Oracle America, Inc. v. Google Inc. Doc. 839

EXHIBIT B

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/839/
http://dockets.justia.com/

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.
Plaintiff,

GOOGLE INC.

Defendant.

SAN FRANCISCO DIVISION

Case No. CV 10-03561 WHA

SUPPLEMENTAL EXPERT REPORT OF JOHN C. MITCHELL
REGARDING INFRINGEMENT OF THE '205 PATENT

SUBMITTED ON BEHALF OF PLAINTIFF

ORACLE AMERICA, INC.

CONFIDENTIAL PURSUANT TO PROTECTIVE ORDER
Highly Confidential — Attorneys Eyes Only

pa-1509776

TABLE OF CONTENTS

Page
l. INTRODUGCTION L.oiiiiiiiiiiiee ettt s s e e e e e e e e e e e e e e eeeeessssass e e e e eaeeeeaeaeeeeeessnssnnnnns 1
Il. EXECUTIVE SUMMARY ...t e e e e e e e e e et s s s e e e e e eeaeaeaaeeeeeessnnnnnnns 1
Il CLAIM CONSTRUCTIONciiiiieeiiiiiiiiisaa s s e e e e e e e e e e e e eeeeetaesassn s s s s e e eeeaeeaaeeeeeesssssnnnnnn s 1
IV. SUPPLEMENTAL INFRINGEMENT ANALYSIS OF THE '205 PATENTccccc..... 2
V. (1@]\ 151 [N PR 15

pa-1509776

I, John C. Mitchell, Ph.D., submit the followg expert report (“Supplemental '205 Patent
Infringement Report”) on behalf of pHdiff Oracle America, Inc. (“Oracle”):

l. INTRODUCTION

1. In light of the Court’s recdrconstruction of the phrasat runtime,” | have been
asked to supplement my opinion whether Claims 1 and 2 o®tf205 patent are infringed by
Google.

2. | have detailed my retention, scopenadrk performed, mateals relied upon,
expected testimony, compensation, godlifications in my reports submitted earlier in this case.

3. Instead of repeating the content of my eanteports here, | corporate them here
by reference.

4. This report supplements my earlier repaovith respect to Google’s infringement
of United States Patent No. 6,910,205 (“the 'p@%ent”), in light ofthe Court’s recent
construction of the phrase “at time,” which appears in Claim 1 of the 205 patent. This report
does not change my analysis or my opinion; | intend only to highlight additional evidence to
show, with respect to the “inline” theory, ttihe claim limitation “generatg, at runtime, a new
virtual machine instruction that represents ornezfees one or more native instructions that can
be executed instead of said first virtual machirs¢ruction” is met, give the specificity of the
Court’s construction.

. EXECUTIVE SUMMARY

5. Based on my investigation and analygisemains my opinion that Google, by
making, distributing, and using Armd, literally meets the limitadtns of these asserted claims,
in the manner described in the Exhibit<@acle’s infringement contentions submitted to
Google on April 1, 2011, in my earlier reportsOnacle’s further supplemental infringement
contentions with respect to th205 patent, and in this report.

1. CLAIM CONSTRUCTION
6. | have reviewed the Court’s Claino@struction Order, dated May 9, 2011, and

the Court’s Supplemental Claim Constructiord@r dated January 25, 2012, and have applied

pa-1509776

the interpretation of each clainrte as construed by the Court in my infringement analysis. In
particular, | note the Court construed the follogvclaim terms contained in various asserted

claims of the "205 patents:

Claim Construction Patent Excerpted Rulings from Court’s January 25,
Term or Phrase 2012 Supplemental Claim Construction Order
at runtime '205 | Accordingly, thphrase “at runtime” shall be

construed to mean “durirgxecution of one or mor
virtual machine instructions.”

D

7. Pursuant to the parties’ Joint Claino@truction Statement, dated February 22,
2011, | further note that the parties agreed erctinstruction of the following terms, which |

have adopted in arriving at my infringent opinions set forth in this report:

Claim Term or Phrase Patent Agreed Construction

function '205 a software routin(also called a subroutine,
procedure, member and method)

machine instruction '205 an instructioratidirects a computer to perform g
operation specified by aperation code (OP code
and optionally one or more operands

_/:

native machine instruction / '205 a machine instruction that is designed for a spedific
native instruction microprocessor or computer architecture (also
called native code)

virtual machine instructions '205 a machinstmction that is designed for a software
emulated microprocessor computer architecture
(also called virtual code)

8. For all other claim terms in the 205 patehnhave applied their plain meaning as
would be understood by one of ordinary skill in the art when read in the context of the patent
specification.

V. SUPPLEMENTAL INFRINGEMENT ANA LYSIS OF THE '205 PATENT

9. On January 25, 2012, the Court constrtsduntime” in Claim 1 of the '205

patent to mean “during executiofione or more virtual machine instructions.” The phrase “at

runtime” appears in the body of Qfail as part of the step Gfenerating, at runtime, a new

pa-1509776

virtual machine instruction that represents ornegfees one or more nagiwnstructions that can
be executed instead of said first virtual maehmstruction.” The plase does not separately
appear in the body of Claim 2.

10. | have analyzed the evidence regagdAndroid in light of the Court’s
construction of “at runtime,”rad my opinion remains that Googfdringes Claims 1 and 2 of
the '205 patent in the manner that | describeahynearlier infringementeports. The Court’s
construction does not implicate my infringemanalysis with respect to the limitations of
Claims 1 and 2 other than the “generatinguatime” step. Although the phrase “at runtime”
also appears in the preamble of Claim 1,Goert’s construction doawt affect infringement
for two reasons. First, the preamble is noiiting. Preambles generally do not limit the scope
of a claim; this preamble is only the intendedpmse of the claimed method and is not needed to
provide any support to the bodytbe claim. Second, the Court’s construction adds little when
applied to the preamble, which already ua#d virtual machine instruction execution: “a
method for increasing the execution speed tial machine instruins at runtime.”

11. With respect to the “generating, ahtume” step of Claim 1, in my earlier
infringement reports, | identified and discussieel Android functionality, for both the “JIT” and
the “inline” infringement theorieghat performs the @p of “generating, auntime, a new virtual
machine instruction that represents or referenoesor more native insictions that can be
executed instead of said firsttwial machine instruction.” Hemains my opinion that that
functionality satisfies that clai limitation. In this report, identify and discuss additional
evidence pertinent to the Court’s construction ofrlentime” with respect to the “inline” theory.
This evidence further demonstrates that Andpsidorms the “generating” step “at runtime.”

12. The infringement evidence illustratedds is exemplary and not exhaustive.
The cited examples are largely taken from Andi2.2 (“Froyo”). | undestand that the publicly
released versions of Android from version 2.3 (“Gingerbread”) and eapigate as | describe
below; | understand that Goeagtlid not produce source code fiboe Honeycomb or Ice Cream

Sandwich versions, so | have notten opportunity to analyze them.

pa-1509776

13. Android’s dexopt program loads virtual mawoh instructions into a Dalvik virtual
machine and replaces selected virtual machineuictsdtns with new virtual machine instructions
that reference or represent natogele to be executed insteaded, e.qg., 5/4/2011 McFadden
Dep. 154:21-156:7.) In my earlisFports, | discussed how Anddis dexopt, through routines
such as optimizeMethod(), “generat[es], at runtime, a new virtual machine instruction that
represents or references onermre native instructions that che executed instead of said first
virtual machine instruction,” as claimed in the '205 patent.

14. The Court recently construed “at runéfrin this phrase to mean “during
execution of one or more virtual machine instiarcs.” Applying this new construction to the
evidence, | find that Android’s dexopt performe tigenerating” step durg execution of one or
more virtual machine instructions, and therefore satisfies the “at runtime” limitation of Claim 1
as construed by the Court.

15. As |l discussed in my earlier reportsp@gle’s documented descriptions of dexopt
show that dexopt runs at runtime. | understiad dexopt is an ess&al part of Android,
because Android devices will onlyn application files that havseen processed by dexopt, as

Google engineer Andrew McFadden testified:

3 Q. What happens if dexopt does not successfully
4 run an application on a user device?

5 A. Dexopt is run while the application is being

6 installed as part of installation. So if dexopt fails,

7 then the app will simply not be installed.

8 Q. Soit'sa--it's a--it's a requirement,

9 then?

10 A. Yes.

11 Q. So to be sure | understand, can user devices

12 run applications out of DEX files and not need the output
13 of dexopt?

14 MR. WEINGAERTNER: Objection to form.

15 THE WITNESS: Android applications are

16 delivered in APK files. The DEX data is stored inside

17 the APK. It has to be extracted from the APK before it
18 can be used. Dexopt is part of that extraction process.
19 Q. BY DR. PETERS: So every application that's
20 run has gone through dexopt; is that right?

21 A. Yes.

(5/4/2011 McFadden Dep. 110:3-21.)

16. The Google document entitled “Dalvik Optimization and Verification With

dexopt,” which | quoted in my earlieeports, explains how it works:

pa-1509776

http://android.qgit.kernel.org/?p=platfo/dalvik.git;a=blob:f=docs/dexopt.html

Dalvik Optimization and Verification With dexopt

The Dalvik virtual machine was designed speaifly for the Android mobile platform. The
target systems have little RAM, store data on slow internal flash memory, and generally I
performance characteristics of decade-old dgs&ystems. They also run Linux, which provic
virtual memory, processes and threads] UID-based security mechanisms.

The features and limitations causegdto focus on certain goals:

Class data, notably bytecode, must be shared between multiple processes to mini
total system memory usage.

ve the
23S

Nize

The overhead in launching a new app musnibeémized to keep the device responsivc .

Storing class data in individuiles results in a lot of dundancy, especially with respe
to strings. To conserve disk space we need to factor this out.

Parsing class data fields adds unnecessayhead during class loading. Accessing d
values (e.g. integers and stringgectly as C types is better.

Bytecode verification is necesgabut slow, so we want to verify as much as possibls
outside app execution.

Bytecode optimization (quickened instraets, method pruning) ismportant for speed
and battery life.

For security reasons, processes may not edit shared code.

The typical VM implementation uncompresses wdlial classes from a compressed archive
stores them on the heap. This implies a sepamig of each class in ewy process, and slows
application startup because the code must bermmpiessed (or at least read off disk in many
small pieces). On the other hand, having the logte®n the local heap makes it easy to rew:
instructions on first use, facilitatirnumber of different optimizations.

The goals led us to make some fundamental decisions:

Multiple classes are aggregated into a single "DEX" file.

DEX files are mapped read-onlpcgshared between processes.

Byte ordering and word alignment are adjusted to suit the local system.

Bytecode verification is mandatory for all s&es, but we want to "pre-verify" whateve
we can.

Optimizations that requireewriting bytecode mudte done ahead of time.

The consequences of these decisiongapéained in the following sections.

dexopt

We want to verify and optimize all of the classe the DEX file. The easiest and safest way
do this is to load all of the classes into the YNt run through them. Arlying that fails to load
is simply not verified or optimized. Unfortunstethis can cause allocation of some resource ;
that are difficult to release (e.galding of native shared librariesp we don't want to do it in
the same virtual machine thae're running applications in.

The solution is to invoke a program called dexuyttich is really just dack door into the VM.
It performs an abbreviated VMitralization, loads zero or mofeEX files from the bootstma

pa-1509776

ita

and

te

D

class path, and then sets abeerifying and optimizing whatever it can from the target DEX.| On
completion, the process exitsgeing all resources.

It is possible for multiple VMs to want the sameXOfidle at the same timé=ile locking is used
to ensure that dexopt is only run once.

'C')'p')timization

Virtual machine interpreters typically perform @nt optimizations the first time a piece of cc le
is used. Constant pool referenees replaced with pointers to int@l data structures, operatio 1s
that always succeed or always work a certaip ara replaced with simpler forms. Some of
these require information only available at runtiotbers can be inferred statically when cert iin
assumptions are made.

The Dalvik optimizer does the following:

e For virtual method calls, replace thmethod index with a vtable index.

e For instance field get/put, replace thedigldex with a byte offset. Also, merge the
boolean / byte / char / st variants into a single 32-bitrfm (less code itthe interpreter
means more room in the CPU I-cache).

e Replace a handful of high-volume calls, likeilg.length(), with "inline" replacements
This skips the usual methodlloaverhead, directly switchinffom the interpreter to a
native implementation.

e Prune empty methods. The simplest exang(@bject.<init>, which does nothing, but
must be called whenever any object is alledaf he instruction is replaced with a new
version that acts as a no-op ess a debugger is attached.

e Append pre-computed data. For example, the Wamts to have a hash table for looku s
on class name. Instead of computing this wihenDEX file is loaded, we can compute it
now, saving heap space and computation timrevery VM where the DEX is loaded.

All of the instruction modificabns involve replacing the opde with one not defined by the
Dalvik specification. This allows us to frgemix optimized and unoptimized instructions. The
set of optimized instructions, and their exagresentation, is tied clogelo the VM version.

Most of the optimizations are olmtis "wins". The use of raw inchs and offsets not only allow 5
us to execute more quickly, we can also skiinitial symbolic reolution. Pre-computation

eats up disk space, and so must be done in moderation.

There are a couple of potentiaisces of trouble with these optinaitions. First, vtable indices
and byte offsets are subject to change iMMeis updated. Second, if a superclassisin a
different DEX, and that other DEX is updated, mezd to ensure that our optimized indices & 1d
offsets are updated as well. A similar but meubtle problem emerges when user-defined cl' ss
loaders are employed: the class we actuallyncay not be the one we expected to call.

These problems are addressed with dependetsyand some limitations on what can be
optimized.

17. From Google’s description above, it is apgd that the “genating, at runtime”
step of Claim 1 is met. Dexopt replaces a hanoffhiigh-volume calls, like String.length(), with

native implementation, which allows a direct switaym the interpreter to the native code. This

pa-1509776

optimization involves replacing thecoming opcode (a first virthaachine instruction) with
one not defined by the Dalvik spkcation (a “new” virtual macke instruction) that directs
execution of the native implementation, anddp&mization requires information only available
at runtime.

18. Here, | consider additional evidence tHakopt runs “at runtime” in light of the
Court’s construction.

19. The Google documentation | mentioned above further explains the circumstances

of how dexopt is run:

http://android.qgit.kernel.org/?p=platfo/dalvik.git;a=blob:f=docs/dexopt.html

Preparation

There are at least three different ways &ate a "prepared" DEX file, sometimes known as
"ODEX" (for Optimized DEX):

1. The VM does it "just in time". The output goes into a spetiaik-
cache directory. This works on the desk and engineering-only device
builds where the permissions on tavik-cache directory are not
restricted. On production deas, this is not allowed.

2. The system installer does it whenapplication is firsadded. It has the
privileges required to write tealvik-cache

3. The build system does it ahead of time. The releaant apk files are
present, but thelasses.dex is stripped out. The optimized DEX is

stored next to the original zip archive, notiévik-cache , and is part of
the system image.

* % %

Preparation of the DEX file fahe "just in time" and "systemstaller" approaches proceeds il
three steps:

First, the dalvik-cache file is created. This mastdone in a process widippropriate privileges
so for the "system installecase this is doneithin installd, which runs as root.

20. Here, | focus on the second approach—the “system installer” approach.
According to Google’s documentation, when anligggpion is downloaded to an Android device,
the system installer creates an “optimized DEil' in the dalvik-cache directory by running

dexopt, which verifies and optimizes all of thessles in the DEX file tthe extent possible.

pa-1509776

Creation of the “Optimized DEX” file in thdalvik-cache “must be done in a process with
appropriate privileges, so for tfeystem installer’ case this is done within installd, which runs as
root.” (1d.)

21. Accordingly, to supplement my infringement analysis, | examined the Android
source code involved in applioan installation. The examplélow are taken from the Froyo
version of Android.

22. Inarunning Android system, the PagieManagerService is responsible for
installing applications and comunicating with installd. The Java source code defining the
PackageManagerService classogrfd in PackageManagerService.java.

23. Inthe PackageManagerService cldlss,processPendinginstall() method invokes
installPackageLl(), which invokes either installNewPackageLl() or replacePackageLl().
replacePackagelLl() invokes egtireplaceNonSystemPackageLl(yeplaceSystemPackageLl().
All three of the installNewPackagelLl(), replaceNonSystemPackagelLl(), and
replaceSystemPackageLIl() methods inve&anPackageLl(), which invokes the
performDexOptLI() method.

24. To run dexopt (if it has not already beem before or otherwise is forced to run),
the performDexOptLI() method of the PackagatdgerService class invokes the dexopt()
method of the Installer class. The performDexOptLI() method from
PackageManagerService.java is reproduced (nete that minstaller is an instance of the

Installer class):

private int performDexOptLI(PackageParser.Package pkg, boolean forceDex) {
boolean performed = false;
if ((pkg.applicationinfo.flags&Applicationinfo.FLAG_HAS_CODE) != 0 && minstaller =
null) {
String path = pkg.mScanPath;
int ret = 0;
try {
if (forceDex || dalvik.system.DexFile.isDexOptNeeded(path)) {
ret = minstaller.dexopt(path, pkg.applicationinfo.uid,
lisForwardLocked(pkg));
pkg.mDidDexOpt = true;
performed = true;

}
} catch (FileNotFoundException e) {

Slog.w(TAG, "Apk not found for dexopt: " + path);
ret =-1;

pa-1509776

} catch (IOException e) {
Slog.w(TAG, "IOException reading apk: " + path, e);
ret =-1;
} catch (dalvik.system.StaleDexCacheError e) {
Slog.w(TAG, "StaleDexCacheError when reading apk: " + path, e);
ret=-1,
} catch (Exception e) {
Slog.w(TAG, "Exception when doing dexopt : ", e);
ret=-1,

}
if (ret < 0) {
/lerror from installer
return DEX_OPT_FAILED;
}
}

return performed ? DEX_OPT_PERFORMED : DEX_OPT_SKIPPED;
}

25. performDexOptLI() catches any execepis thrown during the execution of
Installer.dexopt() anceturns with an error cod# -1. If Installer.dexopt(beturns with an error,
performDexOptLI() returns witthe error code DEX_OPT_FRED. If Installer.dexopt()
returns successfully, performDexOpjfLreturns with the success code
DEX_OPT_PERFORMED.

26. The Installer class communicates with th&taller daemon installd. (The code
for installd may be found in éhdirectory \frameworks\base\cnidstalld.) The Java code

relevant to dexopt from Instat.java is reproduced here:

private synchronized String transaction(String cmd) {
if (connect()) {
Slog.e(TAG, "connection failed");
return "-1";

}

if ('writeCommand(cmd)) {

/* If installd died and restarted in the background
* (unlikely but possible) we'll fail on the next
* write (this one). Try to reconnect and write
* the command one more time before giving up.
*

Slog.e(TAG, "write command failed? reconnect!");

if (lconnect() || 'writeCommand(cmd)) {
return "-1";

}

}
1 Slog.i(TAG,"send: "'+cmd+"");
if (readReply()) {
String s = new String(buf, 0, buflen);
1 Slog.i(TAG,"recv: "+s+"");
return s;
}else {
1 Slog.i(TAG,"fail");
return "-1";

pa-1509776

private int execute(String cmd) {
String res = transaction(cmd);

try {
return Integer.parselnt(res);

} catch (NumberFormatException ex) {
return -1;
}

}

* Kk

public int dexopt(String apkPath, int uid, boolean isPublic) {
StringBuilder builder = new StringBuilder("dexopt");
builder.append(*);
builder.append(apkPath);
builder.append(');
builder.append(uid);
builder.append(isPublic ? " 1" : " 0");
return execute(builder.toString());

27. Installer's dexopt() method builds a command to run dexopt on the application
file and sends that command to installdilyoking the execute() miedd, which invokes the
transaction() method. The taction() method sends the cormddo run dexopt to installd,
then waits for a reply from installd about suscesfailure of dexopt. The return value of
Installer’s dexopt() method (which is checked by performDexOptLI()) indicates that success or
failure.

28. When installd receives a command tio dexopt, it confirms that it has the
correct number of arguments, then calls thetionc‘dexopt,” which is defined in commands.c.
This function performs varioushecks, opens the file to bgtimized, opens the destination
cache file, then calls fork() to citeaa child process. The pargmbcess waits for the child to
exit. The child process callse function “run_dexopt,” whichuns the dexopt executable
(/system/bin/dexopt) by calling the execl() subroaitivith appropriate arguments (which include
the “--zip” argument).

29. The main() entry point for dexojs defined in OptMain.c:

" vain entry point. Decide where to go.

*/
int main(int argc, char* const argv[])

set_process_name("dexopt");

setvbuf(stdout, NULL, _IONBF, 0);

10
pa-1509776

if (argc > 1) {
if (strcmp(argv[1], "--zip") == 0)
return fromZip(argc, argv);
else if (strcmp(argv[1], "--dex") == 0)
return fromDex(argc, argv);

}

fprintf(stderr, "Usage: don't use this\n");
return 1;

30. When dexopt is invoked by installd, iilixcall fromZip(), becase “--zip” is the
second argument. fromZip() is defineddptMain.c. After peldrming various checks,
fromZip() calls extractAndProcessZip(). tAf extractAndProcessZip() creates a DEX
optimization header and then extracts BBEX data into the cache file, it calls

dvmContinueOptimization() to “do the optimization”:

/* do the optimization */
if (ldvmContinueOptimization(cacheFd, dexOffset, uncompLen, debugFileName,
modWhen, crc32, isBootstrap))

LOGE("Optimization failed\n");
goto bail;

}
(See OptMain.c)

31. dvmContinueOptimization() calls rewriteDex(), which in turn calls
loadAllClasses(), which loads the classethaDEX file. Once the classes are loaded,
rewriteDex() calls optimizeLatedClasses() to optimize them. In Froyo, these routines are
defined in DexOptimize.c.

32. Inmy earlier report, | described halexopt’s optimizeLoadedClasses() routine
(which results in calls to createlnlineSubbled), optimizeClass(), and optimizeMethod())
generates new virtual machine instians that represent or refernative instructions to be
executed instead of the original virtual machmstructions, and how thariginal instructions
are overwritten with the new instructions.

33. If there were no errors in the optimeioadedClasses() routine or otherwise,
rewriteDex() returns successfully to dvm@aoneOptimization(). dvmContinueOptimization()

then takes care of some housekeeping matiech, as ensuring the optimized DEX file is

11
pa-1509776

written to storage, with a correct headed a@ependency information, and then returns to
extractAndProcessZip(). If dvmContirDptimization() returned successfully,
extractAndProcessZip() will retusuccessfully to fromzZip(), whicwill cause dexopt to return
successfully.

34. Asdiscussed above, the dexopt execut@biestem/bin/dexopt) ran in a child
process of installd. The pargmbcess has been waiting foetbhild process to finish (by
calling the wait_dexopt() function), and checks itsime status once it has. If the dexopt
executable finished successfully, the installdagexunction returns successfully. installd will
then send the resulbde to Installer.

35. Installer’s transaction() nileod has been waiting fanstalld to send a reply

containing the result code for the rumgiof dexopt, as shown in Installer.java:

private synchronized String transaction(String cmd) {
if (lconnect()) {
Slog.e(TAG, "connection failed");
return "-1";

}

if ('writeCommand(cmd)) {

/* If installd died and restarted in the background
* (unlikely but possible) we'll fail on the next
* write (this one). Try to reconnect and write
* the command one more time before giving up.
*

Slog.e(TAG, "write command failed? reconnect!");

if (!connect() || 'writeCommand(cmd)) {
return "-1";

}

}
1 Slog.i(TAG,"send: "+cmd+"");
if (readReply()) {
String s = new String(buf, 0, buflen);
1 Slog.i(TAG,"recv: "+s+"");
return s;
}else {
1 Slog.i(TAG,"fail");
return "-1";
}

}

private int execute(String cmd) {
String res = transaction(cmd);
try {
return Integer.parselnt(res);
} catch (NumberFormatException ex) {
return -1;
}

}

B iJuinc int dexopt(String apkPath, int uid, boolean isPublic) {
StringBuilder builder = new StringBuilder("dexopt");
builder.append(*);

12
pa-1509776

builder.append(apkPath);
builder.append(*);
builder.append(uid);
builder.append(isPublic ? " 1" : " 0");
return execute(builder.toString());

36. Installer's dexopt() method thus retutnsthe performDexOptLI() method of the
PackageManagerService class a value thatanel the success oilfse of the dexopt
executable running on the applicat file being installed.

37. Asdiscussed above, it was the performDexOptLI() method of the
PackageManagerService class that invokediéxept() method of the Installer class. The
performDexOptLI() method is reproduced again Herge that minstaller is an instance of the

Installer class):

private int performDexOptLI(PackageParser.Package pkg, boolean forceDex) {
boolean performed = false;
if ((pkg.applicationinfo.flags&Applicationinfo.FLAG_HAS_CODE) != 0 && minstaller !=
null) {
String path = pkg.mScanPath;
int ret =0;
try {
if (forceDex || dalvik.system.DexFile.isDexOptNeeded(path)) {
ret = minstaller.dexopt(path, pkg.applicationinfo.uid,
lisForwardLocked(pkQ));
pkg.mDidDexOpt = true;
performed = true;

} catch (FileNotFoundException e) {

Slog.w(TAG, "Apk not found for dexopt: " + path);
ret=-1;

} catch (IOException e) {

Slog.w(TAG, "IOException reading apk: " + path, e);
ret=-1;

} catch (dalvik.system.StaleDexCacheError e) {
Slog.w(TAG, "StaleDexCacheError when reading apk: " + path, e);
ret=-1;

} catch (Exception e) {

Slog.w(TAG, "Exception when doing dexopt : ", €);
ret=-1;

}
if (ret < 0) {
/lerror from installer
return DEX_OPT_FAILED;

}
}

return performed ? DEX_OPT_PERFORMED : DEX_OPT_SKIPPED;
}

(See PackageManagerService.java)

13
pa-1509776

38. performDexOptLI() catches any execepis thrown during the execution of
Installer.dexopt() and retus with an error code of -1tifiere were any. linstaller.dexopt()
returns with a value indicating an errorrjpemDexOptLI() returns with the error code
DEX_OPT_FAILED. If Instder.dexopt() returns succesBjuafter running dexopt,
performDexOptLI() returns with the success code DEX_OPT_PERFORMED.

39. ltis clear from the Java source cddethe performDexOptLI() method of the
PackageManagerService classl or the dexopt() method ofdhinstaller class (both shown
above), that the entire dexopt process during the execution of the performDexOptLI() and
dexopt() methods. Because the PackageManagé&r&amd Installer classare written in the
Java programming language, they are compiledrtoal machine instructions for execution on
Android devices, rather than native instructioi$ie entire dexopt pcess, including the
generation of new virtual machinesiructions that represent or reference native instructions that
can be executed instead of uait machine instructions, occutaring the execution of the virtual
machine instructions comprising the PaakdgnagerService.performDexOptLI() and the
Installer.dexopt() methods. Thtle “at runtime” limitation, as construed by the Court, is met.

40. Android engineers confirmed that dexophs at runtime. For example, dexopt
calls createlnlineSubsTable() before eggloptimizeClass() and optimizeMethod().
createlnlineSubsTable() depends on gDvminlineObkEla which is defined in the source code
file InlineNative.c. An Android’s programmertgpening comment to that file confirms my
conclusion that dexopt’s “native inliningtinctionality runs at runtime:

G
« v implementatons f rumtime; “inuingic” might be & beter word
#:i/nclude "Dalvik.h"

41. Another example is Google engineemBeheng, who, when asked by customer

HTC “[w]hy do we need to do this [dexopt] inntime? Couldn’t it be done in compile time?”,

wrote back: “What you are seeing is themal behavior” and referred to the dexopt

documentation quoted above to provide “a highJledea of why some of these optimizations

14
pa-1509776

can only be performed at runtime.Se¢ October 24, 2008 email from Ben Change to Kant
Kang, GOOGLE-03-00434010.)

42. My discussion above referred to the Froyosi@n of Android. As | discussed in
my earlier report, the same essalnprocess flow is followed in other versions of Android. In
Gingerbread, the functionality of DexOptimize.c was reorganized and split between
dalvik\vm\analysis\DexPrepare.c and dalvik\vnalgsis\Optimize.c. For example, Optimize.c
contains dvmOptimizeClass() and optimizeMetf)pDexPrepare.c contains rewriteDex(),
loadAllClasses(), verifyAndOptirreClasses(), and verifyAnd@mizeClass(). In Cupcake,
Donut, and Eclair, the call to optimizeMethod@nerates an EXECUTE_INLINE instruction
rather than an EXECUTE_INLINE_RANGE insttion, but with the sae purpose and effect;
the instructions are the same from the perspeofitiee '205 patent. lall versions of Android
that | have examined, optimizeMethod() is caliedenerate new virtual machine instructions
and overwrite original ones dag execution of virtual machine ingttions, just as it is in
Froyo.

V. CONCLUSION

43. It remains my opinion that Android satis$i the “generating, at runtime, a new
virtual machine instruction that represents ornezfees one or more native instructions that can
be executed instead of said first virtual maehmstruction” limitation of Claim 1 of United
States Patent No. 6,910,205, under both the “JIT” amoh&” theories of infringement, and that

Google infringes Claims 1 and 2 of the '205 pafier the reasons described above and in my

@g; C PEES

JohnC. Mitchell

earlier reports.

Dated:February24,2012

15
pa-1509776

