
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA
pa-1430905

MORRISON & FOERSTER LLP
MICHAEL A. JACOBS (Bar No. 111664)
mjacobs@mofo.com
MARC DAVID PETERS (Bar No. 211725)
mdpeters@mofo.com
755 Page Mill Road
Palo Alto, CA 94304-1018
Telephone: (650) 813-5600 / Facsimile: (650) 494-0792

BOIES, SCHILLER & FLEXNER LLP
DAVID BOIES (Admitted Pro Hac Vice)
dboies@bsfllp.com
333 Main Street
Armonk, NY 10504
Telephone: (914) 749-8200 / Facsimile: (914) 749-8300
STEVEN C. HOLTZMAN (Bar No. 144177)
sholtzman@bsfllp.com
1999 Harrison St., Suite 900
Oakland, CA 94612
Telephone: (510) 874-1000 / Facsimile: (510) 874-1460

ORACLE CORPORATION
DORIAN DALEY (Bar No. 129049)
dorian.daley@oracle.com
DEBORAH K. MILLER (Bar No. 95527)
deborah.miller@oracle.com
MATTHEW M. SARBORARIA (Bar No. 211600)
matthew.sarboraria@oracle.com
500 Oracle Parkway
Redwood City, CA 94065
Telephone: (650) 506-5200 / Facsimile: (650) 506-7114

Attorneys for Plaintiff
ORACLE AMERICA, INC.

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE, INC.

Defendant.

Case No. 3:10-cv-03561-WHA

ORACLE AMERICA, INC.’S
PATENT LOCAL RULE 3-1 DISCLOSURE
OF ASSERTED CLAIMS AND
PRELIMINARY INFRINGEMENT
CONTENTIONS

Oracle America, Inc. v. Google Inc. Doc. 79 Att. 1

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/79/1.html
http://dockets.justia.com/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 1
pa-1430905

Pursuant to Patent Local Rules 3-1 and 3-2, Plaintiff Oracle America, Inc. (“Oracle”)

hereby submits the following Disclosure of Asserted Claims and Infringement Contentions.

Fact discovery commenced today, and Oracle is serving initial discovery requests on

Defendant Google Inc. (“Google”) seeking information that may affect Oracle’s infringement

contentions. In addition, depositions that are directly relevant to Oracle’s claims of infringement

will be scheduled for after the date of this statement. Not all information about the various

versions of the Accused Instrumentalities is publicly available. Further still, Oracle understands

that Google may release future versions of the Accused Instrumentalities.1

As such, Oracle’s investigation into the extent of infringement by Google is ongoing, and

Oracle makes these disclosures based on present knowledge of Google’s infringing activities. In

light of the foregoing, Oracle reserves the right to supplement or amend these disclosures as

further facts are revealed during the course of this litigation.

I. DISCLOSURE OF ASSERTED CLAIMS AND INFRINGEMENT
CONTENTIONS.

A. Patent Local Rule 3-1(a) — Asserted Claims.

Oracle asserts that Defendant Google is liable under Title 35 U.S.C. § 271(a), (b), (c), and

(f) for infringement of:

• Claims 11-41 of United States Patent No. RE38,104 (“the ’104 reissue patent”)

(infringement claim chart attached as Exhibit A);

• Claims 1, 2, 3, 4, and 8 of United States Patent No. 6,910,205 (“the ’205 patent”)

(infringement claim charts attached as Exhibits B-1 and Exhibit B-2);

• Claims 1, 5-7, 11-13, 15, and 16 of United States Patent No. 5,966,702 (“the ’702

patent”) (infringement claim chart attached as Exhibit C);

• Claims 1-24 of United States Patent No. 6,125,447 (“the ’447 patent”)

(infringement claim chart attached as Exhibit D);

1 See, e.g., http://en.wikipedia.org/wiki/Android (operating system) (last visited Nov. 20, 2010)
(Android versions “Honeycomb” and “Ice Cream” scheduled for 2011 launches).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 2
pa-1430905

• Claims 1-21 of United States Patent No. 6,192,476 (“the ’476 patent”)

(infringement claim chart attached as Exhibit E);

• Claims 1-4 and 6-23 of United States Patent No. 6,061,520 (“the ’520 patent”)

(infringement claim chart attached as Exhibit F); and

• Claims 1-8, 10-17, and 19-22 of United States Patent No. 7,426,720 (“the ’720

patent”) (infringement claim chart attached as Exhibit G).

B. Patent Local Rule 3-1(b) — Accused Instrumentalities.

Based on Oracle’s investigation thus far, Oracle accuses the following Accused

Instrumentalities of infringing each of asserted claims specified above: (i) “Android” or “the

Android Platform”;2 (ii) Google devices running Android; and (iii) other mobile devices running

Android. Representative examples of Google devices running Android include the Google Nexus

One and the Google Nexus S.3 Representative examples of other mobile devices running Android

include HTC’s EVO 4G, HTC’s Droid Incredible, HTC’s G2, Motorola’s Droid, and Samsung’s

Captivate.

Google directly infringes the asserted claims enumerated above under 35 U.S.C. § 271(a)

because Google, without authority, makes, uses, offers to sell, sells, or imports the Accused

Instrumentalities within or into the United States. Further, Google induces the infringement of

others under 35 U.S.C. § 271(b) to the extent it contracts, instructs, or otherwise induces others to

make, use, offer to sell, sell, or import the Accused Instrumentalities within or into the United

2 “Android” or “the Android Platform” means “Android” as referred to in Google’s Answer
(Docket No. 32) at Background ¶ 12 and in Google’s Answer to Amended Complaint (Docket
No. 51) at Background ¶ 12 and at Factual Background ¶¶ 11-17, and includes any versions
thereof (whether released or unreleased) and related public or proprietary source code, executable
code, and documentation.
3 See, e.g., JR Raphael, “The Nexus S and Google: Everything There Is To Know,” featured in
PCWorld (Nov. 11, 2010), available at
http://www.pcworld.com/article/210460/the nexus s and google everything there is to know.
html (last visited Nov. 29, 2010) (“Today’s buzz is all about the Samsung Nexus S -- a still-
under-wraps smartphone believed to be the successor to Google’s Nexus One. According to
various leaks, the Nexus S will be a ‘Google experience’ device, meaning it’ll run a stock version
of Android without any of those baked-in manufacturer UIs. And, if the latest rumors prove to be
true, the Samsung Nexus S will be rocking the as-of-yet-unannounced Android Gingerbread
release.”).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 3
pa-1430905

States. Google also contributes to the infringement of others under 35 U.S.C. § 271(c) to the

extent it offers to sell, sells, or imports part or all of the Accused Instrumentalities within or into

the United States. Further, Google supplies part or all of the Accused Instrumentalities in or from

the United States to foreign contractors, including HTC, in violation of 35 U.S.C. § 271(f).

C. Patent Local Rule 3-1(c) — Claim Charts for the Accused Instrumentalities.

Attached as Exhibits A-G are claim charts that identify where each element of each

asserted claim of the asserted patents is found within the Accused Instrumentalities, based on the

information available to Oracle.

The infringement evidence cited in Exhibits A-G is exemplary and not exhaustive. The

cited examples are taken from Android 2.24 and current versions of Google’s Android websites.

Oracle’s infringement contentions apply to all versions of Android having similar or nearly

identical code or documentation, including past and expected future releases. Past releases

include the Android SDK Preview, 0.9 beta, 1.0, 1.1, 1.5 (“Cupcake”), 1.6 (“Donut”), 2.0/2.1

(“Éclair”), and 2.2 (“Froyo”).

Although Oracle’s investigation is ongoing, the following summary indicates which

versions of Android infringe the asserted claims of the specified patents:5

• the ’104 reissue patent (infringement claim chart attached as Exhibit A): infringed by

all versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”);

• the ’205 patent (infringement claim chart attached as Exhibit B-1): infringed by all

versions of Android subsequent to January 28, 2010, including at least Android 2.2

(“Froyo”);

4 Accessed through http://android.git.kernel.org/.
5 It appears that the Android git source code repository (accessible through
http://android.git.kernel.org/) was created on or around Oct. 21, 2008. As such, the following list
of infringing Android versions may be expanded based on what Oracle learns about earlier
Android versions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 4
pa-1430905

• the ’205 patent (infringement claim chart attached as Exhibit B-2): infringed by all

versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”);

• the ’702 patent (infringement claim chart attached as Exhibit C): infringed by all

versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”);

• the ’447 patent (infringement claim chart attached as Exhibit D): infringed by all

versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”);

• the ’476 patent (infringement claim chart attached as Exhibit E): infringed by all

versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”);

• the ’520 patent (infringement claim chart attached as Exhibit F): infringed by all

versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”); and

• the ’720 patent (infringement claim chart attached as Exhibit G): infringed by all

versions of Android subsequent to Oct. 21, 2008, including Android 1.1, 1.5

(“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”).

D. Patent Local Rule 3-1(d) — Indirect Infringement.

In addition to the acts of direct infringement described above, Google actively contributes

to and induces infringement by third parties of each of the asserted claims of the asserted patents.

On information and belief, Google purposely and actively distributes the Accused

Instrumentalities to manufacturers of products and application developers with the intention that

they be used, copied and distributed to consumers. Google induces and contributes to the

infringement of the asserted claims of each asserted patent, because Google encourages

manufacturers, application developers, and service providers (including the members of the Open

Handset Alliance), as well as end users, to copy, sell, distribute, re-distribute, and use products

that embody or incorporate the Accused Instrumentalities. Google’s admissions in its Amended

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 5
pa-1430905

Counterclaims prove its intent and encouragement of others. (See, e.g., Google’s Amended

Counterclaims ¶¶ 6-7, 13.) As discussed below, Google has actual knowledge of Oracle’s patents

and its infringement is willful.

E. Patent Local Rule 3-1(e) — Nature of Infringement.

Oracle asserts that each element or limitation of each asserted claim of each asserted

patent is literally present in the Accused Instrumentalities, except where explicitly indicated. To

the extent that any element or limitation of the asserted claims is not found to have literal

correspondence in the Accused Instrumentalities, Oracle alleges, on information and belief, that

any such elements or limitations are present under the doctrine of equivalents in the Accused

Instrumentalities.

F. Patent Local Rule 3.1(f) — Priority Dates.

The ’104 reissue patent has a priority date of Dec. 22, 1992, being a continuation of

08/755,764 (filed Nov. 21, 1996) resulting in RE36,204 which is a Reissue of 07/994,655 (filed

Dec. 22, 1992) which is U.S. Patent No. 5,367,685.

The ’205 patent is a continuation of U.S. Pat. No. 6,513,156, having a priority date of Jun.

30, 1997, the filing date of U.S. patent application number 08/884,856.

G. Patent Local Rule 3.1(g) — Patentee’s Asserted Practice of the Claimed
Inventions.6

1. The ’104 Reissue Patent

The following instrumentalities of Oracle practice the asserted claims of the ’104 reissue

patent:

• JDK 1.0 and subsequent versions;

• JRE 1.1.1 and subsequent versions;

• HotSpot 1.0 and subsequent versions;

6 Oracle’s investigation concerning the identification of instrumentalities that practice the asserted
claims of the asserted patents is ongoing. There have been many different products relating to the
Java Platform over the years, each having many versions or variants, and the lists presented below
reflect Oracle’s diligent efforts in identifying instrumentalities that practice the asserted claims of
the asserted patents.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 6
pa-1430905

• Java SE for Embedded 1.4.2_11 and subsequent versions;

• CDC RI 1.0 and CDC-HI 1.0 and subsequent versions of each;

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• CLDC RI 1.0 and CLDC-HI 1.0 and subsequent versions;

• Foundation Profile 1.0 and subsequent versions;

• J2EE 1.2 (later called Java EE) and subsequent versions;

• WTK 1.0 / Java ME SDK 1.0, and subsequent versions of each;

• Java Real Time 1.0 and all subsequent versions;

• Personal Profile HI and RI 1.0 and subsequent versions;

• Personal Basis Profile-HI and RI 1.0 and subsequent versions;

• PersonalJava 1.0 and subsequent versions;

• EmbeddedJava 1.0 and subsequent versions;

• JavaOS 1.0 (all variants, including Java PC) and subsequent versions;

• Java Card connected platform 3.0 and subsequent versions;

• Oracle Java Wireless Client (formerly Sun Java Wireless Client) 1.0 and

subsequent versions;

• MIDP 1.0 and subsequent versions; and

• Jrockit7 from 2002 and subsequent versions.

2. The ’205 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’205 patent:

• JDK 1.2 and subsequent versions;

• JRE 1.2 and subsequent versions;

• HotSpot 1.0 and subsequent versions;

• Java SE for Embedded 1.4.2 and subsequent versions;

• CDC RI 1.0.1 and CDC-HI 1.0 and subsequent versions of each;

7 Oracle International Corporation, not Oracle America, owns Jrockit through Oracle
Corporation’s acquisition of BEA Systems.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 7
pa-1430905

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• CLDC RI 1.1.1;

• CLDC-HI 1.0 and subsequent versions;

• Foundation Profile 1.0.2 and subsequent versions;

• J2EE 1.2 (later called Java EE) and subsequent versions;

• Java ME SDK 3.0 EA and subsequent versions;

• Java Real-Time System 1.0 and all subsequent versions;

• Personal Profile HI and RI 1.0 and subsequent versions;

• Personal Basis Profile HI and RI 1.0 and subsequent versions; and

• Jrockit from 2002 and subsequent versions.

3. The ’702 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’702 patent:

• PersonalJava (“PJava”) 1.0 and subsequent versions;

• EmbeddedJava (“EJava”) 1.0 and subsequent versions;

• JavaOS 1.0 (and all variants, including Java PC) and subsequent versions;

• CDC RI 1.0 and CDC-HI 1.0, and all subsequent versions of each;

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• CLDC RI 1.1.1 and CLDC-HI 1.0.1, and all subsequent versions of each;

• Personal Profile HI and RI 1.0 and subsequent versions;

• Personal Basis Profile HI and RI 1.0 and subsequent versions;

• Foundation Profile 1.0 and subsequent versions; and

• Java Card platform 2.1 and subsequent versions.

4. The ’447 and ’476 Patents

The following instrumentalities of Oracle practice the asserted claims of the ’447 and ’446

patents:

• JDK 1.2 and subsequent versions;

• JRE 1.2 and subsequent versions;

• Java SE for Embedded 1.4.2_11 and subsequent versions;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 8
pa-1430905

• CDC RI 1.0 and CDC-HI 1.0, and all subsequent versions of each;

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions;

• Foundation Profile 1.0.2 and subsequent versions;

• J2EE 1.2 (later called Java EE) and subsequent versions;

• Java ME SDK 3.0 EA and subsequent versions;

• Java Real-Time System 1.0 and all subsequent versions;

• Personal Profile HI and RI 1.0 and subsequent versions;

• Personal Basis Profile HI and RI 1.0 and subsequent versions;

• Java Card connected platform 3.0 and subsequent versions; and

• Jrockit from 2002 and subsequent versions.

Additionally, the following instrumentalities of Oracle practice the asserted claims of the

’447 patent:

• Oracle Java Wireless Client (formerly Sun Java Wireless Client) 1.1.3 and

subsequent versions.

5. The ’520 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’520 patent:

• CLDC RI 1.1.1;

• Java Card platform 2.1 and subsequent versions; and

• CLDC-HI 1.1.3 and subsequent versions.

6. The ’720 Patent

The following instrumentalities of Oracle practice the asserted claims of the ’720 patent:

• CDC AMS 1.0, 1.0_1, 1.0_2, Personal Basis and Personal Profile versions.

H. Patent Local Rule 3-1(h) — Willful Infringement.

Google has willfully infringed the patents-in-suit, which are directed to inventions

incorporated in the Java Platform. Many factors reveal that Google acted recklessly, i.e., despite

a high likelihood that Google’s actions infringed a valid and enforceable patent, and that Google

actually knew or should have known that its actions constituted an unjustifiably high risk of

infringement of a valid and enforceable patent. These factors include:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 9
pa-1430905

• Google is a member of the Java Community Process (JCP) and has a seat on the Java

SE/EE Executive Committee. See Java Community Process homepage, available at

http://www.jcp.org/en/participation/committee (last visited Dec. 1, 2010). Through its

lengthy participation in the JCP, Google is well aware of the need to obtain a license

from Oracle in order to make use of Oracle’s Java Platform technologies as Google

does in Android. Google’s admissions in its Amended Counterclaims prove this

awareness. (See, e.g., Google’s Amended Counterclaims ¶¶ 6-7, 13.)

• At least three of the seven inventors named in the patents-in-suit, Robert Griesemer,

Lars Bak, and Frank Yellin, have left Oracle and work at Google. Their knowledge is

attributable to Google.

• Andy Rubin, Google’s VP of Mobile Platforms, previously worked at Danger, Inc.,

which he founded. He understood the need to obtain a license from Oracle (then Sun)

to use Java Platform technologies in Danger’s Hiptop operating system, and Danger

did obtain a commercial license. When Rubin left Danger and founded Android, Inc.,

he approached Sun about obtaining a commercial license to Java Platform

technologies on behalf of Android, Inc. Those discussions ended without Android

having obtained a commercial license. Rubin’s knowledge is attributable to Google.

• Google has consistently resisted taking a license from Sun for Sun’s patented Java

Platform technologies.

• In copying Oracle’s Java Platform technologies, Google deliberately disregarded a

known risk that Oracle had protective patents covering Java Platform technologies.

• Google’s Android source code and documentation directly references and copies Java

Platform technology specifications, documentation, and source code. See, e.g.,

mydroid\libcore\security\src\main\java\java\security\CodeSource.java;

mydroid\libcore\support\src\test\java\org\apache\harmony\security\tests\support\cert\P

oicyNodeImpl.java. Google admits that Android incorporates a subset of Apache

Harmony, which it asserts is “an implementation of Sun’s Java.” (See, e.g., Google’s

Amended Counterclaims ¶¶ 6-7, 13.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 10
pa-1430905

• Google’s website content directly references and demonstrates use of Java Platform

technologies. See, e.g., “What is Android?”, available at

http://developer.android.com/guide/basics/what-is-android.html (last visited Dec. 1,

2010) (“Android includes a set of core libraries that provides most of the functionality

available in the core libraries of the Java programming language.”); Package Index,

available at http://developer.android.com/reference/packages.html (last visited Dec. 1,

2010), and subsidiary webpages.

• Google’s Android videos directly reference and demonstrate use of Java Platform

technologies. See, e.g., Google I/O 2008 Video entitled “Dalvik Virtual Machine

Internals,” presented by Dan Bornstein (Google), available at

http://developer.android.com/videos/index.html#v=ptjedOZEXPM (last visited Dec. 1,

2010).

II. DOCUMENT PRODUCTION ACCOMPANYING DISCLOSURES.8

A. Patent Local Rule 3-2(a) — Documents Evidencing Pre-Application
Disclosure.9

Copies of documents produced pursuant to Patent Local Rule 3-2(a) are at

OAGOOGLE0000052860-53265, OAGOOGLE0000053266 -53749, OAGOOGLE0000053750-

53759, OAGOOGLE0000059578, and OAGOOGLE0000059579-60385. Oracle also directs

Google to three public websites: developer.sun.com, java.sun.com, and www.sun.com. Oracle’s

proprietary commercial releases will be made available for inspection subject to a Protective

Order entered in this case or by agreement of the parties.

8 Once the Parties agree to a protective order governing the production of source code in this
litigation, Oracle will make available source code pursuant to Patent Local Rule 3-2 for
inspection by Google in accordance with the anticipated protective order. Where different
versions of specific Oracle source code do not vary with respect to the claimed inventions in suit
(including variants and customized versions for specific customers), Oracle will produce the
earliest general version practicing the claimed invention to avoid or minimize any duplicative
productions.
9 As Patent Local Rule 3-2(a) states, Oracle’s production of a document as required by the rule
shall not constitute an admission that such document evidences or is prior art under 35 U.S.C.
§ 102.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ORACLE’S PRELIMINARY INFRINGEMENT CONTENTIONS
CASE NO. 3:10-CV-03561-WHA 11
pa-1430905

B. Patent Local Rule 3-2(b) — Documents Evidencing Conception and
Reduction to Practice.

Copies of documents evidencing conception, reduction to practice, design and

development of the claimed inventions are produced at OAGOOGLE0000000001-52022,

OAGOOGLE0000053793-57166, and OAGOOGLE0000059571-59577. Oracle also directs

Google to three public websites: developer.sun.com, java.sun.com, and www.sun.com. Oracle’s

proprietary commercial releases will be made available for inspection subject to a Protective

Order entered in this case or by agreement of the parties.

C. Patent Local Rule 3-2(c) — File Histories for the Patents-in-Suit.

Copies of the patent file histories are produced at OAGOOGLE0000052023-52859 and

OAGOOGLE0000057167-59570.

D. Patent Local Rule 3-2(d) — Ownership of the Patents-in-Suit.

Copies of documents evidencing ownership of the patent rights are produced at

OAGOOGLE0000053760-53792 and OAGOOGLE0000056022- 56028.

E. Patent Local Rule 3-2(e) — Patentee’s Asserted Practice of the Claimed
Inventions.

Copies of documents sufficient to show the operation of any aspects or elements of

instrumentalities Oracle relies upon as embodying the asserted claims can be found at the

following three public websites: developer.sun.com, java.sun.com, and www.sun.com. Oracle’s

proprietary commercial releases will be made available for inspection subject to a Protective

Order entered in this case or by agreement of the parties.

Dated: December 2, 2010

MICHAEL A. JACOBS
MARC DAVID PETERS
MORRISON & FOERSTER LLP

By: /s/ Marc David Peters

Attorneys for Plaintiff
ORACLE AMERICA, INC.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 CERTIFICATE OF SERVICE
CASE NO. 3:10-CV-03561-WHA 1
pa-14

CERTIFICATE OF SERVICE

I declare that I am employed with the law firm of Morrison & Foerster LLP, whose address
is 755 Page Mill Road, Palo Alto, California 94304-1018. I am not a party to the within cause,
and I am over the age of eighteen years.

I further declare that on December 2, 2010, I served a copy of:

ORACLE AMERICA, INC.’S PATENT LOCAL RULES 3-1
DISCLOSURE OF ASSERTED CLAIMS AND
PRELIMINARY INFRINGEMENT CONTENTIONS

 BY ELECTRONIC SERVICE [Fed. Rule Civ. Proc. rule 5(b)] by electronically

mailing a true and correct copy through Morrison & Foerster LLP's electronic mail
system to the e-mail address(es) set forth below, or as stated on the attached service
list per agreement in accordance with Federal Rules of Civil Procedure rule 5(b).

Robert F. Perry
Scott T. Weingaertner
Bruce W. Baber
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003

RPerry@kslaw.com
SWeingaertner@kslaw.com

Fax: 212.556.2222

Timothy T. Scott
Geoffrey M. Ezgar
Leo Spooner III
KING & SPALDING, LLP
333 Twin Dolphin Drive, Suite 400
Redwood Shores, CA 94065

TScott@kslaw.com
GEzgar@kslaw.com
LSpooner@kslaw.com

Fax: 650.590.1900

Donald F. Zimmer, Jr.
Cheryl Z. Sabnis
KING & SPALDING LLP
101 Second Street, Suite 2300
San Francisco, CA 94105

fzimmer@kslaw.com
csabnis@kslaw.com

Fax: 415.318.1300

Ian C. Ballon
Heather Meeker (App for Admission to
ND Cal to be filed)
GREENBERG TRAURIG LLP
1900 University Avenue
East Palo Alto, CA 94303

ballon@gtlaw.com
meekerh@gtlaw.com

Fax: 650.328.8508

Joseph R. Wetzel
GREENBERG TRAURIG LLP
153 Townsend Street, 8th Floor
San Francisco, CA 94107

wetzelj@gtlaw.com

Fax: 415.707.2010

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Certificate of Service 2

I declare under penalty of perjury that the foregoing is true and correct.

Executed at Palo Alto, California, this 2nd day of December, 2010.

Richard S. Ballinger
(typed)

/s/ Richard S. Ballinger
(signature)

pa-1435315 1

EXHIBIT A
Preliminary Infringement Contentions for the ’104 Reissue Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or
nearly identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the
’104 reissue patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”),
1.6 (“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The ’104 Reissue Patent Infringed By
[11-preamble] 11. An
apparatus comprising:

The Accused Instrumentalities include devices that run Android. An Android-based device is an
apparatus.

[11-a] a memory
containing intermediate
form object code
constituted by a set of
instructions, certain of
said instructions
containing one or more
symbolic references;

An Android-based device has a memory containing intermediate form object code constituted by a set of
instructions.

See, e.g., Google I/O 2008 Video, Google I/O 2008 Video, entitled “Dalvik Virtual Machine Internals,”
presented by Dan Bornstein (Google Android Project), available at
http://developer.android.com/videos/index.html#v=ptjedOZEXPM:

• at 1:22 under “The Big Picture” (“Very briefly, Android is the new platform for mobile devices
and it really is the complete stack, includes layers from the OS kernel at the bottom and drivers
up through an application framework at the top and it even includes a few applications. You
write your applications in the Java programming language and they get translated after
compilation into a form that runs on the Dalvik virtual machine.”).

• at 2:52 under “What is the Dalvik VM?” (“So the virtual machine, again, is designed based on
the constraints of the platform and you can see a few of the key ones. We’re assuming, not a

pa-1435315 2

The ’104 Reissue Patent Infringed By
particularly powerful CPU, not very much RAM especially by say today’s desktop standards.
An easy way to think about it is as approximately equivalent to like a late 90s desktop machine
with a little more modern operating system, but with one very important constraint.”).

• at 4:06 under “Problem: Memory Efficiency” (“So, in particular this is, this is kind of how a low
end Android device is gonna look in terms of, you know, system characteristics. So, you know,
once everything is started up on the system we’re not really expecting there to be that much
memory left for applications and, of course, so we try to make the most of that. But one wrinkle
in the works is that our, the Android platform security relies on modern process separation. So
each application is running in a separate process. There’s a separate address space. It has
separate memory and apps are not allowed to interfere with each other at that level and so that
means that unless you do something special that 20 megs really isn’t gonna go far at all.”).

pa-1435315 3

The ’104 Reissue Patent Infringed By
• at 5:05 under “Problem: Memory Efficiency” (“And in addition to this modern platform that, we

try to make it, you know, have a rich, have a rich set of APIs for developers to use, we have a
fairly large system library. And so again, if you don’t do anything special, well, with a 10 meg
library, 20 megs left for apps, that really, really doesn’t leave much space at all. And I think I
had a previous slide, we don’t have swap space. So I just wanna emphasize that, so there’s no, if
you have 64 megs of RAM, you have 64 megs of RAM and that’s kind of the size of it. Okay.”).

• at 15:38 under “4 Kinds of Memory” (“So our goal, again, is to get as much, as much memory to

be mapped clean as possible, but we at least have this out for where we really do have to allocate
that we can reduce the cost in terms of the whole system performance.”).

pa-1435315 4

The ’104 Reissue Patent Infringed By

• at 19:07 under “Problem: CPU Efficiency” (“Again, as I said at the beginning, we’re running on
a platform or expecting to run on a platform that looks like what you might have had on your
desktop 10 years ago. And, you know, you can see that it’s a fairly slow bus, almost no data
cache at all and I just wanna re-emphasize that there’s very little RAM for an app, for
applications once you consider all of the things that your device is doing, say, as a phone. It has
to answer phone calls, it has to be able to take and send SMSs. All of these things are essential
services as far as the user is concerned.”).

pa-1435315 5

The ’104 Reissue Patent Infringed By

• at 21:54 under “Install-Time Work” (“So, what are we doing to actually be efficient on the
platform? So, first of all, when an application gets installed and also when the system itself gets
installed, the platform will, the system will do a lot of work up front to avoid doing work at
runtime. So one of the major things we do is verification of dex files and what this means is that
as a, as a type safe, reference safe runtime we want to ensure that the code that we’re running
doesn’t violate the constraints of the system. It doesn’t violate type safety, it doesn’t, it doesn’t,
it doesn’t violate reference safety. And for Android, this is really more about minimizing the
app, the impact of bugs in an application as opposed to being a security consideration in and of
itself.”).

pa-1435315 6

The ’104 Reissue Patent Infringed By

• at 23:35 under “Install-Time Work” (“We do optimization. And, so the first time that a dex file
lands on a device, we do that verification work, we also, we also augment that file, if we have to
we will do byte swapping and pad out structures and in addition, we have a bunch of other things
that we do such that when it comes time to run, we can run that much faster. So as an example
of static linking, before, when a dex files arrives on a device it will have symbolic references to
methods and fields, but afterwards it might just be a simple, a simple integer vtable offset so that
when, for invoking a method, instead of having to do say a string-based lookup, it can just
simply index into a vtable. And just as another example, you are probably aware that the
constructor for java.lang.object has nothing, does nothing inside it and the system can tell. So
instead of, instead of actually doing that any time you’re constructing an object, we know to
avoid just making that call and that actually does make a significant performance impact.”).

pa-1435315 7

The ’104 Reissue Patent Infringed By

Android applications are packaged as .apk files containing intermediate form object code (.dex files).
See, e.g., Android Glossary Definition for “.apk file,” available at
http://developer.android.com/guide/appendix/glossary.html:

.apk file
Android application package file. Each Android application is compiled and packaged in a single
file that includes all of the application's code (.dex files), resources, assets, and manifest file. The
application package file can have any name but must use the .apk extension. For example:
myExampleAppname.apk. For convenience, an application package file is often referred to as an
".apk".

pa-1435315 8

The ’104 Reissue Patent Infringed By

Android Glossary Definition for “.dex file,” available at
http://developer.android.com/guide/appendix/glossary.html:

.dex file
Compiled Android application code file.
Android programs are compiled into .dex (Dalvik Executable) files, which are in turn zipped into
a single .apk file on the device. .dex files can be created by automatically translating compiled
applications written in the Java programming language.

Android Glossary Definition for “Dalvik,” available at
http://developer.android.com/guide/appendix/glossary.html:

Dalvik
The Android platform's virtual machine. The Dalvik VM is an interpreter-only virtual machine
that executes files in the Dalvik Executable (.dex) format, a format that is optimized for efficient
storage and memory-mappable execution. The virtual machine is register-based, and it can run
classes compiled by a Java language compiler that have been transformed into its native format
using the included "dx" tool. The VM runs on top of Posix-compliant operating systems, which it
relies on for underlying functionality (such as threading and low level memory management). The
Dalvik core class library is intended to provide a familiar development base for those used to
programming with Java Standard Edition, but it is geared specifically to the needs of a small
mobile device.

Android Basics, entitled “What is Android?,” available at
http://developer.android.com/guide/basics/what-is-android.html:

What is Android?

Android is a software stack for mobile devices that includes an operating system, middleware and
key applications. The Android SDK provides the tools and APIs necessary to begin developing
applications on the Android platform using the Java programming language.

pa-1435315 9

The ’104 Reissue Patent Infringed By
Features

• Application framework enabling reuse and replacement of components
• Dalvik virtual machine optimized for mobile devices
• Integrated browser based on the open source WebKit engine
• Optimized graphics powered by a custom 2D graphics library; 3D graphics based on the

OpenGL ES 1.0 specification (hardware acceleration optional)
• SQLite for structured data storage
• Media support for common audio, video, and still image formats (MPEG4, H.264, MP3,

AAC, AMR, JPG, PNG, GIF)
• GSM Telephony (hardware dependent)
• Bluetooth, EDGE, 3G, and WiFi (hardware dependent)
• Camera, GPS, compass, and accelerometer (hardware dependent)
• Rich development environment including a device emulator, tools for debugging, memory

and performance profiling, and a plugin for the Eclipse IDE

Android Architecture

The following diagram shows the major components of the Android operating system. Each
section is described in more detail below.

pa-1435315 10

The ’104 Reissue Patent Infringed By

Applications

Android will ship with a set of core applications including an email client, SMS program,
calendar, maps, browser, contacts, and others. All applications are written using the Java
programming language.

…

Android Runtime

Android includes a set of core libraries that provides most of the functionality available in the

pa-1435315 11

The ’104 Reissue Patent Infringed By
core libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik virtual
machine. Dalvik has been written so that a device can run multiple VMs efficiently. The Dalvik
VM executes files in the Dalvik Executable (.dex) format which is optimized for minimal
memory footprint. The VM is register-based, and runs classes compiled by a Java language
compiler that have been transformed into the .dex format by the included "dx" tool.

The Dalvik VM relies on the Linux kernel for underlying functionality such as threading and low-
level memory management.

 Another way that Android and Android-based devices meet the claim limitation is through the dexopt

tool.

See, e.g., dalvik\docs\dexopt.html; see also,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=docs/dexopt.html:

Dalvik Optimization and Verification With dexopt

The Dalvik virtual machine was designed specifically for the Android mobile platform. The target
systems have little RAM, store data on slow internal flash memory, and generally have the
performance characteristics of decade-old desktop systems. They also run Linux, which provides
virtual memory, processes and threads, and UID-based security mechanisms.

The features and limitations caused us to focus on certain goals:

• Class data, notably bytecode, must be shared between multiple processes to minimize total
system memory usage.

• The overhead in launching a new app must be minimized to keep the device responsive.
• Storing class data in individual files results in a lot of redundancy, especially with respect

to strings. To conserve disk space we need to factor this out.
• Parsing class data fields adds unnecessary overhead during class loading. Accessing data

values (e.g. integers and strings) directly as C types is better.

pa-1435315 12

The ’104 Reissue Patent Infringed By
• Bytecode verification is necessary, but slow, so we want to verify as much as possible

outside app execution.
• Bytecode optimization (quickened instructions, method pruning) is important for speed

and battery life.
• For security reasons, processes may not edit shared code.

The typical VM implementation uncompresses individual classes from a compressed archive and
stores them on the heap. This implies a separate copy of each class in every process, and slows
application startup because the code must be uncompressed (or at least read off disk in many
small pieces). On the other hand, having the bytecode on the local heap makes it easy to rewrite
instructions on first use, facilitating a number of different optimizations.

The goals led us to make some fundamental decisions:

• Multiple classes are aggregated into a single "DEX" file.
• DEX files are mapped read-only and shared between processes.
• Byte ordering and word alignment are adjusted to suit the local system.
• Bytecode verification is mandatory for all classes, but we want to "pre-verify" whatever

we can.
• Optimizations that require rewriting bytecode must be done ahead of time.
• The consequences of these decisions are explained in the following sections.

….

[11-b] and a processor
configured to execute
said instructions
containing one or more
symbolic references by
determining a numerical
reference corresponding
to said symbolic
reference, storing said

Any device running Android has a processor configured to execute said instructions containing one or
more symbolic references by determining a numerical reference corresponding to said symbolic
reference, storing said numerical references, and obtaining data in accordance to said numerical
references.

See, e.g., \dalvik\vm\oo\Resolve.h:

/*
 * Resolve "constant pool" references into pointers to VM structs.
 */

pa-1435315 13

The ’104 Reissue Patent Infringed By
numerical references, and
obtaining data in
accordance to said
numerical references.

#ifndef _DALVIK_OO_RESOLVE
#define _DALVIK_OO_RESOLVE

/*
 * "Direct" and "virtual" methods are stored independently. The type of call
 * used to invoke the method determines which list we search, and whether
 * we travel up into superclasses.
 *
 * (<clinit>, <init>, and methods declared "private" or "static" are stored
 * in the "direct" list. All others are stored in the "virtual" list.)
 */
typedef enum MethodType {
 METHOD_UNKNOWN = 0,
 METHOD_DIRECT, // <init>, private
 METHOD_STATIC, // static
 METHOD_VIRTUAL, // virtual, super
 METHOD_INTERFACE // interface
} MethodType;

/*
 * Resolve a class, given the referring class and a constant pool index
 * for the DexTypeId.
 *
 * Does not initialize the class.
 *
 * Throws an exception and returns NULL on failure.
 */
ClassObject* dvmResolveClass(const ClassObject* referrer, u4 classIdx,
 bool fromUnverifiedConstant);

/*
 * Resolve a direct, static, or virtual method.

pa-1435315 14

The ’104 Reissue Patent Infringed By
 *
 * Can cause the method's class to be initialized if methodType is
 * METHOD_STATIC.
 *
 * Throws an exception and returns NULL on failure.
 */
Method* dvmResolveMethod(const ClassObject* referrer, u4 methodIdx,
 MethodType methodType);

/*
 * Resolve an interface method.
 *
 * Throws an exception and returns NULL on failure.
 */
Method* dvmResolveInterfaceMethod(const ClassObject* referrer, u4 methodIdx);

/*
 * Resolve an instance field.
 *
 * Throws an exception and returns NULL on failure.
 */
InstField* dvmResolveInstField(const ClassObject* referrer, u4 ifieldIdx);

/*
 * Resolve a static field.
 *
 * Causes the field's class to be initialized.
 *
 * Throws an exception and returns NULL on failure.
 */
StaticField* dvmResolveStaticField(const ClassObject* referrer, u4 sfieldIdx);

pa-1435315 15

The ’104 Reissue Patent Infringed By
/*
 * Resolve a "const-string" reference.
 *
 * Throws an exception and returns NULL on failure.
 */
StringObject* dvmResolveString(const ClassObject* referrer, u4 stringIdx);

/*
 * Return debug string constant for enum.
 */
const char* dvmMethodTypeStr(MethodType methodType);

#endif /*_DALVIK_OO_RESOLVE*/

\dalvik\vm\oo\Resolve.c:

/*
 * Resolve classes, methods, fields, and strings.
 *
 * According to the VM spec (v2 5.5), classes may be initialized by use
 * of the "new", "getstatic", "putstatic", or "invokestatic" instructions.
 * If we are resolving a static method or static field, we make the
 * initialization check here.
 *
 * (NOTE: the verifier has its own resolve functions, which can be invoked
 * if a class isn't pre-verified. Those functions must not update the
 * "resolved stuff" tables for static fields and methods, because they do
 * not perform initialization.)
 */
#include "Dalvik.h"

#include <stdlib.h>

pa-1435315 16

The ’104 Reissue Patent Infringed By

/*
 * Find the class corresponding to "classIdx", which maps to a class name
 * string. It might be in the same DEX file as "referrer", in a different
 * DEX file, generated by a class loader, or generated by the VM (e.g.
 * array classes).
 *
 * Because the DexTypeId is associated with the referring class' DEX file,
 * we may have to resolve the same class more than once if it's referred
 * to from classes in multiple DEX files. This is a necessary property for
 * DEX files associated with different class loaders.
 *
 * We cache a copy of the lookup in the DexFile's "resolved class" table,
 * so future references to "classIdx" are faster.
 *
 * Note that "referrer" may be in the process of being linked.
 *
 * Traditional VMs might do access checks here, but in Dalvik the class
 * "constant pool" is shared between all classes in the DEX file. We rely
 * on the verifier to do the checks for us.
 *
 * Does not initialize the class.
 *
 * "fromUnverifiedConstant" should only be set if this call is the direct
 * result of executing a "const-class" or "instance-of" instruction, which
 * use class constants not resolved by the bytecode verifier.
 *
 * Returns NULL with an exception raised on failure.
 */
ClassObject* dvmResolveClass(const ClassObject* referrer, u4 classIdx,
 bool fromUnverifiedConstant)

pa-1435315 17

The ’104 Reissue Patent Infringed By
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 ClassObject* resClass;
 const char* className;

 /*
 * Check the table first -- this gets called from the other "resolve"
 * methods.
 */
 resClass = dvmDexGetResolvedClass(pDvmDex, classIdx);
 if (resClass != NULL)
 return resClass;

 LOGVV("--- resolving class %u (referrer=%s cl=%p)\n",
 classIdx, referrer->descriptor, referrer->classLoader);

 /*
 * Class hasn't been loaded yet, or is in the process of being loaded
 * and initialized now. Try to get a copy. If we find one, put the
 * pointer in the DexTypeId. There isn't a race condition here --
 * 32-bit writes are guaranteed atomic on all target platforms. Worst
 * case we have two threads storing the same value.
 *
 * If this is an array class, we'll generate it here.
 */
 className = dexStringByTypeIdx(pDvmDex->pDexFile, classIdx);
 if (className[0] != '\0' && className[1] == '\0') {
 /* primitive type */
 resClass = dvmFindPrimitiveClass(className[0]);
 } else {
 resClass = dvmFindClassNoInit(className, referrer->classLoader);
 }

pa-1435315 18

The ’104 Reissue Patent Infringed By

 if (resClass != NULL) {
 /*
 * If the referrer was pre-verified, the resolved class must come
 * from the same DEX or from a bootstrap class. The pre-verifier
 * makes assumptions that could be invalidated by a wacky class
 * loader. (See the notes at the top of oo/Class.c.)
 *
 * The verifier does *not* fail a class for using a const-class
 * or instance-of instruction referring to an unresolveable class,
 * because the result of the instruction is simply a Class object
 * or boolean -- there's no need to resolve the class object during
 * verification. Instance field and virtual method accesses can
 * break dangerously if we get the wrong class, but const-class and
 * instance-of are only interesting at execution time. So, if we
 * we got here as part of executing one of the "unverified class"
 * instructions, we skip the additional check.
 *
 * Ditto for class references from annotations and exception
 * handler lists.
 */
 if (!fromUnverifiedConstant &&
 IS_CLASS_FLAG_SET(referrer, CLASS_ISPREVERIFIED))
 {
 ClassObject* resClassCheck = resClass;
 if (dvmIsArrayClass(resClassCheck))
 resClassCheck = resClassCheck->elementClass;

 if (referrer->pDvmDex != resClassCheck->pDvmDex &&
 resClassCheck->classLoader != NULL)
 {
 LOGW("Class resolved by unexpected DEX:"

pa-1435315 19

The ’104 Reissue Patent Infringed By
 " %s(%p):%p ref [%s] %s(%p):%p\n",
 referrer->descriptor, referrer->classLoader,
 referrer->pDvmDex,
 resClass->descriptor, resClassCheck->descriptor,
 resClassCheck->classLoader, resClassCheck->pDvmDex);
 LOGW("(%s had used a different %s during pre-verification)\n",
 referrer->descriptor, resClass->descriptor);
 dvmThrowException("Ljava/lang/IllegalAccessError;",
 "Class ref in pre-verified class resolved to unexpected "
 "implementation");
 return NULL;
 }
 }

 LOGVV("##### +ResolveClass(%s): referrer=%s dex=%p ldr=%p ref=%d\n",
 resClass->descriptor, referrer->descriptor, referrer->pDvmDex,
 referrer->classLoader, classIdx);

 /*
 * Add what we found to the list so we can skip the class search
 * next time through.
 *
 * TODO: should we be doing this when fromUnverifiedConstant==true?
 * (see comments at top of oo/Class.c)
 */
 dvmDexSetResolvedClass(pDvmDex, classIdx, resClass);
 } else {
 /* not found, exception should be raised */
 LOGVV("Class not found: %s\n",
 dexStringByTypeIdx(pDvmDex->pDexFile, classIdx));
 assert(dvmCheckException(dvmThreadSelf()));
 }

pa-1435315 20

The ’104 Reissue Patent Infringed By

 return resClass;
}

/*
 * Find the method corresponding to "methodRef".
 *
 * We use "referrer" to find the DexFile with the constant pool that
 * "methodRef" is an index into. We also use its class loader. The method
 * being resolved may very well be in a different DEX file.
 *
 * If this is a static method, we ensure that the method's class is
 * initialized.
 */
Method* dvmResolveMethod(const ClassObject* referrer, u4 methodIdx,
 MethodType methodType)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 ClassObject* resClass;
 const DexMethodId* pMethodId;
 Method* resMethod;

 assert(methodType != METHOD_INTERFACE);

 LOGVV("--- resolving method %u (referrer=%s)\n", methodIdx,
 referrer->descriptor);
 pMethodId = dexGetMethodId(pDvmDex->pDexFile, methodIdx);

 resClass = dvmResolveClass(referrer, pMethodId->classIdx, false);
 if (resClass == NULL) {
 /* can't find the class that the method is a part of */

pa-1435315 21

The ’104 Reissue Patent Infringed By
 assert(dvmCheckException(dvmThreadSelf()));
 return NULL;
 }
 if (dvmIsInterfaceClass(resClass)) {
 /* method is part of an interface */
 dvmThrowExceptionWithClassMessage(
 "Ljava/lang/IncompatibleClassChangeError;",
 resClass->descriptor);
 return NULL;
 }

 const char* name = dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx);
 DexProto proto;
 dexProtoSetFromMethodId(&proto, pDvmDex->pDexFile, pMethodId);

 /*
 * We need to chase up the class hierarchy to find methods defined
 * in super-classes. (We only want to check the current class
 * if we're looking for a constructor; since DIRECT calls are only
 * for constructors and private methods, we don't want to walk up.)
 */
 if (methodType == METHOD_DIRECT) {
 resMethod = dvmFindDirectMethod(resClass, name, &proto);
 } else if (methodType == METHOD_STATIC) {
 resMethod = dvmFindDirectMethodHier(resClass, name, &proto);
 } else {
 resMethod = dvmFindVirtualMethodHier(resClass, name, &proto);
 }

 if (resMethod == NULL) {
 dvmThrowException("Ljava/lang/NoSuchMethodError;", name);
 return NULL;

pa-1435315 22

The ’104 Reissue Patent Infringed By
 }

 LOGVV("--- found method %d (%s.%s)\n",
 methodIdx, resClass->descriptor, resMethod->name);

 /* see if this is a pure-abstract method */
 if (dvmIsAbstractMethod(resMethod) && !dvmIsAbstractClass(resClass)) {
 dvmThrowException("Ljava/lang/AbstractMethodError;", name);
 return NULL;
 }

 /*
 * If we're the first to resolve this class, we need to initialize
 * it now. Only necessary for METHOD_STATIC.
 */
 if (methodType == METHOD_STATIC) {
 if (!dvmIsClassInitialized(resMethod->clazz) &&
 !dvmInitClass(resMethod->clazz))
 {
 assert(dvmCheckException(dvmThreadSelf()));
 return NULL;
 } else {
 assert(!dvmCheckException(dvmThreadSelf()));
 }
 } else {
 /*
 * Edge case: if the <clinit> for a class creates an instance
 * of itself, we will call <init> on a class that is still being
 * initialized by us.
 */
 assert(dvmIsClassInitialized(resMethod->clazz) ||
 dvmIsClassInitializing(resMethod->clazz));

pa-1435315 23

The ’104 Reissue Patent Infringed By
 }

 /*
 * The class is initialized, the method has been found. Add a pointer
 * to our data structure so we don't have to jump through the hoops again.
 */
 dvmDexSetResolvedMethod(pDvmDex, methodIdx, resMethod);

 return resMethod;
}

/*
 * Resolve an interface method reference.
 *
 * Returns NULL with an exception raised on failure.
 */
Method* dvmResolveInterfaceMethod(const ClassObject* referrer, u4 methodIdx)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 ClassObject* resClass;
 const DexMethodId* pMethodId;
 Method* resMethod;
 int i;

 LOGVV("--- resolving interface method %d (referrer=%s)\n",
 methodIdx, referrer->descriptor);
 pMethodId = dexGetMethodId(pDvmDex->pDexFile, methodIdx);

 resClass = dvmResolveClass(referrer, pMethodId->classIdx, false);
 if (resClass == NULL) {
 /* can't find the class that the method is a part of */
 assert(dvmCheckException(dvmThreadSelf()));

pa-1435315 24

The ’104 Reissue Patent Infringed By
 return NULL;
 }
 if (!dvmIsInterfaceClass(resClass)) {
 /* whoops */
 dvmThrowExceptionWithClassMessage(
 "Ljava/lang/IncompatibleClassChangeError;",
 resClass->descriptor);
 return NULL;
 }

 /*
 * This is the first time the method has been resolved. Set it in our
 * resolved-method structure. It always resolves to the same thing,
 * so looking it up and storing it doesn't create a race condition.
 *
 * If we scan into the interface's superclass -- which is always
 * java/lang/Object -- we will catch things like:
 * interface I ...
 * I myobj = (something that implements I)
 * myobj.hashCode()
 * However, the Method->methodIndex will be an offset into clazz->vtable,
 * rather than an offset into clazz->iftable. The invoke-interface
 * code can test to see if the method returned is abstract or concrete,
 * and use methodIndex accordingly. I'm not doing this yet because
 * (a) we waste time in an unusual case, and (b) we're probably going
 * to fix it in the DEX optimizer.
 *
 * We do need to scan the superinterfaces, in case we're invoking a
 * superinterface method on an interface reference. The class in the
 * DexTypeId is for the static type of the object, not the class in
 * which the method is first defined. We have the full, flattened
 * list in "iftable".

pa-1435315 25

The ’104 Reissue Patent Infringed By
 */
 const char* methodName =
 dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx);

 DexProto proto;
 dexProtoSetFromMethodId(&proto, pDvmDex->pDexFile, pMethodId);

 LOGVV("+++ looking for '%s' '%s' in resClass='%s'\n",
 methodName, methodSig, resClass->descriptor);
 resMethod = dvmFindVirtualMethod(resClass, methodName, &proto);
 if (resMethod == NULL) {
 LOGVV("+++ did not resolve immediately\n");
 for (i = 0; i < resClass->iftableCount; i++) {
 resMethod = dvmFindVirtualMethod(resClass->iftable[i].clazz,
 methodName, &proto);
 if (resMethod != NULL)
 break;
 }

 if (resMethod == NULL) {
 dvmThrowException("Ljava/lang/NoSuchMethodError;", methodName);
 return NULL;
 }
 } else {
 LOGVV("+++ resolved immediately: %s (%s %d)\n", resMethod->name,
 resMethod->clazz->descriptor, (u4) resMethod->methodIndex);
 }

 LOGVV("--- found interface method %d (%s.%s)\n",
 methodIdx, resClass->descriptor, resMethod->name);

 /* we're expecting this to be abstract */

pa-1435315 26

The ’104 Reissue Patent Infringed By
 assert(dvmIsAbstractMethod(resMethod));

 /* interface methods are always public; no need to check access */

 /*
 * The interface class *may* be initialized. According to VM spec
 * v2 2.17.4, the interfaces a class refers to "need not" be initialized
 * when the class is initialized.
 *
 * It isn't necessary for an interface class to be initialized before
 * we resolve methods on that interface.
 *
 * We choose not to do the initialization now.
 */
 //assert(dvmIsClassInitialized(resMethod->clazz));

 /*
 * The class is initialized, the method has been found. Add a pointer
 * to our data structure so we don't have to jump through the hoops again.
 */
 dvmDexSetResolvedMethod(pDvmDex, methodIdx, resMethod);

 return resMethod;
}

/*
 * Resolve an instance field reference.
 *
 * Returns NULL and throws an exception on error (no such field, illegal
 * access).
 */
InstField* dvmResolveInstField(const ClassObject* referrer, u4 ifieldIdx)

pa-1435315 27

The ’104 Reissue Patent Infringed By
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 ClassObject* resClass;
 const DexFieldId* pFieldId;
 InstField* resField;

 LOGVV("--- resolving field %u (referrer=%s cl=%p)\n",
 ifieldIdx, referrer->descriptor, referrer->classLoader);

 pFieldId = dexGetFieldId(pDvmDex->pDexFile, ifieldIdx);

 /*
 * Find the field's class.
 */
 resClass = dvmResolveClass(referrer, pFieldId->classIdx, false);
 if (resClass == NULL) {
 assert(dvmCheckException(dvmThreadSelf()));
 return NULL;
 }

 resField = dvmFindInstanceFieldHier(resClass,
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx),
 dexStringByTypeIdx(pDvmDex->pDexFile, pFieldId->typeIdx));
 if (resField == NULL) {
 dvmThrowException("Ljava/lang/NoSuchFieldError;",
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx));
 return NULL;
 }

 /*
 * Class must be initialized by now (unless verifier is buggy). We
 * could still be in the process of initializing it if the field

pa-1435315 28

The ’104 Reissue Patent Infringed By
 * access is from a static initializer.
 */
 assert(dvmIsClassInitialized(resField->field.clazz) ||
 dvmIsClassInitializing(resField->field.clazz));

 /*
 * The class is initialized, the method has been found. Add a pointer
 * to our data structure so we don't have to jump through the hoops again.
 */
 dvmDexSetResolvedField(pDvmDex, ifieldIdx, (Field*)resField);
 LOGVV(" field %u is %s.%s\n",
 ifieldIdx, resField->field.clazz->descriptor, resField->field.name);

 return resField;
}

/*
 * Resolve a static field reference. The DexFile format doesn't distinguish
 * between static and instance field references, so the "resolved" pointer
 * in the Dex struct will have the wrong type. We trivially cast it here.
 *
 * Causes the field's class to be initialized.
 */
StaticField* dvmResolveStaticField(const ClassObject* referrer, u4 sfieldIdx)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 ClassObject* resClass;
 const DexFieldId* pFieldId;
 StaticField* resField;

 pFieldId = dexGetFieldId(pDvmDex->pDexFile, sfieldIdx);

pa-1435315 29

The ’104 Reissue Patent Infringed By
 /*
 * Find the field's class.
 */
 resClass = dvmResolveClass(referrer, pFieldId->classIdx, false);
 if (resClass == NULL) {
 assert(dvmCheckException(dvmThreadSelf()));
 return NULL;
 }

 resField = dvmFindStaticFieldHier(resClass,
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx),
 dexStringByTypeIdx(pDvmDex->pDexFile, pFieldId->typeIdx));
 if (resField == NULL) {
 dvmThrowException("Ljava/lang/NoSuchFieldError;",
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx));
 return NULL;
 }

 /*
 * If we're the first to resolve the field in which this class resides,
 * we need to do it now. Note that, if the field was inherited from
 * a superclass, it is not necessarily the same as "resClass".
 */
 if (!dvmIsClassInitialized(resField->field.clazz) &&
 !dvmInitClass(resField->field.clazz))
 {
 assert(dvmCheckException(dvmThreadSelf()));
 return NULL;
 }

 /*
 * The class is initialized, the method has been found. Add a pointer

pa-1435315 30

The ’104 Reissue Patent Infringed By
 * to our data structure so we don't have to jump through the hoops again.
 */
 dvmDexSetResolvedField(pDvmDex, sfieldIdx, (Field*) resField);

 return resField;
}

/*
 * Resolve a string reference.
 *
 * Finding the string is easy. We need to return a reference to a
 * java/lang/String object, not a bunch of characters, which means the
 * first time we get here we need to create an interned string.
 */
StringObject* dvmResolveString(const ClassObject* referrer, u4 stringIdx)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 StringObject* strObj;
 StringObject* internStrObj;
 const char* utf8;
 u4 utf16Size;

 LOGVV("+++ resolving string, referrer is %s\n", referrer->descriptor);

 /*
 * Create a UTF-16 version so we can trivially compare it to what's
 * already interned.
 */
 utf8 = dexStringAndSizeById(pDvmDex->pDexFile, stringIdx, &utf16Size);
 strObj = dvmCreateStringFromCstrAndLength(utf8, utf16Size,
 ALLOC_DEFAULT);

pa-1435315 31

The ’104 Reissue Patent Infringed By
 if (strObj == NULL) {
 /* ran out of space in GC heap? */
 assert(dvmCheckException(dvmThreadSelf()));
 goto bail;
 }

 /*
 * Add it to the intern list. The return value is the one in the
 * intern list, which (due to race conditions) may or may not be
 * the one we just created. The intern list is synchronized, so
 * there will be only one "live" version.
 *
 * By requesting an immortal interned string, we guarantee that
 * the returned object will never be collected by the GC.
 *
 * A NULL return here indicates some sort of hashing failure.
 */
 internStrObj = dvmLookupImmortalInternedString(strObj);
 dvmReleaseTrackedAlloc((Object*) strObj, NULL);
 strObj = internStrObj;
 if (strObj == NULL) {
 assert(dvmCheckException(dvmThreadSelf()));
 goto bail;
 }

 /* save a reference so we can go straight to the object next time */
 dvmDexSetResolvedString(pDvmDex, stringIdx, strObj);

bail:
 return strObj;
}

pa-1435315 32

The ’104 Reissue Patent Infringed By
/*
 * For debugging: return a string representing the methodType.
 */
const char* dvmMethodTypeStr(MethodType methodType)
{
 switch (methodType) {
 case METHOD_DIRECT: return "direct";
 case METHOD_STATIC: return "static";
 case METHOD_VIRTUAL: return "virtual";
 case METHOD_INTERFACE: return "interface";
 case METHOD_UNKNOWN: return "UNKNOWN";
 }
 assert(false);
 return "BOGUS";
}

 Another way that Android and Android-based devices meet the claim limitation is through the dexopt
tool.

See, e.g., dalvik\docs\dexopt.html; see also,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=docs/dexopt.html:

dexopt

We want to verify and optimize all of the classes in the DEX file. The easiest and safest way to do
this is to load all of the classes into the VM and run through them. Anything that fails to load is
simply not verified or optimized. Unfortunately, this can cause allocation of some resources that
are difficult to release (e.g. loading of native shared libraries), so we don't want to do it in the
same virtual machine that we're running applications in.

The solution is to invoke a program called dexopt, which is really just a back door into the VM. It
performs an abbreviated VM initialization, loads zero or more DEX files from the bootstrap class
path, and then sets about verifying and optimizing whatever it can from the target DEX. On

pa-1435315 33

The ’104 Reissue Patent Infringed By
completion, the process exits, freeing all resources.

It is possible for multiple VMs to want the same DEX file at the same time. File locking is used to
ensure that dexopt is only run once.
….

See also, e.g., dalvik\docs\ embedded-vm-control.html#verifier (“The system tries to pre-verify all
classes in a DEX file to reduce class load overhead, and performs a series of optimizations to improve
runtime performance. Both of these are done by the dexopt command, either in the build system or by the
installer. On a development device, dexopt may be run the first time a DEX file is used and whenever it
or one of its dependencies is updated ("just-in-time" optimization and verification).”).

Dexopt loads the intermediate code class files, and when it encounters a symbolic reference (e.g., virtual
method calls, field gets/puts), it determines the numerical reference corresponding to the symbolic
reference and stores the numerical reference so that the processor can obtain data in accordance to the
numerical references.

See, e.g., dalvik\docs\dexopt.html; see also,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=docs/dexopt.html:

Dalvik Optimization and Verification With dexopt

The Dalvik virtual machine was designed specifically for the Android mobile platform. The target
systems have little RAM, store data on slow internal flash memory, and generally have the
performance characteristics of decade-old desktop systems. They also run Linux, which provides
virtual memory, processes and threads, and UID-based security mechanisms.

The features and limitations caused us to focus on certain goals:

• Class data, notably bytecode, must be shared between multiple processes to minimize total
system memory usage.

• The overhead in launching a new app must be minimized to keep the device responsive.
• Storing class data in individual files results in a lot of redundancy, especially with respect

pa-1435315 34

The ’104 Reissue Patent Infringed By
to strings. To conserve disk space we need to factor this out.

• Parsing class data fields adds unnecessary overhead during class loading. Accessing data
values (e.g. integers and strings) directly as C types is better.

• Bytecode verification is necessary, but slow, so we want to verify as much as possible
outside app execution.

• Bytecode optimization (quickened instructions, method pruning) is important for speed
and battery life.

• For security reasons, processes may not edit shared code.

The typical VM implementation uncompresses individual classes from a compressed archive and
stores them on the heap. This implies a separate copy of each class in every process, and slows
application startup because the code must be uncompressed (or at least read off disk in many
small pieces). On the other hand, having the bytecode on the local heap makes it easy to rewrite
instructions on first use, facilitating a number of different optimizations.

The goals led us to make some fundamental decisions:

• Multiple classes are aggregated into a single "DEX" file.
• DEX files are mapped read-only and shared between processes.
• Byte ordering and word alignment are adjusted to suit the local system.
• Bytecode verification is mandatory for all classes, but we want to "pre-verify" whatever

we can.
• Optimizations that require rewriting bytecode must be done ahead of time.
• The consequences of these decisions are explained in the following sections.

….
dexopt

We want to verify and optimize all of the classes in the DEX file. The easiest and safest way to do
this is to load all of the classes into the VM and run through them. Anything that fails to load is
simply not verified or optimized. Unfortunately, this can cause allocation of some resources that
are difficult to release (e.g. loading of native shared libraries), so we don't want to do it in the
same virtual machine that we're running applications in.

pa-1435315 35

The ’104 Reissue Patent Infringed By

The solution is to invoke a program called dexopt, which is really just a back door into the VM. It
performs an abbreviated VM initialization, loads zero or more DEX files from the bootstrap class
path, and then sets about verifying and optimizing whatever it can from the target DEX. On
completion, the process exits, freeing all resources.

It is possible for multiple VMs to want the same DEX file at the same time. File locking is used to
ensure that dexopt is only run once.
….
Optimization

Virtual machine interpreters typically perform certain optimizations the first time a piece of code
is used. Constant pool references are replaced with pointers to internal data structures, operations
that always succeed or always work a certain way are replaced with simpler forms. Some of these
require information only available at runtime, others can be inferred statically when certain
assumptions are made.

The Dalvik optimizer does the following:

• For virtual method calls, replace the method index with a vtable index.
• For instance field get/put, replace the field index with a byte offset. Also, merge the

boolean / byte / char / short variants into a single 32-bit form (less code in the interpreter
means more room in the CPU I-cache).

• Replace a handful of high-volume calls, like String.length(), with "inline" replacements.
This skips the usual method call overhead, directly switching from the interpreter to a
native implementation.

• Prune empty methods. The simplest example is Object.<init>, which does nothing, but
must be called whenever any object is allocated. The instruction is replaced with a new
version that acts as a no-op unless a debugger is attached.

• Append pre-computed data. For example, the VM wants to have a hash table for lookups
on class name. Instead of computing this when the DEX file is loaded, we can compute it
now, saving heap space and computation time in every VM where the DEX is loaded.

pa-1435315 36

The ’104 Reissue Patent Infringed By

All of the instruction modifications involve replacing the opcode with one not defined by the
Dalvik specification. This allows us to freely mix optimized and unoptimized instructions. The set
of optimized instructions, and their exact representation, is tied closely to the VM version.

Most of the optimizations are obvious "wins". The use of raw indices and offsets not only allows
us to execute more quickly, we can also skip the initial symbolic resolution. Pre-computation eats
up disk space, and so must be done in moderation.

There are a couple of potential sources of trouble with these optimizations. First, vtable indices
and byte offsets are subject to change if the VM is updated. Second, if a superclass is in a
different DEX, and that other DEX is updated, we need to ensure that our optimized indices and
offsets are updated as well. A similar but more subtle problem emerges when user-defined class
loaders are employed: the class we actually call may not be the one we expected to call.

These problems are addressed with dependency lists and some limitations on what can be
optimized.

See, e.g., dalvik\vm\analysis\ReduceConstants.c:
/*
Overview

When a class, method, field, or string constant is referred to from
Dalvik bytecode, the reference takes the form of an integer index value.
This value indexes into an array of type_id_item, method_id_item,
field_id_item, or string_id_item in the DEX file. The first three
themselves contain (directly or indirectly) indexes to strings that the
resolver uses to convert the instruction stream index into a pointer to
the appropriate object or struct.

For example, an invoke-virtual instruction needs to specify which method
is to be invoked. The method constant indexes into the method id item

pa-1435315 37

The ’104 Reissue Patent Infringed By
array, each entry of which has indexes that specify the defining class
(type_id_item), method name (string_id_item), and method prototype
(proto_id_item). The type_id_item just holds an index to a string_id_item,
which holds the file offset to the string with the class name. The VM
finds the class by name, then searches through the class' table of virtual
methods to find one with a matching name and prototype.

This process is fairly expensive, so after the first time it completes
successfully, the VM records that the method index resolved to a specific
Method struct. On subsequent execution, the VM just pulls the Method ptr
out of the resolved-methods array. A similar approach is used with
the indexes for classes, fields, and string constants.

The problem with this approach is that we need to have a "resolved" entry
for every possible class, method, field, and string constant in every
DEX file, even if some of those aren't used from code. The DEX string
constant table has entries for method prototypes and class names that are
never used by the code, and "public static final" fields often turn into
immediate constants. The resolution table entries are only 4 bytes each,
but there are roughly 200,000 of them in the bootstrap classes alone.

DEX optimization removes many index references by replacing virtual method
indexes with vtable offsets and instance field indexes with byte offsets.
In the earlier example, the method would be resolved at "dexopt" time, and
the instruction rewritten as invoke-virtual-quick with the vtable offset.

(There are comparatively few classes compared to other constant pool
entries, and a much higher percentage (typically 60-70%) are used. The
biggest gains come from the string pool.)

Using the resolved-entity tables provides a substantial performance
improvement, but results in applications allocating 1MB+ of tables that

pa-1435315 38

The ’104 Reissue Patent Infringed By
are 70% unused. The used and unused entries are freely intermixed,
preventing effective sharing with the zygote process, and resulting in
large numbers of private/dirty pages on the native heap as the tables
populate on first use.

The trick is to reduce the memory usage without decreasing performance.
Using smaller resolved-entity tables can actually give us a speed boost,
because we'll have a smaller "live" set of pages and make more effective
use of the data cache.

The approach we're going to use is to determine the set of indexes that
could potentially be resolved, generate a mapping from the minimal set to
the full set, and append the mapping to the DEX file. This is done at
"dexopt" time, because we need to keep the changes in shared/read-only
pages or we'll lose the benefits of doing the work.

There are two ways to create and use the new mapping:

 (1) Write the entire full->minimal mapping to the ".odex" file. On every
 instruction that uses an index, use the mapping to determine the
 "compressed" constant value, and then use that to index into the
 resolved-entity tables on the heap. The instruction stream is unchanged,
 and the resolver can easily tell if a given index is cacheable.

 (2) Write the inverse miminal->full mapping to the ".odex" file, and
 rewrite the constants in the instruction stream. The interpreter is
 unchanged, and the resolver code uses the mapping to find the original
 data in the DEX.

Approach #1 is easier and safer to implement, but it requires a table
lookup every time we execute an instruction that includes a constant

pa-1435315 39

The ’104 Reissue Patent Infringed By
pool reference. This causes an unacceptable performance hit, chiefly
because we're hitting semi-random memory pages and hosing the data cache.
This is mitigated somewhat by DEX optimizations that replace the constant
with a vtable index or field byte offset. Approach #1 also requires
a larger map table, increasing the size of the DEX on disk. One nice
property of approach #1 is that most of the DEX file is unmodified,
so use of the mapping is a runtime decision.

Approach #2 is preferred for performance reasons.

The class/method/field/string resolver code has to handle indices from
three sources: interpreted instructions, annotations, and exception
"catch" lists. Sometimes these occur indirectly, e.g. we need to resolve
the declaring class associated with fields and methods when the latter
two are themselves resolved. Parsing and rewriting instructions is fairly
straightforward, but annotations use a complex format with variable-width
index values.

We can safely rewrite index values in annotations if we guarantee that the
new value is smaller than the original. This implies a two-pass approach:
the first determines the set of indexes actually used, the second does the
rewrite. Doing the rewrite in a single pass would be much harder.

Instances of the "original" indices will still be found in the file; if
we try to be all-inclusive we will include some stuff that doesn't need
to be there (e.g. we don't generally need to cache the class name string
index result, since once we have the class resolved we don't need to look
it up by name through the resolver again). There is some potential for
performance improvement by caching more than we strictly need, but we can
afford to give up a little performance during class loading if it allows
us to regain some memory.

pa-1435315 40

The ’104 Reissue Patent Infringed By

For safety and debugging, it's useful to distinguish the "compressed"
constants in some way, e.g. setting the high bit when we rewrite them.
In practice we don't have any free bits: indexes are usually 16-bit
values, and we have more than 32,767 string constants in at least one of
our core DEX files. Also, this does not work with constants embedded in
annotations, because of the variable-width encoding.

We should be safe if we can establish a clear distinction between sources
of "original" and "compressed" indices. If the values get crossed up we
can end up with elusive bugs. The easiest approach is to declare that
only indices pulled from certain locations (the instruction stream and/or
annotations) are compressed. This prevents us from adding indices in
arbitrary locations to the compressed set, but should allow a reasonably
robust implementation.

…
*/

dalvik\vm\analysis\DexOptimize.h:

/*
 * Abbreviated resolution functions, for use by optimization and verification
 * code.
 */
ClassObject* dvmOptResolveClass(ClassObject* referrer, u4 classIdx,
 VerifyError* pFailure);
Method* dvmOptResolveMethod(ClassObject* referrer, u4 methodIdx,
 MethodType methodType, VerifyError* pFailure);
Method* dvmOptResolveInterfaceMethod(ClassObject* referrer, u4 methodIdx);
InstField* dvmOptResolveInstField(ClassObject* referrer, u4 ifieldIdx,
 VerifyError* pFailure);
StaticField* dvmOptResolveStaticField(ClassObject* referrer, u4 sfieldIdx,

pa-1435315 41

The ’104 Reissue Patent Infringed By
 VerifyError* pFailure);

dalvik\vm\analysis\DexOptimize.c:

/*
 *
===
======
 * Optimizations
 *
===
======
 */

/*
 * Perform in-place rewrites on a memory-mapped DEX file.
 *
 * This happens in a short-lived child process, so we can go nutty with
 * loading classes and allocating memory.
 */
static bool rewriteDex(u1* addr, int len, bool doVerify, bool doOpt,
 u4* pHeaderFlags, DexClassLookup** ppClassLookup)
{
 u8 prepWhen, loadWhen, verifyWhen, optWhen;
 DvmDex* pDvmDex = NULL;
 bool result = false;

 *pHeaderFlags = 0;

 LOGV("+++ swapping bytes\n");
 if (dexFixByteOrdering(addr, len) != 0)
 goto bail;
#if BYTE ORDER != LITTLE ENDIAN

pa-1435315 42

The ’104 Reissue Patent Infringed By
 *pHeaderFlags |= DEX_OPT_FLAG_BIG;
#endif

 /*
 * Now that the DEX file can be read directly, create a DexFile for it.
 */
 if (dvmDexFileOpenPartial(addr, len, &pDvmDex) != 0) {
 LOGE("Unable to create DexFile\n");
 goto bail;
 }

 /*
 * Create the class lookup table.
 */
 //startWhen = dvmGetRelativeTimeUsec();
 *ppClassLookup = dexCreateClassLookup(pDvmDex->pDexFile);
 if (*ppClassLookup == NULL)
 goto bail;

 /*
 * Bail out early if they don't want The Works. The current implementation
 * doesn't fork a new process if this flag isn't set, so we really don't
 * want to continue on with the crazy class loading.
 */
 if (!doVerify && !doOpt) {
 result = true;
 goto bail;
 }

 /* this is needed for the next part */
 pDvmDex->pDexFile->pClassLookup = *ppClassLookup;

pa-1435315 43

The ’104 Reissue Patent Infringed By
 prepWhen = dvmGetRelativeTimeUsec();

 /*
 * Load all classes found in this DEX file. If they fail to load for
 * some reason, they won't get verified (which is as it should be).
 */
 if (!loadAllClasses(pDvmDex))
 goto bail;
 loadWhen = dvmGetRelativeTimeUsec();

 /*
 * Verify all classes in the DEX file. Export the "is verified" flag
 * to the DEX file we're creating.
 */
 if (doVerify) {
 dvmVerifyAllClasses(pDvmDex->pDexFile);
 *pHeaderFlags |= DEX_FLAG_VERIFIED;
 }
 verifyWhen = dvmGetRelativeTimeUsec();

 /*
 * Optimize the classes we successfully loaded. If the opt mode is
 * OPTIMIZE_MODE_VERIFIED, each class must have been successfully
 * verified or we'll skip it.
 */
#ifndef PROFILE_FIELD_ACCESS
 if (doOpt) {
 optimizeLoadedClasses(pDvmDex->pDexFile);
 *pHeaderFlags |= DEX_OPT_FLAG_FIELDS | DEX_OPT_FLAG_INVOCATIONS;
 }
#endif
 optWhen = dvmGetRelativeTimeUsec();

pa-1435315 44

The ’104 Reissue Patent Infringed By

 LOGD("DexOpt: load %dms, verify %dms, opt %dms\n",
 (int) (loadWhen - prepWhen) / 1000,
 (int) (verifyWhen - loadWhen) / 1000,
 (int) (optWhen - verifyWhen) / 1000);

 result = true;

bail:
 /* free up storage */
 dvmDexFileFree(pDvmDex);

 return result;
}

…

/*
 * Alternate version of dvmResolveClass for use with verification and
 * optimization. Performs access checks on every resolve, and refuses
 * to acknowledge the existence of classes defined in more than one DEX
 * file.
 *
 * Exceptions caused by failures are cleared before returning.
 *
 * On failure, returns NULL, and sets *pFailure if pFailure is not NULL.
 */
ClassObject* dvmOptResolveClass(ClassObject* referrer, u4 classIdx,
 VerifyError* pFailure)
{
 DvmDex* pDvmDex = referrer->pDvmDex;

pa-1435315 45

The ’104 Reissue Patent Infringed By
 ClassObject* resClass;

 /*
 * Check the table first. If not there, do the lookup by name.
 */
 resClass = dvmDexGetResolvedClass(pDvmDex, classIdx);
 if (resClass == NULL) {
 const char* className = dexStringByTypeIdx(pDvmDex->pDexFile, classIdx);
 if (className[0] != '\0' && className[1] == '\0') {
 /* primitive type */
 resClass = dvmFindPrimitiveClass(className[0]);
 } else {
 resClass = dvmFindClassNoInit(className, referrer->classLoader);
 }
 if (resClass == NULL) {
 /* not found, exception should be raised */
 LOGV("DexOpt: class %d (%s) not found\n",
 classIdx,
 dexStringByTypeIdx(pDvmDex->pDexFile, classIdx));
 if (pFailure != NULL) {
 /* dig through the wrappers to find the original failure */
 Object* excep = dvmGetException(dvmThreadSelf());
 while (true) {
 Object* cause = dvmGetExceptionCause(excep);
 if (cause == NULL)
 break;
 excep = cause;
 }
 if (strcmp(excep->clazz->descriptor,
 "Ljava/lang/IncompatibleClassChangeError;") == 0)
 {
 *pFailure = VERIFY ERROR CLASS CHANGE;

pa-1435315 46

The ’104 Reissue Patent Infringed By
 } else {
 *pFailure = VERIFY_ERROR_NO_CLASS;
 }
 }
 dvmClearOptException(dvmThreadSelf());
 return NULL;
 }

 /*
 * Add it to the resolved table so we're faster on the next lookup.
 */
 dvmDexSetResolvedClass(pDvmDex, classIdx, resClass);
 }

 /* multiple definitions? */
 if (IS_CLASS_FLAG_SET(resClass, CLASS_MULTIPLE_DEFS)) {
 LOGI("DexOpt: not resolving ambiguous class '%s'\n",
 resClass->descriptor);
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_NO_CLASS;
 return NULL;
 }

 /* access allowed? */
 tweakLoader(referrer, resClass);
 bool allowed = dvmCheckClassAccess(referrer, resClass);
 untweakLoader(referrer, resClass);
 if (!allowed) {
 LOGW("DexOpt: resolve class illegal access: %s -> %s\n",
 referrer->descriptor, resClass->descriptor);
 if (pFailure != NULL)
 *pFailure = VERIFY ERROR ACCESS CLASS;

pa-1435315 47

The ’104 Reissue Patent Infringed By
 return NULL;
 }

 return resClass;
}

/*
 * Alternate version of dvmResolveInstField().
 *
 * On failure, returns NULL, and sets *pFailure if pFailure is not NULL.
 */
InstField* dvmOptResolveInstField(ClassObject* referrer, u4 ifieldIdx,
 VerifyError* pFailure)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 InstField* resField;

 resField = (InstField*) dvmDexGetResolvedField(pDvmDex, ifieldIdx);
 if (resField == NULL) {
 const DexFieldId* pFieldId;
 ClassObject* resClass;

 pFieldId = dexGetFieldId(pDvmDex->pDexFile, ifieldIdx);

 /*
 * Find the field's class.
 */
 resClass = dvmOptResolveClass(referrer, pFieldId->classIdx, pFailure);
 if (resClass == NULL) {
 //dvmClearOptException(dvmThreadSelf());
 assert(!dvmCheckException(dvmThreadSelf()));
 if (pFailure != NULL) { assert(!VERIFY OK(*pFailure)); }

pa-1435315 48

The ’104 Reissue Patent Infringed By
 return NULL;
 }

 resField = (InstField*)dvmFindFieldHier(resClass,
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx),
 dexStringByTypeIdx(pDvmDex->pDexFile, pFieldId->typeIdx));
 if (resField == NULL) {
 LOGD("DexOpt: couldn't find field %s.%s\n",
 resClass->descriptor,
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx));
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_NO_FIELD;
 return NULL;
 }
 if (dvmIsStaticField(&resField->field)) {
 LOGD("DexOpt: wanted instance, got static for field %s.%s\n",
 resClass->descriptor,
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx));
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_CLASS_CHANGE;
 return NULL;
 }

 /*
 * Add it to the resolved table so we're faster on the next lookup.
 */
 dvmDexSetResolvedField(pDvmDex, ifieldIdx, (Field*) resField);
 }

 /* access allowed? */
 tweakLoader(referrer, resField->field.clazz);
 bool allowed = dvmCheckFieldAccess(referrer, (Field*)resField);

pa-1435315 49

The ’104 Reissue Patent Infringed By
 untweakLoader(referrer, resField->field.clazz);
 if (!allowed) {
 LOGI("DexOpt: access denied from %s to field %s.%s\n",
 referrer->descriptor, resField->field.clazz->descriptor,
 resField->field.name);
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_ACCESS_FIELD;
 return NULL;
 }

 return resField;
}

/*
 * Alternate version of dvmResolveStaticField().
 *
 * Does not force initialization of the resolved field's class.
 *
 * On failure, returns NULL, and sets *pFailure if pFailure is not NULL.
 */
StaticField* dvmOptResolveStaticField(ClassObject* referrer, u4 sfieldIdx,
 VerifyError* pFailure)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 StaticField* resField;

 resField = (StaticField*)dvmDexGetResolvedField(pDvmDex, sfieldIdx);
 if (resField == NULL) {
 const DexFieldId* pFieldId;
 ClassObject* resClass;

 pFieldId = dexGetFieldId(pDvmDex->pDexFile, sfieldIdx);

pa-1435315 50

The ’104 Reissue Patent Infringed By

 /*
 * Find the field's class.
 */
 resClass = dvmOptResolveClass(referrer, pFieldId->classIdx, pFailure);
 if (resClass == NULL) {
 //dvmClearOptException(dvmThreadSelf());
 assert(!dvmCheckException(dvmThreadSelf()));
 if (pFailure != NULL) { assert(!VERIFY_OK(*pFailure)); }
 return NULL;
 }

 resField = (StaticField*)dvmFindFieldHier(resClass,
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx),
 dexStringByTypeIdx(pDvmDex->pDexFile, pFieldId->typeIdx));
 if (resField == NULL) {
 LOGD("DexOpt: couldn't find static field\n");
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_NO_FIELD;
 return NULL;
 }
 if (!dvmIsStaticField(&resField->field)) {
 LOGD("DexOpt: wanted static, got instance for field %s.%s\n",
 resClass->descriptor,
 dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx));
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_CLASS_CHANGE;
 return NULL;
 }

 /*
 * Add it to the resolved table so we're faster on the next lookup.

pa-1435315 51

The ’104 Reissue Patent Infringed By
 *
 * We can only do this if we're in "dexopt", because the presence
 * of a valid value in the resolution table implies that the class
 * containing the static field has been initialized.
 */
 if (gDvm.optimizing)
 dvmDexSetResolvedField(pDvmDex, sfieldIdx, (Field*) resField);
 }

 /* access allowed? */
 tweakLoader(referrer, resField->field.clazz);
 bool allowed = dvmCheckFieldAccess(referrer, (Field*)resField);
 untweakLoader(referrer, resField->field.clazz);
 if (!allowed) {
 LOGI("DexOpt: access denied from %s to field %s.%s\n",
 referrer->descriptor, resField->field.clazz->descriptor,
 resField->field.name);
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_ACCESS_FIELD;
 return NULL;
 }

 return resField;
}

/*
 * Rewrite an iget/iput instruction. These all have the form:
 * op vA, vB, field@CCCC
 *
 * Where vA holds the value, vB holds the object reference, and CCCC is
 * the field reference constant pool offset. We want to replace CCCC
 * with the byte offset from the start of the object.

pa-1435315 52

The ’104 Reissue Patent Infringed By
 *
 * "clazz" is the referring class. We need this because we verify
 * access rights here.
 */
static void rewriteInstField(Method* method, u2* insns, OpCode newOpc)
{
 ClassObject* clazz = method->clazz;
 u2 fieldIdx = insns[1];
 InstField* field;
 int byteOffset;

 field = dvmOptResolveInstField(clazz, fieldIdx, NULL);
 if (field == NULL) {
 LOGI("DexOpt: unable to optimize field ref 0x%04x at 0x%02x in %s.%s\n",
 fieldIdx, (int) (insns - method->insns), clazz->descriptor,
 method->name);
 return;
 }

 if (field->byteOffset >= 65536) {
 LOGI("DexOpt: field offset exceeds 64K (%d)\n", field->byteOffset);
 return;
 }

 insns[0] = (insns[0] & 0xff00) | (u2) newOpc;
 insns[1] = (u2) field->byteOffset;
 LOGVV("DexOpt: rewrote access to %s.%s --> %d\n",
 field->field.clazz->descriptor, field->field.name,
 field->byteOffset);
}

/*

pa-1435315 53

The ’104 Reissue Patent Infringed By
 * Alternate version of dvmResolveMethod().
 *
 * Doesn't throw exceptions, and checks access on every lookup.
 *
 * On failure, returns NULL, and sets *pFailure if pFailure is not NULL.
 */
Method* dvmOptResolveMethod(ClassObject* referrer, u4 methodIdx,
 MethodType methodType, VerifyError* pFailure)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 Method* resMethod;

 assert(methodType == METHOD_DIRECT ||
 methodType == METHOD_VIRTUAL ||
 methodType == METHOD_STATIC);

 LOGVV("--- resolving method %u (referrer=%s)\n", methodIdx,
 referrer->descriptor);

 resMethod = dvmDexGetResolvedMethod(pDvmDex, methodIdx);
 if (resMethod == NULL) {
 const DexMethodId* pMethodId;
 ClassObject* resClass;

 pMethodId = dexGetMethodId(pDvmDex->pDexFile, methodIdx);

 resClass = dvmOptResolveClass(referrer, pMethodId->classIdx, pFailure);
 if (resClass == NULL) {
 /*
 * Can't find the class that the method is a part of, or don't
 * have permission to access the class.
 */

pa-1435315 54

The ’104 Reissue Patent Infringed By
 LOGV("DexOpt: can't find called method's class (?.%s)\n",
 dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx));
 if (pFailure != NULL) { assert(!VERIFY_OK(*pFailure)); }
 return NULL;
 }
 if (dvmIsInterfaceClass(resClass)) {
 /* method is part of an interface; this is wrong method for that */
 LOGW("DexOpt: method is in an interface\n");
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_GENERIC;
 return NULL;
 }

 /*
 * We need to chase up the class hierarchy to find methods defined
 * in super-classes. (We only want to check the current class
 * if we're looking for a constructor.)
 */
 DexProto proto;
 dexProtoSetFromMethodId(&proto, pDvmDex->pDexFile, pMethodId);

 if (methodType == METHOD_DIRECT) {
 resMethod = dvmFindDirectMethod(resClass,
 dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx), &proto);
 } else {
 /* METHOD_STATIC or METHOD_VIRTUAL */
 resMethod = dvmFindMethodHier(resClass,
 dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx), &proto);
 }

 if (resMethod == NULL) {
 LOGV("DexOpt: couldn't find method '%s'\n",

pa-1435315 55

The ’104 Reissue Patent Infringed By
 dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx));
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_NO_METHOD;
 return NULL;
 }
 if (methodType == METHOD_STATIC) {
 if (!dvmIsStaticMethod(resMethod)) {
 LOGD("DexOpt: wanted static, got instance for method %s.%s\n",
 resClass->descriptor, resMethod->name);
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_CLASS_CHANGE;
 return NULL;
 }
 } else if (methodType == METHOD_VIRTUAL) {
 if (dvmIsStaticMethod(resMethod)) {
 LOGD("DexOpt: wanted instance, got static for method %s.%s\n",
 resClass->descriptor, resMethod->name);
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_CLASS_CHANGE;
 return NULL;
 }
 }

 /* see if this is a pure-abstract method */
 if (dvmIsAbstractMethod(resMethod) && !dvmIsAbstractClass(resClass)) {
 LOGW("DexOpt: pure-abstract method '%s' in %s\n",
 dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx),
 resClass->descriptor);
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_GENERIC;
 return NULL;
 }

pa-1435315 56

The ’104 Reissue Patent Infringed By

 /*
 * Add it to the resolved table so we're faster on the next lookup.
 *
 * We can only do this for static methods if we're not in "dexopt",
 * because the presence of a valid value in the resolution table
 * implies that the class containing the static field has been
 * initialized.
 */
 if (methodType != METHOD_STATIC || gDvm.optimizing)
 dvmDexSetResolvedMethod(pDvmDex, methodIdx, resMethod);
 }

 LOGVV("--- found method %d (%s.%s)\n",
 methodIdx, resMethod->clazz->descriptor, resMethod->name);

 /* access allowed? */
 tweakLoader(referrer, resMethod->clazz);
 bool allowed = dvmCheckMethodAccess(referrer, resMethod);
 untweakLoader(referrer, resMethod->clazz);
 if (!allowed) {
 IF_LOGI() {
 char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
 LOGI("DexOpt: illegal method access (call %s.%s %s from %s)\n",
 resMethod->clazz->descriptor, resMethod->name, desc,
 referrer->descriptor);
 free(desc);
 }
 if (pFailure != NULL)
 *pFailure = VERIFY_ERROR_ACCESS_METHOD;
 return NULL;
 }

pa-1435315 57

The ’104 Reissue Patent Infringed By

 return resMethod;
}

/*
 * Rewrite invoke-virtual, invoke-virtual/range, invoke-super, and
 * invoke-super/range. These all have the form:
 * op vAA, meth@BBBB, reg stuff @CCCC
 *
 * We want to replace the method constant pool index BBBB with the
 * vtable index.
 */
static bool rewriteVirtualInvoke(Method* method, u2* insns, OpCode newOpc)
{
 ClassObject* clazz = method->clazz;
 Method* baseMethod;
 u2 methodIdx = insns[1];

 baseMethod = dvmOptResolveMethod(clazz, methodIdx, METHOD_VIRTUAL, NULL);
 if (baseMethod == NULL) {
 LOGD("DexOpt: unable to optimize virt call 0x%04x at 0x%02x in %s.%s\n",
 methodIdx,
 (int) (insns - method->insns), clazz->descriptor,
 method->name);
 return false;
 }

 assert((insns[0] & 0xff) == OP_INVOKE_VIRTUAL ||
 (insns[0] & 0xff) == OP_INVOKE_VIRTUAL_RANGE ||
 (insns[0] & 0xff) == OP_INVOKE_SUPER ||
 (insns[0] & 0xff) == OP_INVOKE_SUPER_RANGE);

pa-1435315 58

The ’104 Reissue Patent Infringed By
 /*
 * Note: Method->methodIndex is a u2 and is range checked during the
 * initial load.
 */
 insns[0] = (insns[0] & 0xff00) | (u2) newOpc;
 insns[1] = baseMethod->methodIndex;

 //LOGI("DexOpt: rewrote call to %s.%s --> %s.%s\n",
 // method->clazz->descriptor, method->name,
 // baseMethod->clazz->descriptor, baseMethod->name);

 return true;
}

…
/*
 * Resolve an interface method reference.
 *
 * No method access check here -- interface methods are always public.
 *
 * Returns NULL if the method was not found. Does not throw an exception.
 */
Method* dvmOptResolveInterfaceMethod(ClassObject* referrer, u4 methodIdx)
{
 DvmDex* pDvmDex = referrer->pDvmDex;
 Method* resMethod;
 int i;

 LOGVV("--- resolving interface method %d (referrer=%s)\n",
 methodIdx, referrer->descriptor);

 resMethod = dvmDexGetResolvedMethod(pDvmDex, methodIdx);

pa-1435315 59

The ’104 Reissue Patent Infringed By
 if (resMethod == NULL) {
 const DexMethodId* pMethodId;
 ClassObject* resClass;

 pMethodId = dexGetMethodId(pDvmDex->pDexFile, methodIdx);

 resClass = dvmOptResolveClass(referrer, pMethodId->classIdx, NULL);
 if (resClass == NULL) {
 /* can't find the class that the method is a part of */
 dvmClearOptException(dvmThreadSelf());
 return NULL;
 }
 if (!dvmIsInterfaceClass(resClass)) {
 /* whoops */
 LOGI("Interface method not part of interface class\n");
 return NULL;
 }

 const char* methodName =
 dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx);
 DexProto proto;
 dexProtoSetFromMethodId(&proto, pDvmDex->pDexFile, pMethodId);

 LOGVV("+++ looking for '%s' '%s' in resClass='%s'\n",
 methodName, methodSig, resClass->descriptor);
 resMethod = dvmFindVirtualMethod(resClass, methodName, &proto);
 if (resMethod == NULL) {
 /* scan superinterfaces and superclass interfaces */
 LOGVV("+++ did not resolve immediately\n");
 for (i = 0; i < resClass->iftableCount; i++) {
 resMethod = dvmFindVirtualMethod(resClass->iftable[i].clazz,
 methodName, &proto);

pa-1435315 60

The ’104 Reissue Patent Infringed By
 if (resMethod != NULL)
 break;
 }

 if (resMethod == NULL) {
 LOGVV("+++ unable to resolve method %s\n", methodName);
 return NULL;
 }
 } else {
 LOGVV("+++ resolved immediately: %s (%s %d)\n", resMethod->name,
 resMethod->clazz->descriptor, (u4) resMethod->methodIndex);
 }

 /* we're expecting this to be abstract */
 if (!dvmIsAbstractMethod(resMethod)) {
 char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
 LOGW("Found non-abstract interface method %s.%s %s\n",
 resMethod->clazz->descriptor, resMethod->name, desc);
 free(desc);
 return NULL;
 }

 /*
 * Add it to the resolved table so we're faster on the next lookup.
 */
 dvmDexSetResolvedMethod(pDvmDex, methodIdx, resMethod);
 }

 LOGVV("--- found interface method %d (%s.%s)\n",
 methodIdx, resMethod->clazz->descriptor, resMethod->name);

 /* interface methods are always public; no need to check access */

pa-1435315 61

The ’104 Reissue Patent Infringed By

 return resMethod;
}

…

See also, e.g., dalvik\vm\analysis\DexOptimize.c:
/*
 * Optimize instructions in a method.
 *
 * Returns "true" if all went well, "false" if we bailed out early when
 * something failed.
 */
static bool optimizeMethod(Method* method, const InlineSub* inlineSubs)
{
 u4 insnsSize;
 u2* insns;
 u2 inst;

 if (dvmIsNativeMethod(method) || dvmIsAbstractMethod(method))
 return true;

 insns = (u2*) method->insns;
 assert(insns != NULL);
 insnsSize = dvmGetMethodInsnsSize(method);

 while (insnsSize > 0) {
 int width;

 inst = *insns & 0xff;

 switch (inst) {

pa-1435315 62

The ’104 Reissue Patent Infringed By
 case OP_IGET:
 case OP_IGET_BOOLEAN:
 case OP_IGET_BYTE:
 case OP_IGET_CHAR:
 case OP_IGET_SHORT:
 rewriteInstField(method, insns, OP_IGET_s);
 break;
 case OP_IGET_WIDE:
 rewriteInstField(method, insns, OP_IGET_WIDE_QUICK);
 break;
 case OP_IGET_OBJECT:
 rewriteInstField(method, insns, OP_IGET_OBJECT_QUICK);
 break;
 case OP_IPUT:
 case OP_IPUT_BOOLEAN:
 case OP_IPUT_BYTE:
 case OP_IPUT_CHAR:
 case OP_IPUT_SHORT:
 rewriteInstField(method, insns, OP_IPUT_QUICK);
 break;
 case OP_IPUT_WIDE:
 rewriteInstField(method, insns, OP_IPUT_WIDE_QUICK);
 break;
 case OP_IPUT_OBJECT:
 rewriteInstField(method, insns, OP_IPUT_OBJECT_QUICK);
 break;

 case OP_INVOKE_VIRTUAL:
 if (!rewriteExecuteInline(method, insns, METHOD_VIRTUAL,inlineSubs))
 {
 if (!rewriteVirtualInvoke(method, insns, OP_INVOKE_VIRTUAL_QUICK))
 return false;

pa-1435315 63

The ’104 Reissue Patent Infringed By
 }
 break;
 case OP_INVOKE_VIRTUAL_RANGE:
 if (!rewriteExecuteInlineRange(method, insns, METHOD_VIRTUAL,
 inlineSubs))
 {
 if (!rewriteVirtualInvoke(method, insns,
 OP_INVOKE_VIRTUAL_QUICK_RANGE))
 {
 return false;
 }
 }
 break;
 case OP_INVOKE_SUPER:
 if (!rewriteVirtualInvoke(method, insns, OP_INVOKE_SUPER_QUICK))
 return false;
 break;
 case OP_INVOKE_SUPER_RANGE:
 if (!rewriteVirtualInvoke(method, insns, OP_INVOKE_SUPER_QUICK_RANGE))
 return false;
 break;

 case OP_INVOKE_DIRECT:
 if (!rewriteExecuteInline(method, insns, METHOD_DIRECT, inlineSubs))
 {
 if (!rewriteEmptyDirectInvoke(method, insns))
 return false;
 }
 break;
 case OP_INVOKE_DIRECT_RANGE:
 rewriteExecuteInlineRange(method, insns, METHOD_DIRECT, inlineSubs);
 break;

pa-1435315 64

The ’104 Reissue Patent Infringed By

 case OP_INVOKE_STATIC:
 rewriteExecuteInline(method, insns, METHOD_STATIC, inlineSubs);
 break;
 case OP_INVOKE_STATIC_RANGE:
 rewriteExecuteInlineRange(method, insns, METHOD_STATIC, inlineSubs);
 break;

 default:
 // ignore this instruction
 ;
 }

 if (*insns == kPackedSwitchSignature) {
 width = 4 + insns[1] * 2;
 } else if (*insns == kSparseSwitchSignature) {
 width = 2 + insns[1] * 4;
 } else if (*insns == kArrayDataSignature) {
 u2 elemWidth = insns[1];
 u4 len = insns[2] | (((u4)insns[3]) << 16);
 width = 4 + (elemWidth * len + 1) / 2;
 } else {
 width = dexGetInstrWidth(gDvm.instrWidth, inst);
 }
 assert(width > 0);

 insns += width;
 insnsSize -= width;
 }

 assert(insnsSize == 0);
 return true;

pa-1435315 65

The ’104 Reissue Patent Infringed By
}

The ’104 Reissue Patent Infringed By

12. A computer-readable medium
containing instructions for
controlling a data processing system
to perform a method for interpreting
intermediate form object code
comprised of instructions, certain of
said instructions containing one or
more symbolic references, said
method comprising the steps of:

The Accused Instrumentalities include devices that store, distribute, or run Android or the
Android SDK, including websites, servers, and mobile devices. They encompass a computer
readable medium containing instructions for controlling a data processing system to perform a
method for interpreting intermediate form object code comprised of instructions, certain of
said instructions containing one or more symbolic references, to perform the steps described
in the claim. See Claim 11, supra.

interpreting said instructions in
accordance with a program
execution control;

See Claim 11, supra.

The Android platform has a Dalvik virtual machine that interprets intermediate form object
code. Dexopt is part of the bytecode interpretation process because it’s a pre-pass made over
the bytecodes to facilitate optimized bytecode execution.

See, e.g., dalvik\docs\dexopt.html; see also,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=docs/dexopt.html:

….
dexopt

We want to verify and optimize all of the classes in the DEX file. The easiest and
safest way to do this is to load all of the classes into the VM and run through them.
Anything that fails to load is simply not verified or optimized. Unfortunately, this can
cause allocation of some resources that are difficult to release (e.g. loading of native
shared libraries), so we don't want to do it in the same virtual machine that we're
running applications in.

The solution is to invoke a program called dexopt, which is really just a back door into
the VM. It performs an abbreviated VM initialization, loads zero or more DEX files

pa-1435315 66

The ’104 Reissue Patent Infringed By
from the bootstrap class path, and then sets about verifying and optimizing whatever it
can from the target DEX. On completion, the process exits, freeing all resources.

It is possible for multiple VMs to want the same DEX file at the same time. File
locking is used to ensure that dexopt is only run once.
….
Optimization

Virtual machine interpreters typically perform certain optimizations the first time a
piece of code is used. Constant pool references are replaced with pointers to internal
data structures, operations that always succeed or always work a certain way are
replaced with simpler forms. Some of these require information only available at
runtime, others can be inferred statically when certain assumptions are made.

The Dalvik optimizer does the following:

• For virtual method calls, replace the method index with a vtable index.
• For instance field get/put, replace the field index with a byte offset. Also,

merge the boolean / byte / char / short variants into a single 32-bit form (less
code in the interpreter means more room in the CPU I-cache).

...

See also, e.g., dalvik\docs\ embedded-vm-control.html#verifier (“The system tries to pre-
verify all classes in a DEX file to reduce class load overhead, and performs a series of
optimizations to improve runtime performance. Both of these are done by the dexopt
command, either in the build system or by the installer. On a development device, dexopt may
be run the first time a DEX file is used and whenever it or one of its dependencies is updated
("just-in-time" optimization and verification).”).

See, e.g., Google I/O 2008 Video, Google I/O 2008 Video, entitled “Dalvik Virtual Machine
Internals,” presented by Dan Bornstein (Google Android Project), available at
http://developer.android.com/videos/index.html#v=ptjedOZEXPM:

pa-1435315 67

The ’104 Reissue Patent Infringed By
• at 25:00 under “Register Machine” (“A dex byte code is defined in terms of an infinite

register machine with no intra frames stack. So there’s a normal machine stack in
terms of one method calling another, but within a method it’s all just registers. And
we chose this because it lets us have a very efficient interpreter because each
instruction that we interpret is semantically more dense and I’ll show an example of
that in a couple slides.”).

• at 25:42 under “Register Machine” (“This is just a general expectation what you can
find when you’re converting a set of .class files into a dex file. We have, we have
fewer instructions and we have fewer code units and I’ll talk about that in a second.
But we do have, we do have more bytes and the distinction here is that a code unit in a
.class file is a single byte and a code unit in dex is 2 bytes and in the interpreter itself
we can issue reads to read those pairs of bytes at a time and so that helps mitigate the
impact of having more bytes typically.”).

• at 34:30 under “Interpreters 101” (“So it’s possible to write effectively the same
technique as that last one in assembly. So here you can see I’ve elided a lot of the
details, but the dispatch I’ve written, I have fully written out. You can see there’s still
two reads of memory to do that dispatch. The first read is reading from your
interpreted program counter and the second read is reading from your opcode table to
find the address of that next opcode. So, as I’ve implied before at least, any memory
activity that you have is going to be a significant performance impact. So if you can
get rid of a read, you’re doing pretty good. And that’s exactly what we do.”).

• at 35:15 under “Interpreters 101” (“So, instead of having that second memory read,
what we do is have the base address of the entire interpreter sitting in a register and we
guarantee that each opcode takes up the exact same number of bytes, so we will pad it.
If an opcode happens to be short, there are a few of those, we won’t, we won’t use the
entire space allocated for that opcode. And similarly, if an opcode happens to be one
of the more heavier weight ones, such as a method invocation or field access, stuff like
that, we will branch off to a helper function. But what that means, so there’s really
two benefits here. One is, again, we’re avoiding that dispatch and another one is that
we get to align the implementation of each opcode on a cache line boundary. So if
there’s an, if there is an opcode which doesn’t happen to be used a lot, it won’t be
taking up any space in the cache and that helps, that helps with the, with, you know,

pa-1435315 68

The ’104 Reissue Patent Infringed By
leaving space for any other data accesses that your code might want to do.”).

See also, e.g., Dalvik Virtual Machine, “Porting Dalvik,” available at
http://source.android.com/porting/dalvik.html:

Dalvik

The Dalvik virtual machine is intended to run on a variety of platforms. The baseline
system is expected to be a variant of UNIX (Linux, BSD, Mac OS X) running the
GNU C compiler. Little-endian CPUs have been exercised the most heavily, but big-
endian systems are explicitly supported.

There are two general categories of work: porting to a Linux system with a previously
unseen CPU architecture, and porting to a different operating system. This document
covers the former.
…
Interpreter

The Dalvik runtime includes two interpreters, labeled "portable" and "fast". The
portable interpreter is largely contained within a single C function, and should compile
on any system that supports gcc. (If you don't have gcc, you may need to disable the
"threaded" execution model, which relies on gcc's "goto table" implementation; look
for the THREADED_INTERP define.)

The fast interpreter uses hand-coded assembly fragments. If none are available for the
current architecture, the build system will create an interpreter out of C "stubs". The
resulting "all stubs" interpreter is quite a bit slower than the portable interpreter,
making "fast" something of a misnomer.

The fast interpreter is enabled by default. On platforms without native support, you
may want to switch to the portable interpreter. This can be controlled with the
dalvik.vm.execution-mode system property. For example, if you:

pa-1435315 69

The ’104 Reissue Patent Infringed By

adb shell "echo dalvik.vm.execution-mode = int:portable >> /data/local.prop"

and reboot, the Android app framework will start the VM with the portable interpreter
enabled.

and resolving a symbolic reference
in an instruction being interpreted,
said step of resolving said symbolic
reference including the substeps of:

See Claim 11-b, supra.

determining a numerical reference
corresponding to said symbolic
reference,

See Claim 11-b, supra.

and storing said numerical reference
in a memory.

See Claim 11-b, supra.

The ’104 Reissue Patent Infringed By
13. A computer-implemented
method for executing instructions,
certain of said instructions
containing one or more symbolic
references, said method comprising
the steps of:

Android includes methods for performing the steps described in the claim. See Claim 11,
supra.

resolving a symbolic reference in an
instruction, said step of resolving
said symbolic reference including
the substeps of:

See Claim 11-b, supra.

determining a numerical reference
corresponding to said symbolic
reference, and

See Claim 11-b, supra.

storing said numerical reference in a
memory.

See Claim 11-b, supra.

pa-1435315 70

The ’104 Reissue Patent Infringed By
14. The method of claim [13],
wherein said substep of storing said
numerical reference comprises the
substep of replacing said symbolic
reference with said numerical
reference.

See Claim 13, supra.

The ’104 Reissue Patent Infringed By
15. The method of claim [13],
wherein said step of resolving said
symbolic reference further
comprises the substep of executing
said instruction containing said
symbolic reference using the stored
numerical reference.

See Claim 13, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS INITIALIZED @ has class been initialized?

pa-1435315 71

The ’104 Reissue Patent Infringed By
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

The ’104 Reissue Patent Infringed By

16. The method of claim [13],
wherein said step of resolving said
symbolic reference further
comprises the substep of advancing
program execution control after said
substep of executing said instruction
containing said symbolic reference.

See Claim 13, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.

pa-1435315 72

The ’104 Reissue Patent Infringed By
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

pa-1435315 73

The ’104 Reissue Patent Infringed By

The ’104 Reissue Patent Infringed By
17. In a computer system
comprising a program, a method for
executing said program comprising
the steps of:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are computer systems. See Claim 11, supra.

receiving intermediate form object
code for said program with symbolic
data references in certain
instructions of said intermediate
form object code; and

See Claim 11-a, supra.

converting the instructions of the
intermediate form object code
having symbolic data references,
said converting step comprising the
substeps of:

See Claim 11-b, supra.

resolving said symbolic references
to corresponding numerical
references,

See Claim 11-b, supra.

storing said numerical references,
and

See Claim 11-b, supra.

obtaining data in accordance to said
numerical references.

See Claim 11-b, supra.

The ’104 Reissue Patent Infringed By
18. A computer-implemented
method for executing program
operations, each operation being
comprised of a set of instructions,

See Claim 11, supra.

pa-1435315 74

The ’104 Reissue Patent Infringed By
certain of said instructions
containing one or more symbolic
references, said method comprising
the steps of:
receiving a set of instructions
reflecting an operation; and

See Claim 11-a, supra.

performing the operation
corresponding to the received set of
instructions, wherein at least one of
said symbolic references is resolved
by determining a numerical
reference corresponding to said
symbolic reference, storing said
numerical reference, and obtaining
data in accordance to said stored
numerical reference.

See Claim 11-b, supra.

The ’104 Reissue Patent Infringed By
19. A memory for use in executing a
program by a processor, the memory
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and computers running the Android SDK encompass a memory for use
in executing a program by a processor. See Claim 11, supra.

intermediate form code containing
symbolic field references associated
with an intermediate representation
of source code for the program,

See Claim 11-a, supra.

the intermediate representation
having been generated by lexically
analyzing the source code and
parsing output of said lexical
analysis, and

Lexical analysis and bytecode compilation is handled by javac. The bytecode is then further
processed into .dex format by Android’s dx tool. See Claim 11-a, supra.

wherein the symbolic field See Claim 11-b, supra.

pa-1435315 75

The ’104 Reissue Patent Infringed By
references are resolved by
determining a numerical reference
corresponding to said symbolic
reference, and storing said numerical
reference in a memory.

The ’104 Reissue Patent Infringed By

20. A computer-implemented
method for executing a compiled
program containing instructions in
an intermediate form code, at least
one of the instructions containing a
symbolic reference, said method
comprising the steps of:

See Claim 11, supra.

resolving the symbolic reference in
the instruction by determining a
numerical reference corresponding
to the symbolic reference; and

See Claim 11-b, supra.

performing all operation in
accordance with the instruction and
data obtained in accordance with the
numerical reference without
recompiling the program or any
portion thereof.

See Claim 11-b, supra.

The ’104 Reissue Patent Infringed By

21. A memory encoded with a
compiled program, the memory
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and computers running the Android SDK encompass a memory
encoded with a compiled program. See Claim 11, supra.

pa-1435315 76

The ’104 Reissue Patent Infringed By
intermediate form code containing
symbolic field references associated
with an intermediate representation
of source code for the program,

See Claim 11-a, supra.

the intermediate representation
having been generated by lexically
analyzing the source code and
parsing output of said lexical
analysis,

Lexical analysis and bytecode compilation is handled by javac. The bytecode is then further
processed into .dex format by Android’s dx tool. See Claim 11-a, supra.

such that when the program is
executed by a processor each
symbolic field reference is resolved
by determining a numerical
reference corresponding to the
symbolic field reference and data is
obtained in accordance with the
numerical reference without
recompiling the program or any
portion thereof.

See Claim 11-b, supra.

The ’104 Reissue Patent Infringed By
22. An apparatus comprising: See Claim 11, supra.
a memory containing a compiled
program in intermediate form object
code constituted by a set of
instructions, at least one of the
instructions containing a symbolic
reference; and

See Claim 11-a, supra.

a processor configured to execute
the instruction by determining a

See Claim 11-b, supra.

pa-1435315 77

The ’104 Reissue Patent Infringed By
numerical reference corresponding
to the symbolic reference, and
performing an operation in
accordance with the instruction and
data obtained in accordance with the
numerical reference without
recompiling the program or any
portion thereof.

The ’104 Reissue Patent Infringed By

23. A computer-readable medium
containing instructions for
controlling a data processing system
to perform a method for interpreting
a compiled program in intermediate
form object code comprised of
instructions, at least one of the
instructions containing a symbolic
reference, said method comprising
the steps of:

The Accused Instrumentalities include devices that store, distribute, or run Android or the
Android SDK, including websites, servers, and mobile devices. They encompass a computer
readable medium containing instructions for controlling a data processing system to perform a
method for interpreting a compiled program in intermediate form object code comprised of
instructions, at least one of the instructions containing a symbolic reference, to perform the
steps described in the claim. See Claim 11, supra.

resolving the symbolic reference in
the instruction by determining a
numerical reference corresponding
to the symbolic reference; and

See Claim 11-b, supra.

performing an operation in
accordance with the instruction and
data obtained in accordance with the
numerical reference without
recompiling the program or any
portion thereof.

See Claim 11-b, supra.

pa-1435315 78

The ’104 Reissue Patent Infringed By

24. A computer-implemented
method for executing a program
comprised of bytecodes, the method
comprising:

See Claim 11, supra.

determining immediately prior to
execution whether a bytecode of the
program contains a symbolic data
reference;

See Claim 11-b, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

pa-1435315 79

The ’104 Reissue Patent Infringed By

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.
when it is determined that the
bytecode of the program contains a
symbolic data reference, invoking a
dynamic field reference routine to
resolve the symbolic data reference;
and

See Claim 11-b, supra.

executing thereafter the bytecode
using stored data located using a
numeric reference resulting from the
resolution of the symbolic reference.

See Claim 11-b, supra.

The ’104 Reissue Patent Infringed By
25. A data processing system,
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are data processing systems. See Claim 11,
supra.

a processor; and See Claim 11, supra.
a memory comprising a program See Claim 11, supra.

pa-1435315 80

The ’104 Reissue Patent Infringed By
comprised of bytecodes and
instructions for causing the
processor to (i) determine
immediately prior to execution of
the program whether a bytecode of
the program contains a symbolic
data reference, (ii) when it is
determined that the bytecode of the
program contains a symbolic data
reference, invoke a dynamic field
reference routine to resolve the
symbolic data reference, and (iii)
execute thereafter the bytecode
using stored data located using a
numeric reference resulting from the
resolution of the symbolic reference.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA

pa-1435315 81

The ’104 Reissue Patent Infringed By
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

The ’104 Reissue Patent Infringed By

26. A computer program product
containing instructions for causing a
computer to perform a method for
executing a program comprised of
bytecodes, the method comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and the Android SDK encompass a computer program product
containing instructions for causing a computer to perform a method for executing a program
comprised of bytecodes, to perform the steps described in the claim. See Claim 11, supra.

determining immediately prior to
execution whether a bytecode of the
program contains a symbolic data
reference;

See Claim 11-b, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT PC() @ req'd for init, resolve, alloc

pa-1435315 82

The ’104 Reissue Patent Infringed By
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.
when it is determined that the
bytecode of the program contains a
symbolic data reference, invoking a
dynamic field reference routine to
resolve the symbolic data reference;
and

See Claim 11-b, supra.

executing thereafter the bytecode See Claim 11-b, supra.

pa-1435315 83

The ’104 Reissue Patent Infringed By
using stored data located using a
numeric reference resulting from the
resolution of the symbolic reference.

The ’104 Reissue Patent Infringed By

27. A computer-implemented
method comprising:

Android includes computer-implemented methods for performing the steps described in the
claim. See Claim 11, supra.

receiving a program with a set of
original instructions written in an
intermediate form code;

See Claim 11-a, supra.

generating a set of new instructions
for the program that contain numeric
references resulting from invocation
of a routine to resolve any symbolic
data references in the set of original
instructions; and

See Claim 11-b, supra.

executing the program using the set
of new instructions.

See Claim 11-b, supra.

The ’104 Reissue Patent Infringed By
28. A data processing system,
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are data processing systems. See Claim 11,
supra.

a processor; and See Claim 11, supra.
a memory comprising a control
program for causing the processor to
(i) receive a program with a set of
original instructions written in an
intermediate form code, (ii) generate
a set of new instructions for the

See Claim 11, supra.

pa-1435315 84

The ’104 Reissue Patent Infringed By
program that contain numeric
references resulting from invocation
of a routine to resolve any symbolic
data references in the set of original
instructions, and (iii) executing the
program using the set of new
instructions.

The ’104 Reissue Patent Infringed By

29. A computer program product
containing instructions for causing a
computer to perform a method, the
method comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and the Android SDK encompass a computer program product
containing instructions for causing a computer to perform the steps described in the claim.
See Claim 11, supra.

receiving a program with a set of
original instructions written in an
intermediate form code;

See Claim 11-a, supra.

generating a set of new instructions
for the program that contain numeric
references resulting from invocation
of a routine to resolve any symbolic
data references in the set of original
instructions; and

See Claim 11, supra.

executing the program using the set
of new instructions.

See Claim 11, supra.

The ’104 Reissue Patent Infringed By
30. A computer-implemented
method comprising:

Android includes computer-implemented methods for performing the steps described in the
claim. See Claim 11, supra.

receiving a program that comprises
[a set of instructions] written in an

See Claim 11-a, supra.

pa-1435315 85

The ’104 Reissue Patent Infringed By
intermediate form code;
replacing each instruction in the
program with a symbolic data
reference with a new instruction
containing a numeric reference
resulting from invocation of a
dynamic field reference routine to
resolve the symbolic data reference;
and

See Claim 11, supra.

executing the program by
performing an operation in
accordance with each instruction or
new instruction, depending upon
whether an instruction has been
replaced with a new instruction in
accordance with the replacing step.

See Claim 11, supra.

The ’104 Reissue Patent Infringed By
31. A data processing system,
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are data processing systems. See Claim 11,
supra.

a processor; and See Claim 11, supra.
a memory comprising a control
program for causing the processor to
(i) receive a program that comprises
[a set of instructions] written in an
intermediate form code, (ii) replace
each instruction in the program with
a symbolic data reference with a
new instruction containing a
numeric reference resulting from

See Claim 11, supra.

pa-1435315 86

The ’104 Reissue Patent Infringed By
invocation of a dynamic field
reference [routine] to resolve the
symbolic data reference, and (iii)
execute the program by performing
an operation in accordance with
each instruction or new instruction,
depending upon whether an
instruction has been replaced with a
new instruction in accordance with
the replacing step.

The ’104 Reissue Patent Infringed By

32. A computer program product
containing control instructions for
causing a computer to perform a
method, the method comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and the Android SDK encompass a computer program product
containing instructions for causing a computer to perform the steps described in the claim.
See Claim 11, supra.

receiving a program that comprises
[a set of instructions] written in an
intermediate form code;

See Claim 11-a, supra.

replacing each instruction in the
program with a symbolic data
reference with a new instruction
containing a numeric reference
resulting from invocation of a
dynamic field reference routine to
resolve the symbolic data reference;
and

See Claim 11, supra.

executing the program by
performing an operation in
accordance with each instruction or
new instruction, depending upon

See Claim 11, supra.

pa-1435315 87

The ’104 Reissue Patent Infringed By
whether an instruction has been
replaced with a new instruction in
accordance with the replacing step.

The ’104 Reissue Patent Infringed By

33. A computer-implemented
method, comprising:

Android includes computer-implemented methods for performing the steps described in the
claim. See Claim 11, supra.

receiving a program with [a set of
instructions] written in an
intermediate form code;

See Claim 11-a, supra.

analyzing each instruction of the
program to determine whether the
instruction contains a symbolic
reference to a data object; and

See Claim 11-b, supra.

executing the program, wherein
when it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used thereafter
to perform an operation
corresponding to that instruction.

See Claim 11-b, supra.

pa-1435315 88

The ’104 Reissue Patent Infringed By

34. A data processing system,
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are data processing systems. See Claim 11,
supra.

a processor; and See Claim 11, supra.
a memory comprising a control
program for causing the processor to
(i) receive a program with [a set of
instructions] written in an
intermediate form code, (ii) analyze
each instruction of the program to
determine whether the instruction
contains a symbolic reference to a
data object, and (iii) execute the
program, wherein when it was
determined that an instruction
contains a symbolic reference, data
from a storage location identified by
a numeric reference corresponding
to the symbolic reference is used
thereafter to perform an operation
corresponding to that instruction.

See Claim 11, supra.

The ’104 Reissue Patent Infringed By
35. A computer program product
containing control instructions for
causing a computer to perform a
method, the method comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and the Android SDK encompass a computer program product
containing instructions for causing a computer to perform the steps described in the claim.
See Claim 11, supra.

receiving a program with [a set of
instructions] written in an
intermediate form code;

See Claim 11-a, supra.

pa-1435315 89

The ’104 Reissue Patent Infringed By
analyzing each instruction of the
program to determine whether the
instruction contains a symbolic
reference to a data object; and

See Claim 11-b, supra.

executing the program, wherein
when it was determined that an
instruction contains a symbolic
reference, data from a storage
location identified by a numeric
reference corresponding to the
symbolic reference is used thereafter
to perform an operation
corresponding to that instruction.

See Claims 11-b and 16, supra.

The ’104 Reissue Patent Infringed By
36. A computer-implemented
method for executing a program
comprised of bytecodes, the method
comprising:

Android includes computer-implemented methods for performing the steps described in the
claim. See Claims 11 and 16, supra.

determining whether a bytecode of
the program contains a symbolic
reference;

See Claims 11-b and 16, supra.

when it is determined that the
bytecode contains a symbolic
reference, invoking a dynamic field
reference routine to resolve the
symbolic reference; and

See Claims 11-b and 16, supra.

performing an operation identified
by the bytecode thereafter using data
from a storage location identified by
a numeric reference resulting from

See Claims 11-b and 16, supra.

pa-1435315 90

The ’104 Reissue Patent Infringed By
the invocation of the dynamic field
reference routine.

The ’104 Reissue Patent Infringed By

37. A data processing system,
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are data processing systems. See Claim 11,
supra.

a processor; and See Claim 11, supra.
a memory comprising a program
comprised of bytecodes and
instructions for causing the
processor to (i) determine whether a
bytecode of the program contains a
symbolic reference, (ii) when it is
determined that the bytecode
contains a symbolic reference,
invoke a dynamic field reference
routine to resolve the symbolic
reference, and (iii) perform an
operation identified by the bytecode
thereafter using data from a storage
location identified by a numeric
reference resulting from the
invocation of the dynamic field
reference routine.

See Claim 11-b, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP NEW INSTANCE initialized: @ r0=class

pa-1435315 91

The ’104 Reissue Patent Infringed By
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

The ’104 Reissue Patent Infringed By

38. A computer program product
containing instructions for causing a
computer to perform a method for
executing a program comprised of
bytecodes, the method comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and the Android SDK encompass a computer program product
containing instructions for causing a computer to perform the steps described in the claim.
See Claim 11, supra.

determining whether a bytecode of
the program contains a symbolic
reference;

See Claim 11-b, supra.

when it is determined that the
bytecode contains a symbolic
reference, invoking a dynamic field

See Claim 11-b, supra.

pa-1435315 92

The ’104 Reissue Patent Infringed By
reference routine to resolve the
symbolic reference; and
performing an operation identified
by the bytecode [thereafter] using
data from a storage location
identified by a numeric reference
resulting from the invocation of the
dynamic field reference routine.

See Claim 11-b, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

pa-1435315 93

The ’104 Reissue Patent Infringed By
 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

The ’104 Reissue Patent Infringed By

39. A computer-implemented
method comprising:

Android includes computer-implemented methods for performing the steps described in the
claim. See Claim 11, supra.

receiving a program formed of
instructions written in an
intermediate form code compiled
from source code;

Lexical analysis and bytecode compilation is handled by javac. The bytecode is then further
processed into .dex format by Android’s dx tool. See Claim 11-a, supra.

analyzing each instruction to
determine whether it contains a
symbolic field reference; and

See Claim 11-b, supra.

executing the program by
performing an operation identified
by each instruction, wherein data
from a storage location identified by
a numeric reference is thereafter
used for the operation when the
instruction contains a symbolic field
reference, the numeric reference
having been resolved from the

See Claim 11-b, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.

pa-1435315 94

The ’104 Reissue Patent Infringed By
symbolic field reference. */

 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

pa-1435315 95

The ’104 Reissue Patent Infringed By
40. A data processing system,
comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are data processing systems. See Claim 11,
supra.

a processor; and See Claim 11, supra.
a memory comprising a control
program for causing the processor to
(i) receive a program formed of
instructions written in an
intermediate form code compiled
from source code, (ii) analyze each
instruction to determine whether it
contains a symbolic field reference,
and (iii) execute the program by
performing an operation identified
by each instruction, wherein data
from a storage location identified by
a numeric reference is thereafter
used for the operation when the
instruction contains a symbolic field
reference, the numeric reference
having been resolved from the
symbolic field reference.

See Claim 11, supra.

Lexical analysis and bytecode compilation is handled by javac. The bytecode is then further
processed into .dex format by Android’s dx tool. See Claim 11-a, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP NEW INSTANCE initialized: @ r0=class

pa-1435315 96

The ’104 Reissue Patent Infringed By
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP_NEW_INSTANCE_finish: @ r0=new object
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

The ’104 Reissue Patent Infringed By

41. A computer program product
containing control instructions for
causing a computer to perform a
method, the method comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK. An
Android-based device and the Android SDK encompass a computer program product
containing instructions for causing a computer to perform the steps described in the claim.
See Claim 11, supra.

receiving a program formed of
instructions written in an
intermediate form code compiled
from source code;

Lexical analysis and bytecode compilation is handled by javac. The bytecode is then further
processed into .dex format by Android’s dx tool. See Claim 11-a, supra.

analyzing each instruction to
determine whether it contains a
symbolic field reference; and

See Claim 11-b, supra.

pa-1435315 97

The ’104 Reissue Patent Infringed By
executing the program by
performing an operation identified
by each instruction, wherein data
from a storage location identified by
a numeric reference is used
thereafter for the operation when the
instruction contains a symbolic field
reference, the numeric reference
having been resolved from the
symbolic field reference.

See Claim 11-b, supra.

Also, see, e.g., dalvik\vm\mterp\out\InterpAsm-armv5te.S:

/* ------------------------------ */
 .balign 64
.L_OP_NEW_INSTANCE: /* 0x22 */
/* File: armv5te/OP_NEW_INSTANCE.S */
 /*
 * Create a new instance of a class.
 */
 /* new-instance vAA, class@BBBB */
 ldr r3, [rGLUE, #offGlue_methodClassDex] @ r3<- pDvmDex
 FETCH(r1, 1) @ r1<- BBBB
 ldr r3, [r3, #offDvmDex_pResClasses] @ r3<- pDvmDex->pResClasses
 ldr r0, [r3, r1, lsl #2] @ r0<- resolved class
 EXPORT_PC() @ req'd for init, resolve, alloc
 cmp r0, #0 @ already resolved?
 beq .LOP_NEW_INSTANCE_resolve @ no, resolve it now
.LOP_NEW_INSTANCE_resolved: @ r0=class
 ldrb r1, [r0, #offClassObject_status] @ r1<- ClassStatus enum
 cmp r1, #CLASS_INITIALIZED @ has class been initialized?
 bne .LOP_NEW_INSTANCE_needinit @ no, init class now
.LOP_NEW_INSTANCE_initialized: @ r0=class
 mov r1, #ALLOC_DONT_TRACK @ flags for alloc call
 bl dvmAllocObject @ r0<- new object
 b .LOP_NEW_INSTANCE_finish @ continue
….

/* continuation for OP_NEW_INSTANCE */

 .balign 32 @ minimize cache lines
.LOP NEW INSTANCE finish: @ r0=new object

pa-1435315 98

The ’104 Reissue Patent Infringed By
 mov r3, rINST, lsr #8 @ r3<- AA
 cmp r0, #0 @ failed?
 beq common_exceptionThrown @ yes, handle the exception
 FETCH_ADVANCE_INST(2) @ advance rPC, load rINST
 GET_INST_OPCODE(ip) @ extract opcode from rINST
 SET_VREG(r0, r3) @ vAA<- r0
 GOTO_OPCODE(ip) @ jump to next instruction

See also, e.g., source files in dalvik\vm\mterp\out\.

pa-1435359 1

EXHIBIT B-1
Preliminary Infringement Contentions for the ’205 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or
nearly identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the
’205 patent is infringed by all versions of Android subsequent to January 28, 2010, including at least Android 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The ’205 Patent Infringed By
[1-pre]1. In a computer system, a
method for increasing the
execution speed of virtual machine
instructions at runtime, the method
comprising:

Android uses the Dalvik virtual machine to execute virtual machine bytecode instructions at
runtime. The Dalvik virtual machine performs certain optimizations to increase the execution
speed of virtual machine instructions at runtime.

See, e.g., Android Glossary Definition for “Dalvik,” available at
http://developer.android.com/guide/appendix/glossary.html:

Dalvik
The Android platform's virtual machine. The Dalvik VM is an interpreter-only virtual
machine that executes files in the Dalvik Executable (.dex) format, a format that is
optimized for efficient storage and memory-mappable execution. The virtual machine is
register-based, and it can run classes compiled by a Java language compiler that have
been transformed into its native format using the included "dx" tool. The VM runs on
top of Posix-compliant operating systems, which it relies on for underlying
functionality (such as threading and low level memory management). The Dalvik core
class library is intended to provide a familiar development base for those used to
programming with Java Standard Edition, but it is geared specifically to the needs of a

pa-1435359 2

The ’205 Patent Infringed By
small mobile device.

Android Basics, entitled “What is Android?,” available at
http://developer.android.com/guide/basics/what-is-android.html.

What is Android?

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications. The Android SDK provides the tools and APIs
necessary to begin developing applications on the Android platform using the Java
programming language.

Features

• Application framework enabling reuse and replacement of components
• Dalvik virtual machine optimized for mobile devices
• …

Android Architecture

The following diagram shows the major components of the Android operating system.
Each section is described in more detail below.

pa-1435359 3

The ’205 Patent Infringed By

Applications

Android will ship with a set of core applications including an email client, SMS
program, calendar, maps, browser, contacts, and others. All applications are written
using the Java programming language.

…

Android Runtime

Android includes a set of core libraries that provides most of the functionality available

pa-1435359 4

The ’205 Patent Infringed By
in the core libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik
virtual machine. Dalvik has been written so that a device can run multiple VMs
efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) format which
is optimized for minimal memory footprint. The VM is register-based, and runs classes
compiled by a Java language compiler that have been transformed into the .dex format
by the included "dx" tool.
…

Google I/O 2008 Video, entitled “A JIT Compiler for Android's Dalvik VM,” presented by
Ben Cheng and Bill Buzbee (Google’s Android Team), available at
http://developer.android.com/videos/index.html#v=Ls0tM-c4Vfo, at 50:53:

Okay. So to wrap up today's talk, over the past year, our team has delivered a resource-

pa-1435359 5

The ’205 Patent Infringed By
friendly JIT for the Dalvik version machine from ground up. We pay special attention
to the memory overhead, so that it can fit the budget on embedded systems. And
through a set of CPU intensive workloads, we demonstrated that it can provide 2x to 5x
speedup over the Eclair release. And we already have new optimizations waiting in the
pipeline, and we believe that JIT will enable a new class of applications for the Android
platform.

[1-a]receiving a first virtual
machine instruction;

Android’s Dalvik virtual machine receives a first virtual machine instruction.

See, e.g., Google I/O 2010 Video, entitled “A JIT Compiler for Android's Dalvik VM,”
presented by A JIT Compiler for Android’s Dalvik VM, presented by Ben Cheng and Bill
Buzbee (Google’s Android Team), available at
http://developer.android.com/videos/index.html#v=Ls0tM-c4Vfo:

• at 3:35:
Now at the center of every Dalvik virtual machine implementation is an instruction at a
time interpreter.
Now, interpreters, the way they work, they will go out and fetch one Dalvik instruction
at a time – we call them Dalvik bytecodes – pull the instruction apart, see what it is,
that's called the decode phase, and then go ahead and interpret it or execute it. And that
execution is done by using actually the host instructions on the host processor. But
what you have in effect there with interpretation is an extra stage of execution. So you
have to pull up the bytecode, figure out what it is, then use host instructions to carry it
out, and the CPU will pick up the host instructions and execute them. And that extra
level of evaluation is what gives interpreters a bit of a bad name for being slow. I
mean, there's some great reasons why you would want to use an interpreter, but the
down side is that they are often a bit slower than natively compiled code. Now, we
didn't think that -- We think that sometimes this interpretation gets more of a bad rap
than it really should in an Android system, and there are several reasons for that.
First of all, our interpreter is really, really fast. It's a very well done interpreter.
We had one of our partners benchmark our Dalvik interpreter against a traditional Java
interpreter, and they told us that the Dalvik interpreter was roughly twice as fast, which
we were happy to hear. But the other and perhaps more important reason is that not
everything -- when your application is running on an Android system, it's not really in

pa-1435359 6

The ’205 Patent Infringed By
interpretation the whole time. The system itself has already been natively compiled and
optimized. A lot of the libraries, the really key libraries, graphics and other things that
you need to run fast, are done in native code already, so it's really just sometimes a
smallish amount of code that's actually being interpreted when your program runs.

See, e.g., dalvik\vm\interp\Jit.c:

/*
 * Adds to the current trace request one instruction at a time, just
 * before that instruction is interpreted. This is the primary trace
 * selection function. NOTE: return instruction are handled a little
 * differently. In general, instructions are "proposed" to be added
 * to the current trace prior to interpretation. If the interpreter
 * then successfully completes the instruction, is will be considered
 * part of the request. This allows us to examine machine state prior
 * to interpretation, and also abort the trace request if the instruction

pa-1435359 7

The ’205 Patent Infringed By
 * throws or does something unexpected. However, return instructions
 * will cause an immediate end to the translation request - which will
 * be passed to the compiler before the return completes. This is done
 * in response to special handling of returns by the interpreter (and
 * because returns cannot throw in a way that causes problems for the
 * translated code.
 */
int dvmCheckJit(const u2* pc, Thread* self, InterpState* interpState)
{
…

 /* Prepare to handle last PC and stage the current PC */
 const u2 *lastPC = interpState->lastPC;
 interpState->lastPC = pc;

 switch (interpState->jitState) {
 char* nopStr;
 int target;
 int offset;
 DecodedInstruction decInsn;
 case kJitTSelect:
 /* First instruction - just remember the PC and exit */
 if (lastPC == NULL) break;
 /* Grow the trace around the last PC if jitState is kJitTSelect */
 dexDecodeInstruction(gDvm.instrFormat, lastPC, &decInsn);

 /*
 * Treat {PACKED,SPARSE}_SWITCH as trace-ending instructions due
 * to the amount of space it takes to generate the chaining
 * cells.
 */
 if (interpState->totalTraceLen != 0 &&

pa-1435359 8

The ’205 Patent Infringed By
 (decInsn.opCode == OP_PACKED_SWITCH ||
 decInsn.opCode == OP_SPARSE_SWITCH)) {
 interpState->jitState = kJitTSelectEnd;
 break;
 }
…
 interpState->trace[interpState->currTraceRun].frag.runEnd =
 true;
 desc->method = interpState->method;
 memcpy((char*)&(desc->trace[0]),
 (char*)&(interpState->trace[0]),
 sizeof(JitTraceRun) * (interpState->currTraceRun+1));
#if defined(SHOW_TRACE)
 LOGD("TraceGen: trace done, adding to queue");
#endif
 if (dvmCompilerWorkEnqueue(
 interpState->currTraceHead,kWorkOrderTrace,desc)) {
 /* Work order successfully enqueued */
 if (gDvmJit.blockingMode) {
 dvmCompilerDrainQueue();
 }
 } else {
 /*
 * Make sure the descriptor for the abandoned work order is
 * freed.
 */
 free(desc);
 }
 /*
 * Reset "trace in progress" flag whether or not we
 * successfully entered a work order.
 */

pa-1435359 9

The ’205 Patent Infringed By
 JitEntry *jitEntry =
 lookupAndAdd(interpState->currTraceHead, false);
 if (jitEntry) {
 setTraceConstruction(jitEntry, false);
 }
 interpState->jitState = kJitDone;
 switchInterp = true;
 }
 break;
…

[1-b]generating, at runtime, a new
virtual machine instruction that
represents or references one or
more native instructions that can be
executed instead of said first virtual
machine instruction; and

Android’s Dalvik virtual machine has a just-in-time (“JIT”) compiler, which serves to generate
at runtime a new virtual machine instruction that represents or references one or more native
instructions that can be executed instead of said first virtual machine instruction.

See, e.g., Google I/O 2010 Video, entitled “A JIT Compiler for Android's Dalvik VM,”
presented by A JIT Compiler for Android’s Dalvik VM, presented by Ben Cheng and Bill
Buzbee (Google’s Android Team), available at
http://developer.android.com/videos/index.html#v=Ls0tM-c4Vfo:

• at 6:09:
So if you translate a Dalvik bytecode into say underlying ARM instructions, you get a
significant code expansion. So keeping it Dalvik is actually a good idea. But this good
enough for most applications doesn't mean it's perfect. For some applications, you
really, really do feel the pain of interpretation. Applications in which you do a lot of
computation. And that gets painful, because you experience the slowdown of the
interpreter, which is often on the order of five to ten times.
Now, we have had two strategies in play -- or two strategies planned to deal with this
slowdown that computation intensive programs would face.
The first of those, the result we came out last year with the release of the Android NDK
or native development kit. This was a software development kit that makes it easier to
isolate the compute intensive portions of your program, rewrite those in a natively
compiled language and then call them from your Android application.
The other part of the solution is what we have announced today, and that's the just-in-

pa-1435359 10

The ’205 Patent Infringed By
time compiler. A just-in-time compiler still has an interpreter involved. The interpreter
will interpret your program until it identifies what's the most compute intensive part of
it. What's the really hot chunks of your program. And then it will pull those out,
compile them and optimize them into native code so the next time you invoke that
section of code, you are not doing interpretation anymore, you are just doing direct
execution of the native code.

• at 7:44:

Now, putting a JIT on Android has been something we have talked about for a long
time internally, but the big question was what kind of a JIT can we fit into an Android
system?
As it turns out, the JIT design space is pretty large. I mean, with the popularity of Java,
most people now are familiar with JITs. And generally, a particular style of JIT, but
actually, there's quite a broad design field. The way we like to think of it is you can
break it down into -- break the JIT design down into two axes. Along one axis would
be what does it mean for just-in-time. When do you do the compilation? You could do

pa-1435359 11

The ’205 Patent Infringed By
it when you first install the application or maybe you do it the first time a method is
called or when you page in some code off of disk. The other axis is what is the unit of
compilation? Do you compile the whole program, a whole shared library, just a
physical page of code? Or maybe you do a method or a string of instructions or even a
single instruction’s worth of code at once.
Looking back over the last 20 years or so with just-in-time compilers and dynamic
translation systems, you could actually pretty much fill in every square of that matrix
about the chunk of thing were you compiling and when it was you were doing the
compilation. And it's not really the case that any one combination is best. Each
combination had a set of characteristics that were good in some situations, and bad in
another. And what our trick -- the trick for us was to find the combination that worked
really well in a portable memory constrained device.
So our key requirements going into this process, we needed to find a JIT system that
could deliver performance using a very small amount of memory.
From all the talks today you will hear about how important memory is on these small
devices, and I think you know this. So we couldn't have a JIT that wasted a lot of
memory or took too much.
Then next, it had to co-exist with this processor container security model. And this -- I
won't get into this too much, but a lot of JIT styles would have information being bled
between processes, and we needed to avoid that.
And finally, the last two ones are something that we considered really important for this
type of device. We wanted the performance that were going to be delivered by the just-
in-time compilation to come to the user quickly. We didn't want somebody to have an
application that they had to run to warm it up for, you know, a minute, an hour, a day.
We wanted them to get the boost from compilation as soon as possible.
And finally, we're kind of sensitive about this is an interactive device, so we are
sensitive to jerky execution and pausing. We wanted the transition between
interpretation and compiled code to be really smooth.

• at 13:14:

pa-1435359 12

The ’205 Patent Infringed By

So the other style, the trace-based JIT, this is a style that a lot of people hadn't heard
much about, but it actually is really popular.
It is the style of JIT that is typically used when you are doing code migrations or
virtualizations of one architecture on another. This was very popular back in the 90's
especially. What it does is very similar to the method-based JIT, is you start off
interpreting, but you interpret until you find out what the hot chunks of code are. But
in this case, the chunks are not contained methods. They are actually just a run of
instructions that will start someplace, you will execute for a while, maybe you will
follow a branch or two, perhaps you will identify a loop, and it will pull out just those
instructions, straighten them out into a straight line trace of code, and then optimize that
straight line trace of code.
It will take these translated chunks and store them in a translation cache, and chain
them all together so that execution will kind of bounce from one trace to another.
And this type of trace formation, you don't actually even need to respect method call
boundaries. You can even have a trace that goes through a method call.

pa-1435359 13

The ’205 Patent Infringed By
The great strength of this one is that you are only optimizing the hottest of the hot code.
It really has to be the code that's running before you bother to put the resources in to
compiling it. Another benefit that's a little bit more subtle, but quite useful, is that this
type of JIT system is typically more tightly integrated with the interpreter. So you are
bouncing between the interpreter and the translated code a little bit more frequently, but
what it also means is that you are never very far away from the interpreter. So in the
translated code, you can arrange it, if you choose, to have it that the translated code
doesn't have to deal with any exceptional cases. If it detects that some assumption
that's made has gone wrong or it sees there's a null pointer here I have to deal with, it
doesn't actually have to deal with it. It can just roll back the state, return to the
interpreter and let the interpreter handle all the messy nastiness associated with
handling these unusual cases. And this actually turns out to be pretty powerful in
allowing a trace compiler to be simpler and focus really on what's going to return the
performance rather than all the details about handling every possible corner case. But,
of course, still being correct.
Finally, you get a really rapid return on investment. The performance comes back
quickly. You are compiling little small chunks. You don't have to wait very long
before you decide some chunk is hot and you can stitch it right into an application and
get the boost from that compilation right away. Now, as with everything, there are
down sides.

• at 19:39:

pa-1435359 14

The ’205 Patent Infringed By

Okay, so time for a flowchart.
Let's just walk through very quickly kind of a simplified version of how the trace JIT
works. So when I mentioned that a trace is a string of instructions, kind of a straight-
line string of instructions.
And that has to have a start. We call the potential start of any trace to be the trace head.
That's, you know, the point in the code that the trace can begin from. Let's say we're in
the interpreter and let's say we're at one of these trace head points. Now, that's
generally the target of a backward branch, the entry point to a method, the target of an
indirect branch.
There are several possibilities. The interpreter will say, hey, I'm at a potential trace
head, and so it will increment a profile counter associated with that potential head.
Then it will ask itself, have I been here enough that this thing matters?
In the beginning, the answer will be no. So the interpreter will go back to interpreting
as fast as it can, until it comes to the next potential trace head.
It will update its profile counter, ask the question again, have I reached my threshold?

pa-1435359 15

The ’205 Patent Infringed By
Is this something that's interesting? And eventually, the answer will come back, yes,
this is interesting. I've been here enough. This is something I want to take a look at.
The next question is asked, do I already have a translation for this address? And if I do,
then will this send execution directly to that translation so it can start translating
natively?
But, again, let's say we're in the beginning of the world. The answer would be no. So
we don't have a translation for that address, so we want to build one. So we go into --
we go back to the interpreter.
So we're going to continue interpreting, but we're going to continue interpreting in a
special mode. We call this trace-building mode. We essentially single-step the
interpreter, and every time we successfully interpret an instruction, we'll add that
instruction to the list of instructions for that trace that we want to have translated.
Now, how long we keep doing that and when we stop, that's one of the tuning
parameters we have in the JIT. Basically, you know, how many branches do you
follow before your trace is terminated? At some point, we'll decide, okay, this is long
enough. We want to terminate this trace. And then we'll send the request off to the
compiler thread.
Meanwhile, the interpreter goes back to interpreting so you can continue making
forward progress. Now, at some point, the compiler thread will get around to
compiling that trace into a sequence of native instructions, and it will install it into the
translation cache. Now, one of the -- something to keep in mind, when we first put a
translation in the translation cache, it's going to have some -- all traces are going to
have branches that exit the trace. When we first put it in the translation cache, those
branches that exit the trace are going to be hard-wired to send us back to the interpreter.
So if the very first time we jump in, we do the translation, then we get back to the
interpreter and go look for new hot traces to compile. But on the way out, once we
have completed that trace and we're going back to the interpreter, the question will be
asked, is there a translation for where I'm going? And if the answer is yes, then we'll
replace that exit branch with a direct trace-to-trace branch.
The upshot of this is that, in practice, very quickly, we spend very little time in the
interpreter. We'll collect all of our hot traces, chain them all together, and so we're
really just bouncing from trace to trace to trace to trace in the translation cache, with an

pa-1435359 16

The ’205 Patent Infringed By
occasional bounce out to the interpreter to find some other hot trace before we come
back in to the translation cache.
It works remarkably well. Okay.

• at 23:16:

• at 48:49:

Since we manage the code cache by not only storing the generated code but also the
original trace information, we can easily replay the compilation request with verbose
mode turned on so that you can see the Dalvik code and the corresponding native code.
And that's exactly the same mechanism used by the profiler to report the content of the
hot translations.

• at Questions and Answers:
Ben Cheng: So the next one is how well does the JIT compiler use the native
processor?
Does it produce generic ARMv 5 code or is it smart enough to optimize on ARMv9
with neon extensions.

pa-1435359 17

The ’205 Patent Infringed By
Bill Buzbee: I think we answered that one.
It's configurable.

Android source code confirms the same.

See, e.g., dalvik\vm\native\dalvik_system_VMRuntime.c:

/*
 * public native void startJitCompilation()
 *
 * Callback function from the framework to indicate that an app has gone
 * through the startup phase and it is time to enable the JIT compiler.
 */
static void Dalvik_dalvik_system_VMRuntime_startJitCompilation(const u4* args,
 JValue* pResult)
{
#if defined(WITH_JIT)
 if (gDvm.executionMode == kExecutionModeJit &&
 gDvmJit.disableJit == false) {
…
 pthread_cond_signal(&gDvmJit.compilerQueueActivity);
…
 }
#endif
 RETURN_VOID();
}

dalvik\vm\compiler\Compiler.c:
bool dvmCompilerSetupCodeCache(void)
{
…

 /* Allocate the code cache */

pa-1435359 18

The ’205 Patent Infringed By
 fd = ashmem_create_region("dalvik-jit-code-cache", gDvmJit.codeCacheSize);
…
 gDvmJit.codeCache = mmap(NULL, gDvmJit.codeCacheSize,
 PROT_READ | PROT_WRITE | PROT_EXEC,
 MAP_PRIVATE , fd, 0);
…

 /* Copy the template code into the beginning of the code cache */
 int templateSize = (intptr_t) dmvCompilerTemplateEnd -
 (intptr_t) dvmCompilerTemplateStart;
 memcpy((void *) gDvmJit.codeCache,
 (void *) dvmCompilerTemplateStart,
 templateSize);
…
}
…
static void *compilerThreadStart(void *arg)
{
…

 /*
 * If we're not running stand-alone, wait a little before
 * recieving translation requests on the assumption that process start
 * up code isn't worth compiling. We'll resume when the framework
 * signals us that the first screen draw has happened, or the timer
 * below expires (to catch daemons).
 *
 * There is a theoretical race between the callback to
 * VMRuntime.startJitCompiation and when the compiler thread reaches this
 * point. In case the callback happens earlier, in order not to permanently
 * hold the system_server (which is not using the timed wait) in
 * interpreter-only mode we bypass the delay here.

pa-1435359 19

The ’205 Patent Infringed By
 */
 if (gDvmJit.runningInAndroidFramework &&
 !gDvmJit.alreadyEnabledViaFramework) {
 /*
 * If the current VM instance is the system server (detected by having
 * 0 in gDvm.systemServerPid), we will use the indefinite wait on the
 * conditional variable to determine whether to start the JIT or not.
 * If the system server detects that the whole system is booted in
 * safe mode, the conditional variable will never be signaled and the
 * system server will remain in the interpreter-only mode. All
 * subsequent apps will be started with the --enable-safemode flag
 * explicitly appended.
 */
 if (gDvm.systemServerPid == 0) {
 dvmLockMutex(&gDvmJit.compilerLock);
 pthread_cond_wait(&gDvmJit.compilerQueueActivity,
 &gDvmJit.compilerLock);
 dvmUnlockMutex(&gDvmJit.compilerLock);
 LOGD("JIT started for system_server");
 } else {
 dvmLockMutex(&gDvmJit.compilerLock);
 /*
 * TUNING: experiment with the delay & perhaps make it
 * target-specific
 */
 dvmRelativeCondWait(&gDvmJit.compilerQueueActivity,
 &gDvmJit.compilerLock, 3000, 0);
 dvmUnlockMutex(&gDvmJit.compilerLock);
 }
…
 }

pa-1435359 20

The ’205 Patent Infringed By
 compilerThreadStartup();
…
 /*
 * Since the compiler thread will not touch any objects on the heap once
 * being created, we just fake its state as VMWAIT so that it can be a
 * bit late when there is suspend request pending.
 */
 while (!gDvmJit.haltCompilerThread) {
 if (workQueueLength() == 0) {
 int cc;
 cc = pthread_cond_signal(&gDvmJit.compilerQueueEmpty);
 assert(cc == 0);
 pthread_cond_wait(&gDvmJit.compilerQueueActivity,
 &gDvmJit.compilerLock);
 continue;
 } else {
 do {
 CompilerWorkOrder work = workDequeue();
 …
 /*
 * Check whether there is a suspend request on me. This
 * is necessary to allow a clean shutdown.
 *
 * However, in the blocking stress testing mode, let the
 * compiler thread continue doing compilations to unblock
 * other requesting threads. This may occasionally cause
 * shutdown from proceeding cleanly in the standalone invocation
 * of the vm but this should be acceptable.
 */
 …
 if (gDvmJit.haltCompilerThread) {
 LOGD("Compiler shutdown in progress - discarding request");

pa-1435359 21

The ’205 Patent Infringed By
 } else if (!gDvmJit.codeCacheFull) {
…
 if (!aborted) {
 compileOK = dvmCompilerDoWork(&work);
 }
 if (aborted || !compileOK) {
 dvmCompilerArenaReset();
 work.result.codeAddress = gDvmJit.interpretTemplate;
 } else if (!work.result.discardResult) {
 dvmJitSetCodeAddr(work.pc, work.result.codeAddress,
 work.result.instructionSet);
 }
 }
 …
}

bool dvmCompilerStartup(void)
{

…
 pthread_cond_init(&gDvmJit.compilerQueueActivity, NULL);
 pthread_cond_init(&gDvmJit.compilerQueueEmpty, NULL);

 /* Reset the work queue */
 gDvmJit.compilerWorkEnqueueIndex = gDvmJit.compilerWorkDequeueIndex =
0;
 gDvmJit.compilerQueueLength = 0;
 dvmUnlockMutex(&gDvmJit.compilerLock);

 /*
 * Defer rest of initialization until we're sure JIT'ng makes sense. Launch
 * the compiler thread, which will do the real initialization if and

pa-1435359 22

The ’205 Patent Infringed By
 * when it is signalled to do so.
 */
 return dvmCreateInternalThread(&gDvmJit.compilerHandle, "Compiler",
 compilerThreadStart, NULL);

}

dalvik\vm\interp\Jit.h:

/*
 * Entries in the JIT's address lookup hash table.
 * Fields which may be updated by multiple threads packed into a
 * single 32-bit word to allow use of atomic update.
 */

typedef struct JitEntryInfo {
 unsigned int traceConstruction:1; /* build underway? */
 unsigned int isMethodEntry:1;
 unsigned int inlineCandidate:1;
 unsigned int profileEnabled:1;
 JitInstructionSetType instructionSet:4;
 unsigned int unused:8;
 u2 chain; /* Index of next in chain */
} JitEntryInfo;

typedef union JitEntryInfoUnion {
 JitEntryInfo info;
 volatile int infoWord;
} JitEntryInfoUnion;

typedef struct JitEntry {
 JitEntryInfoUnion u;
 const u2* dPC; /* Dalvik code address */
 void* codeAddress; /* Code address of native translation */

pa-1435359 23

The ’205 Patent Infringed By
} JitEntry;

dalvik\vm\interp\Jit.c:

/*
 * Find an entry in the JitTable, creating if necessary.
 * Returns null if table is full.
 */
static JitEntry *lookupAndAdd(const u2* dPC, bool callerLocked)
{
…
 u4 idx = dvmJitHash(dPC);

 /* Walk the bucket chain to find an exact match for our PC */
 while ((gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) &&
 (gDvmJit.pJitEntryTable[idx].dPC != dPC)) {
 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
 }

 if (gDvmJit.pJitEntryTable[idx].dPC != dPC) {
 /*
 * No match. Aquire jitTableLock and find the last
 * slot in the chain. Possibly continue the chain walk in case
 * some other thread allocated the slot we were looking
 * at previuosly (perhaps even the dPC we're trying to enter).
 */
…

 do {
 oldValue = gDvmJit.pJitEntryTable[prev].u;
 newValue = oldValue;
 newValue.info.chain = idx;

pa-1435359 24

The ’205 Patent Infringed By
 } while (!ATOMIC_CMP_SWAP(
 &gDvmJit.pJitEntryTable[prev].u.infoWord,
 oldValue.infoWord, newValue.infoWord));
 }
 }
 if (gDvmJit.pJitEntryTable[idx].dPC == NULL) {
 /*
 * Initialize codeAddress and allocate the slot. Must
 * happen in this order (since dPC is set, the entry is live.
 */
 gDvmJit.pJitEntryTable[idx].dPC = dPC;
 gDvmJit.jitTableEntriesUsed++;
 }
…
 return (idx == chainEndMarker) ? NULL : &gDvmJit.pJitEntryTable[idx];
}

dalvik\vm\interp\Jit.c:

/*
 * Adds to the current trace request one instruction at a time, just
 * before that instruction is interpreted. This is the primary trace
 * selection function. NOTE: return instruction are handled a little
 * differently. In general, instructions are "proposed" to be added
 * to the current trace prior to interpretation. If the interpreter
 * then successfully completes the instruction, is will be considered
 * part of the request. This allows us to examine machine state prior
 * to interpretation, and also abort the trace request if the instruction
 * throws or does something unexpected. However, return instructions
 * will cause an immediate end to the translation request - which will
 * be passed to the compiler before the return completes. This is done
 * in response to special handling of returns by the interpreter (and
 * because returns cannot throw in a way that causes problems for the

pa-1435359 25

The ’205 Patent Infringed By
 * translated code.
 */
int dvmCheckJit(const u2* pc, Thread* self, InterpState* interpState)
{
…

 /* Prepare to handle last PC and stage the current PC */
 const u2 *lastPC = interpState->lastPC;
 interpState->lastPC = pc;

 switch (interpState->jitState) {
 char* nopStr;
 int target;
 int offset;
 DecodedInstruction decInsn;
 case kJitTSelect:
 /* First instruction - just remember the PC and exit */

 …

JitEntry *dvmFindJitEntry(const u2* pc)
{
 int idx = dvmJitHash(pc);

 /* Expect a high hit rate on 1st shot */
 if (gDvmJit.pJitEntryTable[idx].dPC == pc)
 return &gDvmJit.pJitEntryTable[idx];
 else {
 int chainEndMarker = gDvmJit.jitTableSize;
 while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
 if (gDvmJit.pJitEntryTable[idx].dPC == pc)
 return &gDvmJit.pJitEntryTable[idx];

pa-1435359 26

The ’205 Patent Infringed By
 }
 }
 return NULL;
}

dalvik\vm\interp\Jit.c:
/*
 * If a translated code address exists for the davik byte code
 * pointer return it. This routine needs to be fast.
 */
void* dvmJitGetCodeAddr(const u2* dPC)
{
 int idx = dvmJitHash(dPC);
 const u2* npc = gDvmJit.pJitEntryTable[idx].dPC;
…

 if (npc == dPC) {
…
 return hideTranslation ?
 NULL : gDvmJit.pJitEntryTable[idx].codeAddress;
 } else {
 int chainEndMarker = gDvmJit.jitTableSize;
 while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
 if (gDvmJit.pJitEntryTable[idx].dPC == dPC) {
…
 return hideTranslation ?
 NULL : gDvmJit.pJitEntryTable[idx].codeAddress;
 }
 }
 }
 }

pa-1435359 27

The ’205 Patent Infringed By
…
 return NULL;
}

/*
 * Register the translated code pointer into the JitTable.
* NOTE: Once a codeAddress field transitions from initial state to
 * JIT'd code, it must not be altered without first halting all
 * threads. This routine should only be called by the compiler
 * thread.
 */
void dvmJitSetCodeAddr(const u2* dPC, void *nPC, JitInstructionSetType set) {
 JitEntryInfoUnion oldValue;
 JitEntryInfoUnion newValue;
 JitEntry *jitEntry = lookupAndAdd(dPC, false);
 assert(jitEntry);
 /* Note: order of update is important */
 do {
 oldValue = jitEntry->u;
 newValue = oldValue;
 newValue.info.instructionSet = set;
 } while (!ATOMIC_CMP_SWAP(
 &jitEntry->u.infoWord,
 oldValue.infoWord, newValue.infoWord));
 jitEntry->codeAddress = nPC;
}

dalvik\vm\compiler\codegen\arm\CodegenDriver.c:

/* Accept the work and start compiling */
bool dvmCompilerDoWork(CompilerWorkOrder *work)
{
 bool res;

pa-1435359 28

The ’205 Patent Infringed By
…

 switch (work->kind) {
 case kWorkOrderMethod:
 res = dvmCompileMethod(work->info, &work->result);
 break;
 case kWorkOrderTrace:
 /* Start compilation with maximally allowed trace length */
 res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result,
 work->bailPtr);
 break;
 …
 }
…
 }
 return res;
}

See generally, e.g., dalvik\vm\compiler\codegen\arm\CodegenDriver.c. E.g.:
static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
 RegLocation rlDest, RegLocation rlSrc1,
 RegLocation rlSrc2)
{
 OpKind op = kOpBkpt;
…

 switch (mir->dalvikInsn.opCode) {
 case OP_NEG_INT:
 op = kOpNeg;
 unary = true;
 break;
 case OP_NOT_INT:

pa-1435359 29

The ’205 Patent Infringed By
 op = kOpMvn;
 unary = true;
 break;
 case OP_ADD_INT:
…
 }
 if (!callOut) {
 rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
 if (unary) {
 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
 opRegReg(cUnit, op, rlResult.lowReg,
 rlSrc1.lowReg);
 } else {
 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
 if (shiftOp) {
 int tReg = dvmCompilerAllocTemp(cUnit);
 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
 opRegRegReg(cUnit, op, rlResult.lowReg,
 rlSrc1.lowReg, tReg);
 dvmCompilerFreeTemp(cUnit, tReg);
 } else {
 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
 opRegRegReg(cUnit, op, rlResult.lowReg,
 rlSrc1.lowReg, rlSrc2.lowReg);
 }
 }
 storeValue(cUnit, rlDest, rlResult);
 } else {
 RegLocation rlResult;
 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
 loadValueDirectFixed(cUnit, rlSrc2, r1);

pa-1435359 30

The ’205 Patent Infringed By
 LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
 loadValueDirectFixed(cUnit, rlSrc1, r0);
 if (checkZero) {
 genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
 }
 opReg(cUnit, kOpBlx, r2);
 dvmCompilerClobberCallRegs(cUnit);
 if (retReg == r0)
 rlResult = dvmCompilerGetReturn(cUnit);
 else
 rlResult = dvmCompilerGetReturnAlt(cUnit);
 storeValue(cUnit, rlDest, rlResult);
 }
 return false;
}

See also, e.g., dalvik\vm\compiler\codegen\arm\Thumb\Factory.c:

static ArmLIR *opRegRegImm(CompilationUnit *cUnit, OpKind op, int rDest,
 int rSrc1, int value)
{
 ArmLIR *res;
 bool neg = (value < 0);
 int absValue = (neg) ? -value : value;
 ArmOpCode opCode = kThumbBkpt;
 bool shortForm = (absValue & 0x7) == absValue;
 switch(op) {
 case kOpAdd:
 if (rDest == rSrc1)
 return opRegImm(cUnit, op, rDest, value);
 if ((rSrc1 == 13) && (value <= 1020)) { /* sp */
 assert((value & 0x3) == 0);
 shortForm = true;

pa-1435359 31

The ’205 Patent Infringed By
 opCode = kThumbAddSpRel;
 value >>= 2;
 } else if ((rSrc1 == 15) && (value <= 1020)) { /* pc */
 assert((value & 0x3) == 0);
 shortForm = true;
 opCode = kThumbAddPcRel;
 value >>= 2;
 } else if (shortForm) {
 opCode = (neg) ? kThumbSubRRI3 : kThumbAddRRI3;
 } else if ((absValue > 0) && (absValue <= (255 + 7))) {
 /* Two shots - 1st handle the 7 */
 opCode = (neg) ? kThumbSubRRI3 : kThumbAddRRI3;
 res = newLIR3(cUnit, opCode, rDest, rSrc1, 7);
 opCode = (neg) ? kThumbSubRI8 : kThumbAddRI8;
 newLIR2(cUnit, opCode, rDest, absValue - 7);
 return res;
 } else
 opCode = kThumbAddRRR;
 break;

 case kOpSub:
 if (rDest == rSrc1)
 return opRegImm(cUnit, op, rDest, value);
 if (shortForm) {
 opCode = (neg) ? kThumbAddRRI3 : kThumbSubRRI3;
 } else if ((absValue > 0) && (absValue <= (255 + 7))) {
 /* Two shots - 1st handle the 7 */
 opCode = (neg) ? kThumbAddRRI3 : kThumbSubRRI3;
 res = newLIR3(cUnit, opCode, rDest, rSrc1, 7);
 opCode = (neg) ? kThumbAddRI8 : kThumbSubRI8;
 newLIR2(cUnit, opCode, rDest, absValue - 7);
 return res;

pa-1435359 32

The ’205 Patent Infringed By
 } else
 opCode = kThumbSubRRR;
 break;
 case kOpLsl:
 shortForm = (!neg && value <= 31);
 opCode = kThumbLslRRI5;
 break;
 case kOpLsr:
 shortForm = (!neg && value <= 31);
 opCode = kThumbLsrRRI5;
 break;
 case kOpAsr:
 shortForm = (!neg && value <= 31);
 opCode = kThumbAsrRRI5;
 break;
 case kOpMul:
 case kOpAnd:
 case kOpOr:
 case kOpXor:
 if (rDest == rSrc1) {
 int rScratch = dvmCompilerAllocTemp(cUnit);
 res = loadConstant(cUnit, rScratch, value);
 opRegReg(cUnit, op, rDest, rScratch);
 } else {
 res = loadConstant(cUnit, rDest, value);
 opRegReg(cUnit, op, rDest, rSrc1);
 }
 return res;
 default:
 LOGE("Jit: bad case in opRegRegImm");
 dvmCompilerAbort(cUnit);
 break;

pa-1435359 33

The ’205 Patent Infringed By
 }
 if (shortForm)
 res = newLIR3(cUnit, opCode, rDest, rSrc1, absValue);
 else {
 if (rDest != rSrc1) {
 res = loadConstant(cUnit, rDest, value);
 newLIR3(cUnit, opCode, rDest, rSrc1, rDest);
 } else {
 int rScratch = dvmCompilerAllocTemp(cUnit);
 res = loadConstant(cUnit, rScratch, value);
 newLIR3(cUnit, opCode, rDest, rSrc1, rScratch);
 }
 }
 return res;
}

See Claim 1-c, infra.

To the extent Android does not literally infringe this claim element, Android contains
equivalent elements corresponding to each and every requirement of this claim limitation.
When the Android JIT compiles a trace, Android adds the corresponding bytecode instruction
counter of the bytecode (the first virtual machine instruction) and a pointer to the compiled
trace to the jitEntry table. When interpreting the instruction located at the bytecode instruction
counter, Android does a lookup of the bytecode instruction counter in the jitEntry table. If
Android finds an entry, Android will execute a branch to the compiled trace instead of
executing the bytecode instruction. The differences, if any, between a “new virtual machine
instruction” and an entry in the jitEntry table are insubstantial. An entry in the jitEntry table
(1) performs the same or substantially the same function (direct that native code be executed in
place of bytecode) and (2) works in substantially the same way (store a pointer to native code
at a location indexed by the bytecode instruction counter) (3) to achieve the same or
substantially the same result (faster execution) as this element of the claim.

pa-1435359 34

The ’205 Patent Infringed By

[1-c] executing said new virtual
machine instruction instead of said
first virtual machine instruction.

JIT-enabled Android devices execute new virtual machine instructions representing or
referencing native machine instructions instead of the original bytecode.

See, e.g. source code files in dalvik\vm\mterp\out\InterpAsm-armv4t.S.

E.g., dalvik\vm\mterp\out\InterpAsm-armv4t.S, also available at
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/mterp/out/InterpAsm-
armv4t.S#l9788:
 163 /*
 164 * Put the instruction's opcode field into the specified register.
 165 */
 166 #define GET_INST_OPCODE(_reg) and _reg, rINST, #255

 173 /*
 174 * Begin executing the opcode in _reg. Because this only jumps within the
 175 * interpreter, we don't have to worry about pre-ARMv5 THUMB interwork.
 176 */
 177 #define GOTO_OPCODE(_reg) add pc, rIBASE, _reg, lsl #6
 178 #define GOTO_OPCODE_IFEQ(_reg) addeq pc, rIBASE, _reg, lsl #6
 179 #define GOTO_OPCODE_IFNE(_reg) addne pc, rIBASE, _reg, lsl #6

 9788 common_updateProfile:
 9789 eor r3,rPC,rPC,lsr #12 @ cheap, but fast hash function
 9790 lsl r3,r3,#(32 - JIT_PROF_SIZE_LOG_2) @ shift out excess bits
 9791 ldrb r1,[r0,r3,lsr #(32 - JIT_PROF_SIZE_LOG_2)] @ get counter
 9792 GET_INST_OPCODE(ip)
 9793 subs r1,r1,#1 @ decrement counter
 9794 strb r1,[r0,r3,lsr #(32 - JIT_PROF_SIZE_LOG_2)] @ and store it
 9795 GOTO_OPCODE_IFNE(ip) @ if not threshold, fallthrough otherwise */

At 9791, Android gets the counter for the current PC; at 9793 Android subtracts 1 from it; and

pa-1435359 35

The ’205 Patent Infringed By
at 9794 Android stores back the decremented value. Then at 9795, Android uses the actual
ARM program counter to branch to the “handler” for the opcode in ip. If the counter in r1 *is*
zero, Android falls through to:

 9797 /*
 9798 * Here, we switch to the debug interpreter to request
 9799 * trace selection. First, though, check to see if there
 9800 * is already a native translation in place (and, if so,
 9801 * jump to it now).
 9802 */

 9807 mov r0,rPC
 9808 bl dvmJitGetCodeAddr @ r0<- dvmJitGetCodeAddr(rPC)

 9812 cmp r0,#0

 9814 bxne r0 @ jump to the translation

Android uses dmvJitGetCodeAddr to see if there is a native translation and if so, jump to it.

The pJitProfTable is allocated and initialized at:

dalvik\vm\compiler\Compiler.c, available at
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/compiler/Compiler.c#l371:

 371 pJitProfTable = (unsigned char *)malloc(JIT_PROF_SIZE);

 377 memset(pJitProfTable, gDvmJit.threshold, JIT_PROF_SIZE);

gDvmJit.threshold is initialized differently based on the platform, e.g.:

 vm/compiler/codegen/arm/armv5te-vfp/ArchVariant.c

pa-1435359 36

The ’205 Patent Infringed By
 54 gDvmJit.threshold = 200;

 vm/compiler/codegen/arm/armv5te/ArchVariant.c
 54 gDvmJit.threshold = 200;

 vm/compiler/codegen/arm/armv7-a-neon/ArchVariant.c
 49 gDvmJit.threshold = 40;

 vm/compiler/codegen/arm/armv7-a/ArchVariant.c
 49 gDvmJit.threshold = 40;

dalvik\vm\interp\Interp.c:

/*
 * Main interpreter loop entry point. Select "standard" or "debug"
 * interpreter and switch between them as required.
 *
 * This begins executing code at the start of "method". On exit, "pResult"
 * holds the return value of the method (or, if "method" returns NULL, it
 * holds an undefined value).
 *
 * The interpreted stack frame, which holds the method arguments, has
 * already been set up.
 */
void dvmInterpret(Thread* self, const Method* method, JValue* pResult)
{
 InterpState interpState;
 bool change;
#if defined(WITH_JIT)
 /* Target-specific save/restore */
 extern void dvmJitCalleeSave(double *saveArea);
 extern void dvmJitCalleeRestore(double *saveArea);

pa-1435359 37

The ’205 Patent Infringed By
 /* Interpreter entry points from compiled code */
 extern void dvmJitToInterpNormal();
 extern void dvmJitToInterpNoChain();
 extern void dvmJitToInterpPunt();
 extern void dvmJitToInterpSingleStep();
 extern void dvmJitToInterpTraceSelectNoChain();
 extern void dvmJitToInterpTraceSelect();
 extern void dvmJitToPatchPredictedChain();
…
…
#if defined(WITH_JIT)
 dvmJitCalleeSave(interpState.calleeSave);
 /* Initialize the state to kJitNot */
 interpState.jitState = kJitNot;

 /* Setup the Jit-to-interpreter entry points */
 interpState.jitToInterpEntries = jitToInterpEntries;

 /*
 * Initialize the threshold filter [don't bother to zero out the
 * actual table. We're looking for matches, and an occasional
 * false positive is acceptible.
 */
 interpState.lastThreshFilter = 0;
#endif

 /*
 * Initialize working state.
 *
 * No need to initialize "retval".
 */
 interpState.method = method;

pa-1435359 38

The ’205 Patent Infringed By
 interpState.fp = (u4*) self->curFrame;
 interpState.pc = method->insns;
 interpState.entryPoint = kInterpEntryInstr;
….

 if (dvmDebuggerOrProfilerActive())
 interpState.nextMode = INTERP_DBG;
 else
 interpState.nextMode = INTERP_STD;

 assert(!dvmIsNativeMethod(method));

…

 typedef bool (*Interpreter)(Thread*, InterpState*);
 Interpreter stdInterp;
 if (gDvm.executionMode == kExecutionModeInterpFast)
 stdInterp = dvmMterpStd;
#if defined(WITH_JIT)
 else if (gDvm.executionMode == kExecutionModeJit)
/* If profiling overhead can be kept low enough, we can use a profiling
 * mterp fast for both Jit and "fast" modes. If overhead is too high,
 * create a specialized profiling interpreter.
 */
 stdInterp = dvmMterpStd;
#endif
 else
 stdInterp = dvmInterpretStd;

 change = true;
 while (change) {
 switch (interpState.nextMode) {

pa-1435359 39

The ’205 Patent Infringed By
 case INTERP_STD:
 LOGVV("threadid=%d: interp STD\n", self->threadId);
 change = (*stdInterp)(self, &interpState);
 break;
…
 }
 }

 *pResult = interpState.retval;
#if defined(WITH_JIT)
 dvmJitCalleeRestore(interpState.calleeSave);
#endif
}

dalvik\vm\mterp\Mterp.c:

/*
 * "Standard" mterp entry point. This sets up a "glue" structure and then
 * calls into the assembly interpreter implementation.
 *
 * (There is presently no "debug" entry point.)
 */
bool dvmMterpStd(Thread* self, InterpState* glue)
{
 int changeInterp;

 /* configure mterp items */
 glue->self = self;
 glue->methodClassDex = glue->method->clazz->pDvmDex;

 glue->interpStackEnd = self->interpStackEnd;
 glue->pSelfSuspendCount = &self->suspendCount;

pa-1435359 40

The ’205 Patent Infringed By
#if defined(WITH_JIT)
 glue->pJitProfTable = gDvmJit.pProfTable;
 glue->ppJitProfTable = &gDvmJit.pProfTable;
 glue->jitThreshold = gDvmJit.threshold;
#endif
…

 changeInterp = dvmMterpStdRun(glue);

#if defined(WITH_JIT)
 if (glue->jitState != kJitSingleStep) {
 glue->self->inJitCodeCache = NULL;
 }
#endif

…
}

dalvik\vm\mterp\cstubs\entry.c:

/*
 * C mterp entry point. This just calls the various C fallbacks, making
 * this a slow but portable interpeter.
 *
 * This is only used for the "allstubs" variant.
 */
bool dvmMterpStdRun(MterpGlue* glue)
{
 jmp_buf jmpBuf;
 int changeInterp;

 glue->bailPtr = &jmpBuf;

pa-1435359 41

The ’205 Patent Infringed By

 /*
 * We want to return "changeInterp" as a boolean, but we can't return
 * zero through longjmp, so we return (boolean+1).
 */
 changeInterp = setjmp(jmpBuf) -1;
 if (changeInterp >= 0) {
 Thread* threadSelf = dvmThreadSelf();
 LOGVV("mterp threadid=%d returning %d\n",
 threadSelf->threadId, changeInterp);
 return changeInterp;
 }

…

 /* run until somebody longjmp()s out */
 while (true) {
 typedef void (*Handler)(MterpGlue* glue);

 u2 inst = /*glue->*/pc[0];
 Handler handler = (Handler) gDvmMterpHandlers[inst & 0xff];
 …
 (*handler)(glue);
 }
}

dalvik\vm\oo\Object.h:

INLINE bool dvmIsNativeMethod(const Method* method) {
 return (method->accessFlags & ACC_NATIVE) != 0;
}

dalvik\vm\mterp\armv5te\footer.S:

pa-1435359 42

The ’205 Patent Infringed By
/*
 * Here, we switch to the debug interpreter to request
 * trace selection. First, though, check to see if there
 * is already a native translation in place (and, if so,
 * jump to it now).
 */
 GET_JIT_THRESHOLD(r1)
 ldr r10, [rGLUE, #offGlue_self] @ callee saved r10 <- glue->self
 strb r1,[r0,r3,lsr #(32 - JIT_PROF_SIZE_LOG_2)] @ reset counter
 EXPORT_PC()
 mov r0,rPC
 bl dvmJitGetCodeAddr @ r0<- dvmJitGetCodeAddr(rPC)
 str r0, [r10, #offThread_inJitCodeCache] @ set the inJitCodeCache flag
 mov r1, rPC @ arg1 of translation may need this
 mov lr, #0 @ in case target is HANDLER_INTERPRET
 cmp r0,#0
…
 GET_INST_OPCODE(ip)
 GOTO_OPCODE(ip)
 /* no return */
#endif

See also, e.g., references to “r0<- dvmJitGetCodeAddr(rPC)” in:

• dalvik\vm/mterp/out/InterpAsm-armv4t.S;
• dalvik\vm/mterp/out/InterpAsm-armv5te-vfp.S;
• dalvik\vm/mterp/out/InterpAsm-armv5te.S;
• dalvik\vm/mterp/out/InterpAsm-armv7-a-neon.S;
• dalvik\vm/mterp/out/InterpAsm-armv7-a.S.

See Claim 1-b, supra.

To the extent Android does not literally infringe this claim element, Android contains

pa-1435359 43

The ’205 Patent Infringed By
equivalent elements corresponding to each and every requirement of this claim limitation.
When the Android JIT compiles a trace, Android adds the corresponding bytecode instruction
counter of the bytecode (the first virtual machine instruction) and a pointer to the compiled
trace to the jitEntry table. When interpreting the instruction located at the bytecode instruction
counter, Android does a lookup of the bytecode instruction counter in the jitEntry table. If
Android finds an entry, Android will execute a branch to the compiled trace instead of
executing the bytecode instruction. The differences, if any, between a “new virtual machine
instruction” and an entry in the jitEntry table are insubstantial. An entry in the jitEntry table
(1) performs the same or substantially the same function (direct that native code be executed in
place of bytecode) and (2) works in substantially the same way (store a pointer to native code
at a location indexed by the bytecode instruction counter) (3) to achieve the same or
substantially the same result (faster execution) as this element of the claim.

The ’205 Patent Infringed By

2. The method of claim 1, further
comprising overwriting a selected
virtual machine instruction with a
new virtual machine instruction, the
new virtual machine instruction
specifying execution of the at least
one native machine instruction.

See Claim 1, supra.
See Claim 1-b and 1-c, supra.

To the extent Android does not literally infringe this claim element, Android contains
equivalent elements corresponding to each and every requirement of this claim limitation.
When the Android JIT compiles a trace, Android adds the corresponding bytecode instruction
counter of the bytecode (the first virtual machine instruction) and a pointer to the compiled
trace to the jitEntry table. When interpreting the instruction located at the bytecode
instruction counter, Android does a lookup of the bytecode instruction counter in the jitEntry
table. If Android finds an entry, Android will execute a branch to the compiled trace instead
of executing the bytecode instruction. The differences, if any, between a “new virtual
machine instruction” and an entry in the jitEntry table are insubstantial. An entry in the
jitEntry table (1) performs the same or substantially the same function (direct that native code
be executed in place of bytecode) and (2) works in substantially the same way (store a pointer
to native code at a location indexed by the bytecode instruction counter) (3) to achieve the
same or substantially the same result (faster execution) as this element of the claim.

pa-1435359 44

The ’205 Patent Infringed By

3. The method of claim 2, wherein
the [new virtual machine]
instruction includes a pointer to the
at least one native machine
instruction.

See Claim 2, supra.
See Claim 1-b, supra.

Each JitEntry contains a pointer to the native translation.

The ’205 Patent Infringed By

4. The method of claim 2, further
comprising storing the selected
virtual machine instruction before it
is overwritten.

See Claim 2, supra.

See, e.g., Google I/O 2010 Video, entitled “A JIT Compiler for Android's Dalvik VM,”
presented by A JIT Compiler for Android’s Dalvik VM, presented by Ben Cheng and Bill
Buzbee (Google’s Android Team), available at
http://developer.android.com/videos/index.html#v=Ls0tM-c4Vfo:

• at 48:49:
Since we manage the code cache by not only storing the generated code but also the
original trace information, we can easily replay the compilation request with verbose
mode turned on so that you can see the Dalvik code and the corresponding native
code.
And that's exactly the same mechanism used by the profiler to report the content of the
hot translations.

The ’205 Patent Infringed By
8. In a computer system, a method
for increasing the execution speed of
virtual machine instructions, the
method comprising:

The Accused Instrumentalities include devices that run Android and the Android SDK.
Devices running Android and the Android SDK are computer systems. See Claim 1, supra.

inputting virtual machine
instructions for a function;

See Claim 1-a, supra.

compiling a portion of the function See Claim 1-b, supra.

pa-1435359 45

The ’205 Patent Infringed By
into at least one native machine
instruction so that the function
includes both virtual and native
machine instruction;
representing said at least one native
machine instruction with a new
virtual machine instruction that is
executed after the compiling of [the
function].

See Claim 1-b and 1-c, supra.

pa-1435316 1

EXHIBIT B-2
Preliminary Infringement Contentions for the ’205 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or
nearly identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the
’205 patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6
(“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The ’205 Patent Infringed By
1. In a computer system, a method
for increasing the execution speed
of virtual machine instructions at
runtime, the method comprising:

Android uses the Dalvik virtual machine to execute virtual machine bytecode instructions at
runtime. The Dalvik virtual machine performs and runs code resulting from certain
optimizations to increase the execution speed of virtual machine instructions at runtime.

See, e.g., Android Glossary Definition for “Dalvik,” available at
http://developer.android.com/guide/appendix/glossary.html:

Dalvik
The Android platform's virtual machine. The Dalvik VM is an interpreter-only virtual
machine that executes files in the Dalvik Executable (.dex) format, a format that is
optimized for efficient storage and memory-mappable execution. The virtual machine is
register-based, and it can run classes compiled by a Java language compiler that have
been transformed into its native format using the included "dx" tool. The VM runs on
top of Posix-compliant operating systems, which it relies on for underlying functionality
(such as threading and low level memory management). The Dalvik core class library is

pa-1435316 2

The ’205 Patent Infringed By
intended to provide a familiar development base for those used to programming with
Java Standard Edition, but it is geared specifically to the needs of a small mobile device.

Android Basics, entitled “What is Android?,” available at
http://developer.android.com/guide/basics/what-is-android.html.

What is Android?

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications. The Android SDK provides the tools and APIs
necessary to begin developing applications on the Android platform using the Java
programming language.

Features

• Application framework enabling reuse and replacement of components
• Dalvik virtual machine optimized for mobile devices
• Integrated browser based on the open source WebKit engine
• Optimized graphics powered by a custom 2D graphics library; 3D graphics

based on the OpenGL ES 1.0 specification (hardware acceleration optional)
• SQLite for structured data storage
• Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)
• GSM Telephony (hardware dependent)
• Bluetooth, EDGE, 3G, and WiFi (hardware dependent)
• Camera, GPS, compass, and accelerometer (hardware dependent)
• Rich development environment including a device emulator, tools for

debugging, memory and performance profiling, and a plugin for the Eclipse IDE

Android Architecture

The following diagram shows the major components of the Android operating system.
Each section is described in more detail below.

pa-1435316 3

The ’205 Patent Infringed By

Applications

Android will ship with a set of core applications including an email client, SMS
program, calendar, maps, browser, contacts, and others. All applications are written
using the Java programming language.

…

Android Runtime

pa-1435316 4

The ’205 Patent Infringed By
Android includes a set of core libraries that provides most of the functionality available
in the core libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik
virtual machine. Dalvik has been written so that a device can run multiple VMs
efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) format which
is optimized for minimal memory footprint. The VM is register-based, and runs classes
compiled by a Java language compiler that have been transformed into the .dex format
by the included "dx" tool.

The Dalvik VM relies on the Linux kernel for underlying functionality such as threading
and low-level memory management.

Android uses the dexopt tool, which increases the execution speed of virtual machine
instructions at runtime:

See, e.g., dalvik\docs\dexopt.html; see also,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=docs/dexopt.html:
Dalvik Optimization and Verification With dexopt

The Dalvik virtual machine was designed specifically for the Android mobile platform. The
target systems have little RAM, store data on slow internal flash memory, and generally have
the performance characteristics of decade-old desktop systems. They also run Linux, which
provides virtual memory, processes and threads, and UID-based security mechanisms.

The features and limitations caused us to focus on certain goals:

• Class data, notably bytecode, must be shared between multiple processes to minimize
total system memory usage.

• The overhead in launching a new app must be minimized to keep the device responsive.
• Storing class data in individual files results in a lot of redundancy, especially with

respect to strings. To conserve disk space we need to factor this out.

pa-1435316 5

The ’205 Patent Infringed By
• Parsing class data fields adds unnecessary overhead during class loading. Accessing data

values (e.g. integers and strings) directly as C types is better.
• Bytecode verification is necessary, but slow, so we want to verify as much as possible

outside app execution.
• Bytecode optimization (quickened instructions, method pruning) is important for speed

and battery life.
• For security reasons, processes may not edit shared code.

The typical VM implementation uncompresses individual classes from a compressed archive
and stores them on the heap. This implies a separate copy of each class in every process, and
slows application startup because the code must be uncompressed (or at least read off disk in
many small pieces). On the other hand, having the bytecode on the local heap makes it easy to
rewrite instructions on first use, facilitating a number of different optimizations.

The goals led us to make some fundamental decisions:

• Multiple classes are aggregated into a single "DEX" file.
• DEX files are mapped read-only and shared between processes.
• Byte ordering and word alignment are adjusted to suit the local system.
• Bytecode verification is mandatory for all classes, but we want to "pre-verify" whatever

we can.
• Optimizations that require rewriting bytecode must be done ahead of time.
• The consequences of these decisions are explained in the following sections.

….
dexopt

We want to verify and optimize all of the classes in the DEX file. The easiest and safest way to
do this is to load all of the classes into the VM and run through them. Anything that fails to load
is simply not verified or optimized. Unfortunately, this can cause allocation of some resources
that are difficult to release (e.g. loading of native shared libraries), so we don't want to do it in
the same virtual machine that we're running applications in.

pa-1435316 6

The ’205 Patent Infringed By
The solution is to invoke a program called dexopt, which is really just a back door into the VM.
It performs an abbreviated VM initialization, loads zero or more DEX files from the bootstrap
class path, and then sets about verifying and optimizing whatever it can from the target DEX.
On completion, the process exits, freeing all resources.

It is possible for multiple VMs to want the same DEX file at the same time. File locking is used
to ensure that dexopt is only run once.
….
Optimization

Virtual machine interpreters typically perform certain optimizations the first time a piece of
code is used. Constant pool references are replaced with pointers to internal data structures,
operations that always succeed or always work a certain way are replaced with simpler forms.
Some of these require information only available at runtime, others can be inferred statically
when certain assumptions are made.

The Dalvik optimizer does the following:

• For virtual method calls, replace the method index with a vtable index.
• For instance field get/put, replace the field index with a byte offset. Also, merge the

boolean / byte / char / short variants into a single 32-bit form (less code in the interpreter
means more room in the CPU I-cache).

• Replace a handful of high-volume calls, like String.length(), with "inline" replacements.
This skips the usual method call overhead, directly switching from the interpreter to a
native implementation.

• Prune empty methods. The simplest example is Object.<init>, which does nothing, but
must be called whenever any object is allocated. The instruction is replaced with a new
version that acts as a no-op unless a debugger is attached.

• Append pre-computed data. For example, the VM wants to have a hash table for
lookups on class name. Instead of computing this when the DEX file is loaded, we can
compute it now, saving heap space and computation time in every VM where the DEX
is loaded.

pa-1435316 7

The ’205 Patent Infringed By

All of the instruction modifications involve replacing the opcode with one not defined by the
Dalvik specification. This allows us to freely mix optimized and unoptimized instructions. The
set of optimized instructions, and their exact representation, is tied closely to the VM version.

Most of the optimizations are obvious "wins". The use of raw indices and offsets not only
allows us to execute more quickly, we can also skip the initial symbolic resolution. Pre-
computation eats up disk space, and so must be done in moderation.

There are a couple of potential sources of trouble with these optimizations. First, vtable indices
and byte offsets are subject to change if the VM is updated. Second, if a superclass is in a
different DEX, and that other DEX is updated, we need to ensure that our optimized indices and
offsets are updated as well. A similar but more subtle problem emerges when user-defined class
loaders are employed: the class we actually call may not be the one we expected to call.

These problems are addressed with dependency lists and some limitations on what can be
optimized.

See also, e.g., dalvik\docs\ embedded-vm-control.html#verifier (“The system tries to pre-verify
all classes in a DEX file to reduce class load overhead, and performs a series of optimizations to
improve runtime performance. Both of these are done by the dexopt command, either in the
build system or by the installer. On a development device, dexopt may be run the first time a
DEX file is used and whenever it or one of its dependencies is updated ("just-in-time"
optimization and verification).”).

receiving a first virtual machine
instruction;

Android’s dexopt tool receives a first virtual machine instruction.

See, e.g.,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/analysis/DexOptimize.c#l1486
1486 /*
1487 * Run through all classes that were successfully loaded from this DEX
1488 * file and optimize their code sections.
1489 */
1490 static void optimizeLoadedClasses(DexFile* pDexFile)
1491 {

pa-1435316 8

The ’205 Patent Infringed By
1492 u4 count = pDexFile->pHeader->classDefsSize;
1493 u4 idx;
1494 InlineSub* inlineSubs = NULL;
1495
1496 LOGV("DexOpt: +++ optimizing up to %d classes\n", count);
1497 assert(gDvm.dexOptMode != OPTIMIZE_MODE_NONE);
1498
1499 inlineSubs = createInlineSubsTable();
1500
1501 for (idx = 0; idx < count; idx++) {
1502 const DexClassDef* pClassDef;
1503 const char* classDescriptor;
1504 ClassObject* clazz;
1505
1506 pClassDef = dexGetClassDef(pDexFile, idx);
1507 classDescriptor = dexStringByTypeIdx(pDexFile, pClassDef->classIdx);
1508
1509 /* all classes are loaded into the bootstrap class loader */
1510 clazz = dvmLookupClass(classDescriptor, NULL, false);
1511 if (clazz != NULL) {
1512 if ((pClassDef->accessFlags & CLASS_ISPREVERIFIED) == 0 &&
1513 gDvm.dexOptMode == OPTIMIZE_MODE_VERIFIED)
1514 {
1515 LOGV("DexOpt: not optimizing '%s': not verified\n",
1516 classDescriptor);
1517 } else if (clazz->pDvmDex->pDexFile != pDexFile) {
1518 /* shouldn't be here -- verifier should have caught */
1519 LOGD("DexOpt: not optimizing '%s': multiple definitions\n",
1520 classDescriptor);
1521 } else {
1522 optimizeClass(clazz, inlineSubs);
1523
1524 /* set the flag whether or not we actually did anything */
1525 ((DexClassDef*)pClassDef)->accessFlags |=
1526 CLASS_ISOPTIMIZED;
1527 }
1528 } else {
1529 LOGV("DexOpt: not optimizing unavailable class '%s'\n",
1530 classDescriptor);
1531 }
1532 }
1533
1534 free(inlineSubs);
1535 }

pa-1435316 9

The ’205 Patent Infringed By

At 1501..1522..1532, Android calls optimizeClass()for each class in DEX file, passing in
a table of inline substitutions, inlineSubs.

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/analysis/DexOptimize.c#l1537
1537 /*
1538 * Optimize the specified class.
1539 */
1540 static void optimizeClass(ClassObject* clazz, const InlineSub*
inlineSubs)
1541 {
1542 int i;
1543
1544 for (i = 0; i < clazz->directMethodCount; i++) {
1545 if (!optimizeMethod(&clazz->directMethods[i], inlineSubs))
1546 goto fail;
1547 }
1548 for (i = 0; i < clazz->virtualMethodCount; i++) {
1549 if (!optimizeMethod(&clazz->virtualMethods[i], inlineSubs))
1550 goto fail;
1551 }
1552
1553 return;
1554
1555 fail:
1556 LOGV("DexOpt: ceasing optimization attempts on %s\n", clazz-
>descriptor);
1557 }

At 1544-1545..1547 and 1548-1549..1551 Android calls optimizeMethod()on each direct
or virtual method in the incoming DEX class.

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/analysis/DexOptimize.c#l1559
1559 /*
1560 * Optimize instructions in a method.
1561 *
1562 * Returns "true" if all went well, "false" if we bailed out early when
1563 * something failed.
1564 */
1565 static bool optimizeMethod(Method* method, const InlineSub* inlineSubs)
1566 {

pa-1435316 10

The ’205 Patent Infringed By
1567 u4 insnsSize;
1568 u2* insns;
1569 u2 inst;
1570
1571 if (dvmIsNativeMethod(method) || dvmIsAbstractMethod(method))
1572 return true;
1573
1574 insns = (u2*) method->insns;
1575 assert(insns != NULL);
1576 insnsSize = dvmGetMethodInsnsSize(method);
1577
1578 while (insnsSize > 0) {
1579 int width;
1580
1581 inst = *insns & 0xff;
1582
1583 switch (inst) {
...
1645 case OP_INVOKE_DIRECT_RANGE:
1646 rewriteExecuteInlineRange(method, insns, METHOD_DIRECT, inlineSubs);
1647 break;
...
1652 case OP_INVOKE_STATIC_RANGE:
1653 rewriteExecuteInlineRange(method, insns, METHOD_STATIC, inlineSubs);
1654 break;
...
1656 default:
1657 // ignore this instruction
1658 ;
1659 }
...
1674 insns += width;
1675 insnsSize -= width;
1676 }
1677
1678 assert(insnsSize == 0);
1679 return true;
1680 }

1578..1645-1647..1652-1654..1676 Android calls rewriteExecuteInlineRange()for
each OP_INVOKE_DIRECT_RANGE or OP_INVOKE_STATIC_RANGE virtual machine
instruction.

generating, at runtime, a new Android generates at runtime a new virtual machine instruction that represents or references one

pa-1435316 11

The ’205 Patent Infringed By
virtual machine instruction that
represents or references one or
more native instructions that can
be executed instead of said first
virtual machine instruction; and

or more native instructions that can be executed instead of said first virtual machine instruction.

As described above, Android includes a utility called dexopt:

See, e.g., dalvik\docs\dexopt.html; see also,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=docs/dexopt.html:

dexopt

We want to verify and optimize all of the classes in the DEX file. The easiest and safest
way to do this is to load all of the classes into the VM and run through them. Anything
that fails to load is simply not verified or optimized. Unfortunately, this can cause
allocation of some resources that are difficult to release (e.g. loading of native shared
libraries), so we don't want to do it in the same virtual machine that we're running
applications in.

The solution is to invoke a program called dexopt, which is really just a back door into
the VM. It performs an abbreviated VM initialization, loads zero or more DEX files
from the bootstrap class path, and then sets about verifying and optimizing whatever it
can from the target DEX. On completion, the process exits, freeing all resources.

It is possible for multiple VMs to want the same DEX file at the same time. File locking
is used to ensure that dexopt is only run once.
….

See also, e.g., dalvik\docs\ embedded-vm-control.html#verifier (“The system tries to pre-verify
all classes in a DEX file to reduce class load overhead, and performs a series of optimizations to
improve runtime performance. Both of these are done by the dexopt command, either in the
build system or by the installer. On a development device, dexopt may be run the first time a
DEX file is used and whenever it or one of its dependencies is updated ("just-in-time"
optimization and verification).”).

See, e.g.,

pa-1435316 12

The ’205 Patent Infringed By
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/analysis/DexOptimize.c#l2345
2345 /*
2346 * See if the method being called can be rewritten as an inline
operation.
2347 * Works for invoke-virtual/range, invoke-direct/range, and invoke-
static/range.
2348 *
2349 * Returns "true" if we replace it.
2350 */
2351 static bool rewriteExecuteInlineRange(Method* method, u2* insns,
2352 MethodType methodType, const InlineSub* inlineSubs)
2353 {
2354 ClassObject* clazz = method->clazz;
2355 Method* calledMethod;
2356 u2 methodIdx = insns[1];
2357
2358 calledMethod = dvmOptResolveMethod(clazz, methodIdx, methodType, NULL);
2359 if (calledMethod == NULL) {
2360 LOGV("+++ DexOpt inline/range: can't find %d\n", methodIdx);
2361 return false;
2362 }
2363
2364 while (inlineSubs->method != NULL) {
2365 if (inlineSubs->method == calledMethod) {
2366 assert((insns[0] & 0xff) == OP_INVOKE_DIRECT_RANGE ||
2367 (insns[0] & 0xff) == OP_INVOKE_STATIC_RANGE ||
2368 (insns[0] & 0xff) == OP_INVOKE_VIRTUAL_RANGE);
2369 insns[0] = (insns[0] & 0xff00) | (u2) OP_EXECUTE_INLINE_RANGE;
2370 insns[1] = (u2) inlineSubs->inlineIdx;
2371
2372 //LOGI("DexOpt: execute-inline/range %s.%s --> %s.%s\n",
2373 // method->clazz->descriptor, method->name,
2374 // calledMethod->clazz->descriptor, calledMethod->name);
2375 return true;
2376 }
2377
2378 inlineSubs++;
2379 }
2380
2381 return false;
2382 }

at 2369-70 Android generates a new instruction, with OP_EXECUTE_INLINE_RANGE as the

pa-1435316 13

The ’205 Patent Infringed By
new opcode.

 at 2370 Android stores inlineSubs->inlineIdx (the index of the native code in the inlineSubs
table) as the instruction data to reference the native code.

Android passes in const InlineSub* inlineSubs, which is constructed at line 1499
by calling createInlineSubsTable(), which is:

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/analysis/DexOptimize.c#l1411
1411 /*
1412 * Create a table of inline substitutions.
1413 *
1414 * TODO: this is currently just a linear array. We will want to put this
1415 * into a hash table as the list size increases.
1416 */
1417 static InlineSub* createInlineSubsTable(void)
1418 {
1419 const InlineOperation* ops = dvmGetInlineOpsTable();
1420 const int count = dvmGetInlineOpsTableLength();
1421 InlineSub* table;
1422 Method* method;
1423 ClassObject* clazz;
1424 int i, tableIndex;
1425
1426 /*
1427 * Allocate for optimism: one slot per entry, plus an end-of-list marker.
1428 */
1429 table = malloc(sizeof(InlineSub) * (count+1));
1430
1431 tableIndex = 0;
1432 for (i = 0; i < count; i++) {
1433 clazz = dvmFindClassNoInit(ops[i].classDescriptor, NULL);
1434 if (clazz == NULL) {
1435 LOGV("DexOpt: can't inline for class '%s': not found\n",
1436 ops[i].classDescriptor);
1437 dvmClearOptException(dvmThreadSelf());
1438 } else {
1439 /*
1440 * Method could be virtual or direct. Try both. Don't use
1441 * the "hier" versions.
1442 */

pa-1435316 14

The ’205 Patent Infringed By
1443 method = dvmFindDirectMethodByDescriptor(clazz, ops[i].methodName,
1444 ops[i].methodSignature);
1445 if (method == NULL)
1446 method = dvmFindVirtualMethodByDescriptor(clazz, ops[i].methodName,
1447 ops[i].methodSignature);
1448 if (method == NULL) {
1449 LOGW("DexOpt: can't inline %s.%s %s: method not found\n",
1450 ops[i].classDescriptor, ops[i].methodName,
1451 ops[i].methodSignature);
1452 } else {
1453 if (!dvmIsFinalClass(clazz) && !dvmIsFinalMethod(method)) {
1454 LOGW("DexOpt: WARNING: inline op on non-final class/method "
1455 "%s.%s\n",
1456 clazz->descriptor, method->name);
1457 /* fail? */
1458 }
1459 if (dvmIsSynchronizedMethod(method) ||
1460 dvmIsDeclaredSynchronizedMethod(method))
1461 {
1462 LOGW("DexOpt: WARNING: inline op on synchronized method "
1463 "%s.%s\n",
1464 clazz->descriptor, method->name);
1465 /* fail? */
1466 }
1467
1468 table[tableIndex].method = method;
1469 table[tableIndex].inlineIdx = i;
1470 tableIndex++;
1471
1472 LOGV("DexOpt: will inline %d: %s.%s %s\n", i,
1473 ops[i].classDescriptor, ops[i].methodName,
1474 ops[i].methodSignature);
1475 }
1476 }
1477 }
1478
1479 /* mark end of table */
1480 table[tableIndex].method = NULL;
1481 LOGV("DexOpt: inline table has %d entries\n", tableIndex);
1482
1483 return table;
1484 }

a map from Method*’s to indexes into the table returned by dvmGetInlineOpsTable(),

pa-1435316 15

The ’205 Patent Infringed By
which is:

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/InlineNative.c#l706
706 /*
707 * Get a pointer to the inlineops table.
708 */
709 const InlineOperation* dvmGetInlineOpsTable(void)
710 {
711 return gDvmInlineOpsTable;
712 }

where gDvmInlineOpsTable is:

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/InlineNative.c#l628
628 /*
629 * Table of methods.
630 *
631 * The DEX optimizer uses the class/method/signature string fields to
decide
632 * which calls it can trample. The interpreter just uses the function
633 * pointer field.
634 *
635 * IMPORTANT: you must update DALVIK_VM_BUILD in DalvikVersion.h if you
make
636 * changes to this table.
637 *
638 * NOTE: If present, the JIT will also need to know about changes
639 * to this table. Update the NativeInlineOps enum in InlineNative.h and
640 * the dispatch code in compiler/codegen/<target>/Codegen.c.
641 */
642 const InlineOperation gDvmInlineOpsTable[] = {
643 { org_apache_harmony_dalvik_NativeTestTarget_emptyInlineMethod,
644 "Lorg/apache/harmony/dalvik/NativeTestTarget;",
645 "emptyInlineMethod", "()V" },
646
647 { javaLangString_charAt,
648 "Ljava/lang/String;", "charAt", "(I)C" },
649 { javaLangString_compareTo,
650 "Ljava/lang/String;", "compareTo", "(Ljava/lang/String;)I" },
651 { javaLangString_equals,
652 "Ljava/lang/String;", "equals", "(Ljava/lang/Object;)Z" },
653 { javaLangString_indexOf_I,

pa-1435316 16

The ’205 Patent Infringed By
654 "Ljava/lang/String;", "indexOf", "(I)I" },
655 { javaLangString_indexOf_II,
656 "Ljava/lang/String;", "indexOf", "(II)I" },
657 { javaLangString_length,
658 "Ljava/lang/String;", "length", "()I" },
659
660 { javaLangMath_abs_int,
661 "Ljava/lang/Math;", "abs", "(I)I" },
662 { javaLangMath_abs_long,
663 "Ljava/lang/Math;", "abs", "(J)J" },
664 { javaLangMath_abs_float,
665 "Ljava/lang/Math;", "abs", "(F)F" },
666 { javaLangMath_abs_double,
667 "Ljava/lang/Math;", "abs", "(D)D" },
668 { javaLangMath_min_int,
669 "Ljava/lang/Math;", "min", "(II)I" },
670 { javaLangMath_max_int,
671 "Ljava/lang/Math;", "max", "(II)I" },
672 { javaLangMath_sqrt,
673 "Ljava/lang/Math;", "sqrt", "(D)D" },
674 { javaLangMath_cos,
675 "Ljava/lang/Math;", "cos", "(D)D" },
676 { javaLangMath_sin,
677 "Ljava/lang/Math;", "sin", "(D)D" },
678 };

where the elements are instances of:

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/InlineNative.h#l26
26 /*
27 * Basic 4-argument inline operation handler.
28 */
29 typedef bool (*InlineOp4Func)(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
30 JValue* pResult);
...
44 typedef struct InlineOperation {
45 InlineOp4Func func; /* MUST be first entry */
46 const char* classDescriptor;
47 const char* methodName;
48 const char* methodSignature;
49 } InlineOperation;

The pointers to the functions are references to native instructions, for example,

pa-1435316 17

The ’205 Patent Infringed By

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/InlineNative.c#l374
374 /*
375 * public int length()
376 */
377 static bool javaLangString_length(u4 arg0, u4 arg1, u4 arg2, u4 arg3,
378 JValue* pResult)
379 {
380 //LOGI("String.length this=0x%08x pResult=%p\n", arg0, pResult);
381
382 /* null reference check on "this" */
383 if (!dvmValidateObject((Object*) arg0))
384 return false;
385
386 pResult->i = dvmGetFieldInt((Object*) arg0, STRING_FIELDOFF_COUNT);
387 return true;
388 }

which is compiled into native instructions. The alternative would be to interpret many virtual
machine instructions to do the same thing.

executing said new virtual
machine instruction instead of said
first virtual machine instruction.

Android executes the new virtual machine instruction instead of said first virtual machine
instruction.

See, e.g.,
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/mterp/out/InterpAsm-
armv4t.S#l7686
7686 /* ------------------------------ */
7687 .balign 64
7688 .L_OP_EXECUTE_INLINE_RANGE: /* 0xef */
7689 /* File: armv5te/OP_EXECUTE_INLINE_RANGE.S */
7690 /*
7691 * Execute a "native inline" instruction, using "/range" semantics.
7692 * Same idea as execute-inline, but we get the args differently.
7693 *
7694 * We need to call an InlineOp4Func:
7695 * bool (func)(u4 arg0, u4 arg1, u4 arg2, u4 arg3, JValue* pResult)
7696 *
7697 * The first four args are in r0-r3, pointer to return value storage
7698 * is on the stack. The function's return value is a flag that tells

pa-1435316 18

The ’205 Patent Infringed By
7699 * us if an exception was thrown.
7700 */
7701 /* [opt] execute-inline/range {vCCCC..v(CCCC+AA-1)}, inline@BBBB */
7702 FETCH(r10, 1) @ r10<- BBBB
7703 add r1, rGLUE, #offGlue_retval @ r1<- &glue->retval
7704 EXPORT_PC() @ can throw
7705 sub sp, sp, #8 @ make room for arg, +64 bit align
7706 mov r0, rINST, lsr #8 @ r0<- AA
7707 str r1, [sp] @ push &glue->retval
7708 bl .LOP_EXECUTE_INLINE_RANGE_continue @ make call; will return after
7709 add sp, sp, #8 @ pop stack
7710 cmp r0, #0 @ test boolean result of inline
7711 beq common_exceptionThrown @ returned false, handle exception
7712 FETCH_ADVANCE_INST(3) @ advance rPC, load rINST
7713 GET_INST_OPCODE(ip) @ extract opcode from rINST
7714 GOTO_OPCODE(ip) @ jump to next instruction

This is the computed-goto threaded-interpreter code for the OP_EXECUTE_INLINE_RANGE
virtual machine instruction (0xef), which has replaced the OP_INVOKE_DIRECT_RANGE or
OP_INVOKE_STATIC_RANGE as the virtual machine instruction.

7708 calls .LOP_EXECUTE_INLINE_RANGE_continue to perform the actual transfer to the
native instructions.

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/mterp/out/InterpAsm-
armv4t.S#l9502
9502 /* continuation for OP_EXECUTE_INLINE_RANGE */
9503
9504 /*
9505 * Extract args, call function.
9506 * r0 = #of args (0-4)
9507 * r10 = call index
9508 * lr = return addr, above [DO NOT bl out of here w/o preserving LR]
9509 */
9510 .LOP_EXECUTE_INLINE_RANGE_continue:
9511 rsb r0, r0, #4 @ r0<- 4-r0
9512 FETCH(r9, 2) @ r9<- CCCC
9513 add pc, pc, r0, lsl #3 @ computed goto, 2 instrs each
9514 bl common_abort @ (skipped due to ARM prefetch)
9515 4: add ip, r9, #3 @ base+3
9516 GET VREG(r3, ip) @ r3<- vBase[3]

pa-1435316 19

The ’205 Patent Infringed By
9517 3: add ip, r9, #2 @ base+2
9518 GET_VREG(r2, ip) @ r2<- vBase[2]
9519 2: add ip, r9, #1 @ base+1
9520 GET_VREG(r1, ip) @ r1<- vBase[1]
9521 1: add ip, r9, #0 @ (nop)
9522 GET_VREG(r0, ip) @ r0<- vBase[0]
9523 0:
9524 ldr r9, .LOP_EXECUTE_INLINE_RANGE_table @ table of InlineOperation
9525 LDR_PC "[r9, r10, lsl #4]" @ sizeof=16, "func" is first entry
9526 @ (not reached)

which at 9524-2525 uses the reference to the table of native instructions to fetch a new native
program counter, and transfers to those native instructions.

pa-1435316 20

The ’205 Patent Infringed By

2. The method of claim 1, further
comprising overwriting a selected
virtual machine instruction with a
new virtual machine instruction,
the new virtual machine
instruction specifying execution of
the at least one native machine
instruction.

See Claim 1, supra.

The overwriting of the selected virtual machine instruction with the new virtual machine
instruction is in rewriteExecuteInlineRange, cited above, but repeated here for clarity:

http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/analysis/DexOptimize.c#l2345
2345 /*
2346 * See if the method being called can be rewritten as an inline
operation.
2347 * Works for invoke-virtual/range, invoke-direct/range, and invoke-
static/range.
2348 *
2349 * Returns "true" if we replace it.
2350 */
2351 static bool rewriteExecuteInlineRange(Method* method, u2* insns,
2352 MethodType methodType, const InlineSub* inlineSubs)
...
2369 insns[0] = (insns[0] & 0xff00) | (u2) OP_EXECUTE_INLINE_RANGE;
2370 insns[1] = (u2) inlineSubs->inlineIdx;

The ’205 Patent Infringed By
3. The method of claim 2, wherein
the [new virtual machine]
instruction includes a pointer to the
at least one native machine
instruction.

See Claim 2, supra.

The OP_EXECUTE_INLINE_RANGE bytecode takes as an argument the index of the method
in the table of inline subroutines. The first field of each element in that table is a pointer to the
native code for that subroutine.

2370 insns[1] = (u2) inlineSubs->inlineIdx;

pa-1435312

1

EXHIBIT C
Preliminary Infringement Contentions for the ’702 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or
nearly identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the
’702 patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6
(“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The ’702 Patent Infringed By
1. A method of pre-processing class
files comprising:

The Android dx tool involves a method of pre-processing .class files into a Dalvik executable
format (.dex) file.

“dx

The dx tool lets you generate Android bytecode from .class files. The tool converts
target files and/or directories to Dalvik executable format (.dex) files, so that they can
run in the Android environment.”

Android Developer Tools available at
http://developer.android.com/guide/developing/tools/othertools.html

The method of pre-processing class files into a .dex file that can be interpreted by the Dalvik
Virtual Machine (Dalvik VM) is explained in the Dalvik VM video presentation and related
presentation from Google I/O 2008, dated 5/29/2008.

pa-1435312

2

The ’702 Patent Infringed By

See Google I/O 2008 Video entitled “Google I/O 2008 - Dalvik Virtual Machine Internals,”
presented by Dan Bornstein,
http://developer.android.com/videos/index.html#v=ptjedOZEXPM (“Dalvik Video”), at time
5:45–10:45.

See also Google I/O 2008 Presentation Slides, entitled, “Dalvik Virtual Machine Internals,
Google I/O 2008,” presented by Dan Bornstein (“Dalvik Presentation”) at slides 11-22,
available at http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-
Dalvik-VM-Internals.pdf?attredirects=0.

In the Android source code, see generally:

“Classes for translating Java classfiles into Dalvik classes.
PACKAGES USED:
• com.android.dx.cf.code
• com.android.dx.cf.direct
• com.android.dx.cf.iface
• com.android.dx.dex.code
• com.android.dx.dex.file
• com.android.dx.rop.code
• com.android.dx.rop.cst
• com.android.dx.util”

dalvik\dx\src\com\android\dx\dex\cf\package.html.

determining plurality of duplicated
elements in a plurality of class files;

The Android dx tool determines a plurality of duplicated elements in a plurality of class files,
as explained in the Dalvik Video at time 7:50-8:45 and Dalvik Presentation, slides 18-19.

The Dalvik Presentation shows the determination of a plurality of duplicated elements (e.g.,
class signatures and string names) in a plurality of class files:

pa-1435312

3

The ’702 Patent Infringed By

(Dalvik Presentation, slide 18)

(Shows identification of common class signatures in the class files)

pa-1435312

4

The ’702 Patent Infringed By

(Dalvik Presentation, slide 19)

(Shows identification of common string names in the class files)

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.
PACKAGES USED:
 * com.android.dx.rop.type

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html.

See also DexFile.java:

 440
 441 /**
 442 * Gets the {@link IndexedItem} corresponding to the given constant,
 443 * if it is a constant that has such a correspondence, or return
 444 * {@code null} if it isn't such a constant. This will throw

pa-1435312

5

The ’702 Patent Infringed By
 445 * an exception if the given constant <i>should</i> have been found
 446 * but wasn't.
 447 *
 448 * @param cst {@code non-null;} the constant to look up
 449 * @return {@code null-
ok;} its corresponding item, if it has a corresponding
 450 * item, or {@code null} if it's not that sort of constant
 451 */
 452 /*package*/ IndexedItem findItemOrNull(Constant cst) {
 453 IndexedItem item;
 454
 455 if (cst instanceof CstString) {
 456 return stringIds.get(cst);
 457 } else if (cst instanceof CstType) {
 458 return typeIds.get(cst);
 459 } else if (cst instanceof CstBaseMethodRef) {
 460 return methodIds.get(cst);
 461 } else if (cst instanceof CstFieldRef) {
 462 return fieldIds.get(cst);
 463 } else {
 464 return null;
 465 }
 466 }
 467
 468 /**
 469 * Returns the contents of this instance as a {@code .dex} file,
 470 * in a {@link ByteArrayAnnotatedOutput} instance.
 471 *
 472 * @param annotate whether or not to keep annotations
 473 * @param verbose if annotating, whether to be verbose
 474 * @return {@code non-null;} a {@code .dex} file for this instance
 475 */
 476 private ByteArrayAnnotatedOutput toDex0(boolean annotate,
 477 boolean verbose) {
 478 /*
 479 * The following is ordered so that the prepare() calls which
 480 * add items happen before the calls to the sections that get
 481 * added to.
 482 */
 483
 484 classDefs.prepare();
 485 classData.prepare();
 486 wordData.prepare();
 487 byteData.prepare();

pa-1435312

6

The ’702 Patent Infringed By
 488 methodIds.prepare();
 489 fieldIds.prepare();
 490 protoIds.prepare();
 491 typeLists.prepare();
 492 typeIds.prepare();
 493 stringIds.prepare();
 494 stringData.prepare();
 495 header.prepare();
 496
 497 // Place the sections within the file.
 498
 499 int count = sections.length;
 500 int offset = 0;
 501
 502 for (int i = 0; i < count; i++) {
 503 Section one = sections[i];
 504 int placedAt = one.setFileOffset(offset);
 505 if (placedAt < offset) {

506 throw new RuntimeException("bogus placement for section " + i);
 507 }
 508
 509 try {
 510 if (one == map) {
 511 /*
 512 * Inform the map of all the sections, and add it
 513 * to the file. This can only be done after all
 514 * the other items have been sorted and placed.
 515 */
 516 MapItem.addMap(sections, map);
 517 map.prepare();
 518 }
 519
 520 if (one instanceof MixedItemSection) {
 521 /*
 522 * Place the items of a MixedItemSection that just
 523 * got placed.
 524 */
 525 ((MixedItemSection) one).placeItems();
 526 }
 527
 528 offset = placedAt + one.writeSize();
 529 } catch (RuntimeException ex) {
 530 throw ExceptionWithContext.withContext(ex,

pa-1435312

7

The ’702 Patent Infringed By
 531 "...while writing section " + i);
 532 }
 533 }
 534
 535 // Write out all the sections.
 536
 537 fileSize = offset;
 538 byte[] barr = new byte[fileSize];
 539 ByteArrayAnnotatedOutput out = new ByteArrayAnnotatedOutput(barr);
 540
 541 if (annotate) {
 542 out.enableAnnotations(dumpWidth, verbose);
 543 }
 544
 545 for (int i = 0; i < count; i++) {
 546 try {
 547 Section one = sections[i];
 548 int zeroCount = one.getFileOffset() - out.getCursor();
 549 if (zeroCount < 0) {
 550 throw new ExceptionWithContext("excess write of " +
 551 (-zeroCount));
 552 }
 553 out.writeZeroes(one.getFileOffset() - out.getCursor());
 554 one.writeTo(out);
 555 } catch (RuntimeException ex) {
 556 ExceptionWithContext ec;
 557 if (ex instanceof ExceptionWithContext) {
 558 ec = (ExceptionWithContext) ex;
 559 } else {
 560 ec = new ExceptionWithContext(ex);
 561 }
 562 ec.addContext("...while writing section " + i);
 563 throw ec;
 564 }
 565 }
 566
 567 if (out.getCursor() != fileSize) {
 568 throw new RuntimeException("foreshortened write");
 569 }
 570
 571 // Perform final bookkeeping.
 572
 573 calcSignature(barr);
 574 calcChecksum(barr);

pa-1435312

8

The ’702 Patent Infringed By
 575
 576 if (annotate) {
 577 wordData.writeIndexAnnotation(out, ItemType.TYPE_CODE_ITEM,
 578 "\nmethod code index:\n\n");
 579 getStatistics().writeAnnotation(out);
 580 out.finishAnnotating();
 581 }
 582
 583 return out;
 584 }
 585
 586 /**
 587 * Generates and returns statistics for all the items in the file.
 588 *
 589 * @return {@code non-null;} the statistics
 590 */
 591 public Statistics getStatistics() {
 592 Statistics stats = new Statistics();
 593
 594 for (Section s : sections) {
 595 stats.addAll(s);
 596 }
 597
 598 return stats;
 599 }
 600
 601 /**
 602 * Calculates the signature for the {@code .dex} file in the
 603 * given array, and modify the array to contain it.
 604 *
 605 * @param bytes {@code non-null;} the bytes of the file
 606 */
 607 private static void calcSignature(byte[] bytes) {
 608 MessageDigest md;
 609
 610 try {
 611 md = MessageDigest.getInstance("SHA-1");
 612 } catch (NoSuchAlgorithmException ex) {
 613 throw new RuntimeException(ex);
 614 }
 615
 616 md.update(bytes, 32, bytes.length - 32);
 617
 618 try {

pa-1435312

9

The ’702 Patent Infringed By
 619 int amt = md.digest(bytes, 12, 20);
 620 if (amt != 20) {
 621 throw new RuntimeException("unexpected digest write: " + amt +
 622 " bytes");
 623 }
 624 } catch (DigestException ex) {
 625 throw new RuntimeException(ex);
 626 }
 627 }
 628
 629 /**
 630 * Calculates the checksum for the {@code .dex} file in the
 631 * given array, and modify the array to contain it.
 632 *
 633 * @param bytes {@code non-null;} the bytes of the file
 634 */
 635 private static void calcChecksum(byte[] bytes) {
 636 Adler32 a32 = new Adler32();
 637
 638 a32.update(bytes, 12, bytes.length - 12);
 639
 640 int sum = (int) a32.getValue();
 641
 642 bytes[8] = (byte) sum;
 643 bytes[9] = (byte) (sum >> 8);
 644 bytes[10] = (byte) (sum >> 16);
 645 bytes[11] = (byte) (sum >> 24);
 646 }
 647 }

dalvik/dx/src/com/android/dx/dex/file/DexFile.java.

See also

See also:

dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

forming a shared table comprising The Android dx tool forms a shared table of the duplicated elements from the plurality of

pa-1435312

10

The ’702 Patent Infringed By
said plurality of duplicated
elements;

class files. This process is explained in the Dalvik Video at time 7:20–9:25 and Dalvik
Presentation, slides 15-20.

The Dalvik Presentation shows the elements of the class files combining into a shared
constant pool (shared tables) in the .dex file.

(Dalvik Presentation, slide 15)

In the illustration above, each of “string_ids,” “type_ids” and “method_ids” are examples of
the shared tables (or, equivalently, a collective shared table).

In addition, the discussion of the “Shared Constant Pool” in the Dalvik Video explains that
the duplicated elements in the class files are consolidated into the shared constant pool
(shared table) of the .dex file. See Dalvik Presentation, slides 15-21.

For example, slide 19 of the Dalvik Presentation shows the separate class files having

pa-1435312

11

The ’702 Patent Infringed By
duplicated elements.

(Dalvik Presentation, slide 19)

Next, slide 20 of the Dalvik Presentation shows a representation of the class files after being
processed into a single .dex file, with the duplicate elements removed; the elements are then
stored in a shared constant pool (shared table):

pa-1435312

12

The ’702 Patent Infringed By

(Dalvik Presentation, slide 20)

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.
PACKAGES USED:
 * com.android.dx.rop.type

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java

pa-1435312

13

The ’702 Patent Infringed By
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

removing said duplicated elements
from said plurality of class files to
obtain a plurality of reduced class
files; and

The Android dx tool removes the duplicated elements from the plurality of class files and
obtains a plurality of reduced class files. This process is explained in the Dalvik Video at
time 7:20–9:25 and Dalvik Presentation, slides 15-20.

The Dalvik Presentation shows the class files combining into a shared constant pool (shared
table) in the .dex file.

(Dalvik Presentation, slide 15)

The original class files are combined into a single .dex file, which includes a plurality of
reduced class files (i.e., with duplicates removed). This is also illustrated in slide 11 of the
Dalvik presentation, which shows the anatomy of a .dex file:

pa-1435312

14

The ’702 Patent Infringed By

(Dalvik Presentation, slide 11)

Next, slides 18-20 of the Dalvik Presentation show the removal of the duplicated elements of
the plurality of class files such that the resulting .dex file contains only one copy of each
element in its shared constant pool (shared table).

pa-1435312

15

The ’702 Patent Infringed By

(Dalvik Presentation, slide 18)

pa-1435312

16

The ’702 Patent Infringed By

(Dalvik Presentation, slide 19)

(Dalvik Presentation, slide 20)

pa-1435312

17

The ’702 Patent Infringed By

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.
PACKAGES USED:
 * com.android.dx.rop.type

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java,
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

forming a multi-class file
comprising said plurality of reduced
class files and said shared table.

As explained above, the Android dx tool forms a multi-class file—the .dex file—comprising
the reduced class files and a shared constant pool (shared table) such that duplicate elements
have been removed. This process is explained in the Dalvik Video at time 7:20–9:25 and
Dalvik Presentation, slides 11 and 15-20.

The Dalvik Presentation shows the original class files being combined into a .dex file (multi-
class file) comprising the plurality of reduced class files and the shared constant pool (shared
table):

pa-1435312

18

The ’702 Patent Infringed By

(Dalvik Presentation, slide 15)

(Dalvik Presentation, slide 11)

pa-1435312

19

The ’702 Patent Infringed By

(Dalvik Presentation, slide 20)

In the Android source code, see generally:

“Classes for translating Java classfiles into Dalvik classes.
PACKAGES USED:
• com.android.dx.cf.code
• com.android.dx.cf.direct
• com.android.dx.cf.iface
• com.android.dx.dex.code
• com.android.dx.dex.file
• com.android.dx.rop.code
• com.android.dx.rop.cst
• com.android.dx.util”

dalvik\dx\src\com\android\dx\dex\cf\package.html.

pa-1435312

20

The ’702 Patent Infringed By

See also:

/**
 * Representation of an entire {@code .dex} (Dalvik EXecutable)
 * file, which itself consists of a set of Dalvik classes.
 */
public final class DexFile {
 /** {@code non-null;} word data section */
 private final MixedItemSection wordData;

dalvik\dx\src\com\android\dx\dex\file\DexFile.java.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java,
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

The ’702 Patent Infringed By
 5. The method of claim 1, wherein
said step of determining a plurality
of duplicated elements comprises:

See Claim 1, supra.

determining one or more constants
shared between two or more class
files.

The Android dx tool determines constants shared between two or more class files. This
process is explained in the Dalvik Video at time 7:20-9:25 and Dalvik Presentation, slides 11-
20.

The Dalvik Presentation shows the elements of the class files identified for combining into a
shared constant pool (shared tables) in the .dex file.

pa-1435312

21

The ’702 Patent Infringed By

(Dalvik Presentation, slide 15)

In the illustration above, each of “string_ids,” “type_ids” and “method_ids” are examples of
the shared tables (or, equivalently, a collective shared table).

In addition, the discussion of the “Shared Constant Pool” in the Dalvik Video explains that
the duplicated elements in the class files are consolidated into the shared constant pool
(shared table) of the .dex file. See Dalvik Presentation, slides 15-21.

For example, slide 19 of the Dalvik Presentation shows the separate class files having
duplicated elements.

pa-1435312

22

The ’702 Patent Infringed By

(Dalvik Presentation, slide 19)

Next, slide 20 of the Dalvik Presentation shows a representation of the class files after being
processed into a single .dex file, with the duplicate elements removed; the elements are then
stored in a shared constant pool (shared table):

pa-1435312

23

The ’702 Patent Infringed By

(Dalvik Presentation, slide 20)

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.
PACKAGES USED:
 * com.android.dx.rop.type

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html from Android 2.2 (Nov. 2, 2010).

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java,
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

pa-1435312

24

The ’702 Patent Infringed By
 6. The method of claim 5, wherein
said step of forming a shared table
comprises:

See Claim 1, supra.

forming a shared constant table
comprising said one or more
constants shared between said two
or more class files.

The Android dx tool forms a shared constant table comprising the constants shared between
the two or more class files. This process is explained in the Dalvik Video at time 7:20–9:25
and Dalvik Presentation, slide 15.

The Dalvik Presentation at 7:20-9:25 shows the elements of the class files combining into a
shared constant pool (shared tables) in the .dex file.

(Dalvik Presentation, slide 15)

In the illustration above, each of “string_ids,” “type_ids” and “method_ids” are examples of
the shared tables (or, equivalently, a collective shared table).

In addition, the discussion of the “Shared Constant Pool” in the Dalvik Video at 7:20-9:25

pa-1435312

25

The ’702 Patent Infringed By
explains that the duplicated elements in the class files are consolidated into the shared
constant pool (shared table) of the .dex file. See Dalvik Presentation, slides 15-21.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java,
dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java
dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java
dalvik/dx/src/com/android/dx/cf/cst/ConstantPoolParser.java

The ’702 Patent Infringed By
7. A computer program product
comprising:

Android is a computer program product.

a computer usable medium having
computer readable program code
embodied therein for pre-processing
class files, said computer program
product comprising:

Android is computer readable program, including computer readable program code for pre-
processing class files. Further, Android is stored on a computer usable medium, e.g., RAM of
a device or computer running Android.
See corresponding element of claim 1, supra.

computer readable program code
configured to cause a computer to
determine a plurality of duplicated
elements in a plurality of class files;

The Android dx tool determines a plurality of duplicated elements in a plurality of class files,
as explained in the Dalvik Video and Dalvik Presentation:
See corresponding element of claim 1, supra.

computer readable program code
configured to cause a computer to
form a shared table comprising said
plurality of duplicated elements;

The Android dx tool forms a shared table of the duplicated elements from the plurality of
class files. This process is explained in the Dalvik Video and Dalvik Presentation.
See corresponding element of claim 1, supra.

computer readable program code
configured to cause a computer to
remove said duplicated elements
from said plurality of class files to
obtain a plurality of reduced class

The Android dx tool removes the duplicated elements from the plurality of class files and
obtains a plurality of reduced class files. This process is explained in the Dalvik Video and
Dalvik Presentation.
See corresponding element of claim 1, supra.

pa-1435312

26

The ’702 Patent Infringed By
files; and
computer readable program code
configured to cause a computer to
form a multi-class file comprising
said plurality of reduced class files
and said shared table.

As explained above, the Android dx tool forms a multi-class file—the .dex file—comprising
the reduced class files and a shared constant pool (shared table) such that duplicate elements
have been removed. This process is explained in the Dalvik Video and Dalvik Presentation.
See corresponding element of claim 1, supra.

The ’702 Patent Infringed By
11. The computer program product
of claim 7, wherein said computer
readable program code configured to
cause a computer to determine said
plurality of duplicated elements
comprises:

See corresponding element of claim 5, supra.

computer readable program code
configured to cause a computer to
determine one or more constants
shared between two or more class
files.

See corresponding element of claim 5, supra.

The ’702 Patent Infringed By
12. The computer program product
of claim 11, wherein said computer
readable program code configured to
cause a computer to form said
shared table comprises:

See corresponding element of claim 6, supra.

pa-1435312

27

The ’702 Patent Infringed By
computer readable program code
configured to cause a computer to
form a shared constant table
comprising said one or more
constants shared between said two
or more class files.

See corresponding element of claim 6, supra.

The ’702 Patent Infringed By

13. An apparatus comprising: Any device or computer which can run the Android dx tool.
a processor; A processor or CPU of the device or computer running Android.
a memory coupled to said processor; A storage memory, e.g., RAM, of the device or computer running Android.
a plurality of class files stored in
said memory;

See above disclosures of the plurality of class files that are processed by the dx tool into a
.dex file. The class files would necessarily be stored in the memory, e.g., RAM, of the
computer while they are being processed by the dx tool.
See corresponding element of claim 1, supra.

a process executing on said
processor, said process configured to
form a multi-class file comprising:

See corresponding disclosures in the claims above, detailing the process by which the dx tool
forms a multi-class .dex file.
See corresponding element of claim 1, supra.

a plurality of reduced class files
obtained from said plurality of class
files by removing one or more
elements that are duplicated between
two or more of said plurality of class
files; and

See corresponding disclosures in the claims above, detailing the removal of duplicate
elements among the plurality of class files when the dx tool forms a multi-class .dex file.
See corresponding element of claim 1, supra.

a shared table comprising said
duplicated elements.

See corresponding disclosures in the claims above, detailing the shared constant pool of the
duplicated elements within the .dex file.
See corresponding element of claim 1, supra.

pa-1435312

28

The ’702 Patent Infringed By

15. The apparatus of claim 13,
wherein said duplicated elements
comprise elements of constant pools
of respective class files, said shared
table comprising a shared constant
pool.

See corresponding element of claims 1, 5, and 6, supra.

pa-1435312

29

The ’702 Patent Infringed By

16. The apparatus of claim 13,
further comprising:

See Claim 13, supra.

a virtual machine having a class
loader and a runtime data area, said
class loader configured to obtain and
load said multi-class file into said
runtime data area.

Android includes the Dalvik Virtual Machine, which includes a class loader (the Zygote) and
runtime data area, where the class loader obtains and loads the multi-class file (the .dex file)
into the runtime data area.

(Dalvik Presentation, Slide 25) (Dalvik Presentation, Slide 26)

(Dalvik Presentation, Slide 27)

See also corresponding element of claim 1, supra.

pa-1435236 1

EXHIBIT D
Preliminary Infringement Contentions for the ’447 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or
nearly identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the
’447 patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6
(“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The ’447 Patent Infringed By

[1-pre] 1. A method for
providing security, the
method comprising the steps
of:

Android includes methods for providing security.

See generally, e.g.:

• dalvik\vm\native\InternalNative.c
• dalvik\vm\native\java_security_AccessController.c
• dalvik\vm\native\java_lang_VMClassLoader.c
• source code files in libcore\security\src\main\java\java\security
• source code files in libcore\security-kernel\src\main\java\java\security
• libcore\security\src\main\java\org\apache\harmony\security

See also, e.g.:

• Android APIs for “java.security,” available at
http://developer.android.com/reference/java/security/package-summary.html

• Android Framework Topics for “Security and Permissions,” available at
http://developer.android.com/guide/topics/security/security.html

pa-1435236 2

The ’447 Patent Infringed By
• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml

File,” http://developer.android.com/guide/topics/manifest/permission-element.html
• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml

File,” http://developer.android.com/guide/topics/manifest/application-element.html
• Android Framework Topics for “The AndroidManifest.xml File,” available at

http://developer.android.com/guide/topics/manifest/manifest-intro.html

See also, e.g.:
• libcore\security\src\test

[1-a] establishing one or
more protection domains,
wherein a protection domain
is associated with zero or
more permissions;

Android’s security framework establishes one or more protection domains, wherein a protection
domain is associated with zero or more permissions.

See, e.g.:

libcore\security\src\main\java\java\security\ProtectionDomain.java:

/**
 * {@code ProtectionDomain} represents all permissions that are granted to a
 * specific code source. The {@link ClassLoader} associates each class with the
 * corresponding {@code ProtectionDomain}, depending on the location and the
 * certificates (encapsulates in {@link CodeSource}) it loads the code from.
 * <p>
 * A class belongs to exactly one protection domain and the protection domain
 * can not be changed during the lifetime of the class.
 */
public class ProtectionDomain {

 // CodeSource for this ProtectionDomain
 private CodeSource codeSource;

 // Static permissions for this ProtectionDomain
 private PermissionCollection permissions;

pa-1435236 3

The ’447 Patent Infringed By

 // ClassLoader
 private ClassLoader classLoader;

 // Set of principals associated with this ProtectionDomain
 private Principal[] principals;

 // false if this ProtectionDomain was constructed with static
 // permissions, true otherwise.
 private boolean dynamicPerms;

 /**
 * Constructs a new instance of {@code ProtectionDomain} with the specified
 * code source and the specified static permissions.
 * <p>
 * If {@code permissions} is not {@code null}, the {@code permissions}
 * collection is made immutable by calling
 * {@link PermissionCollection#setReadOnly()} and it is considered as
 * granted statically to this {@code ProtectionDomain}.
 * <p>
 * The policy will not be consulted by access checks against this {@code
 * ProtectionDomain}.
 * <p>
 * If {@code permissions} is {@code null}, the method {@link
 * ProtectionDomain#implies(Permission)} always returns {@code false}.
 *
 * @param cs
 * the code source associated with this domain, maybe {@code
 * null}.
 * @param permissions
 * the {@code PermissionCollection} containing all permissions to
 * be statically granted to this {@code ProtectionDomain}, maybe

pa-1435236 4

The ’447 Patent Infringed By
 * {@code null}.
 */
 public ProtectionDomain(CodeSource cs, PermissionCollection permissions) {
 this.codeSource = cs;
 if (permissions != null) {
 permissions.setReadOnly();
 }
 this.permissions = permissions;
 //this.classLoader = null;
 //this.principals = null;
 //dynamicPerms = false;
 }

 /**
 * Constructs a new instance of {@code ProtectionDomain} with the specified
 * code source, the permissions, the class loader and the principals.
 * <p>
 * If {@code permissions} is {@code null}, and access checks are performed
 * against this protection domain, the permissions defined by the policy are
 * consulted. If {@code permissions} is not {@code null}, the {@code
 * permissions} collection is made immutable by calling
 * {@link PermissionCollection#setReadOnly()}. If access checks are
 * performed, the policy and the provided permission collection are checked.
 * <p>
 * External modifications of the provided {@code principals} array has no
 * impact on this {@code ProtectionDomain}.
 *
 * @param cs
 * the code source associated with this domain, maybe {@code
 * null}.
 * @param permissions
 * the permissions associated with this domain, maybe {@code

pa-1435236 5

The ’447 Patent Infringed By
 * null}.
 * @param cl
 * the class loader associated with this domain, maybe {@code
 * null}.
 * @param principals
 * the principals associated with this domain, maybe {@code
 * null}.
 */
 public ProtectionDomain(CodeSource cs, PermissionCollection permissions,
 ClassLoader cl, Principal[] principals) {
 this.codeSource = cs;
 if (permissions != null) {
 permissions.setReadOnly();
 }
 this.permissions = permissions;
 this.classLoader = cl;
 if (principals != null) {
 this.principals = new Principal[principals.length];
 System.arraycopy(principals, 0, this.principals, 0,
 this.principals.length);
 }
 dynamicPerms = true;
 }
…
 /**
 * Returns the static permissions that are granted to this {@code
 * ProtectionDomain}.
 *
 * @return the static permissions that are granted to this {@code
 * ProtectionDomain}, maybe {@code null}.
 */
 public final PermissionCollection getPermissions() {

pa-1435236 6

The ’447 Patent Infringed By
 return permissions;
 }

See also, e.g.:

• Android APIs for “java.security,” available at
http://developer.android.com/reference/java/security/package-summary.html

• Android Framework Topics for “Security and Permissions,” available at
http://developer.android.com/guide/topics/security/security.html

• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml
File,” http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The AndroidManifest.xml
File,” http://developer.android.com/guide/topics/manifest/application-element.html

• Android Framework Topics for “The AndroidManifest.xml File,” available at
http://developer.android.com/guide/topics/manifest/manifest-intro.html

[1-b] establishing an
association between said one
or more protection domains
and one or more classes of
one or more objects; and

Android’s security framework establishes an association between said one or more protection
domains and one or more classes of one or more objects.

See Claim 1-a, supra.

See also, e.g.:
dalvik\vm\native\java_lang_VMClassLoader.c:

/*
 * java.lang.VMClassLoader
 */
…
/*
 * static Class defineClass(ClassLoader cl, String name,
 * byte[] data, int offset, int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object.

pa-1435236 7

The ’447 Patent Infringed By
 */
static void Dalvik_java_lang_VMClassLoader_defineClass(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 StringObject* nameObj = (StringObject*) args[1];
 const u1* data = (const u1*) args[2];
 int offset = args[3];
 int len = args[4];
 Object* pd = (Object*) args[5];
 char* name = NULL;

 name = dvmCreateCstrFromString(nameObj);
 LOGE("ERROR: defineClass(%p, %s, %p, %d, %d, %p)\n",
 loader, name, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 free(name);
 RETURN_VOID();
}

/*
 * static Class defineClass(ClassLoader cl, byte[] data, int offset,
 * int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object. Deprecated version of
 * previous method, lacks name parameter.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass2(const u4* args,
 JValue* pResult)

pa-1435236 8

The ’447 Patent Infringed By
{
 Object* loader = (Object*) args[0];
 const u1* data = (const u1*) args[1];
 int offset = args[2];
 int len = args[3];
 Object* pd = (Object*) args[4];

 LOGE("ERROR: defineClass(%p, %p, %d, %d, %p)\n",
 loader, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 RETURN_VOID();
}

[1-c] determining whether an
action requested by a
particular object is permitted
based on said association
between said one or more
protection domains and said
one or more classes.

Android’s security framework determines whether an action requested by a particular object is
permitted based on said association between said one or more protection domains and said one or
more classes.

See Claim 1-a and 1-b, supra.

See also, e.g.:

libcore\security\src\main\java\java\security\ProtectionDomain.java:

 /**
 * Indicates whether the specified permission is implied by this {@code
 * ProtectionDomain}.
 * <p>
 * If this {@code ProtectionDomain} was constructed with
 * {@link #ProtectionDomain(CodeSource, PermissionCollection)}, the
 * specified permission is only checked against the permission collection
 * provided in the constructor. If {@code null} was provided, {@code false}

pa-1435236 9

The ’447 Patent Infringed By
 * is returned.
 * <p>
 * If this {@code ProtectionDomain} was constructed with
 * {@link #ProtectionDomain(CodeSource, PermissionCollection, ClassLoader,
Principal[])}
 * , the specified permission is checked against the policy and the
 * permission collection provided in the constructor.
 *
 * @param permission
 * the permission to check against the domain.
 * @return {@code true} if the specified {@code permission} is implied by
 * this {@code ProtectionDomain}, {@code false} otherwise.
 */
 public boolean implies(Permission permission) {
 // First, test with the Policy, as the default Policy.implies()
 // checks for both dynamic and static collections of the
 // ProtectionDomain passed...
 if (dynamicPerms
 && Policy.getAccessiblePolicy().implies(this, permission)) {
 return true;
 }

 // ... and we get here if
 // either the permissions are static
 // or Policy.implies() did not check for static permissions
 // or the permission is not implied
 return permissions == null ? false : permissions.implies(permission);
 }

Android APIs for “ProtectionDomain,” available at
http://developer.android.com/reference/java/security/ProtectionDomain.html:

pa-1435236 10

The ’447 Patent Infringed By

public ProtectionDomain (CodeSource cs, PermissionCollection permissions)
Since: API Level 1
Constructs a new instance of ProtectionDomain with the specified code source and the
specified static permissions.

If permissions is not null, the permissions collection is made immutable by calling
setReadOnly() and it is considered as granted statically to this ProtectionDomain.

The policy will not be consulted by access checks against this ProtectionDomain.

If permissions is null, the method implies(Permission) always returns false.

Parameters
cs the code source associated with this domain, maybe null.

permissions the PermissionCollection containing all permissions to be
statically granted to this ProtectionDomain, maybe null.

public ProtectionDomain (CodeSource cs, PermissionCollection permissions,
ClassLoader cl, Principal[] principals)
Since: API Level 1
Constructs a new instance of ProtectionDomain with the specified code source, the
permissions, the class loader and the principals.

If permissions is null, and access checks are performed against this protection domain,
the permissions defined by the policy are consulted. If permissions is not null, the
permissions collection is made immutable by calling setReadOnly(). If access checks

pa-1435236 11

The ’447 Patent Infringed By
are performed, the policy and the provided permission collection are checked.

External modifications of the provided principals array has no impact on this
ProtectionDomain.

Parameters
cs the code source associated with this domain, maybe null.

permissions the permissions associated with this domain, maybe null.

cl the class loader associated with this domain, maybe null.

principals the principals associated with this domain, maybe null.

libcore\security\src\main\java\java\security\Policy.java:

 /**
 * Indicates whether the specified {@code Permission} is implied by the
 * {@code PermissionCollection} of the specified {@code ProtectionDomain}.
 *
 * @param domain
 * the {@code ProtectionDomain} for which the permission should
 * be granted.
 * @param permission
 * the {@code Permission} for which authorization is to be
 * verified.
 * @return {@code true} if the {@code Permission} is implied by the {@code
 * ProtectionDomain}, {@code false} otherwise.
 */
 public boolean implies(ProtectionDomain domain, Permission permission) {
 if (domain != null) {

pa-1435236 12

The ’447 Patent Infringed By
 PermissionCollection total = getPermissions(domain);
 PermissionCollection inherent = domain.getPermissions();
 if (total == null) {
 total = inherent;
 } else if (inherent != null) {
 for (Enumeration<Permission> en = inherent.elements(); en.hasMoreElements();) {
 total.add(en.nextElement());
 }
 }
 if (total != null && total.implies(permission)) {
 return true;
 }
 }
 return false;
 }

libcore\luni\src\main\java\java\lang\ SecurityManager.java:

/**
 * Warning: security managers do not provide a
 * secure environment for executing untrusted code. Untrusted code cannot be
 * safely isolated within the Dalvik VM.
 *
 * <p>Provides security verification facilities for applications. {@code
 * SecurityManager} contains a set of {@code checkXXX} methods which determine
 * if it is safe to perform a specific operation such as establishing network
 * connections, modifying files, and many more. In general, these methods simply
 * return if they allow the application to perform the operation; if an
 * operation is not allowed, then they throw a {@link SecurityException}. The
 * only exception is {@link #checkTopLevelWindow(Object)}, which returns a
 * boolean to indicate permission.
 */
public class SecurityManager {

pa-1435236 13

The ’447 Patent Infringed By
…
 /**
 * Checks whether the calling thread is allowed to access the resource being
 * guarded by the specified permission object.
 *
 * @param permission
 * the permission to check.
 * @throws SecurityException
 * if the requested {@code permission} is denied according to
 * the current security policy.
 */
 public void checkPermission(Permission permission) {
 try {
 inCheck = true;
 AccessController.checkPermission(permission);
 } finally {
 inCheck = false;
 }
 }

 /**
 * Checks whether the specified security context is allowed to access the
 * resource being guarded by the specified permission object.
 *
 * @param permission
 * the permission to check.
 * @param context
 * the security context for which to check permission.
 * @throws SecurityException
 * if {@code context} is not an instance of {@code
 * AccessControlContext} or if the requested {@code permission}
 * is denied for {@code context} according to the current

pa-1435236 14

The ’447 Patent Infringed By
 * security policy.
 */
 public void checkPermission(Permission permission, Object context) {
 try {
 inCheck = true;
 // Must be an AccessControlContext. If we don't check
 // this, then applications could pass in an arbitrary
 // object which circumvents the security check.
 if (context instanceof AccessControlContext) {
 ((AccessControlContext) context).checkPermission(permission);
 } else {
 throw new SecurityException();
 }
 } finally {
 inCheck = false;
 }
 }
}

libcore\security-kernel\src\main\java\java\security\AccessController.java:
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is performed in the context of the current thread. This method
 * returns silently if the permission is granted, otherwise an {@code
 * AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * the current execution context has been granted the specified permission.
 * If privileged operations are on the execution context, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>

pa-1435236 15

The ’447 Patent Infringed By
 * This method delegates the permission check to
 * {@link AccessControlContext#checkPermission(Permission)} on the current
 * callers' context obtained by {@link #getContext()}.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessControlContext#checkPermission(Permission)
 *
 * @since Android 1.0
 */
 public static void checkPermission(Permission perm)
 throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("permission can not be null");
 }

 getContext().checkPermission(perm);
 }

libcore\security-kernel\src\main\java\java\security\AccessController.java:
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is performed in the context of the current thread. This method
 * returns silently if the permission is granted, otherwise an {@code
 * AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * the current execution context has been granted the specified permission.

pa-1435236 16

The ’447 Patent Infringed By
 * If privileged operations are on the execution context, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * This method delegates the permission check to
 * {@link AccessControlContext#checkPermission(Permission)} on the current
 * callers' context obtained by {@link #getContext()}.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessControlContext#checkPermission(Permission)
 *
 * @since Android 1.0
 */
 public static void checkPermission(Permission perm)
 throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("permission can not be null");
 }

 getContext().checkPermission(perm);
 }

libcore\security-kernel\src\main\java\java\security\AccessControlContext.java:

ProtectionDomain[] context;
…
 /**
 * Checks the specified permission against the vm's current security policy.

pa-1435236 17

The ’447 Patent Infringed By
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {

pa-1435236 18

The ’447 Patent Infringed By
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }
 }

The ’447 Patent Infringed By
2. The method of claim 1, wherein: See Claim 1, supra.
at least one protection domain of
said one or more protection domains
is associated with a code identifier;

See Claim 1-a and 1-b, supra.

E.g.:
dalvik\vm\native\java_lang_VMClassLoader.c:

/*
 * java.lang.VMClassLoader
 */
…
/*
 * static Class defineClass(ClassLoader cl, String name,
 * byte[] data, int offset, int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];

pa-1435236 19

The ’447 Patent Infringed By
 StringObject* nameObj = (StringObject*) args[1];
 const u1* data = (const u1*) args[2];
 int offset = args[3];
 int len = args[4];
 Object* pd = (Object*) args[5];
 char* name = NULL;

 name = dvmCreateCstrFromString(nameObj);
 LOGE("ERROR: defineClass(%p, %s, %p, %d, %d, %p)\n",
 loader, name, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 free(name);
 RETURN_VOID();
}

/*
 * static Class defineClass(ClassLoader cl, byte[] data, int offset,
 * int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object. Deprecated version of
 * previous method, lacks name parameter.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass2(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 const u1* data = (const u1*) args[1];
 int offset = args[2];
 int len = args[3];

pa-1435236 20

The ’447 Patent Infringed By
 Object* pd = (Object*) args[4];

 LOGE("ERROR: defineClass(%p, %p, %d, %d, %p)\n",
 loader, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 RETURN_VOID();

}

See also, e.g.:

libcore\security\src\main\java\java\security\ CodeSource.java:

/**
 * {@code CodeSource} encapsulates the location from where code is loaded and
 * the certificates that were used to verify that code. This information is used
 * by {@code SecureClassLoader} to define protection domains for loaded classes.
 *
 * @see SecureClassLoader
 * @see ProtectionDomain
 */
public class CodeSource implements Serializable {

 private static final long serialVersionUID = 4977541819976013951L;

 // Location of this CodeSource object
 private URL location;

 // Array of certificates assigned to this CodeSource object
 private transient java.security.cert.Certificate[] certs;

 // Array of CodeSigners

pa-1435236 21

The ’447 Patent Infringed By
 private transient CodeSigner[] signers;

 // SocketPermission() in implies() method takes to many time.
 // Need to cache it for better performance.
 private transient SocketPermission sp;

 // Cached factory used to build CertPath-s in <code>getCodeSigners()</code>.
 private transient CertificateFactory factory;

 /**
 * Constructs a new instance of {@code CodeSource} with the specified
 * {@code URL} and the {@code Certificate}s.
 *
 * @param location
 * the {@code URL} representing the location from where code is
 * loaded, maybe {@code null}.
 * @param certs
 * the {@code Certificate} used to verify the code, loaded from
 * the specified {@code location}, maybe {@code null}.
 */
 public CodeSource(URL location, Certificate[] certs) {
 this.location = location;
 if (certs != null) {
 this.certs = new Certificate[certs.length];
 System.arraycopy(certs, 0, this.certs, 0, certs.length);
 }
 }

 /**
 * Constructs a new instance of {@code CodeSource} with the specified
 * {@code URL} and the {@code CodeSigner}s.
 *

pa-1435236 22

The ’447 Patent Infringed By
 * @param location
 * the {@code URL} representing the location from where code is
 * loaded, maybe {@code null}.
 * @param signers
 * the {@code CodeSigner}s of the code, loaded from the specified
 * {@code location}. Maybe {@code null}.
 */
 public CodeSource(URL location, CodeSigner[] signers) {
 this.location = location;
 if (signers != null) {
 this.signers = new CodeSigner[signers.length];
 System.arraycopy(signers, 0, this.signers, 0, signers.length);
 }
 }
…

at least one class of said one or more
classes is associated with said code
identifier; and

See Claim 1-b, supra, and above.

the step of establishing an
association between said one or
more protection domains and said
one or more classes of one or more
objects further includes the step of
associating said one or more
protection domains and said one or
more classes based on said code
identifier.

See Claim 1, supra, and above.

The ’447 Patent Infringed By
3. The method of claim 2, wherein See Claim 2, supra.

pa-1435236 23

The ’447 Patent Infringed By
said code identifier indicates a
source of code used to define each
class of said one or more classes.

The ’447 Patent Infringed By
4. The method of claim 2, wherein
said code identifier indicates a key
associated with each class of said
one or more classes.

See Claim 2, supra.

The certificate mentioned in Claim 2, supra, includes a key.

See, e.g.:

libcore\security\src\main\java\java\security\ CodeSource.java:

/**
 * {@code CodeSource} encapsulates the location from where code is loaded and
 * the certificates that were used to verify that code. This information is used
 * by {@code SecureClassLoader} to define protection domains for loaded classes.
 *
 * @see SecureClassLoader
 * @see ProtectionDomain
 */
…
 // Array of certificates assigned to this CodeSource object
 private transient java.security.cert.Certificate[] certs;

…
 /**
 * Constructs a new instance of {@code CodeSource} with the specified
 * {@code URL} and the {@code Certificate}s.
 *
 * @param location
 * the {@code URL} representing the location from where code is
 * loaded, maybe {@code null}.

pa-1435236 24

The ’447 Patent Infringed By
 * @param certs
 * the {@code Certificate} used to verify the code, loaded from
 * the specified {@code location}, maybe {@code null}.
 */
 public CodeSource(URL location, Certificate[] certs) {
 this.location = location;
 if (certs != null) {
 this.certs = new Certificate[certs.length];
 System.arraycopy(certs, 0, this.certs, 0, certs.length);
 }
 }
…
 /**
 * Returns the certificates of this {@code CodeSource}. If the
 * {@link #CodeSource(URL, CodeSigner[])} constructor was used to create
 * this instance, the certificates are obtained from the supplied signers.
 * <p>
 * External modifications of the returned {@code Certificate[]} has no
 * impact on this {@code CodeSource}.
 *
 * @return the certificates of this {@code CodeSource} or {@code null} if
 * there is none.
 */
 public final Certificate[] getCertificates() {
 getCertificatesNoClone();
 if (certs == null) {
 return null;
 }
 Certificate[] tmp = new Certificate[certs.length];
 System.arraycopy(certs, 0, tmp, 0, certs.length);
 return tmp;
 }

pa-1435236 25

The ’447 Patent Infringed By
…

libcore\security\src\main\java\java\security\Certificate.java:

/**
 * {@code Certificate} represents an identity certificate, such as X.509 or PGP.
 * Note: A {@code Certificate} instances does not make any statement about the
 * validity of itself. It's in the responsibility of the application to verify
 * the validity of its certificates.
 *
 * @deprecated Replaced by behavior in {@link java.security.cert}
 * @see java.security.cert.Certificate
 */

X.509 is an internet standard certificate format. See, e.g., RFC2459, available at
www.ietf.org/rfc/rfc2459.txt (discussing keys and certificates).

Information about PGP certificates is available at, e.g., www.pgpi.org;
http://en.wikipedia.org/wiki/Pretty Good Privacy (and references cited therein).

See also, e.g.:
libcore\security\src\main\java\java\security\ Key.java:

/**
 * {@code Key} is the common interface for all keys.
 *
 * @see PublicKey
 * @see PrivateKey
 */
public interface Key extends Serializable {
…

See also, e.g., Android APIs for “java.security.cert,” available at
http://developer.android.com/reference/java/security/cert/package-summary.html.

pa-1435236 26

The ’447 Patent Infringed By

See also, e.g.:

• Android Framework Topics for “Security and Permissions,” available at
http://developer.android.com/guide/topics/security/security.html

• Android Framework Topics for “Security and Permissions” under “The
AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The
AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/application-element.html

• Android Framework Topics for “The AndroidManifest.xml File,” available at
http://developer.android.com/guide/topics/manifest/manifest-intro.html

The ’447 Patent Infringed By
5. The method of claim 2, wherein
said code identifier indicates a
source of code used to define each
class of said one or more classes and
indicates a key associated with each
class of said one or more classes.

See Claims 2 and 4, supra.

The ’447 Patent Infringed By
6. The method of claim 2, wherein
the step of associating said one or
more protection domains and said
one or more classes based on said
code identifier further includes
associating said one or more
protection domains and said one or
more classes based on data

See Claim 2, supra.

See also, e.g.:

libcore\security\src\main\java\java\security\ CodeSource.java:

/**
 * {@code CodeSource} encapsulates the location from where code is loaded and
 * the certificates that were used to verify that code. This information is used

pa-1435236 27

persistently stored, wherein said data
associates code identifiers with a set
of one or more permissions.

 * by {@code SecureClassLoader} to define protection domains for loaded classes.
 *
 * @see SecureClassLoader
 * @see ProtectionDomain
 */
public class CodeSource implements Serializable {

libcore\security\src\main\java\java\security\Permission.java:

/**
 * {@code Permission} is the common base class of all permissions that
 * participate in the access control security framework around
 * {@link AccessController} and {@link AccessControlContext}. A permission
 * constitutes of a name and associated actions.
 */
public abstract class Permission implements Guard, Serializable {

See also, e.g.:
libcore\security\src\main\java\java\security\ Key.java:

/**
 * {@code Key} is the common interface for all keys.
 *
 * @see PublicKey
 * @see PrivateKey
 */
public interface Key extends Serializable {
…

E.g., “Serializable” is generally understood as:

In computer science, in the context of data storage and transmission, serialization is
the process of converting a data structure or object into a sequence of bits so that it can
be stored in a file or memory buffer, or transmitted across a network connection link

pa-1435236 28

to be "resurrected" later in the same or another computer environment.[1] When the
resulting series of bits is reread according to the serialization format, it can be used to
create a semantically identical clone of the original object. For many complex objects,
such as those that make extensive use of references, this process is not straightforward.

http://en.wikipedia.org/wiki/Serialization (footnote omitted).

Android APIs for “java.io.Serializable,” available at
http://developer.android.com/reference/java/io/Serializable.html:

Class Overview
An empty marker interface for classes that want to support serialization and
deserialization based on the ObjectOutputStream and ObjectInputStream classes.
Implementing this interface is enough to make most classes serializable. If a class
needs more fine-grained control over the serialization process (for example to
implement compatibility with older versions of the class), it can achieve this by
providing the following two methods (signatures must match exactly):

private void writeObject(java.io.ObjectOutputStream out) throws IOException

private void readObject(java.io.ObjectInputStream in) throws IOException,
ClassNotFoundException

See also, e.g.:
• Android Framework Topics for “Security and Permissions,” available at

http://developer.android.com/guide/topics/security/security.html
• Android Framework Topics for “Security and Permissions” under “The

AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The
AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/application-element.html

• Android Framework Topics for “The AndroidManifest.xml File,” available at
http://developer.android.com/guide/topics/manifest/manifest-intro.html

pa-1435236 29

The ’447 Patent Infringed By
7. A method for providing security,
the method comprising the steps of:

See Claim 1-pre, supra.

establishing one or more protection
domains, wherein a protection
domain is associated with zero or
more permissions;

See Claim 1-a, supra.

establishing an association between
said one or more protection domains
and one or more sources of code;
and

See Claim 1-a and 1-b, supra.

in response to executing code
making a request to perform an
action, determining whether said
request is permitted based on a
source of said code making said
request and said association between
said one or more protection domains
and said one or more sources of
code.

See Claim 1-c, supra.

The ’447 Patent Infringed By

8. The method of claim 7, wherein
the step of establishing an
association between said one or
more protection domains and said
one or more sources of code further
includes establishing an association
between said one or more protection
domains and said one or more
sources of code and one or more

See Claims 2, 4, and 7, supra.

pa-1435236 30

The ’447 Patent Infringed By
keys associated with said one or
more sources of code.

The ’447 Patent Infringed By
9. The method of claim 8, wherein
the step of establishing an
association between said one or
more protection domains and said
one or more sources of code and
said one or more keys associated
with said one or more sources of
code further includes establishing
said association between said one or
more protection domains and said
one or more sources of code and
said one or more keys associated
with said one or more sources of
code based on data persistently
stored, wherein said data associates
particular sources of code and
particular keys with a set of one or
more permissions.

See Claims 6 and 8, supra.

The ’447 Patent Infringed By

10. A computer-readable medium
carrying one or more sequences of
one or more instructions, the one or
more sequences of the one or more
instructions including instructions
which, when executed by one or
more processors, causes the one or
more processors to perform the steps

The Accused Instrumentalities include devices that store, distribute, or run Android or the
Android SDK, including websites, servers, and mobile devices. These encompass a computer
readable medium carrying one or more sequences of one or more instructions, the one or more
sequences of the one or more instructions including instructions which, when executed by one
or more processors, causes the one or more processors to perform the steps described in the
claim. See Claim 1-pre, supra.

pa-1435236 31

The ’447 Patent Infringed By
of:
establishing one or more protection
domains, wherein a protection
domain is associated with zero or
more permissions;

See Claim 1-a, supra.

establishing an association between
said one or more protection domains
and one or more classes of one or
more objects; and

See Claim 1-b, supra.

determining whether an action
requested by a particular object is
permitted based on said association
between said one or more protection
domains and said one or more
classes.

See Claim 1-c, supra.

The ’447 Patent Infringed By

11. The computer readable medium
of claim 10, wherein:

See Claim 10, supra.

at least one protection domain of
said one or more protection domains
is associated with a code identifier;

See Claims 1-a and 2, supra.

at least one class of said one or more
classes is associated with said code
identifier; and

See Claims 1-b and 2, supra.

the step of establishing an
association between said one or
more protection domains and said
one or more classes of one or more
objects further includes the step of
associating said one or more
protection domains and said one or

See Claim 1-c and 2, supra.

pa-1435236 32

The ’447 Patent Infringed By
more classes based on said code
identifier.

The ’447 Patent Infringed By
12. The computer readable medium
of claim 11, wherein said code
identifier indicates a source of code
used to define each class of said one
or more classes.

See Claim 11, supra.

The ’447 Patent Infringed By

13. The computer readable medium
of claim 11, wherein said code
identifier indicates a key associated
with each class of said one or more
classes.

See Claims 2, 4, and 11, supra.

The ’447 Patent Infringed By

14. The computer readable medium
of claim 11, wherein said code
identifier indicates a source of code
used to define each class of said one
or more classes and indicates a key
associated with each class of said
one or more classes.

See Claims 2, 4, and 11, supra.

The ’447 Patent Infringed By
15. The computer readable medium
of claim 14, wherein the step of
associating said one or more
protection domains and said one or

See Claims 6 and 14, supra.

pa-1435236 33

The ’447 Patent Infringed By
more classes based on said code
identifier further includes
associating said one or more
protection domains and said one or
more classes based on data
persistently stored, wherein said data
associates code identifiers with a set
of one or more permissions.

The ’447 Patent Infringed By

16. A computer-readable medium
carrying one or more sequences of
one or more instructions, wherein
the execution of the one or more
sequences of the one or more
instructions causes the one or more
processors to perform the steps of:

The Accused Instrumentalities include devices that store, distribute, or run Android or the
Android SDK, including websites, servers, and mobile devices. These encompass a computer
readable medium carrying one or more sequences of one or more instructions, the one or more
sequences of the one or more instructions including instructions which, when executed by one
or more processors, causes the one or more processors to perform the steps described in the
claim. See Claim 1-pre, supra.

establishing one or more protection
domains, wherein a protection
domain is associated with zero or
more permissions;

See Claim 1 and 1-a, supra.

establishing an association between
said one or more protection domains
and one or more sources of code;
and

See Claim 1, 1-a, and 1-b, supra.

in response to executing code
making a request to perform an
action, determining whether said
request is permitted based on a
source of said code making said
request and said association between
said one or more protection domains

See Claim 1 and 1-c, supra.

pa-1435236 34

The ’447 Patent Infringed By
and said one or more sources of
code.

The ’447 Patent Infringed By
17. The computer readable medium
of claim 16, wherein the step of
establishing an association between
said one or more protection domains
and said one or more sources of
code further includes establishing an
association between said one or
more protection domains and said
one or more sources of code and one
or more keys associated with said
one or more sources of code.

See Claim 16, supra.

The ’447 Patent Infringed By
18. The computer readable medium
of claim 17, wherein the step of
establishing an association between
said one or more protection domains
and said one or more sources of
code and said one or more keys
associated with said one or more
sources of code further includes
establishing said association
between said one or more protection
domains and said one or more
sources of code and said one or
more keys associated with said one
or more sources of code based on

See Claim 17, supra.

pa-1435236 35

The ’447 Patent Infringed By
data persistently stored, wherein said
data associates particular sources of
code and particular keys with a set
of one or more permissions.

The ’447 Patent Infringed By

19. A computer system comprising: The Accused Instrumentalities include devices that run Android or the Android SDK.
Devices running Android or the Android SDK are computer systems. See Claim 1, supra.

a processor; Devices running Android and computers running the Android SDK have processors.
a memory coupled to said processor; Devices running Android and computers running the Android SDK have a memory coupled to

said processor.
one or more protection domains
stored as objects in said memory,
wherein each protection domain is
associated with zero or more
permissions;

See Claim 1 and 1-a, supra.

a domain mapping object stored in
said memory, said domain mapping
object establishing an association
between said one or more protection
domains and one or more classes of
one or more objects; and

See Claim 1, 1-a, and 1-b, supra.

said processor being configured to
determine whether an action
requested by a particular object is
permitted based on said association
between said one or more protection
domains and said one or more
classes.

See Claim 1 and 1-c, supra.

pa-1435236 36

The ’447 Patent Infringed By
20. The computer system of claim
19, wherein:

See Claim 19, supra.

at least one protection domain of
said one or more protection domains
is associated with a code identifier;

See Claim 2, supra.

at least one class of said one or more
classes is associated with said code
identifier; and

See Claim 2, supra.

said computer system further
comprises said processor configured
to establish an association between
said one or more protection domains
and said one or more classes of one
or more objects by associating said
one or more protection domains and
said one or more classes based on
said code identifier.

See Claim 2, supra.

The ’447 Patent Infringed By

21. The computer system of claim
20, wherein said code identifier
indicates a source of code used to
define each class of said one or more
classes.

See Claims 2 and 20, supra.

The ’447 Patent Infringed By

22. The computer system of claim
20, wherein said code identifier
indicates a key associated with each
class of said one or more classes.

See Claims 2, 4, and 20, supra.

pa-1435236 37

The ’447 Patent Infringed By
23. The computer system of claim
20, wherein said code identifier
indicates a source of code used to
define each class of said one or more
classes and indicates a key
associated with each class of said
one or more classes.

See Claims 2, 4, and 20, supra.

The ’447 Patent Infringed By
24. The computer system of claim
20, further comprising said
processor configured to associate
said one or more protection domains
and said one or more classes based
on said code identifier by
associating said one or more
protection domains and said one or
more classes based on data
persistently stored in said computer
system, wherein said data associates
code identifiers with a set of one or
more permissions.

See Claims 2, 6, and 20, supra.

 1
pa-1432801

EXHIBIT E
Preliminary Infringement Contentions for the ’476 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or
nearly identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the
’476 patent is infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6
(“Donut”), 2.0/2.1 (“Éclair”), and 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths
shown in http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native
/ InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around
Oct. 21, 2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The ’476 Patent Infringed By

1. A method for providing security,
the method comprising the steps of:

Android includes methods for providing security.

See, e.g.:

• Android APIs for “java.security,” available at
http://developer.android.com/reference/java/security/package-summary.html

• Android Framework Topics for “Security and Permissions,” available at
http://developer.android.com/guide/topics/security/security.html

• Android Framework Topics for “Security and Permissions” under “The
AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/permission-element.html

• Android Framework Topics for “Security and Permissions” under “The
AndroidManifest.xml File,”
http://developer.android.com/guide/topics/manifest/application-element.html

• Android Framework Topics for “The AndroidManifest.xml File,” available at

 2
pa-1432801

The ’476 Patent Infringed By
http://developer.android.com/guide/topics/manifest/manifest-intro.html

See generally, Policy.java, PolicyEntry.java, SecurityManager.java, AccessController.java,
AccessControlContext.java, Permission.java, ProtectionDomain.java, Key.java, and
CodeSource.java, as well as:

http://developer.android.com/reference/java/security/Policy.html
http://developer.android.com/reference/java/security/ProtectionDomain.html
http://developer.android.com/reference/java/security/CodeSource.html
http://developer.android.com/guide/developing/tools/othertools.html

Android Developer Tools available at http://developer.android.com.

In the Android source code, see generally PolicyEntry.java
(dalvik\libcore\security\src\main\java\org\apache\harmony\security) and
ProtectionDomain.java (dalvik\libcore\security\src\main\java\java\security).

The class PolicyEntry associates data of executable code (i.e., CodeSource, including methods
and routines), principals, and permissions. See PolicyEntry.java:

/**
 * This class represents an elementary block of a security policy. It associates
 * a CodeSource of an executable code, Principals allowed to execute the code,
 * and a set of granted Permissions.
 *
 * @see org.apache.harmony.security.fortress.DefaultPolicy
 */
public class PolicyEntry {

 // Store CodeSource
 private final CodeSource cs;

 // Array of principals
 private final Principal[] principals;

 3
pa-1432801

The ’476 Patent Infringed By

 // Permissions collection
 private final Collection<Permission> permissions;

See dalvik\libcore\security\src\main\java\org\apache\harmony\security.

See generally, e.g.:

• dalvik\vm\native\InternalNative.c
• dalvik\vm\native\java_security_AccessController.c
• dalvik\vm\native\java_lang_VMClassLoader.c
• source code files in libcore\security\src\main\java\java\security
• source code files in libcore\security-kernel\src\main\java\java\security
• libcore\security\src\main\java\org\apache\harmony\security

[1-a] detecting when a request for an
action is made by a principal; and

Android detects when a request for an action is made by a principal. For example, the Policy
class of Android is designed to implement a system security policy to detect whether
principals have proper permissions to execute their requested actions.

See, e.g., Android Developer Tools available at
http://developer.android.com/reference/java/security/Policy.html:

Class Overview

Policy is the common super type of classes which represent a system security policy.
The Policy specifies which permissions apply to which code sources.

Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessController.html:

Class Overview

AccessController provides static methods to perform access control checks and

 4
pa-1432801

The ’476 Patent Infringed By
privileged operations.

Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessControlContext.html:

public AccessControlContext (AccessControlContext acc, DomainCombiner
combiner)

If a SecurityManager is installed, code calling this constructor needs the
SecurityPermission createAccessControlContext to be granted, otherwise a
SecurityException will be thrown.

See also PolicyEntry.java:

 /**
 * Constructor with initialization parameters. Passed collections are not
 * referenced directly, but copied.
 */
 public PolicyEntry(CodeSource cs, Collection<? extends Principal> prs,
 Collection<? extends Permission> permissions) {
 this.cs = cs;
 this.principals = (prs == null || prs.isEmpty()) ? null
 : (Principal[]) prs.toArray(new Principal[prs.size()]);
 this.permissions = (permissions == null || permissions.isEmpty()) ? null
 : Collections.unmodifiableCollection(permissions);

}
/**
 * Checks if passed CodeSource matches this PolicyEntry. Null CodeSource of
 * PolicyEntry implies any CodeSource; non-null CodeSource forwards to its
 * imply() method.

 5
pa-1432801

The ’476 Patent Infringed By
 */
 public boolean impliesCodeSource(CodeSource codeSource) {
 return (cs == null) ? true : cs.implies(codeSource);
 }

 /**
 * Checks if specified Principals match this PolicyEntry. Null or empty set
 * of Principals of PolicyEntry implies any Principals; otherwise specified
 * array must contain all Principals of this PolicyEntry.
 */
 public boolean impliesPrincipals(Principal[] prs) {
 return PolicyUtils.matchSubset(principals, prs);
 }

 /**
 * Returns unmodifiable collection of permissions defined by this
 * PolicyEntry, may be <code>null</code>.
 */
 public Collection<Permission> getPermissions() {
 return permissions;
 }

See dalvik\libcore\security\src\main\java\org\apache\harmony\security.

See generally, e.g.:

• dalvik\vm\native\InternalNative.c
• dalvik\vm\native\java_security_AccessController.c
• dalvik\vm\native\java_lang_VMClassLoader.c
• source code files in libcore\security\src\main\java\java\security
• source code files in libcore\security-kernel\src\main\java\java\security
• libcore\security\src\main\java\org\apache\harmony\security

 6
pa-1432801

The ’476 Patent Infringed By
[1-b] in response to detecting the
request, determining whether said
action is authorized based on
permissions associated with a
plurality of routines in a calling
hierarchy associated with said
principal,

In response to detecting the request, Android determines whether the action is authorized
based on permissions associated with a plurality of routines in a calling hierarchy associated
with the principal.

See, e.g., PolicyEntry.java:

 /**
 * Checks if passed CodeSource matches this PolicyEntry. Null CodeSource of
 * PolicyEntry implies any CodeSource; non-null CodeSource forwards to its
 * imply() method.
 */
 public boolean impliesCodeSource(CodeSource codeSource) {
 return (cs == null) ? true : cs.implies(codeSource);
 }

 /**
 * Checks if specified Principals match this PolicyEntry. Null or empty set
 * of Principals of PolicyEntry implies any Principals; otherwise specified
 * array must contain all Principals of this PolicyEntry.
 */
 public boolean impliesPrincipals(Principal[] prs) {
 return PolicyUtils.matchSubset(principals, prs);
 }

 /**
 * Returns unmodifiable collection of permissions defined by this
 * PolicyEntry, may be <code>null</code>.
 */
 public Collection<Permission> getPermissions() {
 return permissions;

}

 7
pa-1432801

The ’476 Patent Infringed By
See dalvik\libcore\security\src\main\java\org\apache\harmony\security.

Regarding the “calling hierarchy associated with said principal,” see, e.g.:

http://developer.android.com/reference/java/security/AccessController.html

static AccessControlContext getContext()
Returns the AccessControlContext for the current Thread including the inherited access
control context of the thread that spawned the current thread (recursively).

Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessControlContext.html

See also , e.g., java.security.AccessController:

/*
 * java.security.AccessController
 */
#include "Dalvik.h"
#include "native/InternalNativePriv.h"

/*
 * private static ProtectionDomain[] getStackDomains()
 *
 * Return an array of ProtectionDomain objects from the classes of the
 * methods on the stack. Ignore reflection frames. Stop at the first
 * privileged frame we see.
 */
static void Dalvik_java_security_AccessController_getStackDomains(
 const u4* args, JValue* pResult)
{
 UNUSED PARAMETER(args);

 8
pa-1432801

The ’476 Patent Infringed By

 const Method** methods = NULL;
 int length;

 /*
 * Get an array with the stack trace in it.
 */
 if (!dvmCreateStackTraceArray(dvmThreadSelf()->curFrame, &methods, &length))
 {
 LOGE("Failed to create stack trace array\n");
 dvmThrowException("Ljava/lang/InternalError;", NULL);
 RETURN_VOID();
 }

 //int i;
 //LOGI("dvmCreateStackTraceArray results:\n");
 //for (i = 0; i < length; i++)
 // LOGI(" %2d: %s.%s\n", i, methods[i]->clazz->name, methods[i]->name);

 /*
 * Generate a list of ProtectionDomain objects from the frames that
 * we're interested in. Skip the first two methods (this method, and
 * the one that called us), and ignore reflection frames. Stop on the
 * frame *after* the first privileged frame we see as we walk up.
 *
 * We create a new array, probably over-allocated, and fill in the
 * stuff we want. We could also just run the list twice, but the
 * costs of the per-frame tests could be more expensive than the
 * second alloc. (We could also allocate it on the stack using C99
 * array creation, but it's not guaranteed to fit.)
 *
 * The array we return doesn't include null ProtectionDomain objects,

 9
pa-1432801

The ’476 Patent Infringed By
 * so we skip those here.
 */
 Object** subSet = (Object**) malloc((length-2) * sizeof(Object*));
 if (subSet == NULL) {
 LOGE("Failed to allocate subSet (length=%d)\n", length);
 free(methods);
 dvmThrowException("Ljava/lang/InternalError;", NULL);
 RETURN_VOID();
 }
 int idx, subIdx = 0;
 for (idx = 2; idx < length; idx++) {
 const Method* meth = methods[idx];
 Object* pd;

 if (dvmIsReflectionMethod(meth))
 continue;

 if (dvmIsPrivilegedMethod(meth)) {
 /* find nearest non-reflection frame; note we skip priv frame */
 //LOGI("GSD priv frame at %s.%s\n", meth->clazz->name, meth->name);
 while (++idx < length && dvmIsReflectionMethod(methods[idx]))
 ;
 length = idx; // stomp length to end loop
 meth = methods[idx];
 }

 /* get the pd object from the method's class */
 assert(gDvm.offJavaLangClass_pd != 0);
 pd = dvmGetFieldObject((Object*) meth->clazz,
 gDvm.offJavaLangClass_pd);
 //LOGI("FOUND '%s' pd=%p\n", meth->clazz->name, pd);
 if (pd != NULL)

 10
pa-1432801

The ’476 Patent Infringed By
 subSet[subIdx++] = pd;
 }

 //LOGI("subSet:\n");
 //for (i = 0; i < subIdx; i++)
 // LOGI(" %2d: %s\n", i, subSet[i]->clazz->name);

 /*
 * Create an array object to contain "subSet".
 */
 ClassObject* pdArrayClass = NULL;
 ArrayObject* domains = NULL;
 pdArrayClass = dvmFindArrayClass("[Ljava/security/ProtectionDomain;", NULL);
 if (pdArrayClass == NULL) {
 LOGW("Unable to find ProtectionDomain class for array\n");
 goto bail;
 }
 domains = dvmAllocArray(pdArrayClass, subIdx, kObjectArrayRefWidth,
 ALLOC_DEFAULT);
 if (domains == NULL) {
 LOGW("Unable to allocate pd array (%d elems)\n", subIdx);
 goto bail;
 }

 /* copy the ProtectionDomain objects out */
 Object** objects = (Object**) domains->contents;
 for (idx = 0; idx < subIdx; idx++)
 *objects++ = subSet[idx];

bail:
 free(subSet);
 free(methods);

 11
pa-1432801

The ’476 Patent Infringed By
 dvmReleaseTrackedAlloc((Object*) domains, NULL);
 RETURN_PTR(domains);
}

const DalvikNativeMethod dvm_java_security_AccessController[] = {
 { "getStackDomains", "()[Ljava/security/ProtectionDomain;",
 Dalvik_java_security_AccessController_getStackDomains },
 { NULL, NULL, NULL },
};

dalvik\vm\native\java_security_AccessController.c.

See also, e.g.:
dalvik\vm\native\java_lang_VMClassLoader.c:

/*
 * java.lang.VMClassLoader
 */
…
/*
 * static Class defineClass(ClassLoader cl, String name,
 * byte[] data, int offset, int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 StringObject* nameObj = (StringObject*) args[1];
 const u1* data = (const u1*) args[2];
 int offset = args[3];

 12
pa-1432801

The ’476 Patent Infringed By
 int len = args[4];
 Object* pd = (Object*) args[5];
 char* name = NULL;

 name = dvmCreateCstrFromString(nameObj);
 LOGE("ERROR: defineClass(%p, %s, %p, %d, %d, %p)\n",
 loader, name, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 free(name);
 RETURN_VOID();
}

/*
 * static Class defineClass(ClassLoader cl, byte[] data, int offset,
 * int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object. Deprecated version of
 * previous method, lacks name parameter.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass2(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 const u1* data = (const u1*) args[1];
 int offset = args[2];
 int len = args[3];
 Object* pd = (Object*) args[4];

 LOGE("ERROR: defineClass(%p, %p, %d, %d, %p)\n",

 13
pa-1432801

The ’476 Patent Infringed By
 loader, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 RETURN_VOID();

}

libcore\luni\src\main\java\java\lang\SecurityManager.java:

/**
 * Warning: security managers do not provide a
 * secure environment for executing untrusted code. Untrusted code cannot be
 * safely isolated within the Dalvik VM.
 *
 * <p>Provides security verification facilities for applications. {@code
 * SecurityManager} contains a set of {@code checkXXX} methods which determine
 * if it is safe to perform a specific operation such as establishing network
 * connections, modifying files, and many more. In general, these methods simply
 * return if they allow the application to perform the operation; if an
 * operation is not allowed, then they throw a {@link SecurityException}. The
 * only exception is {@link #checkTopLevelWindow(Object)}, which returns a
 * boolean to indicate permission.
 */
public class SecurityManager {
…
 /**
 * Checks whether the calling thread is allowed to access the resource being
 * guarded by the specified permission object.
 *
 * @param permission
 * the permission to check.
 * @throws SecurityException
 * if the requested {@code permission} is denied according to

 14
pa-1432801

The ’476 Patent Infringed By
 * the current security policy.
 */
 public void checkPermission(Permission permission) {
 try {
 inCheck = true;
 AccessController.checkPermission(permission);
 } finally {
 inCheck = false;
 }
 }

 /**
 * Checks whether the specified security context is allowed to access the
 * resource being guarded by the specified permission object.
 *
 * @param permission
 * the permission to check.
 * @param context
 * the security context for which to check permission.
 * @throws SecurityException
 * if {@code context} is not an instance of {@code
 * AccessControlContext} or if the requested {@code permission}
 * is denied for {@code context} according to the current
 * security policy.
 */
 public void checkPermission(Permission permission, Object context) {
 try {
 inCheck = true;
 // Must be an AccessControlContext. If we don't check
 // this, then applications could pass in an arbitrary
 // object which circumvents the security check.
 if (context instanceof AccessControlContext) {

 15
pa-1432801

The ’476 Patent Infringed By
 ((AccessControlContext) context).checkPermission(permission);
 } else {
 throw new SecurityException();
 }
 } finally {
 inCheck = false;
 }
 }
}

libcore\security-kernel\src\main\java\java\security\AccessController.java:
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is performed in the context of the current thread. This method
 * returns silently if the permission is granted, otherwise an {@code
 * AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * the current execution context has been granted the specified permission.
 * If privileged operations are on the execution context, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * This method delegates the permission check to
 * {@link AccessControlContext#checkPermission(Permission)} on the current
 * callers' context obtained by {@link #getContext()}.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException

 16
pa-1432801

The ’476 Patent Infringed By
 * if the specified permission is {@code null}
 * @see AccessControlContext#checkPermission(Permission)
 *
 * @since Android 1.0
 */
 public static void checkPermission(Permission perm)
 throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("permission can not be null");
 }

 getContext().checkPermission(perm);
 }

libcore\security-kernel\src\main\java\java\security\AccessController.java:
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is performed in the context of the current thread. This method
 * returns silently if the permission is granted, otherwise an {@code
 * AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * the current execution context has been granted the specified permission.
 * If privileged operations are on the execution context, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * This method delegates the permission check to
 * {@link AccessControlContext#checkPermission(Permission)} on the current
 * callers' context obtained by {@link #getContext()}.
 *
 * @param perm

 17
pa-1432801

The ’476 Patent Infringed By
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessControlContext#checkPermission(Permission)
 *
 * @since Android 1.0
 */
 public static void checkPermission(Permission perm)
 throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("permission can not be null");
 }

 getContext().checkPermission(perm);
 }

libcore\security-kernel\src\main\java\java\security\AccessControlContext.java:

ProtectionDomain[] context;
…
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>

 18
pa-1432801

The ’476 Patent Infringed By
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }
 }

 19
pa-1432801

The ’476 Patent Infringed By

See also, e.g:

libcore-
disabled\sound\src\main\java\org\apache\harmony\sound\utils\ProviderService.java;
dalvik\tests\025-access-controller\expected.txt;
dalvik\tests\025-access-controller\src\Main.java;
dalvik\tests\025-access-controller\src\Privvy.java;
libcore\security\src\test\java\tests\security.

[1-c] wherein said permissions are
associated with said plurality of
routines based on a first association
between protection domains and
permissions.

The permissions are associated with the routines based on an association between protection
domains and permissions.

See Claim 1-b, supra.

See libcore\security\src\main\java\java\security\ProtectionDomain.java:

* {@code ProtectionDomain} represents all permissions that are granted to a
 * specific code source. The {@link ClassLoader} associates each class with the
 * corresponding {@code ProtectionDomain}, depending on the location and the
 * certificates (encapsulates in {@link CodeSource}) it loads the code from.
 * <p>
 * A class belongs to exactly one protection domain and the protection domain
 * can not be changed during the lifetime of the class.
 */
public class ProtectionDomain {

 // CodeSource for this ProtectionDomain
 private CodeSource codeSource;

 // Static permissions for this ProtectionDomain
 private PermissionCollection permissions;

 20
pa-1432801

The ’476 Patent Infringed By
 // ClassLoader
 private ClassLoader classLoader;

 // Set of principals associated with this ProtectionDomain
 private Principal[] principals;

 // false if this ProtectionDomain was constructed with static
 // permissions, true otherwise.
 private boolean dynamicPerms;

The ’476
Patent

Infringed By

2. The method
of claim 1,
wherein:

See Claim 1, supra.

the step of
detecting when
a request for
an action is
made includes
detecting when
a request for
an action is
made by a
thread; and

Android includes java.security, which includes the AccessController class that “perform[s] access control checks
and privileged operations.” See Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessController.html:

public static void checkPermission (Permission perm)
Checks the specified permission against the vm's current security policy. The check is performed in the
context of the current thread. This method returns silently if the permission is granted, otherwise an
AccessControlException is thrown.

A permission is considered granted if every ProtectionDomain in the current execution context has been
granted the specified permission. If privileged operations are on the execution context, only the
ProtectionDomains from the last privileged operation are taken into account.

This method delegates the permission check to checkPermission(Permission) on the current callers' context
obtained by getContext().

 21
pa-1432801

The ’476
Patent

Infringed By

Parameters
perm the permission to check against the policy

Throws
AccessControlException if the specified permission is not granted
NullPointerException if the specified permission is null

See Also
checkPermission(Permission)

See libcore\luni\src\main\java\java\lang\ SecurityManager.java:
/**
 * Warning: security managers do not provide a
 * secure environment for executing untrusted code. Untrusted code cannot be
 * safely isolated within the Dalvik VM.
 *
 * <p>Provides security verification facilities for applications. {@code
 * SecurityManager} contains a set of {@code checkXXX} methods which determine
 * if it is safe to perform a specific operation such as establishing network
 * connections, modifying files, and many more. In general, these methods simply
 * return if they allow the application to perform the operation; if an
 * operation is not allowed, then they throw a {@link SecurityException}. The
 * only exception is {@link #checkTopLevelWindow(Object)}, which returns a
 * boolean to indicate permission.
 */
public class SecurityManager {
…
 /**
 * Checks whether the calling thread is allowed to access the resource being
 * guarded by the specified permission object.

 22
pa-1432801

The ’476
Patent

Infringed By

 *
 * @param permission
 * the permission to check.
 * @throws SecurityException
 * if the requested {@code permission} is denied according to
 * the current security policy.
 */
 public void checkPermission(Permission permission) {
 try {
 inCheck = true;
 AccessController.checkPermission(permission);
 } finally {
 inCheck = false;
 }
 }

See also libcore\security-kernel\src\main\java\java\security\AccessController.java:

 /**
 * The real implementation of doPrivileged() method. It pushes the passed
 * context into this thread's contexts stack, and then invokes
 * <code>action.run()</code>. The pushed context is then investigated in the
 * {@link #getContext()} which is called in the {@link #checkPermission}.
 */
 private static <T> T doPrivilegedImpl(PrivilegedExceptionAction<T> action,
 AccessControlContext context) throws PrivilegedActionException {

 Thread currThread = Thread.currentThread();

 ArrayList<AccessControlContext> a = null;
 try {
 // currThread==null means that VM warm up is in progress

 23
pa-1432801

The ’476
Patent

Infringed By

 if (currThread != null && contexts != null) {
 synchronized (contexts) {
 a = contexts.get(currThread);
 if (a == null) {
 a = new ArrayList<AccessControlContext>();
 contexts.put(currThread, a);
 }
 }
 a.add(context);
 }
 return action.run();

 } catch (Exception ex) {
 // Errors automagically go through - they are not catched by this
 // block

 // Unchecked exceptions must pass through without modification
 if (ex instanceof RuntimeException) {
 throw (RuntimeException) ex;
 }

 // All other (==checked) exceptions get wrapped
 throw new PrivilegedActionException(ex);
 } finally {
 if (currThread != null) {
 // No need to sync() here, as each given 'a' will be accessed
 // only from one Thread. 'contexts' still need sync() however,
 // as it's accessed from different threads simultaneously
 if (a != null) {
 // it seems I will never have here [v.size() == 0]
 a.remove(a.size() - 1);

 24
pa-1432801

The ’476
Patent

Infringed By

 }
 }
 }
 }

the step of
determining
whether said
action is
authorized
includes
determining
whether said
action is
authorized
based on an
association
between
permissions
and a plurality
of routines in a
calling
hierarchy
associated
with said
thread.

See Claim 1-b, supra.

getContext() returns AccessControlContext, which “encapsulates the ProtectionDomains on which access control
decisions are based.” See Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessControlContext.html.

public void checkPermission (Permission perm)
Checks the specified permission against the vm's current security policy. The check is based on this
AccessControlContext as opposed to the checkPermission(Permission) method which performs access
checks based on the context of the current thread. This method returns silently if the permission is granted,
otherwise an AccessControlException is thrown.

A permission is considered granted if every ProtectionDomain in this context has been granted the specified
permission.

If privileged operations are on the call stack, only the ProtectionDomains from the last privileged operation
are taken into account.

If inherited methods are on the call stack, the protection domains of the declaring classes are checked, not
the protection domains of the classes on which the method is invoked.

Parameters
perm the permission to check against the policy

Throws
AccessControlException if the specified permission is not granted
NullPointerException if the specified permission is null

 25
pa-1432801

The ’476
Patent

Infringed By

See Also
checkPermission(Permission)

Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessControlContext.html.

See also:

public void checkPermission (Permission permission)
Checks whether the calling thread is allowed to access the resource being guarded by the specified
permission object.

Parameters
permission the permission to check.

Throws
SecurityException if the requested permission is denied according to the current security policy.

public void checkPermission (Permission permission, Object context)
Checks whether the specified security context is allowed to access the resource being guarded by the
specified permission object.

Parameters
permission the permission to check.
context the security context for which to check permission.

Throws

SecurityException if context is not an instance of AccessControlContext or if the requested
permission is denied for context according to the current security policy.

See also Android Developer Tools available at

 26
pa-1432801

The ’476
Patent

Infringed By

http://developer.android.com/reference/java/lang/SecurityManager.html#checkPermission(java.security.Permission)

See also libcore\security-kernel\src\main\java\java\security\AccessControlContext.java:

 // An AccessControlContext inherited by the current thread from its parent
 private AccessControlContext inherited;
….
 /**
 * Package-level ctor which is used in AccessController.

 * ProtectionDomains passed as <code>stack</code> is then passed into
 * {@link #AccessControlContext(ProtectionDomain[])}, therefore:

 * <il>
 * it must not be null
 * duplicates will be removed
 * null-s will be removed
 *
 *
 * @param stack - array of ProtectionDomains
 * @param inherited - inherited context, which may be null
 */
 AccessControlContext(ProtectionDomain[] stack,
 AccessControlContext inherited) {
 this(stack); // removes dups, removes nulls, checks for stack==null
 this.inherited = inherited;
 }
…
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an

 27
pa-1432801

The ’476
Patent

Infringed By

 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }

 28
pa-1432801

The ’476
Patent

Infringed By

 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }
 }

The ’476 Patent Infringed By
3. The method of claim 1,
wherein:

See Claim 1, supra.

the calling hierarchy includes a
first routine; and

See Claim 1-b, supra.

Android calls the hierarchy, which includes a first routine, e.g., thread. See, e.g.:

http://developer.android.com/reference/java/security/AccessController.html

static AccessControlContext getContext()
Returns the AccessControlContext for the current Thread including the inherited access
control context of the thread that spawned the current thread (recursively).

Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessControlContext.html.

See also libcore\security-kernel\src\main\java\java\security\AccessController.java:

 /**
 * Returns the {@code AccessControlContext} for the current {@code Thread}
 * including the inherited access control context of the thread that spawned
 * the current thread (recursively).
 * <p>
 * The returned context may be used to perform access checks at a later
 * point in time, possibly by another thread.

 29
pa-1432801

The ’476 Patent Infringed By
 *
 * @return the {@code AccessControlContext} for the current {@code Thread}
 * @see Thread#currentThread
 * @since Android 1.0
 */
 public static AccessControlContext getContext() {

 // duplicates (if any) will be removed in ACC constructor
 ProtectionDomain[] stack = getStackDomains();

 Thread currThread = Thread.currentThread();
 if (currThread == null || contexts == null) {
 // Big boo time. No need to check anything ?
 return new AccessControlContext(stack);
 }

 ArrayList<AccessControlContext> threadContexts;
 synchronized (contexts) {
 threadContexts = contexts.get(currThread);
 }

 AccessControlContext that;
 if ((threadContexts == null) || (threadContexts.size() == 0)) {
 // We were not in doPrivileged method, so
 // have inherited context here
 that = SecurityUtils.getContext(currThread);
 } else {
 // We were in doPrivileged method, so
 // Use context passed to the doPrivileged()
 that = threadContexts.get(threadContexts.size() - 1);
 }

 30
pa-1432801

The ’476 Patent Infringed By
 if (that != null && that.combiner != null) {
 ProtectionDomain[] assigned = null;
 if (that.context != null && that.context.length != 0) {
 assigned = new ProtectionDomain[that.context.length];
 System.arraycopy(that.context, 0, assigned, 0, assigned.length);
 }
 ProtectionDomain[] allpds = that.combiner.combine(stack, assigned);
 if (allpds == null) {
 allpds = new ProtectionDomain[0];
 }
 return new AccessControlContext(allpds, that.combiner);
 }

 return new AccessControlContext(stack, that);
 }
}

See also, e.g., dalvik\vm\native\java_security_AccessController.c.

the step of determining whether
said action is authorized further
includes determining whether a
permission required to perform
said action is encompassed by at
least one permission associated
with said first routine.

Android further includes determining whether a permission is encompassed by at least one
permission associate the first routine.

See Claim 1-b, supra.

See, e.g., Android Developer Tools available at:

http://developer.android.com/reference/java/security/AccessController.html:

public static T doPrivileged (PrivilegedAction<T> action, AccessControlContext
context)

Returns the result of executing the specified privileged action. The ProtectionDomain

 31
pa-1432801

The ’476 Patent Infringed By
of the direct caller of this method, the ProtectionDomains of all subsequent classes in
the call chain and all ProtectionDomains of the given context are checked to be granted
the necessary permission if access checks are performed.

If an instance of RuntimeException is thrown during the execution of the
PrivilegedAction#run() method of the given action, it will be propagated through this
method.

Parameters

action the action to be executed with privileges
context the AccessControlContext whose protection domains are checked additionally
Returns

the result of executing the privileged action

See libcore\security-kernel\src\main\java\java\security\AccessControlContext.java:

 // An AccessControlContext inherited by the current thread from its parent
 private AccessControlContext inherited;
….
 /**
 * Package-level ctor which is used in AccessController.

 * ProtectionDomains passed as <code>stack</code> is then passed into
 * {@link #AccessControlContext(ProtectionDomain[])}, therefore:

 * <il>
 * it must not be null
 * duplicates will be removed
 * null-s will be removed
 *
 *
 * @param stack - array of ProtectionDomains

 32
pa-1432801

The ’476 Patent Infringed By
 * @param inherited - inherited context, which may be null
 */
 AccessControlContext(ProtectionDomain[] stack,
 AccessControlContext inherited) {
 this(stack); // removes dups, removes nulls, checks for stack==null
 this.inherited = inherited;
 }
…
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException

 33
pa-1432801

The ’476 Patent Infringed By
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }

 }

libcore\security\src\main\java\java\security.

The ’476 Patent Infringed By
4. The method of claim 1,
wherein the step of determining
whether said action is authorized
further includes determining
whether a permission required to
perform said action is
encompassed by at least one
permission associated with each
routine in said calling hierarchy.

Android further determines whether a permission required to perform the action is encompassed
by a permission associated with each routine in the calling hierarchy.

See Claim 1, supra.
See Claim 1-b, supra.

See, e.g., Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessController.html:

 34
pa-1432801

The ’476 Patent Infringed By

public static T doPrivileged (PrivilegedAction<T> action, AccessControlContext
context)

Returns the result of executing the specified privileged action. The ProtectionDomain
of the direct caller of this method, the ProtectionDomains of all subsequent classes in
the call chain and all ProtectionDomains of the given context are checked to be granted
the necessary permission if access checks are performed.

If an instance of RuntimeException is thrown during the execution of the
PrivilegedAction#run() method of the given action, it will be propagated through this
method.

Parameters

action the action to be executed with privileges
context the AccessControlContext whose protection domains are checked additionally
Returns

the result of executing the privileged action

(highlighting added).

See also libcore\security-kernel\src\main\java\java\security\AccessControlContext.java:

 // An AccessControlContext inherited by the current thread from its parent
 private AccessControlContext inherited;
….
 /**
 * Package-level ctor which is used in AccessController.

 * ProtectionDomains passed as <code>stack</code> is then passed into
 * {@link #AccessControlContext(ProtectionDomain[])}, therefore:

 35
pa-1432801

The ’476 Patent Infringed By
 * <il>
 * it must not be null
 * duplicates will be removed
 * null-s will be removed
 *
 *
 * @param stack - array of ProtectionDomains
 * @param inherited - inherited context, which may be null
 */
 AccessControlContext(ProtectionDomain[] stack,
 AccessControlContext inherited) {
 this(stack); // removes dups, removes nulls, checks for stack==null
 this.inherited = inherited;
 }
…
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes

 36
pa-1432801

The ’476 Patent Infringed By
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }

 }
libcore\security\src\main\java\java\security.

The ’476 Patent Infringed By
5. A method for providing security,
the method comprising the steps of:

See corresponding elements of claim 1, supra.

detecting when a request for an See corresponding elements of claim 1, supra.

 37
pa-1432801

The ’476 Patent Infringed By
action is made by a principal,
determining whether said action is
authorized based on an association
between permissions and a plurality
of routines in a calling hierarchy
associated with said principal;

See corresponding elements of claim 1, supra.

wherein each routine of said
plurality of routines is associated
with a class; and

Each routine of the plurality of routines in the calling hierarchy in Android is associated with
a class of one or more objects.

See e.g.:
dalvik\vm\native\java_lang_VMClassLoader.c:

/*
 * java.lang.VMClassLoader
 */
…
/*
 * static Class defineClass(ClassLoader cl, String name,
 * byte[] data, int offset, int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 StringObject* nameObj = (StringObject*) args[1];
 const u1* data = (const u1*) args[2];
 int offset = args[3];
 int len = args[4];
 Object* pd = (Object*) args[5];
 char* name = NULL;

 38
pa-1432801

The ’476 Patent Infringed By

 name = dvmCreateCstrFromString(nameObj);
 LOGE("ERROR: defineClass(%p, %s, %p, %d, %d, %p)\n",
 loader, name, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 free(name);
 RETURN_VOID();
}

/*
 * static Class defineClass(ClassLoader cl, byte[] data, int offset,
 * int len, ProtectionDomain pd)
 * throws ClassFormatError
 *
 * Convert an array of bytes to a Class object. Deprecated version of
 * previous method, lacks name parameter.
 */
static void Dalvik_java_lang_VMClassLoader_defineClass2(const u4* args,
 JValue* pResult)
{
 Object* loader = (Object*) args[0];
 const u1* data = (const u1*) args[1];
 int offset = args[2];
 int len = args[3];
 Object* pd = (Object*) args[4];

 LOGE("ERROR: defineClass(%p, %p, %d, %d, %p)\n",
 loader, data, offset, len, pd);
 dvmThrowException("Ljava/lang/UnsupportedOperationException;",
 "can't load this type of class file");

 39
pa-1432801

The ’476 Patent Infringed By

 RETURN_VOID();

}

See, e.g., PolicyEntry.java:
/**
 * This class represents an elementary block of a security policy. It associates
 * a CodeSource of an executable code, Principals allowed to execute the code,
 * and a set of granted Permissions.
 *
 * @see org.apache.harmony.security.fortress.DefaultPolicy
 */

See generally, e.g.:

• dalvik\vm\native\InternalNative.c
• dalvik\vm\native\java_security_AccessController.c
• dalvik\vm\native\java_lang_VMClassLoader.c
• source code files in libcore\security\src\main\java\java\security
• source code files in libcore\security-kernel\src\main\java\java\security
• libcore\security\src\main\java\org\apache\harmony\security

wherein said association between
permissions and said plurality of
routines is based on a second
association between classes and
protection domains.

The association between permissions and routines in Android is based on an association
between classes and protection domains.

See Claim 1-b, supra.
See Claim 1-c, supra.

Android associates classes and protection domains when loading classes. See, e.g.,
ProtectionDomain.java:

* {@code ProtectionDomain} represents all permissions that are granted to a
 * specific code source. The {@link ClassLoader} associates each class with the
 * corresponding {@code ProtectionDomain}, depending on the location and the

 40
pa-1432801

The ’476 Patent Infringed By
 * certificates (encapsulates in {@link CodeSource}) it loads the code from.
 * <p>
 * A class belongs to exactly one protection domain and the protection domain
 * can not be changed during the lifetime of the class.
 * </p>
 *
 * @since Android 1.0
 */
public class ProtectionDomain {

 // CodeSource for this ProtectionDomain
 private CodeSource codeSource;

 // Static permissions for this ProtectionDomain
 private PermissionCollection permissions;

 // ClassLoader
 private ClassLoader classLoader;

 // Set of principals associated with this ProtectionDomain
 private Principal[] principals;

 // false if this ProtectionDomain was constructed with static
 // permissions, true otherwise.
 private boolean dynamicPerms;

See libcore\security\src\main\java\java\security\ProtectionDomain.java.

See also PolicyEntry.java:

/**
 * This class represents an elementary block of a security policy. It associates

 41
pa-1432801

The ’476 Patent Infringed By
 * a CodeSource of an executable code, Principals allowed to execute the code,
 * and a set of granted Permissions.
 *
 * @see org.apache.harmony.security.fortress.DefaultPolicy
 */
public class PolicyEntry {

 // Store CodeSource
 private final CodeSource cs;

 // Array of principals
 private final Principal[] principals;

 // Permissions collection
 private final Collection<Permission> permissions;
/**
 * Returns unmodifiable collection of permissions defined by this
 * PolicyEntry, may be <code>null</code>.
 */
 public Collection<Permission> getPermissions() {
 return permissions;
 }

See dalvik\libcore\security\src\main\java\org\apache\harmony\security.

The ’476 Patent Infringed By
6. A method for providing
security, the method comprising
the steps of:

See corresponding elements of claim 1, supra.

detecting when a request for an See corresponding elements of claim 1, supra.

 42
pa-1432801

The ’476 Patent Infringed By
action is made by a principal; and
in response to detecting the
request, determining whether said
action is authorized based on
permissions associated with a
plurality of routines in a calling
hierarchy associated with said
principal,

See corresponding elements of claim 1, supra.

wherein a first routine in said
calling hierarchy is privileged;
and

A routine in the calling hierarchy may be privileged. See, e.g., Android Developer Tools
available at http://developer.android.com/reference/java/security/PrivilegedAction.html:

Class Overview

PrivilegedAction represents an action that can be executed privileged regarding access
control. Instances of PrivilegedAction can be executed on
AccessController.doPrivileged().

See also http://developer.android.com/reference/java/security/AccessController.html:

public static T doPrivileged (PrivilegedAction<T> action, AccessControlContext
context)

Returns the result of executing the specified privileged action. The ProtectionDomain
of the direct caller of this method, the ProtectionDomains of all subsequent classes in
the call chain and all ProtectionDomains of the given context are checked to be granted
the necessary permission if access checks are performed.

(highlighting added).

wherein the step of determining
whether said action is authorized
further includes determining

Android further determines whether a permission required to perform the action is encompassed
by a permission associated with each routine in the calling hierarchy between and including a
first routine and a second routine in said calling hierarchy, wherein said second routine is

 43
pa-1432801

The ’476 Patent Infringed By
whether a permission required to
perform said action is
encompassed by at least one
permission associated with each
routine in said calling hierarchy
between and including said first
routine and a second routine in
said calling hierarchy, wherein
said second routine is invoked
after said first routine, wherein
said second routine is a routine
for performing said requested
action.

invoked after said first routine.

See Claim 1-b, supra.

See, e.g., Android Developer Tools available at
http://developer.android.com/reference/java/security/AccessController.html:

public static T doPrivileged (PrivilegedAction<T> action, AccessControlContext
context)

Returns the result of executing the specified privileged action. The ProtectionDomain
of the direct caller of this method, the ProtectionDomains of all subsequent classes in
the call chain and all ProtectionDomains of the given context are checked to be granted
the necessary permission if access checks are performed.

If an instance of RuntimeException is thrown during the execution of the
PrivilegedAction#run() method of the given action, it will be propagated through this
method.

Parameters

action the action to be executed with privileges
context the AccessControlContext whose protection domains are checked additionally
Returns

the result of executing the privileged action

(highlighting added).

See also libcore\security-kernel\src\main\java\java\security\AccessControlContext.java:

 // An AccessControlContext inherited by the current thread from its parent

 44
pa-1432801

The ’476 Patent Infringed By
 private AccessControlContext inherited;
…
 /**
 * Package-level ctor which is used in AccessController.

 * ProtectionDomains passed as <code>stack</code> is then passed into
 * {@link #AccessControlContext(ProtectionDomain[])}, therefore:

 * <il>
 * it must not be null
 * duplicates will be removed
 * null-s will be removed
 *
 *
 * @param stack - array of ProtectionDomains
 * @param inherited - inherited context, which may be null
 */
 AccessControlContext(ProtectionDomain[] stack,
 AccessControlContext inherited) {
 this(stack); // removes dups, removes nulls, checks for stack==null
 this.inherited = inherited;
 }
…
 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>

 45
pa-1432801

The ’476 Patent Infringed By
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }
 }

 46
pa-1432801

The ’476 Patent Infringed By
7. The method of claim 6, wherein
the step of determining whether said
permission required to perform said
action is encompassed by at least
one permission associated with each
routine in said calling hierarchy
between and including said first
routine and said second routine
further includes the steps of:

See claim 2 and 6, supra.

determining whether said permission
required is encompassed by at least
one permission associated with said
second routine; and

See claim 3, supra.

in response to determining said
permission required is encompassed
by at least one permission associated
with said second routine, then
performing the steps of:

See claim 4, supra.

A) selecting a next routine from said
plurality of routines in said calling
hierarchy,

Android selects a next routine from a plurality of routines in a calling hierarchy. See, e.g.,
libcore\security-kernel\src\main\java\java\security\AccessController.java:

 * Checks the specified permission against the vm's current security policy.
 * The check is performed in the context of the current thread. This method
 * returns silently if the permission is granted, otherwise an {@code
 * AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * the current execution context has been granted the specified permission.
 * If privileged operations are on the execution context, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into

 47
pa-1432801

The ’476 Patent Infringed By
 * account.
 * <p>
 * This method delegates the permission check to
 * {@link AccessControlContext#checkPermission(Permission)} on the current
 * callers' context obtained by {@link #getContext()}.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessControlContext#checkPermission(Permission)
 *
 * @since Android 1.0
 */
 public static void checkPermission(Permission perm)
 throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("permission can not be null");
 }

 getContext().checkPermission(perm);

 }
B) if said permission required is not
encompassed by at least one
permission associated with said next
routine, then transmitting a message
indicating that said permission
required is not authorized, and

Android checks whether the permission required is or is not encompassed by a permission
associated with the next routine and transmits a message if not encompassed by the
permission associated with the next routine. See, e.g., libcore\security-
kernel\src\main\java\java\security\AccessControlContext.java:

 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the

 48
pa-1432801

The ’476 Patent Infringed By
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "

 49
pa-1432801

The ’476 Patent Infringed By
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }
 }

C) repeating steps A and B until:
said permission required is not
authorized by at least one
permission associated with said next
routine,
there are no more routines to select
from said plurality of routines in
said calling hierarchy, or
determining that said next routine is
said first routine.

Android repeats steps A and B detailed above until the permission required is not authorized
or there are no more routines. See, e.g., libcore\security-
kernel\src\main\java\java\security\AccessControlContext.java:

 /**
 * Checks the specified permission against the vm's current security policy.
 * The check is based on this {@code AccessControlContext} as opposed to the
 * {@link AccessController#checkPermission(Permission)} method which
 * performs access checks based on the context of the current thread. This
 * method returns silently if the permission is granted, otherwise an
 * {@code AccessControlException} is thrown.
 * <p>
 * A permission is considered granted if every {@link ProtectionDomain} in
 * this context has been granted the specified permission.
 * <p>
 * If privileged operations are on the call stack, only the {@code
 * ProtectionDomain}s from the last privileged operation are taken into
 * account.
 * <p>
 * If inherited methods are on the call stack, the protection domains of the
 * declaring classes are checked, not the protection domains of the classes
 * on which the method is invoked.
 *
 * @param perm
 * the permission to check against the policy

 50
pa-1432801

The ’476 Patent Infringed By
 * @throws AccessControlException
 * if the specified permission is not granted
 * @throws NullPointerException
 * if the specified permission is {@code null}
 * @see AccessController#checkPermission(Permission)
 * @since Android 1.0
 */
 public void checkPermission(Permission perm) throws AccessControlException {
 if (perm == null) {
 throw new NullPointerException("Permission cannot be null");
 }
 for (int i = 0; i < context.length; i++) {
 if (!context[i].implies(perm)) {
 throw new AccessControlException("Permission check failed "
 + perm, perm);
 }
 }
 if (inherited != null) {
 inherited.checkPermission(perm);
 }

 }

The ’476 Patent Infringed By
8. The method of claim 7,
wherein:

See claim 7, supra.

the method further
includes the step of setting
a flag associated with said
first routine to indicate that
said first routine is

The process includes setting a flag associated with the first routine that indicates that the first routine is
privileged, where the flag value is a “true” or “false” return value.

See, e.g.: platform/dalvik.git/vm/native/java_security_AccessController.c:
 /*

 51
pa-1432801

The ’476 Patent Infringed By
privileged; and * Generate a list of ProtectionDomain objects from the frames that

 * we're interested in. Skip the first two methods (this method, and
 * the one that called us), and ignore reflection frames. Stop on the
 * frame *after* the first privileged frame we see as we walk up.
 *
 * We create a new array, probably over-allocated, and fill in the
 * stuff we want. We could also just run the list twice, but the
 * costs of the per-frame tests could be more expensive than the
 * second alloc. (We could also allocate it on the stack using C99
 * array creation, but it's not guaranteed to fit.)
 *
 * The array we return doesn't include null ProtectionDomain objects,
 * so we skip those here.
 */
 Object** subSet = (Object**) malloc((length-2) * sizeof(Object*));
 if (subSet == NULL) {
 LOGE("Failed to allocate subSet (length=%d)\n", length);
 free(methods);
 dvmThrowException("Ljava/lang/InternalError;", NULL);
 RETURN_VOID();
 }
 int idx, subIdx = 0;
 for (idx = 2; idx < length; idx++) {
 const Method* meth = methods[idx];
 Object* pd;

 if (dvmIsReflectionMethod(meth))
 continue;

 if (dvmIsPrivilegedMethod(meth)) {
 /* find nearest non-reflection frame; note we skip priv frame */
 //LOGI("GSD priv frame at %s.%s\n", meth->clazz->name, meth->name);

 52
pa-1432801

The ’476 Patent Infringed By
 while (++idx < length && dvmIsReflectionMethod(methods[idx]))
 ;
 length = idx; // stomp length to end loop
 meth = methods[idx];
 }

 /* get the pd object from the method's class */
 assert(gDvm.offJavaLangClass_pd != 0);
 pd = dvmGetFieldObject((Object*) meth->clazz,
 gDvm.offJavaLangClass_pd);
 //LOGI("FOUND '%s' pd=%p\n", meth->clazz->name, pd);
 if (pd != NULL)
 subSet[subIdx++] = pd;
 }

 //LOGI("subSet:\n");
 //for (i = 0; i < subIdx; i++)
 // LOGI(" %2d: %s\n", i, subSet[i]->clazz->name);

 /*
 * Create an array object to contain "subSet".
 */
 ClassObject* pdArrayClass = NULL;
 ArrayObject* domains = NULL;
 pdArrayClass = dvmFindArrayClass("[Ljava/security/ProtectionDomain;", NULL);
 if (pdArrayClass == NULL) {
 LOGW("Unable to find ProtectionDomain class for array\n");
 goto bail;
 }
 domains = dvmAllocArray(pdArrayClass, subIdx, kObjectArrayRefWidth,
 ALLOC_DEFAULT);
 if (domains == NULL) {

 53
pa-1432801

The ’476 Patent Infringed By
 LOGW("Unable to allocate pd array (%d elems)\n", subIdx);
 goto bail;
 }

 /* copy the ProtectionDomain objects out */
 Object** objects = (Object**) domains->contents;
 for (idx = 0; idx < subIdx; idx++)
 *objects++ = subSet[idx];

bail:
 free(subSet);
 free(methods);
 dvmReleaseTrackedAlloc((Object*) domains, NULL);
 RETURN_PTR(domains);
}

const DalvikNativeMethod dvm_java_security_AccessController[] = {
 { "getStackDomains", "()[Ljava/security/ProtectionDomain;",
 Dalvik_java_security_AccessController_getStackDomains },
 { NULL, NULL, NULL },
};

See also, e.g.: platform/dalvik.git/vm/native/InternalNative.c

#define NUM_DOPRIV_FUNCS 4

/*
 * Determine if "method" is a "privileged" invocation, i.e. is it one
 * of the variations of AccessController.doPrivileged().
 *
 * Because the security stuff pulls in a pile of stuff that we may not
 * want or need, we don't do the class/method lookups at init time, but

 54
pa-1432801

The ’476 Patent Infringed By
 * instead on first use.
 */
bool dvmIsPrivilegedMethod(const Method* method)
{
 int i;

 assert(method != NULL);

 if (!gDvm.javaSecurityAccessControllerReady) {
 /*
 * Populate on first use. No concurrency risk since we're just
 * finding pointers to fixed structures.
 */
 static const char* kSignatures[NUM_DOPRIV_FUNCS] = {
 "(Ljava/security/PrivilegedAction;)Ljava/lang/Object;",
 "(Ljava/security/PrivilegedExceptionAction;)Ljava/lang/Object;",

"(Ljava/security/PrivilegedAction;Ljava/security/AccessControlContext;)Ljava/lang/Object;",

"(Ljava/security/PrivilegedExceptionAction;Ljava/security/AccessControlContext;)Ljava/lang/
Object;",
 };
 ClassObject* clazz;

 clazz = dvmFindClassNoInit("Ljava/security/AccessController;", NULL);
 if (clazz == NULL) {
 LOGW("Couldn't find java/security/AccessController\n");
 return false;
 }

 assert(NELEM(gDvm.methJavaSecurityAccessController_doPrivileged) ==
 NELEM(kSignatures));

 55
pa-1432801

The ’476 Patent Infringed By

 /* verify init */
 for (i = 0; i < NUM_DOPRIV_FUNCS; i++) {
 gDvm.methJavaSecurityAccessController_doPrivileged[i] =
 dvmFindDirectMethodByDescriptor(clazz, "doPrivileged", kSignatures[i]);
 if (gDvm.methJavaSecurityAccessController_doPrivileged[i] == NULL) {
 LOGW("Warning: couldn't find java/security/AccessController"
 ".doPrivileged %s\n", kSignatures[i]);
 return false;
 }
 }

 /* all good, raise volatile readiness flag */
 gDvm.javaSecurityAccessControllerReady = true;
 }

 for (i = 0; i < NUM_DOPRIV_FUNCS; i++) {
 if (gDvm.methJavaSecurityAccessController_doPrivileged[i] == method) {
 //LOGI("+++ doPriv match\n");
 return true;
 }
 }
 return false;
}

the step of determining
that said next routine is
said first routine includes
determining that a flag
associated with said next
routine indicates said next
routine is privileged.

See above element of claim 8.

 56
pa-1432801

The ’476 Patent Infringed By

9. The method of claim 8, wherein
the step of setting said flag
associated with said first routine
includes setting a flag in a frame in
said calling hierarchy associated
with said thread.

See claim 8, supra.

libcore\security-kernel\src\main\java\java\security\AccessController.java:

 /**
 * Returns the {@code AccessControlContext} for the current {@code Thread}
 * including the inherited access control context of the thread that spawned
 * the current thread (recursively).
 * <p>
 * The returned context may be used to perform access checks at a later
 * point in time, possibly by another thread.
 *
 * @return the {@code AccessControlContext} for the current {@code Thread}
 * @see Thread#currentThread
 * @since Android 1.0
 */
 public static AccessControlContext getContext() {

 // duplicates (if any) will be removed in ACC constructor
 ProtectionDomain[] stack = getStackDomains();

 Thread currThread = Thread.currentThread();
 if (currThread == null || contexts == null) {
 // Big boo time. No need to check anything ?
 return new AccessControlContext(stack);
 }

 ArrayList<AccessControlContext> threadContexts;
 synchronized (contexts) {
 threadContexts = contexts.get(currThread);
 }

 57
pa-1432801

The ’476 Patent Infringed By
 AccessControlContext that;
 if ((threadContexts == null) || (threadContexts.size() == 0)) {
 // We were not in doPrivileged method, so
 // have inherited context here
 that = SecurityUtils.getContext(currThread);
 } else {
 // We were in doPrivileged method, so
 // Use context passed to the doPrivileged()
 that = threadContexts.get(threadContexts.size() - 1);
 }

 if (that != null && that.combiner != null) {
 ProtectionDomain[] assigned = null;
 if (that.context != null && that.context.length != 0) {
 assigned = new ProtectionDomain[that.context.length];
 System.arraycopy(that.context, 0, assigned, 0, assigned.length);
 }
 ProtectionDomain[] allpds = that.combiner.combine(stack, assigned);
 if (allpds == null) {
 allpds = new ProtectionDomain[0];
 }
 return new AccessControlContext(allpds, that.combiner);
 }

 return new AccessControlContext(stack, that);
 }
}

(highlighting added).

The ’476 Patent Infringed By
10. A computer-readable medium The Accused Instrumentalities include devices that store, distribute, or run Android or the

 58
pa-1432801

The ’476 Patent Infringed By
carrying one or more sequences of
one or more instructions, the one or
more sequences of the one or more
instructions including instructions
which, when executed by one or
more processors, causes the one or
more processors to perform the steps
of:

Android SDK, including websites, servers, and mobile devices. These encompass a computer
readable medium carrying one or more sequences of one or more instructions. See
corresponding elements of claim 1, supra.

detecting when a request for an
action is made by a principal; and

See corresponding elements of claim 1, supra.

in response to detecting the request,
determining whether said action is
authorized based on permissions
associated with a plurality of
routines in a calling hierarchy
associated with said principal,
wherein said permissions are
associated with said plurality of
routines based on a first association
between protection domains and
permissions.

See corresponding elements of claims 1 and 5, supra.

The ’476 Patent Infringed By
11. The computer-readable medium
of claim 10, wherein:

See corresponding elements of claims 1 and 10, supra.

the step of detecting when a request
for an action is made includes
detecting when a request for an
action is made by a thread; and

See corresponding elements of claims 1, 2, and 10, supra.

the step of determining whether said
action is authorized includes

See corresponding elements of claims 1, 2, and 10, supra.

 59
pa-1432801

The ’476 Patent Infringed By
determining whether said action is
authorized based on an association
between permissions and a plurality
of routines in a calling hierarchy
associated with said thread.

The ’476 Patent Infringed By
12. The computer readable medium
of claim 10, wherein:

See corresponding elements of claims 1 and 10, supra.

the calling hierarchy includes a first
routine; and

See corresponding elements of claims 1, 3, and 10, supra.

the step of determining whether said
action is authorized further includes
determining whether a permission
required to perform said action is
encompassed by at least one
permission associated with said first
routine.

See corresponding elements of claims 1, 3, and 10, supra.

The ’476 Patent Infringed By
13. The computer readable medium
of claim 10, wherein the step of
determining whether said action is
authorized further includes
determining whether a permission
required to perform said action is
encompassed by at least one
permission associated with each
routine in said calling hierarchy.

See corresponding elements of claims 1 and 10, supra.

 60
pa-1432801

The ’476 Patent Infringed By

14. A computer-readable medium
bearing instructions for providing
security, the instructions including
instructions for performing the steps
of:

See corresponding element of claim 1, supra.

detecting when a request for an
action is made by a principal;

See corresponding element of claim 1, supra.

determining whether said action is
authorized based on an association
between permissions and a plurality
of routines in a calling hierarchy
associated with said principal;

See corresponding element of claim 1, supra.

wherein each routine of said
plurality of routines is associated
with a class; and

See corresponding element of claim 5, supra.

wherein said association between
permissions and said plurality of
routines is based on a second
association between classes and
protection domains.

See corresponding element of claim 5, supra.

The ’476 Patent Infringed By

15. A computer-readable medium
carrying one or more sequences of
one or more instructions, the one or
more sequences of the one or more
instructions including instructions
which, when executed by one or
more processors, causes the one or
more processors to perform the steps
of:

See corresponding element of claim 1, supra.

 61
pa-1432801

The ’476 Patent Infringed By
detecting when a request for an
action is made by a principal; and

See corresponding element of claim 1, supra.

in response to detecting the request,
determining whether said action is
authorized based on permissions
associated with a plurality of
routines in a calling hierarchy
associated with said principal,
wherein a first routine in said calling
hierarchy is privileged; and

See corresponding elements of claims 1 and 6, supra.

wherein the step of determining
whether said action is authorized
further includes determining
whether a permission required to
perform said action is encompassed
by at least one permission associated
with each routine in said calling
hierarchy between and including
said first routine and a second
routine in said calling hierarchy,
wherein said second routine is
invoked after said first routine,
wherein said second routine is a
routine for performing said
requested action.

See corresponding elements of claims 1 and 6, supra.

 62
pa-1432801

The ’476 Patent Infringed By

16. The computer readable medium
of claim 15, wherein the step of
determining whether said permission
required to perform said action is
encompassed by at least one
permission associated with each
routine in said calling hierarchy
between and including said first
routine and said second routine
further includes the steps of:

See claims 7 and 15, supra.

determining whether said permission
required is encompassed by at least
one permission associated with said
second routine; and

See claims 7 and 15, supra.

in response to determining said
permission required is encompassed
by at least one permission associated
with said second routine, then
performing the steps of:

See claims 7 and 15, supra.

A) selecting a next routine from said
plurality of routines in said calling
hierarchy,

See claims 7 and 15, supra.

B) if said permission required is not
encompassed by at least one
permission associated with said next
routine, then transmitting a message
indicating that said permission
required is not authorized, and

See claims 7 and 15, supra.

C) repeating steps A and B until:
said permission required is not
authorized by at least one

See claims 7 and 15, supra.

 63
pa-1432801

The ’476 Patent Infringed By
permission associated with said next
routine,
there are no more routines to select
from said plurality of routines in
said calling hierarchy, or
determining that said next routine is
said first routine.

The ’476 Patent Infringed By
17. The computer readable medium
of claim 16, wherein:

See claim 16, supra.

the computer readable medium
further comprises one or more
instructions for performing the step
of setting a flag associated with said
first routine to indicate that said first
routine is privileged; and

See claims 8 and 15, supra.

the step of determining that said
next routine is said first routine
includes determining that a flag
associated with said next routine
indicates said next routine is
privileged.

See claims 8 and 15, supra.

The ’476 Patent Infringed By

18. The computer readable medium
of claim 17, wherein the step of
setting said flag associated with said
first routine includes setting a flag in
a frame in said calling hierarchy
associated with said thread.

See claims 8, 9, and 15, supra.

 64
pa-1432801

The ’476 Patent Infringed By
19. A computer system comprising: See corresponding element of claim 1, supra.
a processor; See corresponding element of claim 1, supra.
a memory coupled to said processor; See corresponding element of claim 1, supra.
said processor being configured to
detect when a request for an action
is made by a principal; and

See corresponding element of claim 1, supra.

said processor being configured to
respond to detecting the request by
determining whether said action is
authorized based on permissions
associated with a plurality of
routines in a calling hierarchy
associated with said principal,
wherein said permissions are
associated with said plurality of
routines based on a first association
between protection domains and
permissions.

See corresponding element of claim 1, supra.

 65
pa-1432801

The ’476 Patent Infringed By

20. The computer system of claim
19, wherein:

See claims 1and 19, supra.

the calling hierarchy includes a first
routine; and

See claims 1, 3, and 19, supra.

said processor is configured to
determine whether said action is
authorized by determining whether a
permission required to perform said
action is encompassed by at least
one permission associated with said
first routine.

See claims 1, 3, and 19, supra.

The ’476 Patent Infringed By
21. The computer system of claim
19, wherein

See claim 19, supra.

said processor is configured to
determine whether said action is
authorized by determining whether a
permission required to perform said
action is encompassed by at least
one permission associated with each
routine in said calling hierarchy.

See claims 1, 3, and 19, supra.

pa-1435314 1

EXHIBIT F
Preliminary Infringement Contentions for the ’520 Patent

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited examples are taken from Android 2.2 and
current versions of Google’s Android websites. Oracle’s infringement contentions apply to all versions of Android having similar or nearly
identical code or documentation, including past and expected future releases. Although Oracle’s investigation is ongoing, the ’520 patent is
infringed by all versions of Android from Oct. 21, 2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6 (“Donut”), 2.0/2.1
(“Éclair”), and 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are shortened and mirror the file paths shown in
http://android.git.kernel.org/. For example, “dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native /
InternalNative.c” (accessible at http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through http://android.git.kernel.org/) was created on or around Oct. 21,
2008. As such, the list of infringing Android versions may be expanded based on what Oracle learns about earlier Android versions.

’520 Patent Infringed By

1. A method
in a data
processing
system for
statically
initializing an
array,
comprising
the steps of:

Android and its development environment are both stored on computer-readable media containing instructions for
controlling a data processing system to perform a method (Android is stored on a computer usable medium, e.g., RAM
of a device or computer running Android).

Android operates in a data processing system and operates to statically initialize an array as recited by claim 1. See
Google I/O 2008 Video entitled “Google I/O 2008 - Dalvik Virtual Machine Internals,” presented by Dan Bornstein,
http://developer.android.com/videos/index.html#v=ptjedOZEXPM (“Dalvik Video”), at time 1:50 to 2:30 and 29:50 to
32:00, which describes that instructions are translated from Java (.class bytecode) to a form (.dex bytecode and .dex
files) executable or run by the dalvik VM, and includes adding elements to a static array to initialize a data array.

See also Google I/O 2008 Presentation Slides, entitled, “Dalvik Virtual Machine Internals, Google I/O 2008,” presented
by Dan Bornstein (“Dalvik Presentation”) at slides 5-7 and 41-45, available at
http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf?attredirects=0.

compiling
source code
containing
the array with
static values

The javac tool compiles source code containing the array to generate a class file with a clinit method containing the .dex
bytecode to statically initialize the array to the static values. For example, the Dalvik Video describes compiling
source code and .class files (slides 41 and 42) for initialization. See, e.g., time 29:50-32:00 and Dalvik presentation,
slides 41-45:

pa-1435314 2

’520 Patent Infringed By
to generate a
class file with
a clinit
method
containing
byte codes to
statically
initialize the
array to the
static values;

 (Slide 41) (Slide 42)

See also, e.g., http://developer.android.com/guide/basics/what-is-android.html:

Android Runtime

Android includes a set of core libraries that provides most of the functionality available in the core libraries of
the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik virtual machine. Dalvik
has been written so that a device can run multiple VMs efficiently. The Dalvik VM executes files in the Dalvik
Executable (.dex) format which is optimized for minimal memory footprint. The VM is register-based, and runs
classes compiled by a Java language compiler that have been transformed into the .dex format by the included
“dx” tool.

receiving the
class file into
a preloader;

As described above, the class file is received by the Android dx tool. This is described, for example, in the Dalvik
Video with respect to at least slides 42 and 43, where source and .class files are received for initialization. See, e.g.,
time 29:50-32:00 and Dalvik Presentation, slides 41-45.

See also:

pa-1435314 3

’520 Patent Infringed By

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and

dalvik/vm/interp/Interp.c.

Android also includes the dx tool, which includes converting/translating .class files to .dex files (slide 44) and adding
elements (e.g., static values) to a static array to initialize the data (slide 45). See, e.g., time 29:50-32:00 and Dalvik
Presentation, slides 41-45:

 (Slide 43) (Slide 44)

See also:
“dx

The dx tool lets you generate Android bytecode from .class files. The tool converts target files and/or directories

pa-1435314 4

’520 Patent Infringed By
to Dalvik executable format (.dex) files, so that they can run in the Android environment.”

Android Developer Tools available at http://developer.android.com/guide/developing/tools/othertools.html.

See also:

“You write your applications in the Java programming language and they get translated after compilation into a form
that runs on the Dalvik virtual machine.”

Google I/O 2008 Video, Google I/O 2008 Video, entitled “Dalvik Virtual Machine Internals,” presented by Dan
Bornstein (Google Android Project), available at http://developer.android.com/videos/index.html#v=ptjedOZEXPM, at
time 1:45.

See also:

“You are most likely going to write it in the Java programming language and then push the source code through the
SDK. And what pops out at the end is an executable targeted to the Dalvik virtual machine.” Google I/O 2010 Video,

pa-1435314 5

’520 Patent Infringed By
entitled “A JIT Compiler for Android’s Dalvik VM,” presented by Ben Cheng and Bill Buzbee (Google’s Android
Team), available at http://developer.android.com/videos/index.html#v=Ls0tM-c4Vfo, at time 2:03.

See also, [platform/sdk.git] / eclipse / plugins / com.android.ide.eclipse.adt / src / com / android / ide / eclipse / adt /
internal / build / PostCompilerBuilder.java
public class PostCompilerBuilder extends BaseBuilder {
 ...
 // build() returns a list of project from which this project depends for future compilation.
 @SuppressWarnings({“unchecked”})
 @Override
 protected IProject[] build(int kind, Map args, IProgressMonitor monitor)
 throws CoreException {
 // get a project object
 IProject project = getProject();
 ...
 // check classes.dex is present. If not we force to recreate it.
 if (mConvertToDex == false) {
 tmp = outputFolder.findMember(SdkConstants.FN_APK_CLASSES_DEX);
 if (tmp == null || tmp.exists() == false) {
 mConvertToDex = true;
 mBuildFinalPackage = true;
 }
 }
 ...
 // then we check if we need to package the .class into classes.dex
 if (mConvertToDex) {
 try {
 helper.executeDx(javaProject, osBinPath, osBinPath + File.separator +
 SdkConstants.FN_APK_CLASSES_DEX, referencedJavaProjects,
 mResourceMarker);
 } catch (DexException e) {
 String message = e.getMessage();

 AdtPlugin.printErrorToConsole(project, message);

pa-1435314 6

’520 Patent Infringed By
 BaseProjectHelper.markResource(project,AndroidConstants.MARKER_PACKAGING,
 message, IMarker.SEVERITY_ERROR);

 Throwable cause = e.getCause();

 if (cause instanceof NoClassDefFoundError
 || cause instanceof NoSuchMethodError) {
 AdtPlugin.printErrorToConsole(project,Messages.Incompatible_VM_Warning,
 Messages.Requires_1_5_Error);
 }

 // dx failed, we return
 return allRefProjects;
 }

 // build has been done. reset the state of the builder
 mConvertToDex = false;

 // and store it
 saveProjectBooleanProperty(PROPERTY_CONVERT_TO_DEX, mConvertToDex);
 }
See also [platform/sdk.git] / eclipse / plugins / com.android.ide.eclipse.adt / src / com / android / ide / eclipse / adt /
internal / build / PostCompilerHelper.java:
 /**
 * Helper with methods for the last 3 steps of the generation of an APK.
 *
 * {@link #packageResources(IFile, IProject[], String, int, String, String)} packages the
 * application resources using aapt into a zip file that is ready to be integrated into the apk.
 *
 * {@link #executeDx(IJavaProject, String, String, IJavaProject[])} will convert the Java byte
 * code into the Dalvik bytecode.
 *
 {@link #finalPackage(String, String, String, boolean, IJavaProject, IProject[], IJavaProject[], String,boolean)}

pa-1435314 7

’520 Patent Infringed By
 * will make the apk from all the previous components.
 *
 * This class only executes the 3 above actions. It does not handle the errors, and simply sends
 * them back as custom exceptions.
 *
 * Warnings are handled by the {@link ResourceMarker} interface.
 *
 * Console output (verbose and non verbose) is handled through the {@link AndroidPrintStream} passed
 * to the constructor.
 *
 */
 public class PostCompilerHelper {
 ...
 /**
 * Execute the Dx tool for dalvik code conversion.
 * @param javaProject The java project
 * @param osBinPath the path to the output folder of the project
 * @param osOutFilePath the path of the dex file to create.
 * @param referencedJavaProjects the list of referenced projects for this project.
 *
 * @throws CoreException
 * @throws DexException
 */
 public void executeDx(IJavaProject javaProject, String osBinPath, String osOutFilePath,
 IJavaProject[] referencedJavaProjects, ResourceMarker resMarker) throws CoreException,
 DexException {

 IAndroidTarget target = Sdk.getCurrent().getTarget(mProject);
 AndroidTargetData targetData = Sdk.getCurrent().getTargetData(target);
 if (targetData == null) {
 throw new CoreException(new Status(IStatus.ERROR, AdtPlugin.PLUGIN_ID,
 Messages.ApkBuilder_UnableBuild_Dex_Not_loaded));
 }

pa-1435314 8

’520 Patent Infringed By
 // get the dex wrapper
 DexWrapper wrapper = targetData.getDexWrapper();

 if (wrapper == null) {
 throw new CoreException(new Status(IStatus.ERROR, AdtPlugin.PLUGIN_ID,
 Messages.ApkBuilder_UnableBuild_Dex_Not_loaded));
 }

 try {
 // get the list of libraries to include with the source code
 String[] libraries = getExternalJars(resMarker);

 // get the list of referenced projects output to add
 String[] projectOutputs = getProjectOutputs(referencedJavaProjects);

 String[] fileNames = new String[1 + projectOutputs.length + libraries.length];

 // first this project output
 fileNames[0] = osBinPath;

 // then other project output
 System.arraycopy(projectOutputs, 0, fileNames, 1, projectOutputs.length);

 // then external jars.
 System.arraycopy(libraries, 0, fileNames, 1 + projectOutputs.length, libraries.length);

 // set a temporary prefix on the print streams.
 mOutStream.setPrefix(CONSOLE_PREFIX_DX);
 mErrStream.setPrefix(CONSOLE_PREFIX_DX);

 int res = wrapper.run(osOutFilePath, fileNames,
 mVerbose,
 mOutStream, mErrStream);

pa-1435314 9

’520 Patent Infringed By
 mOutStream.setPrefix(null);
 mErrStream.setPrefix(null);

 if (res != 0) {
 // output error message and marker the project.
 String message = String.format(Messages.Dalvik_Error_d, res);
 throw new DexException(message);
 }
 } catch (DexException e) {
 throw e;
 } catch (Throwable t) {
 String message = t.getMessage();
 if (message == null) {
 message = t.getClass().getCanonicalName();
 }
 message = String.format(Messages.Dalvik_Error_s, message);

 throw new DexException(message, t);
 }
 }

simulating
execution of
the byte
codes of the
clinit method
against a
memory
without
executing the
byte codes to
identify the
static
initialization

The dx tool steps through and translates the Java .class files to simulate execution of the bytecodes against a memory
without executing the byte codes to identify the static initialization of the array by the preloader. For example,
Android does not run Java .class files directly; instead, Java .class files are identified and translated into .dex files using
the dx utility. See, e.g., dalvik\dx\src\com\android\dx\dex\cf\CfTranslator.java. This process identities the static
initialization of the array by the dx tool.

The Dalvik Video further describes source .class files (slides 41 and 42) for initialization, which includes
converting/translating to .dex files (slide 44) and adding elements to a static array to initialize the data (slide 45). See,
e.g., time 29:50-32:00 and Dalvik Presentation, slides 41-45.

See e.g., dalvik/dx/src/com/android/dx/cf/code/Simulator.java:

pa-1435314 10

’520 Patent Infringed By
of the array
by the
preloader;

/**
 * Class which knows how to simulate the effects of executing bytecode.
 *
 * <p>Note: This class is not thread-safe. If multiple threads
 * need to use a single instance, they must synchronize access explicitly
 * between themselves.</p>
 */
public class Simulator {
 /**
 * {@code non-null;} canned error message for local variable
 * table mismatches
 */
 private static final String LOCAL_MISMATCH_ERROR =
 “This is symptomatic of .class transformation tools that ignore “ +
 “local variable information.”;

 /** {@code non-null;} machine to use when simulating */
 private final Machine machine;

 /** {@code non-null;} array of bytecode */
 private final BytecodeArray code;

 /** {@code non-null;} local variable information */
 private final LocalVariableList localVariables;

 /** {@code non-null;} visitor instance to use */
 private final SimVisitor visitor;

 /**
 * Constructs an instance.
 *
 * @param machine {@code non-null;} machine to use when simulating
 * @param method {@code non-null;} method data to use

pa-1435314 11

’520 Patent Infringed By
 */
 public Simulator(Machine machine, ConcreteMethod method) {
 if (machine == null) {
 throw new NullPointerException(“machine == null”);
 }

 if (method == null) {
 throw new NullPointerException(“method == null”);
 }

 this.machine = machine;
 this.code = method.getCode();
 this.localVariables = method.getLocalVariables();
 this.visitor = new SimVisitor();
 }

 /**
 * Simulates the effect of executing the given basic block. This modifies
 * the passed-in frame to represent the end result.
 *
 * @param bb {@code non-null;} the basic block
 * @param frame {@code non-null;} frame to operate on
 */
 public void simulate(ByteBlock bb, Frame frame) {
 int end = bb.getEnd();

 visitor.setFrame(frame);

 try {
 for (int off = bb.getStart(); off < end; /*off*/) {
 int length = code.parseInstruction(off, visitor);
 visitor.setPreviousOffset(off);
 off += length;
 }

pa-1435314 12

’520 Patent Infringed By
 } catch (SimException ex) {
 frame.annotate(ex);
 throw ex;
 }
 }

 /**
 * Simulates the effect of the instruction at the given offset, by
 * making appropriate calls on the given frame.
 *
 * @param offset {@code >= 0;} offset of the instruction to simulate
 * @param frame {@code non-null;} frame to operate on
 * @return the length of the instruction, in bytes
 */
 public int simulate(int offset, Frame frame) {
 visitor.setFrame(frame);
 return code.parseInstruction(offset, visitor);
 }

 /**
 * Constructs an “illegal top-of-stack” exception, for the stack
 * manipulation opcodes.
 */
 private static SimException illegalTos() {
 return new SimException(“stack mismatch: illegal “ +
 “top-of-stack for opcode”);
 }

 /**
 * Bytecode visitor used during simulation.
 */
 private class SimVisitor implements BytecodeArray.Visitor {
 /**
 * {@code non-null;} machine instance to use (just to avoid excessive

pa-1435314 13

’520 Patent Infringed By
 * cross-object field access)
 */
 private final Machine machine;

 /**
 * {@code null-ok;} frame to use; set with each call to
 * {@link Simulator#simulate}
 */
 private Frame frame;

 /** offset of the previous bytecode */
 private int previousOffset;

 /**
 * Constructs an instance.
 */
 public SimVisitor() {
 this.machine = Simulator.this.machine;
 this.frame = null;
 }

See also dalvik/dx/src/com/android/dx/cf/code/Simulator.java.

See, e.g., dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java:

 /**
 * Helper to deal with {@code newarray}.
 *
 * @param offset the offset to the {@code newarray} opcode itself
 * @param visitor {@code non-null;} visitor to use
 * @return instruction length, in bytes
 */
 private int parseNewarray(int offset, Visitor visitor) {

pa-1435314 14

’520 Patent Infringed By
 int value = bytes.getUnsignedByte(offset + 1);
 CstType type;
 switch (value) {
 case ByteOps.NEWARRAY_BOOLEAN: {
 type = CstType.BOOLEAN_ARRAY;
 break;
 }
 case ByteOps.NEWARRAY_CHAR: {
 type = CstType.CHAR_ARRAY;
 break;
 }
 case ByteOps.NEWARRAY_DOUBLE: {
 type = CstType.DOUBLE_ARRAY;
 break;
 }
 case ByteOps.NEWARRAY_FLOAT: {
 type = CstType.FLOAT_ARRAY;
 break;
 }
 case ByteOps.NEWARRAY_BYTE: {
 type = CstType.BYTE_ARRAY;
 break;
 }
 case ByteOps.NEWARRAY_SHORT: {
 type = CstType.SHORT_ARRAY;
 break;
 }
 case ByteOps.NEWARRAY_INT: {
 type = CstType.INT_ARRAY;
 break;
 }
 case ByteOps.NEWARRAY_LONG: {
 type = CstType.LONG_ARRAY;
 break;

pa-1435314 15

’520 Patent Infringed By
 }
 default: {
 throw new SimException(“bad newarray code ” +
 Hex.u1(value));
 }
 }

 // Revisit the previous bytecode to find out the length of the array
 int previousOffset = visitor.getPreviousOffset();
 ConstantParserVisitor constantVisitor = new ConstantParserVisitor();
 int arrayLength = 0;

 /*
 * For visitors that don’t record the previous offset, -1 will be
 * seen here
 */
 if (previousOffset >= 0) {
 parseInstruction(previousOffset, constantVisitor);
 if (constantVisitor.cst instanceof CstInteger &&
 constantVisitor.length + previousOffset == offset) {
 arrayLength = constantVisitor.value;

 }
 }

 /*
 * Try to match the array initialization idiom. For example, if the
 * subsequent code is initializing an int array, we are expecting the
 * following pattern repeatedly:
 * dup
 * push index
 * push value
 * *astore
 *

pa-1435314 16

’520 Patent Infringed By
 * where the index value will be incrimented sequentially from 0 up.
 */
 int nInit = 0;
 int curOffset = offset+2;
 int lastOffset = curOffset;
 ArrayList<Constant> initVals = new ArrayList<Constant>();

 if (arrayLength != 0) {
 while (true) {
 boolean punt = false;

 // First check if the next bytecode is dup
 int nextByte = bytes.getUnsignedByte(curOffset++);
 if (nextByte != ByteOps.DUP)
 break;

 // Next check if the expected array index is pushed to the stack
 parseInstruction(curOffset, constantVisitor);
 if (constantVisitor.length == 0 ||
 !(constantVisitor.cst instanceof CstInteger) ||
 constantVisitor.value != nInit)
 break;

 // Next, fetch the init value and record it
 curOffset += constantVisitor.length;

 // Next find out what kind of constant is pushed onto the stack
 parseInstruction(curOffset, constantVisitor);
 if (constantVisitor.length == 0 ||
 !(constantVisitor.cst instanceof CstLiteralBits))
 break;

 curOffset += constantVisitor.length;
 initVals.add(constantVisitor.cst);

pa-1435314 17

’520 Patent Infringed By

 nextByte = bytes.getUnsignedByte(curOffset++);
 // Now, check if the value is stored to the array properly
 switch (value) {
 case ByteOps.NEWARRAY_BYTE:
 case ByteOps.NEWARRAY_BOOLEAN: {
 if (nextByte != ByteOps.BASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_CHAR: {
 if (nextByte != ByteOps.CASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_DOUBLE: {
 if (nextByte != ByteOps.DASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_FLOAT: {
 if (nextByte != ByteOps.FASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_SHORT: {
 if (nextByte != ByteOps.SASTORE) {
 punt = true;
 }
 break;

pa-1435314 18

’520 Patent Infringed By
 }
 case ByteOps.NEWARRAY_INT: {
 if (nextByte != ByteOps.IASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_LONG: {
 if (nextByte != ByteOps.LASTORE) {
 punt = true;
 }
 break;
 }
 default:
 punt = true;
 break;
 }
 if (punt) {
 break;
 }
 lastOffset = curOffset;
 nInit++;
 }
 }

 /*
 * For singleton arrays it is still more economical to
 * generate the aput.
 */
 if (nInit < 2 || nInit != arrayLength) {
 visitor.visitNewarray(offset, 2, type, null);
 return 2;
 } else {
 visitor.visitNewarray(offset, lastOffset - offset, type, initVals);

pa-1435314 19

’520 Patent Infringed By
 return lastOffset - offset;
 }
 }

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java.

See also:
dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;
dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and
dalvik/vm/interp/Interp.c.

storing into
an output file
an instruction
requesting
the static
initialization
of the array;
and

The dx tool stores an instruction requesting the static initialization of the array. This process is described, for example,
in the Dalvik Video at time 29:50-32:00 and Dalvik Presentation slides 41-45.

See also:
 * Java library array constructor.
 */
 Type componentType = ((CstType) cst).getClassType();
 for (int i = 0; i < sourceCount; i++) {
 componentType = componentType.getComponentType();
 }

 RegisterSpec classReg =
 RegisterSpec.make(dest.getReg(), Type.CLASS);

 if (componentType.isPrimitive()) {
 /*
 * The component type is primitive (e.g., int as opposed
 * to Integer), so we have to fetch the corresponding
 * TYPE class.
 */
 CstFieldRef typeField =
 CstFieldRef.forPrimitiveType(componentType);

pa-1435314 20

’520 Patent Infringed By
 insn = new ThrowingCstInsn(Rops.GET_STATIC_OBJECT, pos,
 RegisterSpecList.EMPTY,
 catches, typeField);
 } else {
 /*
 * The component type is an object type, so just make a
 * normal class reference.
 */
 insn = new ThrowingCstInsn(Rops.CONST_OBJECT, pos,
 RegisterSpecList.EMPTY, catches,
 new CstType(componentType));
 }

 insns.add(insn);

 // Add a move-result-pseudo for the get-static or const
 rop = Rops.opMoveResultPseudo(classReg.getType());
 insn = new PlainInsn(rop, pos, classReg, RegisterSpecList.EMPTY);
 insns.add(insn);

 /*
 * Add a call to the “multianewarray method,” that is,
 * Array.newInstance(class, dims). Note: The result type
 * of newInstance() is Object, which is why the last
 * instruction in this sequence is a cast to the right
 * type for the original instruction.
 */

 RegisterSpec objectReg =
 RegisterSpec.make(dest.getReg(), Type.OBJECT);

 insn = new ThrowingCstInsn(
 Rops.opInvokeStatic(MULTIANEWARRAY_METHOD.getPrototype()),
 pos, RegisterSpecList.make(classReg, dimsReg),

pa-1435314 21

’520 Patent Infringed By
 catches, MULTIANEWARRAY_METHOD);
 insns.add(insn);

 // Add a move-result.
 rop = Rops.opMoveResult(MULTIANEWARRAY_METHOD.getPrototype()
 .getReturnType());
 insn = new PlainInsn(rop, pos, objectReg, RegisterSpecList.EMPTY);
 insns.add(insn);

 /*
 * And finally, set up for the remainder of this method to
 * add an appropriate cast.
 */

 opcode = ByteOps.CHECKCAST;
 sources = RegisterSpecList.make(objectReg);
 } else if (opcode == ByteOps.JSR) {
 // JSR has no Rop instruction
 hasJsr = true;
 return;
 } else if (opcode == ByteOps.RET) {
 try {
 returnAddress = (ReturnAddress)arg(0);
 } catch (ClassCastException ex) {
 throw new RuntimeException(
 “Argument to RET was not a ReturnAddress”, ex);
 }
 // RET has no Rop instruction.
 return;
 }

 ropOpcode = jopToRopOpcode(opcode, cst);
 rop = Rops.ropFor(ropOpcode, destType, sources, cst);

pa-1435314 22

’520 Patent Infringed By
 Insn moveResult = null;
 if (dest != null && rop.isCallLike()) {
 /*
 * We’re going to want to have a move-result in the next
 * basic block.
 */
 extraBlockCount++;

 moveResult = new PlainInsn(
 Rops.opMoveResult(((CstMethodRef) cst).getPrototype()
 .getReturnType()), pos, dest, RegisterSpecList.EMPTY);

 dest = null;
 } else if (dest != null && rop.canThrow()) {
 /*
 * We’re going to want to have a move-result-pseudo in the
 * next basic block.
 */
 extraBlockCount++;

 moveResult = new PlainInsn(
 Rops.opMoveResultPseudo(dest.getTypeBearer()),
 pos, dest, RegisterSpecList.EMPTY);

 dest = null;
 }
 if (ropOpcode == RegOps.NEW_ARRAY) {
 /*
 * In the original bytecode, this was either a primitive
 * array constructor “newarray” or an object array
 * constructor “anewarray”. In the former case, there is
 * no explicit constant, and in the latter, the constant
 * is for the element type and not the array type. The rop
 * instruction form for both of these is supposed to be

pa-1435314 23

’520 Patent Infringed By
 * the resulting array type, so we initialize / alter
 * “cst” here, accordingly. Conveniently enough, the rop
 * opcode already gets constructed with the proper array
 * type.
 */
 cst = CstType.intern(rop.getResult());
 } else if ((cst == null) && (sourceCount == 2)) {
 TypeBearer lastType = sources.get(1).getTypeBearer();

 if (lastType.isConstant()
 && advice.hasConstantOperation(rop,
 sources.get(0), sources.get(1))) {
 /*
 * The target architecture has an instruction that can
 * build in the constant found in the second argument,
 * so pull it out of the sources and just use it as a
 * constant here.
 */
 cst = (Constant) lastType;
 sources = sources.withoutLast();
 rop = Rops.ropFor(ropOpcode, destType, sources, cst);
 }
 }

 SwitchList cases = getAuxCases();
 ArrayList<Constant> initValues = getInitValues();
 boolean canThrow = rop.canThrow();

 blockCanThrow |= canThrow;

 if (cases != null) {
 if (cases.size() == 0) {
 // It’s a default-only switch statement. It can happen!
 insn = new PlainInsn(Rops.GOTO, pos, null,

pa-1435314 24

’520 Patent Infringed By
 RegisterSpecList.EMPTY);
 primarySuccessorIndex = 0;
 } else {
 IntList values = cases.getValues();
 insn = new SwitchInsn(rop, pos, dest, sources, values);
 primarySuccessorIndex = values.size();
 }
 } else if (ropOpcode == RegOps.RETURN) {
 /*
 * Returns get turned into the combination of a move (if
 * non-void and if the return doesn’t already mention
 * register 0) and a goto (to the return block).
 */
 if (sources.size() != 0) {
 RegisterSpec source = sources.get(0);
 TypeBearer type = source.getTypeBearer();
 if (source.getReg() != 0) {
 insns.add(new PlainInsn(Rops.opMove(type), pos,
 RegisterSpec.make(0, type),
 source));
 }
 }
 insn = new PlainInsn(Rops.GOTO, pos, null, RegisterSpecList.EMPTY);
 primarySuccessorIndex = 0;
 updateReturnOp(rop, pos);
 returns = true;
 } else if (cst != null) {
 if (canThrow) {
 insn =
 new ThrowingCstInsn(rop, pos, sources, catches, cst);
 catchesUsed = true;
 primarySuccessorIndex = catches.size();
 } else {
 insn = new PlainCstInsn(rop, pos, dest, sources, cst);

pa-1435314 25

’520 Patent Infringed By
 }
 } else if (canThrow) {
 insn = new ThrowingInsn(rop, pos, sources, catches);
 catchesUsed = true;
 if (opcode == ByteOps.ATHROW) {
 /*
 * The op athrow is the only one where it’s possible
 * to have non-empty successors and yet not have a
 * primary successor.
 */
 primarySuccessorIndex = -1;
 } else {
 primarySuccessorIndex = catches.size();
 }
 } else {
 insn = new PlainInsn(rop, pos, dest, sources);
 }

 insns.add(insn);

 if (moveResult != null) {
 insns.add(moveResult);
 }

 /*
 * If initValues is non-null, it means that the parser has
 * seen a group of compatible constant initialization
 * bytecodes that are applied to the current newarray. The
 * action we take here is to convert these initialization
 * bytecodes into a single fill-array-data ROP which lays out
 * all the constant values in a table.
 */
 if (initValues != null) {
 extraBlockCount++;

pa-1435314 26

’520 Patent Infringed By
 insn = new FillArrayDataInsn(Rops.FILL_ARRAY_DATA, pos,
 RegisterSpecList.make(moveResult.getResult()), initValues,
 cst);
 insns.add(insn);
 }
 }

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java.

See, e.g., dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java:

 /*
 * Try to match the array initialization idiom. For example, if the
 * subsequent code is initializing an int array, we are expecting the
 * following pattern repeatedly:
 * dup
 * push index
 * push value
 * *astore
 *
 * where the index value will be incrimented sequentially from 0 up.
 */
 int nInit = 0;
 int curOffset = offset+2;
 int lastOffset = curOffset;
 ArrayList<Constant> initVals = new ArrayList<Constant>();

 if (arrayLength != 0) {
 while (true) {
 boolean punt = false;

 // First check if the next bytecode is dup
 int nextByte = bytes.getUnsignedByte(curOffset++);
 if (nextByte != ByteOps.DUP)

pa-1435314 27

’520 Patent Infringed By
 break;

 // Next check if the expected array index is pushed to the stack
 parseInstruction(curOffset, constantVisitor);
 if (constantVisitor.length == 0 ||
 !(constantVisitor.cst instanceof CstInteger) ||
 constantVisitor.value != nInit)
 break;

 // Next, fetch the init value and record it
 curOffset += constantVisitor.length;

 // Next find out what kind of constant is pushed onto the stack
 parseInstruction(curOffset, constantVisitor);
 if (constantVisitor.length == 0 ||
 !(constantVisitor.cst instanceof CstLiteralBits))
 break;

 curOffset += constantVisitor.length;
 initVals.add(constantVisitor.cst);

 nextByte = bytes.getUnsignedByte(curOffset++);
 // Now, check if the value is stored to the array properly
 switch (value) {
 case ByteOps.NEWARRAY_BYTE:
 case ByteOps.NEWARRAY_BOOLEAN: {
 if (nextByte != ByteOps.BASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_CHAR: {
 if (nextByte != ByteOps.CASTORE) {
 punt = true;

pa-1435314 28

’520 Patent Infringed By
 }
 break;
 }
 case ByteOps.NEWARRAY_DOUBLE: {
 if (nextByte != ByteOps.DASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_FLOAT: {
 if (nextByte != ByteOps.FASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_SHORT: {
 if (nextByte != ByteOps.SASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_INT: {
 if (nextByte != ByteOps.IASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_LONG: {
 if (nextByte != ByteOps.LASTORE) {
 punt = true;
 }
 break;
 }
 default:

pa-1435314 29

’520 Patent Infringed By
 punt = true;
 break;
 }
 if (punt) {
 break;
 }
 lastOffset = curOffset;
 nInit++;
 }
 }

 /*
 * For singleton arrays it is still more economical to
 * generate the aput.
 */
 if (nInit < 2 || nInit != arrayLength) {
 visitor.visitNewarray(offset, 2, type, null);
 return 2;
 } else {
 visitor.visitNewarray(offset, lastOffset - offset, type, initVals);
 return lastOffset - offset;
 }
 }

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java.

See also:

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;
dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and
dalvik/vm/interp/Interp.c.

interpreting
the
instruction by
a virtual

The Dalvik virtual machine interprets the instruction to perform the static initialization of the array. This process is
described, for example, in the Dalvik Video at time 29:50-32:00 and Dalvik Presentation slides 41-45.

See also:

pa-1435314 30

’520 Patent Infringed By
machine to
perform the
static
initialization
of the array.

/*
 * Fill the array with predefined constant values.
 *
 * Returns true if job is completed, otherwise false to indicate that
 * an exception has been thrown.
 */
bool dvmInterpHandleFillArrayData(ArrayObject* arrayObj, const u2* arrayData)
{
 u2 width;
 u4 size;

 if (arrayObj == NULL) {
 dvmThrowException(“Ljava/lang/NullPointerException;”, NULL);
 return false;
 }

 /*
 * Array data table format:
 * ushort ident = 0x0300 magic value
 * ushort width width of each element in the table
 * uint size number of elements in the table
 * ubyte data[size*width] table of data values (may contain a single-byte
 * padding at the end)
 *
 * Total size is 4+(width * size + 1)/2 16-bit code units.
 */
 if (arrayData[0] != kArrayDataSignature) {
 dvmThrowException(“Ljava/lang/InternalError;”, “bad array data magic”);
 return false;
 }

 width = arrayData[1];
 size = arrayData[2] | (((u4)arrayData[3]) << 16);

pa-1435314 31

’520 Patent Infringed By
 if (size > arrayObj->length) {
 dvmThrowException(“Ljava/lang/ArrayIndexOutOfBoundsException;”, NULL);
 return false;
 }
 copySwappedArrayData(arrayObj->contents, &arrayData[4], size, width);
 return true;
}

/*
 * Find the concrete method that corresponds to “methodIdx”. The code in
 * “method” is executing invoke-method with “thisClass” as its first argument.
 *
 * Returns NULL with an exception raised on failure.
 */
Method* dvmInterpFindInterfaceMethod(ClassObject* thisClass, u4 methodIdx,
 const Method* method, DvmDex* methodClassDex)
{
 Method* absMethod;
 Method* methodToCall;
 int i, vtableIndex;

 /*
 * Resolve the method. This gives us the abstract method from the
 * interface class declaration.
 */
 absMethod = dvmDexGetResolvedMethod(methodClassDex, methodIdx);
 if (absMethod == NULL) {
 absMethod = dvmResolveInterfaceMethod(method->clazz, methodIdx);
 if (absMethod == NULL) {
 LOGV(“+ unknown method\n”);
 return NULL;
 }
 }

pa-1435314 32

’520 Patent Infringed By
 /* make sure absMethod->methodIndex means what we think it means */
 assert(dvmIsAbstractMethod(absMethod));

 /*
 * Run through the “this” object’s iftable. Find the entry for
 * absMethod’s class, then use absMethod->methodIndex to find
 * the method’s entry. The value there is the offset into our
 * vtable of the actual method to execute.
 *
 * The verifier does not guarantee that objects stored into
 * interface references actually implement the interface, so this
 * check cannot be eliminated.
 */
 for (i = 0; i < thisClass->iftableCount; i++) {
 if (thisClass->iftable[i].clazz == absMethod->clazz)
 break;
 }
 if (i == thisClass->iftableCount) {
 /* impossible in verified DEX, need to check for it in unverified */
 dvmThrowException(“Ljava/lang/IncompatibleClassChangeError;”,
 “interface not implemented”);
 return NULL;
 }

 assert(absMethod->methodIndex <
 thisClass->iftable[i].clazz->virtualMethodCount);

 vtableIndex =
 thisClass->iftable[i].methodIndexArray[absMethod->methodIndex];
 assert(vtableIndex >= 0 && vtableIndex < thisClass->vtableCount);
 methodToCall = thisClass->vtable[vtableIndex];

#if 0
 /* this can happen when there’s a stale class file */

pa-1435314 33

’520 Patent Infringed By
 if (dvmIsAbstractMethod(methodToCall)) {
 dvmThrowException(“Ljava/lang/AbstractMethodError;”,
 “interface method not implemented”);
 return NULL;
 }
#else
 assert(!dvmIsAbstractMethod(methodToCall) ||
 methodToCall->nativeFunc != NULL);
#endif

 LOGVV(“+++ interface=%s.%s concrete=%s.%s\n”,
 absMethod->clazz->descriptor, absMethod->name,
 methodToCall->clazz->descriptor, methodToCall->name);
 assert(methodToCall != NULL);

 return methodToCall;
}

dalvik/vm/interp/Interp.c.

‘520 Patent Infringed By

2. The method of claim 1 wherein
the storing step includes step of:

See Claim 1, supra.

storing a constant pool entry into
the constant pool.

The Android dx tool forms a shared table of the duplicated elements from the plurality of class
files. This process is explained in the Dalvik Video at time 7:20–9:25 and Dalvik Presentation,
slides 15-20.

The Dalvik Presentation shows the elements of the class files combining into a shared constant

pa-1435314 34

‘520 Patent Infringed By
pool (shared tables) in the .dex file.

(Dalvik Presentation, slide 15)

In the illustration above, each of “string_ids,” “type_ids” and “method_ids” are examples of the
shared tables (or, equivalently, a collective shared table).

In the Android source code, see also generally:

“Interfaces and implementation of things related to the constant pool.

PACKAGES USED:

* com.android.dx.rop.type

pa-1435314 35

‘520 Patent Infringed By

* com.android.dx.util”

dalvik/dx/src/com/android/dx/rop/cst/package.html.

See also:

dalvik/dx/src/com/android/dx/dex/file/DexFile.java,

dalvik/dx/src/com/android/dx/dex/file/TypeIdsSection.java

dalvik/dx/src/com/android/dx/dex/file/TypeIdItem.java

from Android 2.2.

‘520 Patent Infringed By

3. The method of claim 1 wherein
the play executing step includes
the steps of:

See claim 1, supra. The class files are stack based, and as such, the dx tool play executes java
bytecode stacks, thereby performing stack manipulation on the allocated stack as recited.

allocating a stack; See claim 1, supra. The class files are stack based, and as such, the dx tool allocates a stack for
play execution.

See also, e.g., http://developer.android.com/guide/basics/what-is-android.html:

Android Runtime

Android includes a set of core libraries that provides most of the functionality available in
the core libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik
virtual machine. Dalvik has been written so that a device can run multiple VMs efficiently.
The Dalvik VM executes files in the Dalvik Executable (.dex) format which is optimized
for minimal memory footprint. The VM is register-based, and runs classes compiled by a

pa-1435314 36

‘520 Patent Infringed By
Java language compiler that have been transformed into the .dex format by the included
“dx” tool.

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and

dalvik/vm/interp/Interp.c.

Android also includes the dx tool, which includes converting/translating .class files to .dex files
(slides 15-20, 44) and adding elements (e.g., static values) to a static array to initialize the data
(slide 45). See, e.g., time 29:50-32:00 and Dalvik Presentation, slides 15-20, 41-45.

reading a byte code from the clinit
method that manipulates the stack;
and

See claim 1, supra. The dx tool reads byte code from the clinit method that manipulates the
stack.

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and

dalvik/vm/interp/Interp.c.

Android also includes the dx tool, which includes converting/translating .class files to .dex files
(slides 15-20, 44) and adding elements (e.g., static values) to a static array to initialize the data
(slide 45). See, e.g., time 29:50-32:00 and Dalvik Presentation, slides 15-20, 41-45.

performing the stack manipulation
on the allocated stack.

See claim 1, supra. The dx tool performs stack manipulation of the allocated stack.

See also:

pa-1435314 37

‘520 Patent Infringed By

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and

dalvik/vm/interp/Interp.c.

Android also includes the dx tool, which includes converting/translating .class files to .dex files
(slides 15-20, 44) and adding elements (e.g., static values) to a static array to initialize the data
(slide 45). See, e.g., time 29:50-32:00 and Dalvik Presentation, slides 15-20, 41-45.

‘520 Patent Infringed By

4. The method of claim 1 wherein
the play executing step includes
the steps of:

See claim 1, supra. The dx tool play executes java bytecode stacks, including allocating
variables (which are registers), reading byte code from the clinit method, manipulating local
variables, and manipulating the local variables on the allocated variables.

allocating variables; See claim 1, supra. The dx tool allocates variables (which are registers).

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and

dalvik/vm/interp/Interp.c.

Android also includes the dx tool, which includes converting/translating .class files to .dex files
(slides 15-20, 44) and adding elements (e.g., static values) to a static array to initialize the data
(slide 45). See, e.g., time 29:50-32:00 and Dalvik Presentation, slides 15-20, 41-45.

reading a byte code from the clinit
method that manipulates local

See claim 1, supra. The dx tool reads byte code from the clinit method that manipulates local

pa-1435314 38

‘520 Patent Infringed By
variables of the clinit method; and variables.

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and

dalvik/vm/interp/Interp.c.

Android also includes the dx tool, which includes converting/translating .class files to .dex files
(slides 15-20, 44) and adding elements (e.g., static values) to a static array to initialize the data
(slide 45). See, e.g., time 29:50-32:00 and Dalvik Presentation, slides 15-20, 41-45.

performing the manipulation of the
local variables on the allocated
variables.

See claim 1 supra. The dx tool performs the manipulation of the local variables on the allocated
variables.

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;

dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and

dalvik/vm/interp/Interp.c.

Android also includes the dx tool, which includes converting/translating .class files to .dex files
(slides 15-20, 44) and adding elements (e.g., static values) to a static array to initialize the data
(slide 45). See, e.g., time 29:50-32:00 and Dalvik Presentation, slides 15-20, 41-45.

‘520 Patent Infringed By

pa-1435314 39

‘520 Patent Infringed By

6. A method
in a data
processing
system,
comprising
the steps of:

Android and its development environment are both stored on computer-readable media containing instructions for
controlling a data processing system to perform a method (Android is stored on a computer usable medium, e.g., RAM
of a device or computer running Android). This analysis applies the claimed methods to the conversion of .class
bytecodes into .dex bytecodes.

An Android runtime environment executes instructions created by operation of the method of claim 6.

See Google I/O 2008 Video entitled “Google I/O 2008 - Dalvik Virtual Machine Internals,” presented by Dan
Bornstein, http://developer.android.com/videos/index.html#v=ptjedOZEXPM (“Dalvik Video”), at time 1:50 to 2:30,
which describes that instructions are translated from Java (.class bytecode) to a form (.dex bytecode) executable or run
by the dalvik VM.

See also Google I/O 2008 Presentation Slides, entitled, “Dalvik Virtual Machine Internals, Google I/O 2008,” presented
by Dan Bornstein (“Dalvik Presentation”) at slides 5-7, available at
http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf?attredirects=0.

receiving
code to be
run on a
processing
component to
perform an
operation;

The Android dx tool receives Java .class files containing bytecode instructions.

“dx

The dx tool lets you generate Android bytecode from .class files. The tool converts target files and/or directories
to Dalvik executable format (.dex) files, so that they can run in the Android environment.”

Android Developer Tools available at http://developer.android.com/guide/developing/tools/othertools.html

play
executing the
code without
running the
code on the
processing

The dx tool steps through and translates the Java .class files to simulate execution of the bytecode without running the
code on the processing component to identify its operation if it were run on the processing component. For example,
Android does not run Java .class files directly; instead, Java .class files are identified and translated into .dex files using
the dx utility. See, e.g., dalvik\dx\src\com\android\dx\dex\cf\CfTranslator.java.

The Dalvik Video further describes source .class files (slides 41 and 42) for initialization, which includes

pa-1435314 40

‘520 Patent Infringed By
component to
identify the
operation if
the code were
run by the
processing
component;
and

converting/translating to .dex files (slides 15-20, 44) and adding elements to a static array to initialize the data (slide
45). See, e.g., time 29:50-32:00, and Dalvik Presentation slides 15-20, 41-45.

 (Slide 41) (Slide 42)

pa-1435314 41

‘520 Patent Infringed By

 (Slide 43) (Slide 44)

See e.g., dalvik/dx/src/com/android/dx/cf/code/Simulator.java:

/**
 * Class which knows how to simulate the effects of executing bytecode.
 *
 * <p>Note: This class is not thread-safe. If multiple threads
 * need to use a single instance, they must synchronize access explicitly
 * between themselves.</p>
 */
public class Simulator {
 /**
 * {@code non-null;} canned error message for local variable
 * table mismatches
 */
 private static final String LOCAL_MISMATCH_ERROR =
 “This is symptomatic of .class transformation tools that ignore “ +
 “local variable information.”;

 /** {@code non-null;} machine to use when simulating */
 private final Machine machine;

 /** {@code non-null;} array of bytecode */
 private final BytecodeArray code;

 /** {@code non-null;} local variable information */
 private final LocalVariableList localVariables;

 /** {@code non-null;} visitor instance to use */
 private final SimVisitor visitor;

 /**

pa-1435314 42

‘520 Patent Infringed By
 * Constructs an instance.
 *
 * @param machine {@code non-null;} machine to use when simulating
 * @param method {@code non-null;} method data to use
 */
 public Simulator(Machine machine, ConcreteMethod method) {
 if (machine == null) {
 throw new NullPointerException(“machine == null”);
 }

 if (method == null) {
 throw new NullPointerException(“method == null”);
 }

 this.machine = machine;
 this.code = method.getCode();
 this.localVariables = method.getLocalVariables();
 this.visitor = new SimVisitor();
 }

 /**
 * Simulates the effect of executing the given basic block. This modifies
 * the passed-in frame to represent the end result.
 *
 * @param bb {@code non-null;} the basic block
 * @param frame {@code non-null;} frame to operate on
 */
 public void simulate(ByteBlock bb, Frame frame) {
 int end = bb.getEnd();

 visitor.setFrame(frame);

 try {
 for (int off = bb.getStart(); off < end; /*off*/) {

pa-1435314 43

‘520 Patent Infringed By
 int length = code.parseInstruction(off, visitor);
 visitor.setPreviousOffset(off);
 off += length;
 }
 } catch (SimException ex) {
 frame.annotate(ex);
 throw ex;
 }
 }

 /**
 * Simulates the effect of the instruction at the given offset, by
 * making appropriate calls on the given frame.
 *
 * @param offset {@code >= 0;} offset of the instruction to simulate
 * @param frame {@code non-null;} frame to operate on
 * @return the length of the instruction, in bytes
 */
 public int simulate(int offset, Frame frame) {
 visitor.setFrame(frame);
 return code.parseInstruction(offset, visitor);
 }

 /**
 * Constructs an “illegal top-of-stack” exception, for the stack
 * manipulation opcodes.
 */
 private static SimException illegalTos() {
 return new SimException(“stack mismatch: illegal “ +
 “top-of-stack for opcode”);
 }

 /**
 * Bytecode visitor used during simulation.

pa-1435314 44

‘520 Patent Infringed By
 */
 private class SimVisitor implements BytecodeArray.Visitor {
 /**
 * {@code non-null;} machine instance to use (just to avoid excessive
 * cross-object field access)
 */
 private final Machine machine;

 /**
 * {@code null-ok;} frame to use; set with each call to
 * {@link Simulator#simulate}
 */
 private Frame frame;

 /** offset of the previous bytecode */
 private int previousOffset;

 /**
 * Constructs an instance.
 */
 public SimVisitor() {
 this.machine = Simulator.this.machine;
 this.frame = null;
 }

dalvik/dx/src/com/android/dx/cf/code/Simulator.java.

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;
dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and dalvik/vm/interp/Interp.c.

creating an
instruction

The dx tool rewrites the .class bytecodes into .dex bytecodes (stored in .dex files) for the processing component to
perform the identified operation.

pa-1435314 45

‘520 Patent Infringed By
for the
processing
component to
perform the
operation.

Android Developer Tools available at http://developer.android.com/guide/developing/tools/index.html.

“dx

The dx tool lets you generate Android bytecode from .class files. The tool converts target files and/or directories
to Dalvik executable format (.dex) files, so that they can run in the Android environment.”

Android Developer Tools available at http://developer.android.com/guide/developing/tools/othertools.html.

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;
dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and dalvik/vm/interp/Interp.c.

See, e.g., dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java:
 /*
 * Try to match the array initialization idiom. For example, if the
 * subsequent code is initializing an int array, we are expecting the
 * following pattern repeatedly:
 * dup
 * push index
 * push value
 * *astore
 *

pa-1435314 46

‘520 Patent Infringed By
 * where the index value will be incrimented sequentially from 0 up.
 */
 int nInit = 0;
 int curOffset = offset+2;
 int lastOffset = curOffset;
 ArrayList<Constant> initVals = new ArrayList<Constant>();

 if (arrayLength != 0) {
 while (true) {
 boolean punt = false;

 // First check if the next bytecode is dup
 int nextByte = bytes.getUnsignedByte(curOffset++);
 if (nextByte != ByteOps.DUP)
 break;

 // Next check if the expected array index is pushed to the stack
 parseInstruction(curOffset, constantVisitor);
 if (constantVisitor.length == 0 ||
 !(constantVisitor.cst instanceof CstInteger) ||
 constantVisitor.value != nInit)
 break;

 // Next, fetch the init value and record it
 curOffset += constantVisitor.length;

 // Next find out what kind of constant is pushed onto the stack
 parseInstruction(curOffset, constantVisitor);
 if (constantVisitor.length == 0 ||
 !(constantVisitor.cst instanceof CstLiteralBits))
 break;

 curOffset += constantVisitor.length;
 initVals.add(constantVisitor.cst);

pa-1435314 47

‘520 Patent Infringed By

 nextByte = bytes.getUnsignedByte(curOffset++);
 // Now, check if the value is stored to the array properly
 switch (value) {
 case ByteOps.NEWARRAY_BYTE:
 case ByteOps.NEWARRAY_BOOLEAN: {
 if (nextByte != ByteOps.BASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_CHAR: {
 if (nextByte != ByteOps.CASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_DOUBLE: {
 if (nextByte != ByteOps.DASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_FLOAT: {
 if (nextByte != ByteOps.FASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_SHORT: {
 if (nextByte != ByteOps.SASTORE) {
 punt = true;
 }
 break;

pa-1435314 48

‘520 Patent Infringed By
 }
 case ByteOps.NEWARRAY_INT: {
 if (nextByte != ByteOps.IASTORE) {
 punt = true;
 }
 break;
 }
 case ByteOps.NEWARRAY_LONG: {
 if (nextByte != ByteOps.LASTORE) {
 punt = true;
 }
 break;
 }
 default:
 punt = true;
 break;
 }
 if (punt) {
 break;
 }
 lastOffset = curOffset;
 nInit++;
 }
 }

 /*
 * For singleton arrays it is still more economical to
 * generate the aput.
 */
 if (nInit < 2 || nInit != arrayLength) {
 visitor.visitNewarray(offset, 2, type, null);
 return 2;
 } else {
 visitor.visitNewarray(offset, lastOffset - offset, type, initVals);

pa-1435314 49

‘520 Patent Infringed By
 return lastOffset - offset;
 }
 }

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java.

See also:

dalvik/dx/src/com/android/dx/cf/code/Simulator.java;
dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and
dalvik/vm/interp/Interp.c.

‘520 Patent Infringed By

7. The method of claim 6 wherein
the operation initializes a data
structure, and wherein the play
executing step includes the step of:

The dx tool operates to initialize a data structure by converting the target files to .dex files. See,
e.g., dalvik\dx\src\com\android\dx\dex\cf\CfTranslator.java.

play executing the code to identify
the initialization of the data
structure.

The dx tool further play executes the code to identify the initialization of the data structure by
stepping through the .class files. See e.g., dalvik\dx\src\com\android\dx\dex\cf\CfTranslator.java.

See e.g., dalvik/dx/src/com/android/dx/cf/code/Simulator.java:

/**
 * Class which knows how to simulate the effects of executing bytecode.
 *
 * <p>Note: This class is not thread-safe. If multiple threads
 * need to use a single instance, they must synchronize access explicitly
 * between themselves.</p>
 */
public class Simulator {

pa-1435314 50

‘520 Patent Infringed By
 /**
 * {@code non-null;} canned error message for local variable
 * table mismatches
 */
 private static final String LOCAL_MISMATCH_ERROR =
 “This is symptomatic of .class transformation tools that ignore “ +
 “local variable information.”;

 /** {@code non-null;} machine to use when simulating */
 private final Machine machine;

 /** {@code non-null;} array of bytecode */
 private final BytecodeArray code;

 /** {@code non-null;} local variable information */
 private final LocalVariableList localVariables;

 /** {@code non-null;} visitor instance to use */
 private final SimVisitor visitor;

 /**
 * Constructs an instance.
 *
 * @param machine {@code non-null;} machine to use when simulating
 * @param method {@code non-null;} method data to use
 */
 public Simulator(Machine machine, ConcreteMethod method) {
 if (machine == null) {
 throw new NullPointerException(“machine == null”);
 }

 if (method == null) {
 throw new NullPointerException(“method == null”);
 }

pa-1435314 51

‘520 Patent Infringed By

 this.machine = machine;
 this.code = method.getCode();
 this.localVariables = method.getLocalVariables();
 this.visitor = new SimVisitor();
 }

 /**
 * Simulates the effect of executing the given basic block. This modifies
 * the passed-in frame to represent the end result.
 *
 * @param bb {@code non-null;} the basic block
 * @param frame {@code non-null;} frame to operate on
 */
 public void simulate(ByteBlock bb, Frame frame) {
 int end = bb.getEnd();

 visitor.setFrame(frame);

 try {
 for (int off = bb.getStart(); off < end; /*off*/) {
 int length = code.parseInstruction(off, visitor);
 visitor.setPreviousOffset(off);
 off += length;
 }
 } catch (SimException ex) {
 frame.annotate(ex);
 throw ex;
 }
 }

 /**
 * Simulates the effect of the instruction at the given offset, by
 * making appropriate calls on the given frame.

pa-1435314 52

‘520 Patent Infringed By
 *
 * @param offset {@code >= 0;} offset of the instruction to simulate
 * @param frame {@code non-null;} frame to operate on
 * @return the length of the instruction, in bytes
 */
 public int simulate(int offset, Frame frame) {
 visitor.setFrame(frame);
 return code.parseInstruction(offset, visitor);
 }

 /**
 * Constructs an “illegal top-of-stack” exception, for the stack
 * manipulation opcodes.
 */
 private static SimException illegalTos() {
 return new SimException(“stack mismatch: illegal “ +
 “top-of-stack for opcode”);
 }

 /**
 * Bytecode visitor used during simulation.
 */
 private class SimVisitor implements BytecodeArray.Visitor {
 /**
 * {@code non-null;} machine instance to use (just to avoid excessive
 * cross-object field access)
 */
 private final Machine machine;

 /**
 * {@code null-ok;} frame to use; set with each call to
 * {@link Simulator#simulate}
 */
 private Frame frame;

pa-1435314 53

‘520 Patent Infringed By

 /** offset of the previous bytecode */
 private int previousOffset;

 /**
 * Constructs an instance.
 */
 public SimVisitor() {
 this.machine = Simulator.this.machine;
 this.frame = null;
 }

dalvik/dx/src/com/android/dx/cf/code/Simulator.java.

See also:

dalvik/dx/src/com/android/dx/cf/code/BytecodeArray.java;
dalvik/dx/src/com/android/dx/cf/code/RopperMachine.java; and
dalvik/vm/interp/Interp.c.

‘520 Patent Infringed By

8. The method of claim 6 wherein
the operation statically initializes
an array and wherein the play
executing step includes the step of:

See claim 1, supra.

play executing the code to identify
the static initialization of the array.

See claim 1, supra.

pa-1435314 54

‘520 Patent Infringed By

9. The
method of
claim 6
further
including the
step of:

See claim 1, supra.

running the
created
instruction on
the
processing
component to
perform the
operation.

An Android runtime environment executes instructions created by operation of the method of claim 6.

See Google I/O 2008 Video entitled “Google I/O 2008 - Dalvik Virtual Machine Internals,” presented by Dan
Bornstein, http://developer.android.com/videos/index.html#v=ptjedOZEXPM (“Dalvik Video”), at time 1:50 to 2:30,
which describes that instructions are translated from Java (.class bytecode) to a form (.dex bytecode) executable or run
by the dalvik VM.

See also Google I/O 2008 Presentation Slides, entitled, “Dalvik Virtual Machine Internals, Google I/O 2008,” presented
by Dan Bornstein (“Dalvik Presentation”) at slides 5-7, available at
http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf?attredirects=0.

pa-1435314 55

‘520 Patent Infringed By

(Dalvik Presentation, slide 5)

‘520 Patent Infringed By

10. The method of claim 6 further
including the step of:

interpreting the created instruction
by a virtual machine to perform the
operation.

Android’s dalvik virtual machine interprets the .dex bytecode instructions (stored in .dex files)
created by operation of the method of claim 6. Dalvik Video at time 1:50 to 2:30 describes that
instructions are translated from Java (.class bytecode) to a form (.dex bytecode) executable or run
by the dalvik VM. See also, Dalvik Presentation, slides 5-7.

pa-1435314 56

‘520 Patent Infringed By

(Dalvik Presentation, slide 5)

See also claim 1, supra.

‘520 Patent Infringed By

11. The method of claim 6 wherein
the operation has an effect on
memory, and wherein the play
executing step includes the step of:

The operation of the instruction by the Dalvik VM has an effect on memory. This is explained in
the Dalvik Video at time 13:40-15:45 and Dalvik Presentation, slides 25-27.

pa-1435314 57

‘520 Patent Infringed By

(Dalvik Presentation, Slide 26)

dx tool maps in .dex files and the Zygote creates heap, dirty memory for classes/methods (when
commanded to start application), starts fork, and makes heap of objects, library dex structure, and
shares memory with the zygote. Note that the child processes in Slide 26 (“Maps,” “Browser,”
and “Home”), have references to the memory space of the Zygote, as shown by the green arrows.
See also corresponding Dalvik Video at 13:50-15:20. In the above example, the “Maps live code
and heap”, “Browser live code and heap” and “Home live code and heap” are stored as private
dirty memory, defined as:

pa-1435314 58

‘520 Patent Infringed By

(Dalvik Presentation, Slides 23 and 27)

play executing the code to identify
the effect on the memory.

See CfTranslator.java, which updates statistics on .dex files. This method may be used to
identify the effect on the memory of optimizing methods.

pa-1435314 59

‘520 Patent Infringed By

‘520 Patent Infringed By

12. A data processing system
comprising:

Any device or computer which can run the Android dx tool.

pa-1435314 60

‘520 Patent Infringed By

a storage device containing: A storage memory, e.g., RAM, of the device or computer running Android.

a program with source code that
statically initializes a data
structure; and

See claim 1, supra.

class files, wherein one of the class
files contains a clinit method that
statically initializes the data
structure;

See claim 1, supra.

a memory containing: A storage memory, e.g., RAM, storing Android.

a compiler for compiling the
program and generating the class
files; and

See claim 1, supra.

a preloader for consolidating the
class files, for play executing the
clinit method to determine the
static initialization the clinit
method performs, and for creating
an instruction to perform the static
initialization; and

See claim 1, supra.

a processor for running the
compiler and the preloader.

The processor of the device running Android runs the dx tool.

‘520 Patent Infringed By

13. The data processing system of
claim 12 wherein the preloader
includes a mechanism for
generating an output file

See claim 1, supra.

pa-1435314 61

‘520 Patent Infringed By
containing the created instruction.

‘520 Patent Infringed By

14. The data processing system of
claim 13 wherein the memory
further includes a virtual machine
that interprets the created
instruction to perform the static
initialization.

See claim 1, supra.

‘520 Patent Infringed By

15. The data processing system of
claim 12, wherein the data
structure is an array.

See claim 1, supra.

‘520 Patent Infringed By

16. The data processing system of
claim 12 wherein the clinit method
has byte codes that statically
initialize the data structure.

See claim 1, supra.

‘520 Patent Infringed By

17. The data processing system of
claim 12 wherein the created

See claim 2, supra.

pa-1435314 62

‘520 Patent Infringed By
instruction includes an entry into a
constant pool.

‘520 Patent Infringed By

18. A computer-readable medium
containing instructions for
controlling a data processing
system to perform a method,
comprising the steps of:

See claim 6, supra.

receiving code to be run on a
processing component to perform
an operation;

See claim 6, supra.

simulating execution of the code
without running the code on the
processing component to identify
the operation if the code were run
by the processing component; and

See claim 6, supra.

creating an instruction for the
processing component to perform
the operation.

See claim 1, supra.

‘520 Patent Infringed By

19. The computer-readable
medium of claim 18 wherein the
operation initializes a data
structure, and wherein the
simulating step includes the step

See claim 7, supra.

pa-1435314 63

‘520 Patent Infringed By
of:

simulating execution of the code to
identify the initialization of the
data structure.

See claim 7, supra.

‘520 Patent Infringed By

20. The computer-readable
medium of claim 18 wherein the
operation statically initializes an
array and wherein the simulating
step includes the step of:

See claims 1 and 8, supra.

simulating execution of the code to
identify the static initialization of
the array.

See claims 1 and 8, supra.

‘520 Patent Infringed By

21. The computer-readable
medium of claim 18 further
including the step of:

See claim 9, supra.

running the created instruction on
the processing component to
perform the operation.

See claim 9, supra.

‘520 Patent Infringed By

pa-1435314 64

‘520 Patent Infringed By

22. The computer-readable
medium of claim 18 further
including the step of:

See claim 10, supra.

interpreting the created instruction
by a virtual machine to perform the
operation.

See claim 10, supra.

‘520 Patent Infringed By

23. The computer-readable
medium of claim 18 wherein the
operation has an effect on memory,
and wherein the simulating step
includes the step of:

See claim 11, supra.

simulating execution of the code to
identify the effect on the memory.

See claim 11, supra.

pa-1435310 1

EXHIBIT G
Preliminary Infringement Contentions for US 7,426,720 (’720 Patent)

NOTE: The infringement evidence cited below is exemplary and not exhaustive. The cited
examples are taken from Android 2.2 and current versions of Google’s Android websites.
Oracle’s infringement contentions apply to all versions of Android having similar or nearly
identical code or documentation, including past and expected future releases. Although Oracle’s
investigation is ongoing, the ’720 patent is infringed by all versions of Android from Oct. 21,
2008 to the present, including Android 1.1, 1.5 (“Cupcake”), 1.6 (“Donut”), 2.0/2.1 (“Éclair”),
and 2.2 (“Froyo”).

The cited source code examples are taken from http://android.git.kernel.org/. The citations are
shortened and mirror the file paths shown in http://android.git.kernel.org/. For example,
“dalvik\vm\native\InternalNative.c” maps to “[platform/dalvik.git] / vm / native /
InternalNative.c” (accessible at
http://android.git.kernel.org/?p=platform/dalvik.git;a=blob;f=vm/native/InternalNative.c).

It appears that the Android git source code repository (accessible through
http://android.git.kernel.org/) was created on or around Oct. 21, 2008. As such, the list of
infringing Android versions may be expanded based on what Oracle learns about earlier Android
versions.

The ’720 Patent Infringed By
1.pre. A system
for dynamic
preloading of
classes through
memory space
cloning of a master
runtime system
process,
comprising:

A system running Android for dynamic preloading of classes through
memory space cloning of a master runtime system process. An example of
a master runtime system process is a zygote process, which creates a
Dalvik virtual machine instance and which forks upon request to create
new Dalvik virtual machine instances for various applications.

1.a. A processor; A processor of a computer or smartphone running Android.
1.b. A memory A memory of a computer or smartphone running Android.
1.c. a class
preloader to obtain
a representation of
at least one class
from a source
definition provided
as object-oriented
program code;

Android includes a class preloader to obtain a representation of at least one
class from a source definition provided as object-oriented program code.

See Presentation slides corresponding to the Dalvik Video: “Dalvik Virtual
Machine Internals, Google I/O 2008,” by Dan Bornstein,
http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-
Presentation-Of-Dalvik-VM-Internals.pdf (“Dalvik Presentation”), at slide
25; and
corresponding Video: “Google I/O 2008 - Dalvik Virtual Machine
Internals,” by Dan Bornstein,
http://developer.android.com/videos/index.html#v=ptjedOZEXPM
(“Dalvik Video”), at time 13:50-15:20.

pa-1435310 2

The ’720 Patent Infringed By

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into
existence fairly early on during the boot of an Android system and its job is
to load up those classes that we believe will be used across many
applications. So it goes and creates, it goes and creates a heap, it goes and
creates that dirty memory for all, to represent those classes and methods
….”

See also Presentation slides corresponding to the Android Video:
“Anatomy and Physiology of an Android, Google I/O 2008,” by Patrick
Brady, http://sites.google.com/site/io/anatomy--physiology-of-an-
android/Android-Anatomy-GoogleIO.pdf (“Android Presentation”), at
slide 82; and
corresponding Video: “Google I/O 2008 – Anatomy and Physiology of an
Android,” by Patrick Brady,
http://developer.android.com/videos/index.html#v=G-36noTCaiA
(“Android Video”), at time 43:15-49:00.

(Android Presentation, Slide 82)

Corresponding Android Video at 44:30:
“The init process starts up a really neat process called zygote. As its name

pa-1435310 3

The ’720 Patent Infringed By
implies, zygote is really just the beginning of all of the rest of the Android
platform. And so zygote is a nascent VM process that initializes a Dalvik
VM and preloads a lot of its libraries….”

Example source code files in, e.g.,
base\preloaded-classes,
base\core\java\com\android\internal\os\ZygoteInit.java

See, e.g., base\preloaded-classes.

Classes which are preloaded by com.android.internal.os.ZygoteInit.
Automatically generated by frameworks/base/tools/preload/WritePreloadedClassFile.ja
va.
MIN_LOAD_TIME_MICROS=1250
android.R$styleable
android.accounts.AccountManager
…
dalvik.system.Zygote
java.beans.PropertyChangeEvent
java.beans.PropertyChangeListener
…

See, e.g., base\core\java\com\android\internal\os\ZygoteInit.java.

/**
 * Performs Zygote process initialization. Loads and initializes
 * commonly used classes.
 *
 * Most classes only cause a few hundred bytes to be allocated, but
 * a few will allocate a dozen Kbytes (in one case, 500+K).
 */
 private static void preloadClasses() {
 final VMRuntime runtime = VMRuntime.getRuntime();

 InputStream is = ZygoteInit.class.getClassLoader().getResourceAsStream(
 PRELOADED_CLASSES);
 if (is == null) {
 Log.e(TAG, “Couldn’t find “ + PRELOADED_CLASSES + “.”);
 } else {
 Log.i(TAG, “Preloading classes...”);
 …

 try {
 BufferedReader br
 = new BufferedReader(new InputStreamReader(is), 256);

 int count = 0;
 String line;

pa-1435310 4

The ’720 Patent Infringed By
 String missingClasses = null;
 while ((line = br.readLine()) != null) {
 // Skip comments and blank lines.
 line = line.trim();
 if (line.startsWith(“#”) || line.equals(““)) {
 continue;
 }

 try {
 if (Config.LOGV) {
 Log.v(TAG, “Preloading “ + line + “...”);
 }
 Class.forName(line);
 if (Debug.getGlobalAllocSize() > PRELOAD_GC_THRESHOLD) {
 if (Config.LOGV) {
 Log.v(TAG,
 “ GC at “ + Debug.getGlobalAllocSize());
 }
 runtime.gcSoftReferences();
 runtime.runFinalizationSync();
 Debug.resetGlobalAllocSize();
 }
 count++;
 …
 }
 }
 }

1.d. a master
runtime system
process to interpret
and to instantiate
the representation
as a class
definition in a
memory space of
the master runtime
system process;

Android includes a master runtime system process to interpret and to
instantiate the representation as a class definition in a memory space of the
master runtime system process.

See

(Android Presentation, Slide 80)

Corresponding Android Video at 43:28:
“Like any Linux-based or Unix-based system, at startup, the bootloader is
gonna boot Linux and it’s gonna kick off the init process. This is similar to
how any Linux system really starts up.”

pa-1435310 5

The ’720 Patent Infringed By

(Android Presentation, Slide 81)

Corresponding Android Video at 43:41:
“The first thing init is going to do on Android is start some low level, ah,
processes called Linux daemons. And these are typically used to handle
things like low level hardware interfaces, um, and they would sit on top of
the abstraction layer and run and listen on sockets for things like USB
connections or, you know, Android Debug Bridge or ADB connections,
the Debugger connections and also the Radio Interface Layer daemon,
which will sit on top of, um, on top of the radio baseband and interface
with the baseband modem.”

(Android Presentation, Slide 82)

Corresponding Android Video at 44:25:
“Ah, after starting up the Linux daemons, and we’ll collapse those in the
corner of the screen here to save some space, the init process starts up a
really neat process called zygote. And as its name implies, zygote is really
just the beginning of all of the rest of the Android platform. And so zygote
is a nascent, ah, VM process that initializes a Dalvik VM and preloads a lot
of these libraries….”

See also

pa-1435310 6

The ’720 Patent Infringed By

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into
existence fairly early on during the boot of an Android system and its job is
to load up those classes that we believe will be used across many
applications. So it goes and creates, it goes and creates a heap, it goes and
creates that dirty memory for all, to represent those classes and methods
….”

Example source code files in
base\core\jni\AndroidRuntime.cpp,
base\cmds\app_process\app_main.cpp,
base\core\java\com\android\internal\os\ZygotInit.java

Example code call chain,
Class AppRuntime in app_main.cpp passes ZygoteInit class name to
AndroidRuntime::startVm,
AndroidRuntime::start(className) calls startVm,
AndroidRuntime::startVm calls JNI_CreateJavaVM(),
AndroidRuntime::start calls CallStaticVoidMethod(ZygoteInit
className.main)

See, e.g., base\core\java\com\android\internal\os\ZygoteInit.java.

/**
 * Startup class for the zygote process.
 *
 * Pre-initializes some classes, and then waits for commands on a UNIX domain
 * socket. Based on these commands, forks of child processes that inherit
 * the initial state of the VM.
 *
 * Please see {@link ZygoteConnection.Arguments} for documentation on the
 * client protocol.
 *

pa-1435310 7

The ’720 Patent Infringed By
 * @hide
 */
…
public static void main(String argv[]) {
 try {
 // Start profiling the zygote initialization.
 SamplingProfilerIntegration.start();
 registerZygoteSocket();
 EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
 SystemClock.uptimeMillis());
 preloadClasses();
 //cacheRegisterMaps();
 preloadResources();
 EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
 SystemClock.uptimeMillis());
 if (SamplingProfilerIntegration.isEnabled()) {
 SamplingProfiler sp = SamplingProfiler.getInstance();
 sp.pause();
 SamplingProfilerIntegration.writeZygoteSnapshot();
 sp.shutDown();
 }
 // Do an initial gc to clean up after startup
 gc();
 // If requested, start system server directly from Zygote
 if (argv.length != 2) {
 throw new RuntimeException(argv[0] + USAGE_STRING);
 }
 if (argv[1].equals(“true”)) {
 startSystemServer();
 } else if (!argv[1].equals(“false”)) {
 throw new RuntimeException(argv[0] + USAGE_STRING);
 }
 Log.i(TAG, “Accepting command socket connections”);
 if (ZYGOTE_FORK_MODE) {
 runForkMode();
 } else {
 runSelectLoopMode();
 }
 closeServerSocket();
 } catch (MethodAndArgsCaller caller) {
 caller.run();
 } catch (RuntimeException ex) {
 Log.e(TAG, “Zygote died with exception”, ex);
 closeServerSocket();
 throw ex;
 }
 }

1.e. a runtime
environment to
clone the memory
space as a child
runtime system
process responsive

Android includes a runtime environment to clone the memory space as a
child runtime system process responsive to a process request and to
execute the child runtime system process.

See

pa-1435310 8

The ’720 Patent Infringed By
to a process
request and to
execute the child
runtime system
process; and

(Android Presentation, Slide 55)

Corresponding Android Video at 33:40:
“So we’ve covered the native libraries, we’ve covered everything down to
the Linux kernel, and the real magic of the Android platform happens in
the layers above this. And that’s what we’ll go into now, starting with the
Android runtime. The Android runtime sits on top of the libraries and
Linux kernel and it provides (1) the Dalvik virtual machine and the core
libraries, here written in blue, because they are exposed through the Java
programming languages.”

(Android Presentation, Slide 56)

Corresponding Android Video at 34:04:
“So Dalvik virtual machine. Remember Android is not Linux. We don’t
have a native windowing system. All of the applications and services that
you run, will be running inside a virtual environment powered by the
Dalvik virtual machine….”

See also

pa-1435310 9

The ’720 Patent Infringed By

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies,…when it gets a
command to start up a new application, it does a normal Unix fork and
then that child process becomes that target application. And the result of
that is this.”

See also claim 1.f. below.

1.f. a copy-on-
write process
cloning mechanism
to instantiate the
child runtime
system process by
copying references
to the memory
space of the master
runtime system
process into a
separate memory
space for the child
runtime system
process, and to
defer copying of
the memory space
of the master
runtime system
process until the
child runtime
system process
needs to modify
the referenced
memory space of
the master runtime
system process.

Android includes a copy-on-write process cloning mechanism to instantiate
the child runtime system process by copying references to the memory
space of the master runtime system process into a separate memory space
for the child runtime system process, and to defer copying of the memory
space of the master runtime system process until the child runtime system
process needs to modify the referenced memory space of the master
runtime system process.

See

(Android Presentation, Slide 82)

Corresponding Android Video at 44:30:
“The init process starts up a really neat process called zygote….It uses
copy-on-write to maximize re-use and minimize footprint so that data
structures are shared and it won’t do a full copy unless some of those data
structures are to be modified.”

pa-1435310 10

The ’720 Patent Infringed By
See also

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies,…when it gets a
command to start up a new application, it does a normal Unix fork and
then that child process becomes that target application. And the result of
that is this.”

(Dalvik Presentation, Slide 26)

Corresponding Dalvik Video at 14:40:
“So the zygote, again, has made, has made this heap of objects, it’s made
this live dex structure and then each application that then starts up, instead
of having its own memory for those things, it just shares it with the zygote
and also with any other app that’s also on the system.”

See also http://developer.android.com/guide/basics/what-is-android.html.
“Android Runtime
…The Dalvik VM relies on the Linux kernel for underlying functionality
such as threading and low-level memory management.

pa-1435310 11

The ’720 Patent Infringed By

Linux Kernel
Android relies on Linux version 2.6 for core system services such as
security, memory management, process management, network stack, and
driver model. The kernel also acts as an abstraction layer between the
hardware and the rest of the software stack.”

See also, Lowe, Robert, Linux Kernel Process Management, April 15,
2005. Sample Chapter is provided courtesy of Sams,
http://www.informit.com/articles/article.aspx?p=370047&seqNum=2&rll=
1.
“Copy-on-Write
…In Linux, fork() is implemented through the use of copy-on-write pages.
Copy-on-write (or COW) is a technique to delay or altogether prevent
copying of the data. Rather than duplicate the process address space, the
parent and the child can share a single copy. The data, however, is marked
in such a way that if it is written to, a duplicate is made and each process
receives a unique copy.”

Example source code files in
libcore\dalvik\src\main\java\dalvik\system\Zygote.java,
dalvik\vm\native\dalvik_system_Zygote.c,
linux-2.6\kernel\fork.c.

See, e.g., libcore\dalvik\src\main\java\dalvik\system\Zygote.java.

 /**
 * Forks a new Zygote instance, but does not leave the zygote mode.
 * The current VM must have been started with the -Xzygote flag. The
 * new child is expected to eventually call forkAndSpecialize()
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error
 */
 native public static int fork();

 /**
 * Forks a new VM instance. The current VM must have been started
 * with the -Xzygote flag. NOTE: new instance keeps all
 * root capabilities. The new process is expected to call capset().
 *
 * @param uid the UNIX uid that the new process should setuid() to after
 * fork()ing and and before spawning any threads.
 * @param gid the UNIX gid that the new process should setgid() to after
 * fork()ing and and before spawning any threads.
 * @param gids null-ok; a list of UNIX gids that the new process should
 * setgroups() to after fork and before spawning any threads.

pa-1435310 12

The ’720 Patent Infringed By
 * @param debugFlags bit flags that enable debugging features.
 * @param rlimits null-ok an array of rlimit tuples, with the second
 * dimension having a length of 3 and representing
 * (resource, rlim_cur, rlim_max). These are set via the posix
 * setrlimit(2) call.
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error.
 */
 native public static int forkAndSpecialize(int uid, int gid, int[] gids,
 int debugFlags, int[][] rlimits);

See, e.g., dalvik\vm\native\dalvik_system_Zygote.c.

/* native public static int forkAndSpecialize(int uid, int gid,
* int[] gids, int debugFlags);
*/
 static void Dalvik_dalvik_system_Zygote_forkAndSpecialize(const u4* args,
JValue* pResult)
{
 pid_t pid;
 pid = forkAndSpecializeCommon(args);
 RETURN_INT(pid);
}
…
/*
* Utility routine to fork zygote and specialize the child process.
 */
static pid_t forkAndSpecializeCommon(const u4* args)
{
 pid_t pid;
 uid_t uid = (uid_t) args[0];
 gid_t gid = (gid_t) args[1];
 ArrayObject* gids = (ArrayObject *)args[2];
 u4 debugFlags = args[3];
 ArrayObject *rlimits = (ArrayObject *)args[4];
 if (!gDvm.zygote) {
 dvmThrowException(“Ljava/lang/IllegalStateException;”,
“VM instance not started with -Xzygote”);
 return -1;
 }
 if (!dvmGcPreZygoteFork()) {
 LOGE(“pre-fork heap failed\n”);
 dvmAbort();
 }
 setSignalHandler();
 dvmDumpLoaderStats(“zygote”);
 pid = fork();
 if (pid == 0) {
 int err;
 /* The child process */
….
 } else if (pid > 0) {

pa-1435310 13

The ’720 Patent Infringed By
 /* the parent process */
 }
return pid;
}

See, e.g., linux-2.6\kernel\fork.c.

/*
 * Ok, this is the main fork-routine.
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 */
long do_fork(unsigned long clone_flags,
 unsigned long stack_start,
 struct pt_regs *regs,
 unsigned long stack_size,
 int __user *parent_tidptr,
 int __user *child_tidptr)
{
 struct task_struct *p;
 int trace = 0;
 long nr;
…
 p = copy_process(clone_flags, stack_start, regs, stack_size,
 wake_up_new_task(p, clone_flags);
…
 tracehook_report_clone_complete(trace, regs,
 clone_flags, nr, p);
…
 return nr;
}

2. A system
according to claim
1, further
comprising: a
cache checker to
determine whether
the instantiated
class definition is
available in a local
cache associated
with the master
runtime system
process.

Android includes a cache checker to determine whether the instantiated
class definition is available in a local cache associated with the master
runtime system process.

See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:

pa-1435310 14

The ’720 Patent Infringed By
“What we do with the zygote, as its name implies, it’s, it comes into
existence fairly early on during the boot of an Android system and its job is
to load up those classes that we believe will be used across many
applications. So it goes and creates, it goes and creates a heap, it goes and
creates that dirty memory for all, to represent those classes and
methods….”

See, e.g., dalvik\vm\oo\Class.c.

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.
 *
 * The class will be loaded and initialized if it has not already been.
 * If necessary, the superclass will be loaded.
 *
 * If the class can’t be found, returns NULL with an appropriate exception
 * raised.
 */
ClassObject* dvmFindClass(const char* descriptor, Object* loader)
{
 ClassObject* clazz;
 clazz = dvmFindClassNoInit(descriptor, loader);
 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
 /* initialize class */
 if (!dvmInitClass(clazz)) {
 /* init failed; leave it in the list, marked as bad */
 assert(dvmCheckException(dvmThreadSelf()));
 assert(clazz->status == CLASS_ERROR);
 return NULL;
 }
 }
 return clazz;
}

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.
 *
 * The class will be loaded if it has not already been, as will its
 * superclass. It will not be initialized.
 *
 * If the class can’t be found, returns NULL with an appropriate exception
 * raised.
 */
ClassObject* dvmFindClassNoInit(const char* descriptor,
 Object* loader)
{
 assert(descriptor != NULL);
 //assert(loader != NULL);
 LOGVV(“FindClassNoInit ‘%s’ %p\n”, descriptor, loader);

pa-1435310 15

The ’720 Patent Infringed By
 if (*descriptor == ‘[‘) {
 /*
 * Array class. Find in table, generate if not found.
 */
 return dvmFindArrayClass(descriptor, loader);
 } else {
 /*
 * Regular class. Find in table, load if not found.
 */
 if (loader != NULL) {
 return findClassFromLoaderNoInit(descriptor, loader);
 } else {
 return dvmFindSystemClassNoInit(descriptor);
 }
 }
}

3. A system
according to claim
2, further
comprising: a class
locator to locate
the source
definition if the
instantiated class
definition is
unavailable in the
local cache.

Android includes a class locator to locate the source definition if the
instantiated class definition is unavailable in the local cache.

See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into
existence fairly early on during the boot of an Android system and its job is
to load up those classes that we believe will be used across many
applications. So it goes and creates, it goes and creates a heap, it goes and
creates that dirty memory for all, to represent those classes and
methods….”

Example source code files in
dalvik\vm\oo\Class.c.

Example code call chain for application classloader,
Class.forName calls Class.classForName,
Class.classForName calls dvmFindClassByName,
dvmFindClassByName calls dvmFindClass,

pa-1435310 16

The ’720 Patent Infringed By
dvmFindClass calls dvmFindClassNoInit,
dvmFindClassNoInit calls findClassFromLoaderNoInit,
findClassFromLoaderNoInit calls dvmLookupClass,
If dvmLookupClass returns NULL, calls ClassLoader.loadClass,
Else dvmLookupClass returns class from gDvm.loadedClasses (a table of
loaded classes)

Example code call chain for boot classloader,
Class.forName calls Class.classForName,
Class.classForName calls dvmFindClassByName,
dvmFindClassByName calls dvmFindClass,
dvmFindClass calls dvmFindClassNoInit,
dvmFindClassNoInit calls dvmFindSystemClassNoInit,
dvmFindSystemClassNoInit calls findClassNoInit,
findClassNoInit calls dvmLookupClass,
If dvmLookupClass returns NULL, calls ClassLoader.loadClass,
Else dvmLookupClass returns class from gDvm.loadedClasses (a table of
loaded classes)

See, e.g., dalvik\vm\oo\Class.c.

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.
 *
 * The class will be loaded and initialized if it has not already been.
 * If necessary, the superclass will be loaded.
 *
 * If the class can’t be found, returns NULL with an appropriate exception
 * raised.
 */
ClassObject* dvmFindClass(const char* descriptor, Object* loader)
{
 ClassObject* clazz;
 clazz = dvmFindClassNoInit(descriptor, loader);
 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
 /* initialize class */
 if (!dvmInitClass(clazz)) {
 /* init failed; leave it in the list, marked as bad */
 assert(dvmCheckException(dvmThreadSelf()));
 assert(clazz->status == CLASS_ERROR);
 return NULL;
 }
 }
 return clazz;
}

/*
 * Find the named class (by descriptor), using the specified
 * initiating ClassLoader.

pa-1435310 17

The ’720 Patent Infringed By
 *
 * The class will be loaded if it has not already been, as will its
 * superclass. It will not be initialized.
 *
 * If the class can’t be found, returns NULL with an appropriate exception
 * raised.
 */
ClassObject* dvmFindClassNoInit(const char* descriptor,
 Object* loader)
{
 assert(descriptor != NULL);
 //assert(loader != NULL);
 LOGVV(“FindClassNoInit ‘%s’ %p\n”, descriptor, loader);
 if (*descriptor == ‘[‘) {
 /*
 * Array class. Find in table, generate if not found.
 */
 return dvmFindArrayClass(descriptor, loader);
 } else {
 /*
 * Regular class. Find in table, load if not found.
 */
 if (loader != NULL) {
 return findClassFromLoaderNoInit(descriptor, loader);
 } else {
 return dvmFindSystemClassNoInit(descriptor);
 }
 }
}

4. A system
according to claim
1, further
comprising: a class
resolver to resolve
the class definition.

Android includes a class resolver to resolve the class definition.

See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, it’s, it comes into
existence fairly early on during the boot of an Android system and its job is
to load up those classes that we believe will be used across many
applications. So it goes and creates, it goes and creates a heap, it goes and
creates that dirty memory for all, to represent those classes and

pa-1435310 18

The ’720 Patent Infringed By
methods….”

See, e.g., dalvik\vm\oo\Class.c.

*
 * Link (prepare and resolve). Verification is deferred until later.
 *
 * This converts symbolic references into pointers. It’s independent of
 * the source file format.
 *
 * If “classesResolved” is false, we assume that superclassIdx and
 * interfaces[] are holding class reference indices rather than pointers.
 * The class references will be resolved during link. (This is done when
 * loading from DEX to avoid having to create additional storage to pass
 * the indices around.)
 *
 * Returns “false” with an exception pending on failure.
 */
bool dvmLinkClass(ClassObject* clazz, bool classesResolved)
{
 u4 superclassIdx = 0;
 bool okay = false;
 bool resolve_okay;
 int numInterfacesResolved = 0;
 int i;
 if (gDvm.verboseClass)
 LOGV(“CLASS: linking ‘%s’...\n”, clazz->descriptor);
 /* “Resolve” the class.
 *
 * At this point, clazz’s reference fields contain Dex
 * file indices instead of direct object references.
 * We need to translate those indices into real references,
 * while making sure that the GC doesn’t sweep any of
 * the referenced objects.
 *
 * The GC will avoid scanning this object as long as
 * clazz->obj.clazz is gDvm.unlinkedJavaLangClass.
 * Once clazz is ready, we’ll replace clazz->obj.clazz
 * with gDvm.classJavaLangClass to let the GC know
 * to look at it.
 */
 assert(clazz->obj.clazz == gDvm.unlinkedJavaLangClass);
 /* It’s important that we take care of java.lang.Class
 * first. If we were to do this after looking up the
 * superclass (below), Class wouldn’t be ready when
 * java.lang.Object needed it.
 *
 * Note that we don’t set clazz->obj.clazz yet.
 */
 if (gDvm.classJavaLangClass == NULL) {
 if (clazz->classLoader == NULL &&
 strcmp(clazz->descriptor, “Ljava/lang/Class;”) == 0)
 {

pa-1435310 19

The ’720 Patent Infringed By
 gDvm.classJavaLangClass = clazz;
 } else {
 gDvm.classJavaLangClass =
 dvmFindSystemClassNoInit(“Ljava/lang/Class;”);
 if (gDvm.classJavaLangClass == NULL) {
 /* should have thrown one */
 assert(dvmCheckException(dvmThreadSelf()));
 goto bail;
 }
 }
 }
 assert(gDvm.classJavaLangClass != NULL);
 /*
 * Resolve all Dex indices so we can hand the ClassObject
 * over to the GC. If we fail at any point, we need to remove
 * any tracked references to avoid leaking memory.
 */
 /*
 * All classes have a direct superclass, except for java/lang/Object.
 */
 if (!classesResolved) {
 superclassIdx = (u4) clazz->super; /* unpack temp store */
 clazz->super = NULL;
 }
 if (strcmp(clazz->descriptor, “Ljava/lang/Object;”) == 0) {
 assert(!classesResolved);
 if (superclassIdx != kDexNoIndex) {
 /* TODO: is this invariant true for all java/lang/Objects,
 * regardless of the class loader? For now, assume it is.
 */
 dvmThrowException(“Ljava/lang/ClassFormatError;”,
 “java.lang.Object has a superclass”);
 goto bail;
 }

 /* Don’t finalize objects whose classes use the
 * default (empty) Object.finalize().
 */
 CLEAR_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
 } else {
 if (!classesResolved) {
 if (superclassIdx == kDexNoIndex) {
 dvmThrowException(“Ljava/lang/LinkageError;”,
 “no superclass defined”);
 goto bail;
 }
 clazz->super = dvmResolveClass(clazz, superclassIdx, false);
 if (clazz->super == NULL) {
 assert(dvmCheckException(dvmThreadSelf()));
 if (gDvm.optimizing) {
 /* happens with “external” libs */
 LOGV(“Unable to resolve superclass of %s (%d)\n”,
 clazz->descriptor, superclassIdx);
 } else {
 LOGW(“Unable to resolve superclass of %s (%d)\n”,

pa-1435310 20

The ’720 Patent Infringed By
 clazz->descriptor, superclassIdx);
 }
 goto bail;
 }
 }
 …
 }

5. A system
according to claim
1, further
comprising: at least
one of a local and
remote file system
to maintain the
source definition as
a class file.

Android includes at least one of a local and remote file system to maintain
a source definition as a class file.

See

(Dalvik Presentation, Slide 13)

Corresponding Dalvik Video at 6:39:
“And then towards the bottom there are a series of class definitions. So a
dex file contains multiple classes….”

See, e.g., dalvik\vm\analysis\DexOptimize.c.

/*
 * Return the fd of an open file in the DEX file cache area. If the cache
* file doesn’t exist or is out of date, this will remove the old entry,
 * create a new one (writing only the file header), and return with the
* ”new file” flag set.
 *
…
 * On success, the file descriptor will be positioned just past the ”opt”
 * file header, and will be locked with flock. ”*pCachedName” will point
 * to newly-allocated storage.
 */
int dvmOpenCachedDexFile(const char* fileName, const char* cacheFileName,u4 modW
hen, u4 crc, bool isBootstrap, bool* pNewFile, bool createIfMissing)
{
int fd, cc;
struct stat fdStat, fileStat;
bool readOnly = false;
*pNewFile = false;
retry:
/*

pa-1435310 21

The ’720 Patent Infringed By
* Try to open the cache file. If we’ve been asked to,
* create it if it doesn’t exist.
*/
fd = createIfMissing ? open(cacheFileName, O_CREAT|O_RDWR, 0644) : -1;
if (fd < 0) {
fd = open(cacheFileName, O_RDONLY, 0);
 if (fd < 0) {
 if (createIfMissing) {
 LOGE(“Can’t open dex cache ’%s’: %s\n”,
 cacheFileName, strerror(errno));
 }
 return fd;
 }
 readOnly = true;
 }
…
}

6. A system
according to claim
1, further
comprising: a
process cloning
mechanism to
instantiate the child
runtime system
process by copying
the memory space
of the master
runtime system
process into a
separate memory
space for the child
runtime system
process.

Android includes a process cloning mechanism to instantiate a child
runtime system process by copying the memory space of a master runtime
system process into a separate memory space for the child runtime system
process.

See

(Android Presentation, Slide 82)

Corresponding Android Video at 44:30:
“The init process starts up a really neat process called zygote….It uses
copy-on-write to maximize re-use and minimize footprint so that data
structures are shared and it won’t do a full copy unless some of those data
structures are to be modified.”

See also

pa-1435310 22

The ’720 Patent Infringed By

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies,…when it gets a
command to start up a new application, it does a normal Unix fork and
then that child process becomes that target application. And the result of
that is this.”

(Dalvik Presentation, Slide 26)

Corresponding Dalvik Video at 14:40:
“So the zygote, again, has made, has made this heap of objects, it’s made
this live dex structure and then each application that then starts up, instead
of having its own memory for those things, it just shares it with the zygote
and also with any other app that’s also on the system.”

See also http://developer.android.com/guide/basics/what-is-android.html.
“Android Runtime
…The Dalvik VM relies on the Linux kernel for underlying functionality
such as threading and low-level memory management.

Linux Kernel
Android relies on Linux version 2.6 for core system services such as

pa-1435310 23

The ’720 Patent Infringed By
security, memory management, process management, network stack, and
driver model. The kernel also acts as an abstraction layer between the
hardware and the rest of the software stack.”

See also, Lowe, Robert, Linux Kernel Process Management, April 15,
2005. Sample Chapter is provided courtesy of Sams,
http://www.informit.com/articles/article.aspx?p=370047&seqNum=2&rll=
1.
“Copy-on-Write
…In Linux, fork() is implemented through the use of copy-on-write pages.
Copy-on-write (or COW) is a technique to delay or altogether prevent
copying of the data. Rather than duplicate the process address space, the
parent and the child can share a single copy. The data, however, is marked
in such a way that if it is written to, a duplicate is made and each process
receives a unique copy.”

Example source code files in
libcore\dalvik\src\main\java\dalvik\system\Zygote.java,
dalvik\vm\native\dalvik_system_Zygote.c,
linux-2.6\kernel\fork.c.

See, e.g., libcore\dalvik\src\main\java\dalvik\system\Zygote.java.

 /**
 * Forks a new Zygote instance, but does not leave the zygote mode.
 * The current VM must have been started with the -Xzygote flag. The
 * new child is expected to eventually call forkAndSpecialize()
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error
 */
 native public static int fork();

 /**
 * Forks a new VM instance. The current VM must have been started
 * with the -Xzygote flag. NOTE: new instance keeps all
 * root capabilities. The new process is expected to call capset().
 *
 * @param uid the UNIX uid that the new process should setuid() to after
 * fork()ing and and before spawning any threads.
 * @param gid the UNIX gid that the new process should setgid() to after
 * fork()ing and and before spawning any threads.
 * @param gids null-ok; a list of UNIX gids that the new process should
 * setgroups() to after fork and before spawning any threads.
 * @param debugFlags bit flags that enable debugging features.
 * @param rlimits null-ok an array of rlimit tuples, with the second

pa-1435310 24

The ’720 Patent Infringed By
 * dimension having a length of 3 and representing
 * (resource, rlim_cur, rlim_max). These are set via the posix
 * setrlimit(2) call.
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error.
 */
 native public static int forkAndSpecialize(int uid, int gid, int[] gids,
 int debugFlags, int[][] rlimits);

See, e.g., dalvik\vm\native\dalvik_system_Zygote.c.

/* native public static int forkAndSpecialize(int uid, int gid,
* int[] gids, int debugFlags);
*/
 static void Dalvik_dalvik_system_Zygote_forkAndSpecialize(const u4* args,
JValue* pResult)
{
 pid_t pid;
 pid = forkAndSpecializeCommon(args);
 RETURN_INT(pid);
}
…
/*
* Utility routine to fork zygote and specialize the child process.
 */
static pid_t forkAndSpecializeCommon(const u4* args)
{
 pid_t pid;
 uid_t uid = (uid_t) args[0];
 gid_t gid = (gid_t) args[1];
 ArrayObject* gids = (ArrayObject *)args[2];
 u4 debugFlags = args[3];
 ArrayObject *rlimits = (ArrayObject *)args[4];
 if (!gDvm.zygote) {
 dvmThrowException(“Ljava/lang/IllegalStateException;”,
“VM instance not started with -Xzygote”);
 return -1;
 }
 if (!dvmGcPreZygoteFork()) {
 LOGE(“pre-fork heap failed\n”);
 dvmAbort();
 }
 setSignalHandler();
 dvmDumpLoaderStats(“zygote”);
 pid = fork();
 if (pid == 0) {
 int err;
 /* The child process */
….
 } else if (pid > 0) {
 /* the parent process */
 }

pa-1435310 25

The ’720 Patent Infringed By
return pid;
}

See, e.g., linux-2.6\kernel\fork.c.

/*
 * Ok, this is the main fork-routine.
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 */
long do_fork(unsigned long clone_flags,
 unsigned long stack_start,
 struct pt_regs *regs,
 unsigned long stack_size,
 int __user *parent_tidptr,
 int __user *child_tidptr)
{
 struct task_struct *p;
 int trace = 0;
 long nr;
…
 p = copy_process(clone_flags, stack_start, regs, stack_size,
 wake_up_new_task(p, clone_flags);
…
 tracehook_report_clone_complete(trace, regs,
 clone_flags, nr, p);
…
 return nr;
}

7. A system
according to claim
1, wherein the
master runtime
system process is
caused to sleep
relative to
receiving the
process request.

Android includes a master runtime system process that is caused to sleep
relative to receiving a process request.

See

(Dalvik Presentation, Slide 25)

Corresponding Dalvik Video at 13:48:
“What we do with the zygote, as its name implies, …it sort of sits on a

pa-1435310 26

The ’720 Patent Infringed By
socket and it waits for commands….”

See also

(Android Presentation, Slide 82)

Corresponding Android Video at 44:25:
“The init process starts up a really neat process called zygote….And so
zygote is a nascent VM process that initializes a Dalvik VM and preloads a
lot of its libraries and it forks on request to create new VM instances for
managed processes….”

See, e.g., base\core\java\com\android\internal\os\ZygoteConnection.java.

 /**
 * Constructs instance from connected socket.
 *
 * @param socket non-null; connected socket
 * @throws IOException
 */
 ZygoteConnection(LocalSocket socket) throws IOException {
 mSocket = socket;
 mSocketOutStream
 = new DataOutputStream(socket.getOutputStream());
 mSocketReader = new BufferedReader(
 new InputStreamReader(socket.getInputStream()), 256);
 mSocket.setSoTimeout(CONNECTION_TIMEOUT_MILLIS);
 try {
 peer = mSocket.getPeerCredentials();
 } catch (IOException ex) {
 Log.e(TAG, “Cannot read peer credentials”, ex);
 throw ex;
 }
 }

 /**
 * Returns the file descriptor of the associated socket.
 *
 * @return null-ok; file descriptor

pa-1435310 27

The ’720 Patent Infringed By
 */
 FileDescriptor getFileDesciptor() {
 return mSocket.getFileDescriptor();
 }

/**
 * Reads start commands from an open command socket.
 * Start commands are presently a pair of newline-delimited lines
 * indicating a) class to invoke main() on b) nice name to set argv[0] to.
 * Continues to read commands and forkAndSpecialize children until
 * the socket is closed. This method is used in ZYGOTE_FORK_MODE
 *
 * @throws ZygoteInit.MethodAndArgsCaller trampoline to invoke main()
 * method in child process
 */
 void run() throws ZygoteInit.MethodAndArgsCaller {
 int loopCount = ZygoteInit.GC_LOOP_COUNT;
 while (true) {
 …
 if (runOnce()) {
 break;
 }
 }
 }

/**
 * Reads one start command from the command socket. If successful,
 * a child is forked and a {@link ZygoteInit.MethodAndArgsCaller}
 * exception is thrown in that child while in the parent process,
 * the method returns normally. On failure, the child is not
 * spawned and messages are printed to the log and stderr. Returns
 * a boolean status value indicating whether an end-of-file on the command
 * socket has been encountered.
 *
 * @return false if command socket should continue to be read from, or
 * true if an end-of-file has been encountered.
 * @throws ZygoteInit.MethodAndArgsCaller trampoline to invoke main()
 * method in child process
 */
 boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {
 String args[];
 Arguments parsedArgs = null;
 FileDescriptor[] descriptors;
 try {
 args = readArgumentList();
 descriptors = mSocket.getAncillaryFileDescriptors();
 } catch (IOException ex) {
 Log.w(TAG, “IOException on command socket “ + ex.getMessage());
 closeSocket();
 return true;
 }
 if (args == null) {
 // EOF reached.
 closeSocket();

pa-1435310 28

The ’720 Patent Infringed By
 return true;
 }
…
 int pid;
…
 pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,
 parsedArgs.gids, parsedArgs.debugFlags, rlimits);
 } catch (IllegalArgumentException ex) {
 logAndPrintError (newStderr, “Invalid zygote arguments”, ex);
 pid = -1;
 } catch (ZygoteSecurityException ex) {
 logAndPrintError(newStderr,
 “Zygote security policy prevents request: “, ex);
 pid = -1;
 }
 if (pid == 0) {
 // in child
 handleChildProc(parsedArgs, descriptors, newStderr);
 // should never happen
 return true;
 } else { /* pid != 0 */
 // in parent...pid of < 0 means failure
 return handleParentProc(pid, descriptors, parsedArgs);
 }
 }
…
/**
 * Reads an argument list from the command socket/
 * @return Argument list or null if EOF is reached
 * @throws IOException passed straight through
 */
 private String[] readArgumentList()
 throws IOException {
 /**
 * See android.os.Process.zygoteSendArgsAndGetPid()
 * Presently the wire format to the zygote process is:
 * a) a count of arguments (argc, in essence)
 * b) a number of newline-separated argument strings equal to count
 *
 * After the zygote process reads these it will write the pid of
 * the child or -1 on failure.
 */
 int argc;
 try {
 String s = mSocketReader.readLine();
 if (s == null) {
 // EOF reached.
 return null;
 }
 argc = Integer.parseInt(s);
 } catch (NumberFormatException ex) {
 Log.e(TAG, “invalid Zygote wire format: non-int at argc”);
 throw new IOException(“invalid wire format”);
 }
…

pa-1435310 29

The ’720 Patent Infringed By
 String[] result = new String[argc];
 for (int i = 0; i < argc; i++) {
 result[i] = mSocketReader.readLine();
 if (result[i] == null) {
 // We got an unexpected EOF.
 throw new IOException(“truncated request”);
 }
 }
 return result;
 }

8. A system
according to claim
1, wherein the
object-oriented
program code is
written in the Java
programming
language.

Android includes object-oriented program code that is written in the Java
programming language.

See Google I/O 2010 Video, entitled “A JIT Compiler for Android’s
Dalvik VM,” presented by Ben Cheng and Bill Buzbee (Google’s Android
Team), available at
http://developer.android.com/videos/index.html#v=Ls0tM-c4Vfo (“JIT
Video”) at time 1:58.
“Now, if you are going to write a program for Android, you are most likely
going to write it in the Java programming language and then push the
source code through the SDK. And what pops out at the end is an
executable targeted to the Dalvik virtual machine.”

See also http://developer.android.com/guide/basics/what-is-android.html.
“What is Android?
Android is a software stack for mobile devices that includes an operating
system, middleware and key applications. The Android SDK provides the
tools and APIs necessary to begin developing applications on the Android
platform using the Java programming language.”

10.pre. A method
for dynamic
preloading of
classes through
memory space
cloning of a master
runtime system
process,
comprising:

See claim 1.pre.

10.a. executing a
master runtime
system process;

See claim 1.c.

10.b. obtaining a
representation of at
least one class
from a source
definition provided

See claim 1.c.

pa-1435310 30

The ’720 Patent Infringed By
as object-oriented
program code;
10.c. interpreting
and instantiating
the representation
as a class
definition in a
memory space of
the master runtime
system process;
and

See claim 1.d.

10.d. cloning the
memory space as a
child runtime
system process
responsive to a
process request and
executing the child
runtime system
process;

See claim 1.e.

10.e. wherein
cloning the
memory space as a
child runtime
system process
involves
instantiating the
child runtime
system process by
copying references
to the memory
space of the master
runtime system
process into a
separate memory
space for the child
runtime system
process; and

See claim 1.f.

10.f. wherein
copying references
to the memory
space of the master
runtime system
process defers
copying of the

See claim 1.f.

pa-1435310 31

The ’720 Patent Infringed By
memory space of
the master runtime
system process
until the child
runtime system
process needs to
modify the
referenced memory
space of the master
runtime system
process.
11. A method
according to claim
10, further
comprising:
determining
whether the
instantiated class
definition is
available in a local
cache associated
with the master
runtime system
process.

See claim 2.

12. A method
according to claim
11, further
comprising:
locating the source
definition if the
instantiated class
definition is
unavailable in the
local cache.

See claim 3.

13. A method
according to claim
10, further
comprising:
resolving the class
definition.

See claim 4.

14. A method
according to claim
10, further
comprising:
maintaining the

See claim 5.

pa-1435310 32

The ’720 Patent Infringed By
source definition as
a class file on at
least one of a local
and remote file
system.
15. A method
according to claim
10, further
comprising:
instantiating the
child runtime
system process by
copying the
memory space of
the master runtime
system process into
a separate memory
space for the child
runtime system
process.

See claim 6.

16. A method
according to claim
10, further
comprising:
causing the master
runtime system
process to sleep
relative to
receiving the
process request.

See claim 7.

17. A method
according to claim
10, wherein the
object-oriented
program code is
written in the Java
programming
language.

See claim 8.

19. A computer-
readable storage
medium holding
code for
performing the
method according
to claim 10.

The Accused Instrumentalities include devices that store, distribute, or run
Android or the Android SDK, including websites, servers, and mobile
devices.

pa-1435310 33

The ’720 Patent Infringed By
20.pre. An
apparatus for
dynamic
preloading of
classes through
memory space
cloning of a master
runtime system
process,
comprising:

See claim 1.pre.

20.a. A processor; See claim 1.a.
20.b. A memory
means for
executing a master
runtime system
process;

See claim 1.b.

20.c. means for
obtaining a
representation of at
least one class
from a source
definition provided
as object-oriented
program code;

See claim 1.c.

See also, e.g., ’720 patent, 6:46-54, FIGs. 2, 10:
“A set of core Java foundation classes is specified in a bootstrap class
loader 39 and application classes in a system application class loader 40.
Class loading requires identifying a binary form of a class type as
identified by specific name, as further described below with reference to
FIG. 10. Depending upon whether the class was previously loaded or
referenced, class loading can include retrieving a binary representation
from source and constructing a class object to represent the class in
memory.”

20.d. means for
interpreting and
means for
instantiating the
representation as a
class definition in a
memory space of
the master runtime
system process;
and

See claim 1.d.

See also, e.g., ’720 patent, 6:61-67, FIG. 2:
“The master JVM process 33 invokes the bootstrap class loader 39 and
system application class loader 40 for every class likely to be requested by
the applications. Thus, the prewarmed state 41 includes the class loading
for applications prior to actual execution and the initialized and loaded
classes are inherited by each cloned JVM process 34 as the inherited
prewarmed state 42.”

20.e. means for
cloning the
memory space as a
child runtime
system process
responsive to a
process request and
means for

See claim 1.e.

See also, e.g., ’720 patent, 5:33-37, FIG. 2:
“The runtime environment 31 executes an application framework that
spawns multiple independent and isolated user application process
instances by preferably cloning the memory space of a master runtime
system process.”

pa-1435310 34

The ’720 Patent Infringed By
executing the child
runtime system
process;
20.f. wherein the
means for cloning
the memory space
is configured to
clone the memory
space of a child
runtime system
process using a
copy-on-write
process cloning
mechanism that
instantiates the
child runtime
system process by
copying references
to the memory
space of the master
runtime system
process into a
separate memory
space for the child
runtime system
process and that
defers copying of
the memory space
of the master
runtime system
process until the
child runtime
system process
needs to modify
the referenced
memory space of
the master runtime
system process.

See claim 1.f.

See also, e.g., ’720 patent, 6:12-19, FIGs. 2, 5A, 5B:
“When implemented with copy-on-write semantics, the process cloning
creates a logical copy of only the references to the master JVM process
context. Segments of the referenced master JVM process context are lazily
copied only upon an attempt by the cloned JVM process to modify the
referenced context. Therefore as long as the cloned JVM process does not
write into a memory segment, the segment remains shared between parent
and child processes.”

21. A system
according to claim
1, further
comprising: a
resource controller
to set operating
system level

Android includes a resource controller to set operating system level
resource management parameters on the child runtime system process.

See, e.g., libcore\dalvik\src\main\java\dalvik\system\Zygote.java.

 /**
 * Forks a new VM instance. The current VM must have been started
 * with the -Xzygote flag. NOTE: new instance keeps all

pa-1435310 35

The ’720 Patent Infringed By
resource
management
parameters on the
child runtime
system process.

 * root capabilities. The new process is expected to call capset().
 *
 * @param uid the UNIX uid that the new process should setuid() to after
 * fork()ing and and before spawning any threads.
 * @param gid the UNIX gid that the new process should setgid() to after
 * fork()ing and and before spawning any threads.
 * @param gids null-ok; a list of UNIX gids that the new process should
 * setgroups() to after fork and before spawning any threads.
 * @param debugFlags bit flags that enable debugging features.
 * @param rlimits null-ok an array of rlimit tuples, with the second
 * dimension having a length of 3 and representing
 * (resource, rlim_cur, rlim_max). These are set via the posix
 * setrlimit(2) call.
 *
 * @return 0 if this is the child, pid of the child
 * if this is the parent, or -1 on error.
 */
 native public static int forkAndSpecialize(int uid, int gid, int[] gids,
 int debugFlags, int[][] rlimits);

22. A method
according to claim
10, further
comprising: setting
operating system
level resource
management
parameters on the
child runtime
system process.

See claim 21.

	PLR 3-1 Contentions.pdf
	Exhibit A -- 104 Infringement Contentions Chart
	Exhibit B-1 -- 205 Infringement Contentions Chart
	Exhibit B-2 -- 205 Infringement Contentions Chart
	Exhibit C -- 702 Infringement Contentions Chart
	Exhibit D -- 447 Infringement Contentions Chart
	Exhibit E -- 476 Infringement Contentions Chart
	Exhibit F -- 520 Infringement Contentions Chart
	Exhibit G -- 720 Infringement Contentions Chart

