final dex file size. The results shown below demonstrate this problem. To avoid it, I modified 

the code so that I could individually control the duplicate creation for each section of the 

constant pool. I ran the modified dx tool 5 times for each input jar, creating duplicate entries for 

only one section of the constant pool each time. The estimated final dex file size is then derived 

by adding up the additions caused by the duplicate creation for each part of the constant pool. 

23. Secondly, consider the fact that the input to the dx tool is a set of compiled Java 

classes. Within a single class, there will frequently be multiple references to a single constant 
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pool entry. Within the code of the dx tool, at the point where a constant pool entry is being added 

to the TreeMap, this context is lost, and so there is a possibility that creating duplicate entries in 

the way described will create duplicates that do not exist in the input Java class files. Rectifying 

this would have required significant modifications to the dx source code. 

24. These two points mean that the results gained by experiment 1 can be regarded as 

an “upper bound estimate” of the dex file size in the absence of duplicate constant removal. 

25. Experiment 1 was repeated on three different jar files representing popular 

benchmarking applications, and also on the jar file containing the dx tool itself, as an example of 

a complex application. 

F. Source Code – Experiment 2 

26. The code used to calculate the size of the Java byte code contained in one or more 

Java class files is contained in Appendix B. No modifications were made to Android source code 

for this experiment. 

27. Experiment 2 was repeated on the same jars files as experiment 1, and also on the 

jar for the dx tool itself, as an example of a larger and more complex application. 

G. Source Code – Experiment 3 

28. The perl script used to extract information from the dexdump files is contained in 

Appendix C. No modifications were made to Android source code for this experiment. 

29. The perl script takes a set of file names as arguments. Each file is examined in 

turn. 

30. The output of the perl script is data in CSV format. This was chosen to make it 

easy to import the results into a spreadsheet where calculations could more easily be performed. 

31. The basic approach of the perl program is to count the number of times each field, 

method, type and string constant is used, and then estimate the additional size of the dex file if 

the constants were duplicated rather than being referenced multiple times. 
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32. For each file, each line of the file is examined in turn. Lines are examined for 

patterns indicating class boundaries, field and method declarations, and references to method, 

field, string and type constants. 

33. Note that the dexdump files do not include any information about references to 

prototype constants. These are allowed for in calculating the size required to store a method 

constant. 

34. Class boundaries are identified in order to make the estimation process more 

accurate. As mentioned previously in the section “Source Code – Experiment 1”, the original 

Java classes from which the dex file is created do not contain duplicate constant pool entries. To 

take account of this, the perl script identifies class boundaries in the dexdump file, and only 

counts a single instance of each constant per class. 

35. Field and method declarations each include a reference to the associated 

field/method constant, and are gathered in hashes called %fieldDefs and %methodDefs. In each 

case, the field/method name is used as the key of the hash. The value is not used. Since each field 

and method is only defined once, the existence of the key is all that matters. 

36. References to method, field, string and type constants are found by identifying 

occurrences of the strings “method@nnnn”, “field@nnnn”, “string@nnnn” and “type@nnnn” 

respectively. The value of the constant is extracted as well. Four hashes are maintained, one for 

each type of constant, with the key being the value of the constant and the value the number of 

occurrences found. As mentioned above, only once occurrence of a constant is counted per class. 

This is done by remembering the last class number in which a constant was referenced. When a 

new reference is found, the current class number is compared with the last class number, and the 

occurrence counted or dropped as appropriate. 

37. Symbolic values are defined at the top of the perl program which are used to 

determine the storage size required in a dex file to store the different kinds of constant. The 

comments around these definitions indicate how the values were calculated using publicly 

available Android documents. 
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38. The dexdump files were created from odex files. These are files that have been 

optimized from the original dex files. One of the optimizations is to convert many invoke-virtual 

Dalvik instructions to invoke-virtual-quick instructions. These “quickened” instructions make 

use of a register and a vtable offset to refer to the target method rather than an offset into the 

method constant pool. This means that the number of constant pool references is reduced in the 

odex file. This will reduce the apparent impact of the removal of duplicate references. Thus, the 

results from this experiment should be regarded as an under-estimate of the true benefit derived 

from duplicate constant removal. 

39. Experiment 3 was run on a collection of dexdump files. Each of these files 

contains a listing of the contents of an application odex file from a Nexus One smartphone. 

40. Line 56 of the perl program declares a variable named $showDuplicatesCount. If 

this is set to be non-zero, the perl script will output information about the number of constants it 

finds that are referred to more than once. For each kind – method, string, type, and field, it will 

output the most referenced item along with number of times it is referenced. Using this it can 

easily be seen that every single odex file contains many constants that are referred to multiple 

times. 

H. Results – Experiment 1 

41. The tables below show the results for experiment 1. The rows in each table show 

the number of entries in each section of the constant pool in the output dex file, the file size of 

the dex file (corrected for extra bytes added as described above), and the delta from the original 

dex file size. 
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IV. PERFORMANCE ANALYSIS OF UNITED STATES PATENT NO. 6,061,520  

A. Introduction  

54. I performed experiments to estimate the benefits to Android from using the 

functionality that Oracle accuses of infringing the ’520 patent, which including disabling that 

functionality in Android. 

55. The baseline code for these experiments was the Froyo release of Android, pulled 

from the public Google git repository as follows 

repo init –u git://android.git.kernel.org/platform/manifest.git –b froyo 
repo sync 

56. Modifications were made to the source in the local repository to implement the 

experiments. 

B. Methodology 

57. I modified the dx tool to estimate the size of a dex file if the fill-array-data 

instructions were not generated.  Below are the steps I followed: 

(1) Download Android 2.2 (Froyo) source code. 

(2) Identify the source code that processes Java class files and packages the 
output as Dalvik class files (also known as dex files). 

(3) Modify this source code to prevent the replacement of static array 
initialization byte code sequences with the Dalvik fill-array-data instruction. 

(4) Build the modified source code to create a modified dx.jar 

(5) Use the modified dx.jar to create dex files for several different jar files, 
recording the size of the output dex file in each case. 

The results are shown in the spreadsheet attached as Exhibit G.   
 
C. Source Code Modifications 

58. The modifications made to Android source code to implement the experiment are 

contained in Appendix D.   

59. The dx tool translates Java byte code to Dalvik byte code as part of the process of 

forming the output dex file. As a part of the translation procedure, the code contains a heuristic 

that attempts to spot Java bytecode sequences that represent the initialization of arrays of 
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primitive data types. These bytecode sequences are simulated (described as “play execution” in 

the patent) and the initialized array values accumulated. So, rather than simply translating the 

Java byte codes that initialize the array to the corresponding Dalvik byte codes, the dx tool 

replaces the Java byte code array initialization sequence with a fill-array-data instruction that 

copies the initialized value of the array into place in one instruction. The exact sequence of 

Dalvik bytecodes involved in array allocation and initialization is shown below. 

60. I modified the source code of the dx tool so that by setting an environment 

variable NO_ARRAY_OPT, I could disable the heuristic described above. When the heuristic is 

disabled, the fill-array-data instruction is not generated, and the original Java bytecode sequence 

is directly translated into equivalent Dalvik instructions which individually assign constant 

values to each initialized array element. 

61. To run the dx tool with the environment variable set (thus disabling the heuristic) 

I used a command such as 

NO_ARRAY_OPT=true ./dx –dex –output=initArrayTest10.dex   
initArrayTest10.class 

62. To study the effect on dex file size for different primitive data types, I created a 

number of simple Java programs, all of which are similar to the following: 

public class initArrayTest10 { 
    private static int[] array = { 
        1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
    }; 
 
    public static void main(String[] argv) { 
        System.out.println("Hello world"); 
    } 
} 

The source code of all of the Java programs used for this experiment is shown in Appendix E. 

63. Each program consists of a statically initialized array – the data type and number 

of elements in the array were varied. The contents of the main() method are the same in each 

case, so the only influence on the dex file size is the number and type of the array elements, and 

whether or not the array initialization is being optimized. 
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64. The array initialization in the program shown above translates to the following 

Java bytecode. There are 44 instructions in this sequence, 40 of which initialize the array: 

0 bipush 10 

2 newarray 10 

4 dup 

5 iconst_0 

6 iconst_1 

7 iastore 

8 dup 

9 iconst_1 

10 iconst_2 

11 iastore 

12 dup 

13 iconst_2 

14 iconst_3 

15 iastore 

16 dup 

17 iconst_3 

18 iconst_4 

19 iastore 

20 dup 

21 iconst_4 

22 iconst_5 

23 iastore 

24 dup 

25 iconst_5 

26 bipush 6 

28 iastore 

29 dup 

30 bipush 6 

32 bipush 7 

34 iastore 

35 dup 

36 bipush 7 

38 bipush 8 

40 iastore 

41 dup 

42 bipush 8 

44 bipush 9 

46 iastore 

47 dup 

48 bipush 9 

50 bipush 10 

52 isatore 

53 putstatic 5 

56 return 
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65. Using the dexdump tool that is part of the Android source distribution, it is 

possible to see the normal sequence of Dalvik bytecodes generated for the array initialization in 

the program shown above. Note that there are 5 instructions in this sequence, only 1 of which 

actually initializes the array: 

000150:   |[000150] initArrayTest10.<clinit>:()V 

000160: 1300 0a00              |0000: const/16 v0, #int 10 // #a 

000164: 2300 0600             |0002: new-array v0, v0, [I // class@0006 

000168: 2600 0600 0000 |0004: fill-array-data v0, 0000000a // +00000006 

00016e: 6900 0000  |0007: sput-object v0, LinitArrayTest10;.array:[I // field@0000 

000172: 0e00    |0009: return-void 

000174: 0003 0400 0a00 0000 0100 0000 0200 ... |000a: array-data (24 units) 

66. When the array initialization heuristic is disabled, the following array 

initialization code is generated. Note that there are 29 instructions in this sequence, 25 of which 

are used to initialize the array: 

000150:   |[000150] initArrayTest10.<clinit>:()V 

000160: 1256   |0000: const/4 v6, #int 5 // #5 

000162: 1245   |0001: const/4 v5, #int 4 // #4 

000164: 1234   |0002: const/4 v4, #int 3 // #3 

000166: 1223   |0003: const/4 v3, #int 2 // #2 

000168: 1212   |0004: const/4 v2, #int 1 // #1 

00016a: 1300 0a00  |0005: const/16 v0, #int 10 // #a 

00016e: 2300 0600  |0007: new-array v0, v0, [I // class@0006 

000172: 1201    |0009: const/4 v1, #int 0 // #0 

000174: 4b02 0001  |000a: aput v2, v0, v1 

000178: 4b03 0002  |000c: aput v3, v0, v2 

00017c: 4b04 0003  |000e: aput v4, v0, v3 

000180: 4b05 0004  |0010: aput v5, v0, v4 
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000184: 4b06 0005  |0012: aput v6, v0, v5 

000188: 1261   |0014: const/4 v1, #int 6 // #6 

00018a: 4b01 0006  |0015: aput v1, v0, v6 

00018e: 1261   |0017: const/4 v1, #int 6 // #6 

000190: 1272   |0018: const/4 v2, #int 7 // #7 

000192: 4b02 0001  |0019: aput v2, v0, v1 

000196: 1271   |001b: const/4 v1, #int 7 // #7 

000198: 1302 0800  |001c: const/16 v2, #int 8 // #8 

00019c: 4b02 0001  |001e: aput v2, v0, v1 

0001a0: 1301 0800  |0020: const/16 v1, #int 8 // #8 

0001a4: 1302 0900  |0022: const/16 v2, #int 9 // #9 

0001a8: 4b02 0001  |0024: aput v2, v0, v1 

0001ac: 1301 0900  |0026: const/16 v1, #int 9 // #9 

0001b0: 1302 0a00  |0028: const/16 v2, #int 10 // #a 

0001b4: 4b02 0001  |002a: aput v2, v0, v1 

0001b8: 6900 0000  |002c: sput-object v0, LinitArrayTest10;.array:[I // field@0000 

0001bc: 0e00   |002e: return-void 

67. Comparing these two Dalvik bytecode sequences, it is clear that the allocation of 

the array object is not affected by the heuristic – the following two instructions load the array 

size into a register and allocate the array and are found in both sequences: 

000160: 1300 0a00              |0000: const/16 v0, #int 10 // #a 

000164: 2300 0600             |0002: new-array v0, v0, [I // class@0006 

68. The assignment of the allocated and initialized array object to the field is also the 

same, and is done with a single instruction in both cases: 

00016e: 6900 0000  |0007: sput-object v0, LinitArrayTest10;.array:[I // field@0000 

69. The difference between the two Dalvik bytecode sequences is the initialization of 

the array. When the heuristic is enabled, the initialized array values are inserted into the code, 

EXHIBIT 2-8



 

 17 
 

and the fill-array-data instruction is used to copy these initialized array values into the allocated 

array object. When the heuristic is disabled, each element of the array is initialized individually. 

This requires that two registers are loaded with the appropriate values for each array element – 

the element index and the element value. In the example shown here, there is an overlap between 

the set of element indexes used and the element values, enabling the same register to be used 

multiple times. The number of instructions required to initialize the array will grow 

approximately linearly with the array. Typically, it will be three instructions per array element – 

two constant loads and an aput instruction to actually put the right value into the correct array 

element. Depending on the data type, this will be a size overhead of 10-14 bytes per array 

element. 

D. Results 

70. The results of this experiment are shown in the table below. The “Array type” and 

“Array size” columns are self-explanatory. The two middle columns show the size in byes of the 

dex file both with and without the array initialization optimization. The “Bytes added” column 

shows the number of bytes added to the dex file when the optimization was disabled. The “Array 

values” column shows the values used for the array initialization. Note that the cost of array 

initialization without the optimization is greater when larger numbers are used – this is because it 

takes more Dalvik instructions to load a larger constant number into a register prior to storing the 

register into an array element to initialize it. 
 

Array type Array 
size 

Dex with 
optimization 

Dex without 
optimization

Bytes 
added 

Array values 

- No array 748 - - None 
int [10] 904 932 28 1, 2, … 10 
int [20] 944 1052 108 1, 2, … 20 
int [100] 1268 2016 748 1, 2, … 100 
int [100] 1272 2244 972 231-1, 231-2, … 
int [1000] 4868 12816 7948 1, 2, … 1000 
short [10] 888 936 48 1, 2, … 10 
short [20] 908 1056 148 1, 2, … 20 
short [100] 1068 2016 958 1, 2, … 100 
short [100] 1076 2048 968 215-1, 215-2, … 
double [8][8] 1436 1632 196 1.0 … 135.0 
boolean [10] 876 916 40 True, false 
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71. The next table shows the number of bytes contributed to the dex file size by the 

array. This is approximated by subtracting the size of the dex file with no array defined from the 

size of the de file including a static array. The “with optimization” column shows the size of the 

array when the play execution technique is used. The “without optimization” column shows the 

size when play execution is disabled. The “Ratio” column shows how much the array size grows 

without the use of play execution. 
 

Array type Array 
size 

Array size 
with 
optimization 

Array size 
without 
optimization

Ratio Array values 

- No array - - - None 
int [10] 156 184 1.18x 1, 2, … 10 
int [20] 196 304 1.55x 1, 2, … 20 
int [100] 520 1268 2.44x 1, 2, … 100 
int [100] 524 1496 2.85x 231-1, 231-2, … 
int [1000] 4120 12068 2.93x 1, 2, … 1000 
short [10] 140 188 1.34x 1, 2, … 10 
short [20] 160 308 1.93x 1, 2, … 20 
short [100] 320 1268 3.96x 1, 2, … 100 
short [100] 328 1300 3.96x 215-1, 215-2, … 
double [8][8] 688 884 1.28x 1.0 … 135.0 
boolean [10] 128 168 1.31x True, false 

72. By examining the Dalvik bytecode sequences presented above, it can be seen that 

the difference in the size of the dex file will not be completely linear with respect to the array 

size. This is true because the number of registers required to be initialized will depend on the set 

of values used by the array elements to be initialized, and the number of Dalvik bytecodes to 

initialize a register depends on the magnitude of the number with which the register is to be 

initialized. It is clear though that the array initialization optimization through play execution does 

have a significant impact on both the size of the dex file and the number of Dalvik bytecodes that 

must be executed to initialize the array. 

E. ’520 CONCLUSION  

73. The use of a heuristic to spot static array initialization, play execution of the array 

initialization bytecodes and the storing of the contents of the initialized array significantly 
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