

DECLARATION OF TRUMAN FENTON CIVIL ACTION No. CV 10-03561

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street - Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

Attorneys for Defendant
GOOGLE INC.

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. 3:10-cv-03561-WHA

DECLARATION OF
TRUMAN FENTON

Dept.: Courtroom 9, 19th Floor

Judge: Honorable William Alsup

Tutorial: April 6, 2011, 1:30 p.m.

Hearing: April 20, 2011, 1:30 p.m.

Oracle America, Inc. v. Google Inc. Doc. 97

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2010cv03561/231846/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/97/
http://dockets.justia.com/

DECLARATION OF TRUMAN FENTON CIVIL ACTION No. CV 10-03561

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

I, Truman Fenton, hereby declare and state as follows:

1. I am an attorney with the law firm of King & Spalding LLP, which is counsel of

record for Google Inc. I have personal knowledge of the facts set forth in this declaration unless

otherwise noted, and, if called to do so, I could and would competently testify thereto.

2. Exhibit A is a true and correct copy of U.S. Patent No. 7,213,240 obtained from

an online patent database.

3. Exhibit B-1 is a true and correct copy of pages excerpted from the uncertified file

history of U.S. Patent No. 5,367,685 that was produced by Oracle America, Inc. (“Oracle”) with

document numbers OAGOOGLE0000057167–254.

4. Exhibit B-2 is a true and correct copy of pages excerpted from the uncertified file

history of U.S. Patent No. RE36,204 that was produced by Oracle with document numbers

OAGOOGLE0000059190–351.

5. Exhibit B-3 is a true and correct copy of pages excerpted from the uncertified file

history of U.S. Patent No. RE38,104 that was produced by Oracle with document numbers

OAGOOGLE0000059352–570.

6. Exhibit B-4 is a true and correct copy of pages excerpted from the uncertified file

history of U.S. Patent No. 6,061,520 that was produced by Oracle with document numbers

OAGOOGLE0000057445–662.

7. Exhibit C is a table I prepared citing portions of patents issued to Sun

Microsystems based on applications filed around the same time as the patents in suit. The

quotations are of the text of the patents available at the U.S. Patent and Trademark Office’s

website.

8. Exhibit D is a true and correct copy of a letter published in the U.S. Patent and

Trademark Office Official Gazette and obtained from that website at the following web address:

2

DECLARATION OF TRUMAN FENTON CIVIL ACTION No. CV 10-03561

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

http://www.uspto.gov/web/offices/com/sol/og/2010/week08/TOC.htm.

9. Exhibit E is a true and correct copy of an article written by R. Nigel Horspool and

Jason Corless that was obtained from Pennsylvania State University’s online research library,

CiteSeer.

10. Exhibit F is document I prepared containing a partial summary of the prosecution

history of U.S. Patent No. RE38,104 (and its family). The portions summarized identify the

earliest references in each application of the family in which the term “computer-readable

medium” was used.

I declare under penalty of perjury under the laws of the United States of America that the

foregoing is true and correct and that this declaration was executed this 17th day of March, 2011,

in Austin, Texas.

Dated: March 17, 2011

 Truman Fenton

Exhibit A

(12) United States Patent
Wong et al.

(54) PLATFORM-INDEPENDENT SELECTIVE
AHEAD-OF-TIME COMPILATION

(75) Inventors: Hinkmond Wong, Sunnyvale, CA
(US); Nedim Fresko, San Francisco,
CA (US); Mark Lam, Milpitas, CA
(US)

(73) Assignee: Sun Microsystems, Inc., Menlo Park,
CA (US)

(*) Notice: Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 348 days.

(21) Appl. No.: 09/970,661

(22) Filed: Oct. 5, 2001

(65)

(51)

(52)
(58)

(56)

Prior Publication Data

US 2003/0070161 Al Apr. 10, 2003

Int. Cl.
G06F 9/45 (2006.01)
U.S. Cl. .. 7171148
Field of Classification Search 717/139,

7171146-148,151,153,154; 706/52
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,638,298 A
5,276,881 A
5,280,613 A
5,339,419 A
5,812,854 A *
5,920,720 A *
5,966,542 A
5,966,702 A

111987 Spiro
111994 Chan et al.
111994 Chan et al.
811994 Chan et al.
911998 Steinmetz et al. 717/159
711999 Toutonghi et al 717/148

1011999 Tock
1011999 Fresko et al.

802

806

Does
Method Have

A Pre-Computed
IR?

808 ＧＭＭＭＬＭＭｾ＠

810 '---..,----"

812

AnyMore
Methods To

Check?

No

111111 111

814

US007213240B2

(10) Patent No.: US 7,213,240 B2
May 1, 2007 (45) Date of Patent:

6,081,665 A *
6,110,226 A
6,158,048 A
6,289,506 Bl *

6/2000 Nilsen et al. 717/116
8/2000 Bothner

12/2000 Luch et al.
9/2001 Kwong et al. 717/148

OTHER PUBLICATIONS

Andrew P. Black, "Supporting Distributed Applications: Experience
with Eden", Department of Computer Science, University of Wash-
ington, Technical Report 85-03-02, Mar. 1985, pp. 1-21.
Andrew P. Black, "The Eden Programming Language", Department
of Computer Science, FR-35, University of Washington, Technical
Report 85-09-01, Sep. 1985 (Revised, Dec. 1985), pp. 1-19.

(Continued)

Primary Examiner-Tuan Dam
Assistant Examiner-Andre R Fowlkes
(74) Attorney, Agent, or Firm-Finnegan, Henderson,
Farabow, Garrett & Dunner LLP

(57) ABSTRACT

Methods and systems for platform-independent selective
ahead-of-time compilation are herein described. A method
selector comprising a profiling tool and heuristic selects a
subset of methods for ahead-of-time compilation. The pro-
filing tool ranks a set of methods according to predetermined
criteria, and the heuristic identifies the subset of methods
from the set of methods. An ahead-of-time compiler com-
prises a first unit and a second unit. The first unit converts,
for each selected method, bytecodes corresponding to the
selected method to a platfonn-independent intermediate
representation. The second unit optimizes the platform-
independent intermediate representation of each selected
method, wherein each optimized intennediate representation
is stored with a corresponding selected method. A virtual
machine on a device converts an optimized intermediate
representation associated with a selected method loaded
onto the device to platform-dependent machine code.

60 Claims, 10 Drawing Sheets

US 7,213,240 B2
Page 2

OTHER PUBLICATIONS

Andrew P. Black, "The Eden Project: Overview and Experiences",
Department of Computer Science, University of Washington,
EUUG, Autumn '86 Conference Proceedings, Manchester, UK,
Sep. 22-25, 1986, pp. 177-189.
Andrew P. Black, Edward D. Lazowska, Jerre D. Noe and Jan
Sanislo, "The Eden Project: A Final Report", Department of Com-
puter Science, University of Washington, Technical Report 86-11-
01, Nov. 1986, pp. 1-28.

Calton Pu, "Replication and Nested Transactions in the Eden
Distributed System", Doctoral Dissertation, University of Washing-
ton, Aug. 6, 1986, pp. 1-179 (1 page Vita).

USPTO Office Action mailed Aug. 16, 2004 in related U.S. App\.
No. 10/455,341.

* cited by examiner

u.s. Patent May 1, 2007 Sheet 1 of 10 US 7,213,240 B2

r Host 120
110 10 2

V CPU
12 2--- t.....-- Operating System

12 4-'" '-L.-- Compiler 112
Secondary V

12 6-'" It- Source Code Storage

12 8 r- Class File Repository 114
13 0-h I--- Class Files Input Device V
13 2-h I--- Optimized I R

13 4 l..--- Class Preloader 116

V Ahead -of-Ti me Display
13 6 h---

Compiler

38 r-- Method Selector 118
1 Communications V

Device

y 108
Device -

•
Network •

ｾｾｾ＠
•

Device I--

Server • • • Server

104a 104n FIG. 1

u.s. Patent May 1, 2007 Sheet 2 of 10 US 7,213,240 B2

T ofF rom Host 1 02

106a
ｾ＠ Device

ｾＱＲ＠ V 202

CPU

2 14 --

2 16--

2 18 --

21 9-

22 O-

222---

2 24--

26-2

2 28-

230

L..-- Operating System

IL--- Browser

'L--
Class File Repository

IL-
Preloaded Class

I- Files

Dynamically
IL- - Loaded Class Files

tL-- Virtual Machine

i--l Preloaded Class

----- Files
1--1 -- JIT Compiler

1--1 -- Interpreter

1....--
Runtime Class

Loader

V
204

Secondary
Storage

Communications
Device

V 206

Input V 208

Device

Display V
210

To/From Network 108

FIG.2A

u.s. Patent May 1, 2007 Sheet 3 of 10 US 7,213,240 B2

;J
104a

24 4--

24 6--

24

25

25

25

8--

0--

2-

4-

25 6--

rt.-

ｾ＠

[L.--

r-
ｾ＠

h

h-

Server

Operating System

Compiler

Source Code

Class File Repository

- Class Files

- Optimized IR

Class Preloader

242
232

CPU ｾ＠

234

Secondary f
Storage

236

Input Device v5

238

Display V

240
Communications /

Device

To/From Network 108

FIG. 28

u.s. Patent May 1, 2007 Sheet 4 of 10 US 7,213,240 B2

302
Host 306

Java Source Code

308

Java Compiler

310
Class Files

312

314

316

318
To Server

Class Files &
Optimized IR 322

Class
Preloader

304

320

Device Runtime Class 326
Loader

Preloaded Class
324 Files

328
330 33\ I
ｾ＠ JIT Compiler I It-. __ In_t_er_p_re_te_r_---l

334 Java Virtual Machine

Operating System

FIG. 3

u.s. Patent

402

May 1, 2007 Sheet 5 of 10

404 Bytecodes

Method Selector

Selected Bytcodes

Ahead-of-time Compiler

8ytecode To
IR transformation

IR

IR Optimization

Optimized IR

Storage

FIG.4A

US 7,213,240 B2

406

408

410

412

414

416

418

u.s. Patent May 1, 2007 Sheet 6 of 10 US 7,213,240 B2

406
ｾ＠

Method Selector

Profiling Tool

V 420

Heuristic

V 422

FIG. 48

u.s. Patent May 1, 2007 Sheet 7 of 10 US 7,213,240 B2

Identify Methods To ｾ＠
502

Be Compiled Offline

For Each Identified Method
ｾ＠

504

__ 50 6
Convert Bytecodes To L.---

Intermediate Representation

508
r

ｾ＠
For Each Identified Method

V 51
Optimize Intermediate V"'"

Representation

o

512
ｾ＠

ｾ＠
For Each Identified Method

ｾ＠ 51
Store Optimized IR

4

Alongside The Method

FIG. 5

u.s. Patent May 1, 2007 Sheet 8 of 10 US 7,213,240 B2

600

602

Method Name
604

Parameters
606

Return Type
608

Flags
610

IR

612

8ytecodes

FIG. 6

u.s. Patent May 1, 2007 Sheet 9 of 10 US 7,213,240 B2

700
702

704 Method Name

706 Parameters

Code Attribute

15 712

Bytecode r
'---------'

708 Return Type

Compiler IR Attribute

710 Attributes

Flags
L-__ 'R __J(714

FIG. 7

u.s. Patent May 1, 2007

802

804

806

808

810

812

Yes

Access Method
Descriptor Of Method

To Be Called

Does
Method Have

A Pre-Computed
IR?

Yes

Pass IR To
J1T Compiler

Complete Compilation
Of Method

Continue Execution

Any More
Methods To

Check?

No

END

Sheet 10 of 10 US 7,213,240 B2

814

IsJIT No No
Compilation

Available
820

816
Yes

Is Method
Interpret

Worthy Of
No Method

Compilation
Without

818 Compilation

Yes

Compile Method

FIG. 8

US 7,213,240 B2
1

PLATFORM-INDEPENDENT SELECTIVE
AHEAD-OF-TIME COMPILATION

RELATED APPLICATIONS

The following identified U.S. patent applications are
relied upon and are incorporated by reference in this appli-
cation.

U.S. patent application Ser. No. 09/131,686, entitled
"METHOD AND SYSTEM FOR LOADING CLASSES IN 10

READ-ONLY MEMORY," filed Aug. 10, 1998, now U.S.
Pat. No. 5,966,542.

FIELD OF THE INVENTION

2
being used. By use of platform-independent bytecode and
the Java VM, a program written in the Java language can be
executed on any computer system. This is particularly useful
in networks such as the Internet that interconnect heteroge-
neous computer systems.

Interpreting bytecodes, however, make Java programs
many times slower than comparable C or C++ programs.
One approach to improving this performance is just-in-time
(JIT) compilers. A JIT compiler is a compiler running as part
of a Java virtual machine that dynamically translates byte-
code to machine code just before a method is first executed.
This can provide substantial speed-up over a system that just
interprets bytecodes. A JIT compilation typically consists of
a few phases executed in the following order: 1) byte-codes

The present invention relates generally to data processing
systems and, more particularly, to platform-independent
selective ahead-of-time compilation.

15 are converted to a platform-independent intermediate rep-
resentation (IR); 2) the IR is transformed to an optimized IR
using compiler optimization techniques; 3) the IR is con-
verted to platform-dependent machine code.

Java virtual machine implementations are becoming very
BACKGROUND AND MATERIAL

INFORMATION
20 popular on devices with limited CPU and memory

resources. On such devices, the above JIT compilation
process has a few drawbacks. For example, the memory
requirements of the compilation process may be prohibitive,
because each of the stages has runtime memory require-

In today's society, the Internet has become an important
medium for information exchange. Although the Internet is
now very popular among the general public, it initially
began as a system (or network) of interconnected computers
used by govemment and academic researchers. An early
problem of this network stemmed from the fact that the
interconnected computers were not the same; they employed
different hardware as well as different operating systems.
Information exchange on such a heterogeneous network
posed a communication problem. This problem was
resolved through agreement on common standards, includ-
ing protocols such as Transmission Control Protocol/Inter-
net Protocol (TCP/IP) and HyperText Transfer Protocol 35

(HTTP). These protocols enabled varied interconnected
machines to share information in the form of static text or
graphic documents.

25 ments which may be excessive on a limited-resource device.
Also, the memory requirements of storing each method's
translation may be prohibitive. Therefore, JIT's on such
devices will have to make decisions on which methods are
really worthy of compilation, and will have to handle only

30 those. In addition, some translations will have to be dis-
carded to make room for new ones. This results in slower

These protocols, however, represented only two steps in
the evolution of the Internet. Although users can exchange 40

information documents among varied computers connected
to the Internet, they cannot exchange executable application
programs written in conventional languages such as C or
C++, which are designed to interface with a particular
processor (e.g., the Intel Pentium™ processor) and/or a 45

particular operating system (e.g., Windows 95™ or DOS).
This problem was solved with the advent of the Java™
programming language and its related runtime system.

Java is an object-oriented programming language that is
described, for example, in a text entitled "The Java™ 50

Tutorial" by Mary Campione and Kathy Walrath, Addison-
Wesley, 1996. Importantly, Java is an interpreted language
that is platform-independent-that is, its utility is not limited

execution because re-translating is costly.
Another drawback is that runtime handling of byte-code

to IR transformation and IR optimization may result in large
compiler code sizes. Dynamic method selection online is
also costly in terms of compiler code size.

Yet another drawback is that due to lower processing
power on a limited resource machine, the optimization phase
carmot do much work without slowing down user program
execution considerably.

Accordingly, there is a need for a system and method for
byte code compilation that is less memory intensive, results
in faster compilation and execution, and reduces re-compi-
lation cost.

SUMMARY OF THE INVENTION

Methods and systems consistent with the principles of the
invention enable platform-independent selective ahead-of-
time compilation. A method selector selects a subset of
methods for ahead-of-time compilation. An ahead-of-time
compiler comprises a first unit and a second unit. The first
unit converts, for each selected method, bytecodes corre-
sponding to the selected method to a platform-independent
intermediate representation. The second unit optimizes the
platform-independent intermediate representation of each
selected method, wherein each optimized intermediate rep-
resentation is stored as one of a field of a corresponding
method descriptor data structure and an attribute of the

to one particular computer system. Using the Java program-
ming language, a software developer writes programs in a 55

form commonly called Java source code. When the devel-
oper completes authoring the program, he then compiles it
with a Java compiler into an intermediate form called
bytecode. Both the Java source code and the bytecode are
platform-independent. 60 corresponding method descriptor data structure.

The compiled bytecode can then be executed on any
computer system that employs a compatible runtime system
that includes a virtual machine (VM) , such as the Java
virtual machine described in a text entitled "The Java Virtual
Machine Specification," by Tim Lindholm and Frank Yellin, 65

Addison Wesley, 1996. The Java VM acts as an interpreter
between the bytecode and the particular computer system

Other methods and systems consistent with the principles
of the invention enable platform-independent selective
ahead-of-time compilation. A method selector comprising a
profiling tool and heuristic selects a subset of methods for
ahead-of-time compilation. The profiling tool ranks a set of
methods according to predetermined criteria, and the heu-
ristic identifies the subset of methods from the set of

US 7,213,240 B2
3

methods. An ahead-of-time compiler comprises a first unit
and a second unit. The first unit converts, for each selected
method, bytecodes corresponding to the selected method to
a platfonn-independent intennediate representation. The
second unit optimizes the platfonn-independent intennedi-
ate representation of each selected method, wherein each
optimized intennediate representation is stored with a cor-
responding selected method.

4
Other methods and systems consistent with the principles

of the invention also enable platform-independent selective
ahead-of-time compilation. A virtual machine on a device
receives at least one method, wherein the method is from a
subset of methods selected for ahead-of-time compilation,
and wherein bytecodes corresponding to each selected
method are converted to a platform-independent intermedi-
ate representation, the platform-independent intermediate
representation of each selected method is optimized, and Other methods and systems consistent with the principles

of the invention also enable platform-independent selective
ahead-of-time compilation. A method selector comprising a
profiling tool and heuristic selects a subset of methods for
ahead-of-time compilation. The profiling tool ranks a set of
methods according to predetermined criteria, and the heu-
ristic identifies the subset of methods from the set of
methods. An ahead-of-time compiler comprises a first unit
and a second unit. The first unit converts, for each selected
method, bytecodes corresponding to the selected method to

10 each optimized platform-independent intermediate repre-
sentation is stored with a corresponding selected method. An
interpreter accesses a method descriptor data structure of a
method about to be called, and determines whether the
method descriptor data structure has an optimized platform-

15 independent intermediate representation associated with it.
Ajust-in-time compiler converts the optimized intermediate
representation associated with the method about to be called
to platform-dependent machine code based on a determina-
tion that the method descriptor data structure has an opti-a platfonn-independent intennediate representation. The

second unit optimizes the platfonn-independent intennedi- 20 mized platfonn-independent intermediate representation
associated with it. ate representation of each selected method, wherein each

optimized intennediate representation is stored with a cor-
responding selected method. A class preloader may load,
prior to runtime, at least one of the selected methods onto a
device for execution. A dynamic class loader may load, 25

during runtime, at least one of the selected methods onto the
device for execution. A virtual machine on the device may
receive at least one method from one of the class preloader
and dynamic class loader. An interpreter accesses a method
descriptor data structure of a method about to be called, and 30

determines whether the method descriptor data structure has
an optimized platfonn-independent intennediate represen-
tation associated with it. A just-in-time compiler converts
the optimized intennediate representation associated with
the method about to be called to platform-dependent 35

machine code based on a determination that the method
descriptor data structure has an optimized platform-indepen-
dent intermediate representation associated with it.

Other methods and systems consistent with the principles
of the invention also enable platform-independent selective 40

ahead-of-time compilation. A method selector selects a
subset of methods for ahead-of-time compilation. An ahead-
of-time compiler comprises a first unit and a second unit.
The first unit converts, for each selected method, bytecodes
corresponding to the selected method to a platform-inde- 45

pendent intermediate representation. The second unit opti-
mizes the platform-independent intennediate representation
of each selected method, wherein each optimized intenne-
diate representation is stored as one of a field of a corre-
sponding method descriptor data structure and an attribute of 50

the corresponding method descriptor data structure. A class
preloader may load, prior to runtime, at least one of the
selected methods onto a device for execution. A dynamic
class loader may load, during runtime, at least one of the
selected methods onto the device for execution. A virtual 55

machine on the device may receive at least one method from
one of the class preloader and dynamic class loader. An
interpreter accesses a method descriptor data structure of a
method about to be called, and determines whether the
method descriptor data structure has an optimized platform- 60

independent intermediate representation associated with it.
Ajust-in-time compiler converts the optimized intermediate
representation associated with the method about to be called
to platform-dependent machine code based on a detennina-
tion that the method descriptor data structure has an opti- 65

mized platfonn-independent intennediate representation
associated with it.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated in and
constitute a part of this specification and, together with the
description, explain the features and principles of the inven-
tion. In the drawings:

FIG. 1 is a diagram of an exemplary network environment
in which features and aspects consistent with the present
invention may be implemented;

FIG. 2A is a diagram of a device consistent with the
present invention;

FIG. 2B is a diagram of a server consistent with the
present invention;

FIG. 3 is a diagram showing the dataflow involved in
platform-independent selective ahead-of-time compilation
consistent with the present invention;

FIG. 4A is a diagram showing the dataflow involved in the
operation of an ahead-of-time compiler consistent with the
present invention;

FIG. 4B is a diagram of a method selector consistent with
the present invention;

FIG. 5 is an exemplary flowchart of a method for com-
piling methods ahead-of-time consistent with the present
invention;

FIG. 6 is a diagram of a method descriptor with an
optimized IR stored as a field consistent with the present
invention;

FIG. 7 is a diagram of a method descriptor and related
attributes for use in dynamic class loading consistent with
the present invention; and

FIG. 8 is an exemplary flowchart for executing processes
consistent with the present invention.

DETAILED DESCRIPTION

The following detailed description of the invention refers
to the accompanying drawings. While the description
includes exemplary implementations, other implementations
are possible, and changes may be made to the implementa-
tions described without departing from the spirit and scope
of the invention. The following detailed description does not
limit the invention. Instead, the scope of the invention is
defined by the appended claims and their equivalents.

US 7,213,240 B2
5

Overview
6

intermediate representations (IR) 132, class preloader 134,
ahead-of-time compiler 136, and method selector 138. An IR
may be platfonn independent, system architecture neutral
data which is processed from source code to a fonnat that
can be quickly processed into efficient, optimized machine
dependent code at some future time.

Compiler 124 translates source code into class files that
contain bytecodes executable by a virtual machine. Source
code 126 may be files containing code written in the Java

Methods and systems consistent with the principles of the
invention enable platfonn-independent selective ahead-of-
time compilation. A method selector comprising a profiling
tool and heuristic select a subset of methods for ahead-of-
time compilation. The profiling tool ranks a set of methods
according to predetermined criteria, and the heuristic iden-
tifies the subset of methods from the set of methods. An
ahead-of-time compiler comprises a first unit and a second
unit. The first unit converts, for each selected method,
bytecodes corresponding to the selected method to a plat-
form-independent intermediate representation. The second
unit optimizes the platform-independent intennediate rep-
resentation of each selected method, wherein each optimized
intermediate representation is stored with a corresponding
selected method. A class preloader is operable to load, prior
to runtime, at least one of the selected methods onto a device
for execution. Furthermore, a dynamic class loader is oper-
able to load, during runtime, at least one of the selected
methods onto the device for execution.

10 programming language. Class file repository 128 includes
class files 130 and optimized IR 132. Class files 130 are
bytecodes executable by a virtual machine and contain data
representing a particular class, including data structures,
method implementations, and references to other classes.

15 Optimized IR 132 are platform-independent intermediate
representations that have been optimized using common
compiler techniques and associated with particular methods
subjected to ahead-of-time compilation. Class files and
optimized IR stored in class file repository 128 may be

20 stored either temporarily or on a more pennanent basis.
Class preloader 134 is used to preload, onto a device with

a virtual machine, certain classes prior to runtime. Any Java
application, or any other set of methods that are nonnally
loaded at runtime could be preloaded using class preloader

A virtual machine located on a device is operable to
receive at least one method from one of the class preloader
and dynamic class loader. An interpreter in the virtual
machine may access a method descriptor data structure of a
method about to be called, and determine whether the
method descriptor data structure has an optimized platform-
independent intermediate representation associated with it.
Ajust-in-time compiler in the virtual machine may convert
the optimized intennediate representation associated with
the method about to be called to platform-dependent
machine code based on a determination that the method
descriptor data structure has an optimized platform-indepen-
dent intermediate representation associated with it.

25 134. The operation of a class preloader is more particularly
described in U.S. Pat. No. 5,966,542 to Tock, which has
already been incorporated by reference.

Ahead-of-time compiler 136 handles the platform-inde-
pendent parts of method compilation, leaving the final,

30 platform-dependent part of method compilation to a JIT
compiler running on a virtual machine. For example, ahead-
of-time compiler 136 may utilize a profiling tool to identify
methods that should be compiled prior to runtime. There-
after, ahead-of-time compiler 136 perfonns bytecode to IR

Network Environment
35 transfonnation and IR optimization on the identified meth-

ods. The resulting optimized IR from the compilation of
each method is stored alongside the method.

FIG. 1 is a diagram of an exemplary network environment
in which features and aspects consistent with the present
invention may be implemented. Network environment 100 40

may include host 102, servers 104a-104n, devices
106a-106n, and network 108. The components of FIG. 1
may be implemented through hardware, software, and/or
finnware. The number of components in network environ-
ment 100 is not limited to what is shown. 45

Host 102 and servers 104a-104n may supply devices
106a-106n with programs written in a platform-independent
language, such as Java. For example, a software developer
may create one or more Java programs and compile them
into class files that contain bytecodes executable by a virtual 50

machine, such as a Java virtual machine. When a device,
such as device 106a, wishes to execute a Java program, it
may issue a request to a server, such as server 104a, that
contains the program. In response, server 104a transmits the
corresponding class files to device 106a via an appropriate 55

communication channel, such as network 108 (which may
comprise a wired or wireless communication network,
including the Internet). Device 106a may load the class files
into a virtual machine located in device 106a and proceed to
execute the Java program. Alternatively, a device may 60

receive a program, such as a Java program, from host 102
via a direct connection, or from another device.

Host 102 may include CPU 110, secondary storage 112,
input device 114, display 116, communications device 118,
and memory 120. Memory 120 may include operating 65

system 122, compiler 124, source code 126, class file
repository 128, which includes class files 130 and optimized

Method selector 138 detennines which methods should be
compiled prior to runtime using ahead-of-time compiler
136. Method selector 138 may run a profiling tool on class
files to create an ordered list of methods based on predeter-
mined criteria. This ordered list is used with a heuristic to
determine which methods should be compiled prior to
runtime.

FIG. 2A is a diagram of device 106a in greater detail,
although the other devices 106b--106n may contain similar
components. Device 106a may include CPU 202, secondary
storage 204, communications device 206, input device 208,
display 210, and memory 212. Memory 212 may include
operating system 214, browser 216, class file repository 218,
virtual machine 222, and runtime class loader 230.

When a user of device 106a wishes to execute a program
stored on a server, such as server 104a, the user may use
browser 216 to issue a request to server 104a. In response,
server 104a transmits the corresponding class files to device
106a via network 108. For example, class files from server
104a may be stored either temporarily or on a more perma-
nent basis in class file repository 218. Device 106a may load
the class files into a virtual machine, such as virtual machine
222, located in device 106a and proceed to execute the
program. Alternatively, device 106a may load class files
from class file repository 218 that were not received from a
server. For example, class file repository 218 may receive
class files from host 102 for later loading into the virtual
machine.

Class file repository 218 may include preloaded class files
219 and dynamically loaded class files 220. Preloaded class

US 7,213,240 B2
7

files 219 are those class files that are loaded onto device
106a prior to runtime using, for example, class preloader
134 on host 102. Dynamically loaded class files 220 are
those class files that are dynamically loaded at runtime
using, for example, runtime class loader 230. Preloaded
class files 219 and dynamically loaded class files 220 may
include optimized IR associated with particular methods that
were subjected to ahead-of-time compilation.

8
prior to runtime. Alternatively, a runtime class loader on
device 106a may pull data from class file repository 250
during runtime.

FIG. 3 is a diagram showing the dataflow involved in
platform-independent selective ahead-of-time compilation
consistent with the present invention. In the diagram
depicted in FIG. 3, device 304 executes a lava program that
was initially located on host 302. lava source code 306 is
provided to lava compiler 308, which translates lava source Virtual machine 222 may include preloaded class files

224, lIT compiler 226 and interpreter 228 and is operable to
execute class files. In one implementation, virtual machine
222 is a lava virtual machine. One of ordinary skill in the art
will recognize that other types of virtual machines may be
used instead. Preloaded class files 224 are those class files
that are loaded onto device 106a prior to runtime using, for
example, class preloader 134 on host 102, and may include
optimized IR associated with particular methods that were
subjected to ahead-of-time compilation. Virtual machine
222 may utilize both lIT compiler 226 and interpreter 228 to
help execute class files.

10 code into class files 310 that contain bytecodes executable
by a virtual machine. Class files 310 may be provided to
method selector 312. Method selector 312 may select vari-
ous methods to be compiled prior to runtime and pass the
selected class files 314 associated with the methods to

15 ahead-of-time compiler 316, which may perform an ahead-
of-time compilation on some of the selected class files 314.

Ahead-of-time compiler 316 performs ahead-of-time
compilation (e.g., prior to runtime) on identified methods.
For example, ahead-of-time compiler 316 first converts

lIT compiler 226 performs either fast compilation or lIT
compilation of methods. Fast compilation may occur when
lIT compiler 226 processes a method that is associated with
a pre-computed optimized IR. For example, when lIT com-
piler 226 receives a method with an optimized IR, it converts
the IR to platform-dependent machine code, which may then

20 bytecodes to an IR. Next, ahead-of-time compiler 316
optimizes the IR using common compiler techniques.
Ahead-of-time compiler 316 also causes the optimized IR to
be stored alongside the respective relevant methods. As a
result, ahead-of-time compiler 316 may output various class

be executed by virtual machine 222. lIT compilation may
occur when lIT compiler 226 processes a method that is not
associated with a pre-computed optimized IR. For example,
when lIT compiler 226 receives a method without an
optimized IR, the method may be processed during runtime
using traditional lIT compilation (e.g., bytecode to IR trans-
formation, IR optimization, and code generation).

25 files, along with associated optimized IR (class files &
optimized IR 318), if any. In one implementation, ahead-
of-time compiler 316 may also output some class files that
do not have any optimized IR associated with them, such
that some class files from ahead-of-time compiler 316 have

30 optimized IR and some do not. Greater detail on the opera-
tion of an ahead-of-time compiler is provided below with
reference to FIGS. 4-5.

Interpreter 228 interprets lava class files without compi-
lation to platform-dependent code. Interpreter 228 examines 35

methods being executed by virtual machine 224 to deter-
mine whether an optimized IR is associated with specific
methods. If a method does have an optimized IR, then
interpreter 228 causes lIT compiler 226 to perform a fast
compilation on the method. Otherwise, interpreter 228 may 40

perform further tests on a method to decide whether the
method should be interpreted or compiled by lIT compiler
226 using lIT compilation.

Runtime class loader 230 dynamically loads classes into 45

a user's address space at runtime. For example, runtime
class loader 230 may pull class files (which may include
optimized IR) during runtime from a local class file reposi-
tory, such as class file repository 218, or from a remote class
file repository on a server or another device. These class files 50

may then be appropriately processed for execution.

FIG. 2B is a diagram of server 104a in greater detail,
although the other devices 106b-l06n may contain similar
components. Server 104a may include CPU 232, secondary
storage 234, input device 236, display 238, communications 55

device 240, and memory 242. Memory 242 may include
operating system 244, compiler 246, source code 248, class
file repository 250, which includes class files 252 and
optimized intermediate representations (IR) 254, and class
preloader 256. The various units of server 104a function in 60

a manner similar to the similarly named units of host 102.

Server 104a may receive class files 252 and optimized IR
254 from host 102, which may perform ahead-of-time
compilation. Server 104a may then distribute class files 252
and optimized IR 254 to a device, such as device 106a, as 65

needed. For example, server 104a may utilize class pre-
loader 256 to load the appropriate data onto device 106a

Class files & optimized IR 318 may be provided to either
class preloader 322 or to storage local to device 304, such as
a class file repository (where runtime class loader 320 may
then access the data), without preloading. Alternatively,
class files & optimized IR 318 may be provided to a server
for later distribution to a device.

Runtime class loader 320 may receive class files at the
same time that it receives related optimized IR. For example,
runtime class loader 320 may receive class files and opti-
mized IR where the optimized IR are stored as new attributes
in method descriptors. Class preloader 322, however, may
receive class files at a different time than it receives related
optimized IR. In this manner, class preloader 322 operates
like an assembly line, storing optimized IR as a field of
method descriptors as it receives them. Alternatively, ahead-
of-time compiler 316 or a separate not shown) may store
optimized IR as a field of method descriptors in a class file
before being forwarded to class preloader 322. Although
runtime class loader 320 is depicted in FIG. 3 as being
external to lava virtual machine 328, some or all of runtime
class loader 320 may alternatively be internal to lava virtual
machine 328.

Runtime class loader 320 and class preloader 322 load
class files onto device 304 dynamically or prior to runtime,
respectively. Both preloaded class files 326 and dynamically
loaded class files 324 may include optimized IR stored as a
field of method descriptors corresponding to methods com-
piled prior to runtime. Preloaded class files 326 are stored on
device 304 prior to runtime. Accordingly, if a method has an
optimized IR associated with it, the optimized IR needs to be
stored as a field in the method descriptor either by class
preloader 322 or a unit exterior to class preloader 322 before
runtime commences. Although preloaded class files 326 are
depicted in FIG. 3 as initially being external to lava virtual
machine 328, some or all of the preloaded class files 326

US 7,213,240 B2
9

may alternatively reside in lava virtual machine 328. Runt-
ime class loader 320 receives class files & optimized IR
during runtime from a server, another device, or local
storage, and then produces dynamically loaded class files
324. Accordingly, a method with an optimized IR associated
with it may have the optimized IR stored in its method
descriptor either at runtime or prior to runtime. Greater
detail on storing optimized IR with a method is provided
below with reference to FIGS. 4-7.

10
First, a method selector identifies the methods that should

be compiled prior to runtime (step 502). For example, a
profiling tool of the method selector may run an application
or a set of applications (e.g., lava source code or bytecodes).
As the profiling tool runs the applications, it may collect
statistics on the various methods in the applications. The
profiling tool may then create an ordered list of methods,
ranked according to predetermined criteria. For example, the
profiling tool may determine which methods are called the

10 most often and rank the methods accordingly, with the
most-called method ranked first. Another factor which the

Dynamically loaded class files 324 and/or preloaded class
files 326 are provided to lava virtual machine 328, where lIT
compiler 330, interpreter 332, services from the underlying
operating system 334, and the computer hardware (not
shown) aid in the execution of the class files. Interpreter 332
recognizes whether a particular method has an optimized IR 15

associated with it and may cause lIT compiler 330 to
compile the method using fast compilation (e.g., skip byte-
code to IR transformation and IR optimization), if there is
such an optimized IR. Greater detail on the operation of a
lIT compiler and interpreter consistent with the present 20

invention is provided below with reference to FIG. 8.

FIG. 4A is a diagram showing the dataflow involved in the
operation of an ahead-of-time compiler consistent with the
present invention. Bytecodes 404 from a class file are 25

provided to method selector 406, which may be outside
ahead-of-time compiler 402, where methods that are to be
compiled prior to runtime are selected. Alternatively,
method selector 406 may be internal to ahead-of-time com-
piler 402. Method selector 406 may subsequently send 30

selected bytecodes 408 associated with the selected methods
to ahead-of-time compiler 402. Specifically, selected byte-
codes 408 are sent to bytecode to IR transformation unit 408.
The selected bytecodes 408 are provided to bytecode to IR
transformation unit 410 for conversion to platform-indepen-35

dent intermediate representations (IR). The IR 412 are
provided to IR optimization unit 414, where they are
changed into optimized IR 416 using common compiler
techniques. Subsequently, optimized IR 416 are stored
alongside the relevant methods (storage 418). The optimized 40

IR and corresponding methods are made available for use by
a class preloader or runtime class loader.

FIG. 4B is a diagram of a method selector 406 in greater
detail. Profiling tool 420 runs on class files or lava source
code to create an ordered list of methods based on prede- 45

termined criteria. For example, profiling tool 420 may rank
methods according to number of times called, execution
time, memory size, predetermined list, randomly, and vari-
0us other factors. Heuristic 422 may examine the list created
by profiling tool 420 and, using developer-chosen criteria, 50

determine which specific methods from the list should be
compiled prior to runtime. Profiling tool 420 and heuristic
422 need not be part of the same unit (e.g., method selector
406). Additionally, profiling tool 420 may be located on a
device with a virtual machine. In such a configuration, 55

profiling tool 420 may collect statistics on programs as they
are ruuning on the virtual machine, and subsequently send
the heuristic (which may be on a host, server, another device,

profiling tool may use is memory size. For example, the
profiling tool may rank methods according to memory size,
because space available for storing an IR may be limited.
Other factors that may be used to help determine how
methods are initially ranked include execution time, a list
predetermined by a developer, or random ranking. One
skilled in the art will recognize that the aforementioned
factors may each be used as a sole basis for ranking or in
some combination with each other, and that additional
factors not specifically listed here may be used.

Once the profiling tool creates an ordered list of methods,
it uses the ordered list with a heuristic to determine which of
the most used methods should be compiled prior to runtime.
The heuristic essentially shortens the ordered list created by
the profiling tool. The shortened list comprises the methods
that should be compiled prior to runtime. A developer may
choose the criteria that the heuristic uses to determine
exactly which methods should selected. For example, a
developer may decide that only the first ten methods on the
ordered list should be compiled prior to runtime, or that only
methods that were called more than a certain number of
times should be selected. Alternatively, the developer may
specifY that a certain number of random methods from the
ordered list should be selected, or that only those methods
from a predetermined list that are in the top 40 methods of
the ordered list should be selected. One skilled in the art will
recognize that the developer may choose criteria not spe-
cifically mentioned here to determine which methods from
an ordered list should be compiled prior to runtime. The
method selector (e.g., profiling tool and heuristic) described
above may be part of an ahead-of-time compiler, or it may
be a separate unit.

For each method identified as a method that should be
compiled prior to runtime (step 504), the ahead-of-time
compiler converts the bytecodes of the method to an inter-
mediate representation (IR) (step 506). The ahead-of-time
compiler also optimizes the IR of each identified method
(steps 508, 510). An IR may be optimized using common
compiler techniques. Because the techniques are utilized
prior to runtime, compiler techniques that may be too
expensive for runtime computation may be utilized.
Examples of such techniques include global common sub-
expression, loop invariant hoisting, common sub-expression
elimination, and liveness analysis. One skilled in the art will
recognize that other compiler techniques may be used.

After the intermediate representations (IR) have been
optimized, the ahead-of-time compiler may cause the opti-
mized IR of each identified method to be stored alongside its or the same device as the profiling tool) an ordered list of

methods for further processing. 60 corresponding method (steps 512, 514). Optimized IR may
be stored in two different ways. The type of storage is
dependent on whether classes associated with the optimized
IR are preloaded or dynamically loaded. When a class

FIG. 5 is an exemplary flowchart of a method for com-
piling methods ahead-of-time consistent with the present
invention. The flowchart of FIG. 5 corresponds to the
dataflow of FIG. 4. Although the steps of the flow chart are
described in a particular order, one skilled in the art will 65

appreciate that these steps may be performed in a different
order, or that some of these steps may be concurrent.

associated with an optimized IR is initially designated to be
preloaded, the optimized IR is stored as a field of the method
descriptor data structure of the method that was compiled to
create the optimized IR. Alternatively, the method descriptor

US 7,213,240 B2
11

may contain a pointer to the optimized IR instead of con-
taining the optimized IR itself. The method descriptor may
also contain a flag indicating that the method has an opti-
mized IR associated with it. Once the optimized IR has been
stored with the method descriptor, the class preloader may
proceed to preload the method descriptor or store the method
descriptor for later dynamic loading by the runtime class
loader.

12
the bytecode and IR of these attributes as fields of method
descriptor 700 (e.g., it stores the bytecode and IR in the
method descriptor).

FIG. S is an exemplary flowchart for executing methods
consistent with the present invention. Although the steps of
the flow chart are described in a particular order, one skilled
in the art will appreciate that these steps may be performed
in a different order, or that some of these steps may be

FIG. 6 is an exemplary diagram of a method descriptor 10

that has an optimized IR stored as a field. One skilled in the

concurrent.
When a virtual machine, such as virtual machine 222,

runs a program, various methods are loaded into the virtual
machine either as part of preloading or dynamic class
loading. If the runtime class loader recognizes that methods
containing the Compiler IR attribute are loaded as part of

art will recognize that method descriptor 600 is not limited
to the specific fields depicted in FIG. 6. Method descriptor
600 includes method name 602, parameters 604, return type
606, flags 60S, IR 610, and bytecode 612. Method name 602
represents the name to be used when referencing the method.
Parameters 604 is a list of arguments that the method uses.
Each parameter is a lava class type. Return type 606 is a
lava class type that is returned by the method upon execu-
tion. Flags 60S are a number of indicators used to denote
various properties of the method. Flags 60S may include a
flag indicating that there is an IR associated with the method.
IR 610 is a platform-independent intermediate representa-
tion (IR) resulting from the ahead-of-time compilation of the
method. IR 610 may be the IR itself or a pointer to the IR.
Bytecodes 612 are the bytecodes and auxiliary information
needed to implement the method in cases where the IR does
not end up being compiled.

When a class associated with an optimized IR is initially
designated to be dynamically loaded, the IR is stored as a
new attribute of the method descriptor for the method.
Accordingly, when a program being executed by a virtual
machine on a device needs a method with an optimized IR
from a server (or from another device or local storage area
on the same device), a runtime class loader may load the
appropriate class file onto the device. Prior to loading, if the
runtime class loader is programmed to recognize the new
attribute that corresponds to the IR, then it accesses the IR
attribute and stores the IR as a field in the method descriptor
(the IR itself or a pointer to the IR may be stored as a field).
Also, the method descriptor is flagged as containing an IR.

15 dynamic class loading, the IR becomes a field of the method
descriptor data structure prior to being loaded into the virtual
machine. Also, the method descriptor is flagged as contain-
ing an IR. Alternatively, the IR of the Compiler IR attribute
may be stored in the method descriptor data structure prior

20 to runtime. Pre-loaded methods with an IR are already
flagged and, have the IR as a field. As the virtual machine
proceeds with executing a program, each time a method is
about to be called, the interpreter of the virtual machine
accesses the method descriptor of the method to be called

25 (step S02).
Next, the interpreter makes a determination as to whether

the method to be called has a pre-computed IR (step S04).
Specifically, the interpreter checks the flags of the method
descriptor to see if there is a flag indicating that there is an

30 IR associated with the method. If there is an IR associated
with the method, then the interpreter passes the IR to a lIT
compiler (step S06). Alternatively, instead of automatically
sending the IR to the lIT compiler, the virtual machine may
subject the method to further tests to determine whether the

35 IR should be compiled. For example, the virtual machine
may use factors such as memory usage during runtime,
processor usage, user decision (e.g., user decides that he
does not want IR compiled), execution time, and/or fuzzy
logic, to decide whether an IR should be compiled. If the

40 virtual machine determines that the method should still be

In this manner, the runtime class loader may transform the
method descriptor into a method descriptor that is similar to
that normally used for preloading. Alternatively, an ahead-
of-time compiler may recognize the IR attribute, store the IR 45

as a field in the method descriptor, and flag the method
descriptor as containing an IR. Moreover, a development
tool may perform these steps during development time (e.g.,
outside of runtime).

compiled, the interpreter may pass the IR to the lIT com-
piler. If the virtual machine decides that the IR should not be
compiled, then the interpreter proceeds to interpret the
method without compilation.

Upon receiving the IR, the lIT compiler completes the
compilation of the method by performing a fast compilation
on it (step SOS). For example, the lIT compiler may translate
the optimized IR to machine dependent code (e.g., code
generation). The bytecode to IR transformation and IR

FIG. 7 is an exemplary diagram of a method descriptor
and related attributes for use in dynamic class loading. One
skilled in the art will recognize that method descriptor 700
is not limited to the specific fields depicted in FIG. 7, and
that additional attributes may be associated with the descrip-
tor. Method descriptor 700 includes method name 702,
parameters 704, return type 706, attributes 70S, and flags
710. Attributes 70S includes a list of attribute structures for
use in conjunction with the method. In order to properly
process attributes, a virtual machine, runtime class loader, or
ahead-of-time compiler must be able to recognize and
correctly read the attribute structures. Code attribute 712
includes the bytecodes and auxiliary information needed to
implement the method. Compiler IR attribute 714 includes
a platform-independent intermediate representation result-
ing from the ahead-of-time compilation of the method. If the
runtime class loader or ahead-of-time compiler recognizes
Compiler IR attribute 714 and Code attribute 712, it includes

50 optimization steps that are normally part of a lIT compila-
tion are not performed. After fast compilation has been
performed, the virtual machine continues execution (step
SI0). Specifically, the virtual machine jumps to the now
compiled code of the method. After the virtual machine

55 executes the method, execution of the rest of the lava
program may continue. If execution does not lead to the
calling of any more methods, then execution continues until
it is complete (step SI2-No). If the virtual machine deter-
mines that another method is about to be called, then the

60 appropriate method descriptor may be accessed and pro-
cessed as described above (step SI2-Yes).

If the interpreter determines that a method to be called
does not have a pre-computed IR (or if the interpreter is not
programmed to recognize whether a method has a pre-

65 computed IR), then the interpreter makes a determination as
to whether lIT compilation is available (step SI4). For
example, the interpreter may check a flag or other indicator

US 7,213,240 B2
13 14

2. The process of claim 1, further comprising:
optimizing, by the host, the platform-independent inter-

mediate representation of each selected method before
the storing.

3. The process of claim 1, wherein the ranking includes
creating an ordered list of methods in the set of methods.

4. The process of claim 1, wherein the predetermined
criteria is number of times called.

associated with the lIT compiler to determine whether the
lIT compiler is configured to perform lIT compilation. lIT
compilation refers to compilation that at least includes
bytecode to IR transformation, IR optimization, and code
generation. If the interpreter determines that lIT compilation
is available, the lIT compiler makes a determination as to
whether the method to be called is worthy of compilation
(step 816). For example, a method may not be worthy of
compilation if the bytecode is so short, that it is not worth
the time it would take to compile the bytecode. If the lIT
compiler determines that the method is worthy of compila-
tion, then it proceeds to compile the method using lIT
compilation (step 818). Thereafter, the virtual machine con-
tinues execution with a jump to the now compiled code of
the method.

5. The process of claim 1, wherein the predetermined
10 criteria is memory size.

15

6. The process of claim 1, wherein the predetermined
criteria is execution time.

7. The process of claim 1, wherein the predetermined
criteria is a list determined by a developer.

8. The process of claim 1, wherein the heuristic is based
on developer-chosen criteria. If the interpreter determines that lIT compilation is not

available, or if the lIT compiler determines that a method is
not worthy of compilation, then the interpreter proceeds to
interpret the method without compilation (step 820). The
virtual machine may then continue execution of the rest of
the lava program.

9. The process of claim 2, said storing comprising storing
each optimized intermediate representation as one of a field
of a corresponding method descriptor data structure and an

20 attribute of the corresponding method descriptor data struc-
ture.

While the present invention has been described in con-
nection with various embodiments, many modifications will
be readily apparent to those skilled in the art. Although
aspects of the present invention are described as being stored

10. The process of claim 9, wherein an optimized inter-
mediate representation is stored as a field of a corresponding
method descriptor data structure when the corresponding

25 selected method is preloaded.
in memory, one skilled in the art will appreciate that these
aspects can also be stored on or read from other types of
computer-readable media, such as secondary storage
devices, like hard disks, floppy disks, or CD-ROM; a carrier
wave, optical signal or digital signal from a network, such as 30

the Internet; or other forms of RAM or ROM either currently
known or later developed. Additionally, although a number
of the software components are described as being located
on the same machine, one skilled in the art will appreciate
that these components may be distributed over a number of 35

machines. The invention, therefore, is not limited to the
disclosure herein, but is intended to cover any adaptations or
variations thereof.

11. The process of claim 9, wherein an optimized inter-
mediate representation is stored as an attribute of a corre-
sponding method descriptor data structure when the corre-
sponding selected method is dynamically loaded.

12. The process of claim 1, wherein the virtual machine
determines whether the at least one selected method has a
platform-independent intermediate representation associ-
ated with it by checking a flag in the associated method
descriptor data structure.

13. The process of claim 1, wherein the virtual machine
selectively converts the platform-independent intermediate
representation associated with the at least one selected
method to platform-dependent code.

What is claimed is:
1. A process for platform-independent selective ahead-of-

time compilation in a system including a host and a device,
comprising:

14. The process of claim 13, wherein the selective con-
40 version is based on at least one of memory usage during

runtime, processor usage, user decision, or fuzzy logic.

selecting, by the host, a subset of methods from bytecodes
for ahead-of-time compilation, the selecting including
ranking a set of methods according to predetermined
criteria and identifYing the subset of methods from the

15. The process of claim 2, wherein the optimizing is
performed according to at least one of global common
subexpression, loop invariant hoisting, common sub-expres-

45 sion elimination, and liveness analysis.

set of methods using a heuristic, wherein the bytecodes
are compiled from source codes prior to the ahead-of- 50

time compilation;
converting, by the host, for each selected method, the

bytecodes corresponding to the selected method to a
platform-independent intermediate representation;

storing each of the intermediate representations with a 55

corresponding selected method; and
loading at least one of the selected methods onto the

device for execution by a virtual machine on the device,
wherein the virtual machine accesses a method descrip-
tor data structure associated with the at least one 60

selected method, determines whether the at least one
selected method has an intermediate representation
associated with it, and, based on a determination that
the at least one selected method is associated with an
intermediate representation, converts the intermediate 65

representation associated with the at least one selected
method to platform-dependent machine code.

16. A process for platform-independent selective ahead-
of-time compilation in a system including a host and a
device, comprising:

selecting, by the host, a subset of methods from bytecodes
for ahead-of-time compilation, wherein the bytecodes
are compiled from source codes prior to the ahead-of-
time compilation;

converting, by the host, for each selected method, the
bytecodes corresponding to the selected method to a
platform-independent intermediate representation;

optimizing, by the host, the platform-independent inter-
mediate representation of each selected method; and

storing each of the optimized intermediate representations
as one of a field of a corresponding method descriptor
data structure and an attribute of the corresponding
method descriptor data structure;

loading at least one of the selected methods onto the
device for execution by a virtual machine on the device,
wherein the virtual machine accesses a method descrip-
tor data structure associated with the at least one
selected method, determines whether the at least one
selected method has an optimized intermediate repre-

US 7,213,240 B2
15

sentation associated with it, and, based on a detenni-
nation that the at least one selected method is associ-
ated with an optimized intennediate representation,
converts the optimized intennediate representation
associated with the at least one selected method to
platform-dependent machine code.

17. The process of claim 16, said selecting comprising:
ranking a set of methods according to predetermined

criteria; and
identifYing the subset of methods from the set of methods 10

using a heuristic.
18. The process of claim 17, wherein the ranking includes

creating an ordered list of methods in the set of methods.
19. The process of claim 17, wherein the predetermined

criteria is number of times called.
20. The process of claim 17, wherein the predetermined

criteria is memory size.
21. The process of claim 17, wherein the predetermined

criteria is execution time.

15

22. The process of claim 17, wherein the predetermined 20

criteria is a list detennined by a developer.
23. The process of claim 17, wherein the heuristic is based

on developer-chosen criteria.
24. The process of claim 16, wherein an optimized

intermediate representation is stored as a field of a corre- 25

sponding method descriptor data structure when the corre-
sponding selected method is preloaded.

25. The process of claim 16, wherein an optimized
intermediate representation is stored as an attribute of a
corresponding method descriptor data structure when the 30

corresponding selected method is dynamically loaded.
26. The process of claim 16, wherein the virtual machine

determines whether the at least one selected method has a
platform-independent intermediate representation associ-
ated with it by checking a flag in the associated method 35

descriptor data structure.
27. The process of claim 16, wherein the virtual machine

selectively converts the platfonn-independent intermediate
representation associated with the at least one selected
method to platfonn-dependent code.

28. The process of claim 27, wherein the selective con-
version is based on at least one of memory usage during
runtime, processor usage, user decision, or fuzzy logic.

40

16
30. The process of claim 29, wherein the platform-

independent intermediate representation of each selected
method is optimized by the host before storing with a
corresponding selected method.

31. An apparatus for platfonn-independent selective
ahead-of-time compilation in a system including a host and
a device, comprising:

a method selector on the host and operable to select a
subset of methods from bytecodes for ahead-of-time
compilation, the method selector including a profiling
tool operable to rank a set of methods according to
predetennined criteria and a heuristic operable to iden-
tifY the subset of methods from the set of methods,
wherein the bytecodes are compiled from source codes
prior to the ahead-of-time compilation; and

an ahead-of-time compiler on the host, the ahead-of-time
compiler including a first unit and a second unit, the
first unit operable to convert, for each selected method,
the bytecodes corresponding to the selected method to
a platform-independent intermediate representation,
and the second unit operable to optimize the platform-
independent intermediate representation of each
selected method, wherein each of the optimized inter-
mediate representations is stored with a corresponding
selected method;

a class preloader operable to load, prior to runtime, at least
one of the selected methods onto the device for execu-
tion by a virtual machine, wherein

the virtual machine accesses a method descriptor data
structure associated with the at least one selected
method, determines whether the at least one selected
method has an optimized intennediate representation
associated with it, and, based on a determination that
the at least one selected method is associated with an
optimized intennediate representation, converts the
optimized intermediate representation associated with
the at least one selected method to platform-dependent
machine code.

32. The apparatus of claim 31, wherein the profiling tool
creates an ordered list of methods in the set of methods.

33. The apparatus of claim 31, wherein the predetermined
criteria is number of times called.

34. The apparatus of claim 31, wherein the predetermined 29. A process, perfonned by a device, for platform-
independent selective ahead-of-time compilation in a system
including a host and the device, comprising:

45 criteria is memory size.

receiving at least one method from the host, wherein the
method is from a subset of methods from bytecodes
selected by the host for ahead-of-time compilation,
wherein the bytecodes are compiled from source codes 50

prior to the ahead-of-time compilation, and wherein the
bytecodes corresponding to each selected method are
converted by the host to a platfonn-independent inter-
mediate representation, and each of the platform-inde-
pendent intennediate representations is stored with a 55

corresponding selected method;
accessing a method descriptor data structure of a method

about to be called;
detennining whether the method descriptor data structure

has a platfonn-independent intermediate representation 60

associated with it; and
converting the intennediate representation associated

with the at least one selected method to platform-
dependent machine code based on a detennination that
the method descriptor data structure has a platform- 65

independent intermediate representation associated
with it.

35. The apparatus of claim 31, wherein the predetermined
criteria is execution time.

36. The apparatus of claim 31, wherein the predetermined
criteria is a list determined by a developer.

37. The apparatus of claim 31, wherein the heuristic
identifies the subset of methods based on developer-chosen
criteria.

38. The apparatus of claim 31, each optimized intenne-
diate representation is stored as one of a field of a corre-
sponding method descriptor data structure and an attribute of
the corresponding method descriptor data structure.

39. The apparatus of claim 38, wherein an optimized
intermediate representation is stored as a field of a corre-
sponding method descriptor data structure when the corre-
sponding selected method is loaded by the class preloader
prior to runtime.

40. The apparatus of claim 38, wherein an optimized
intermediate representation is stored as an attribute of a
corresponding method descriptor data structure when the
corresponding selected method is loaded by a dynamic class
loader during runtime.

US 7,213,240 B2
17

41. An apparatus for platfonn-independent selective
ahead-of-time compilation in a system including a host,
comprising:

a virtual machine operable to receive at least one method
from the host, wherein the method is from a subset of
methods from bytecodes selected by the host for ahead-
of-time compilation, wherein the bytecodes are com-
piled from source codes prior to the ahead-of-time
compilation, and wherein the bytecodes corresponding
to each selected method are converted by the host to a 10

platform-independent intermediate representation, the
platform-independent intermediate representation of
each selected method is optimized by the host, and each
of the optimized platfonn-independent intermediate
representations is stored with a corresponding selected 15

method;
an interpreter operable to access a method descriptor data

structure of a method about to be called, and detennine
whether the method descriptor data structure has an
optimized platfonn-independent intermediate represen- 20

tation associated with it; and
ajust-in-time compiler operable to convert the optimized

intermediate representation associated with the method
about to be called to platfonn-dependent machine code
based on a detennination that the method descriptor 25

data structure has an optimized platform-independent
intermediate representation associated with it.

42. The apparatus of claim 41, wherein the interpreter
determines whether the method descriptor data structure has 30

an optimized platfonn-independent intennediate represen-
tation associated with it by checking a flag in the method
descriptor data structure.

43. The apparatus of claim 41, wherein the just-in-time
compiler selectively converts the optimized platform-inde- 35

pendent intennediate representation associated with the
method about to be called to platform-dependent code.

44. The apparatus of claim 43, wherein the selective
conversion is based on at least one of memory usage during
runtime, processor usage, user decision, or fuzzy logic.

45. A system for platform-independent selective ahead-
of-time compilation, comprising:

a method selector on a host and operable to select a subset

40

of methods from bytecodes for ahead-of-time compi-
lation, the method selector including a profiling tool 45

operable to rank a set of methods according to prede-
tennined criteria and a heuristic operable to identify the
subset of methods from the set of methods, wherein the
bytecodes are compiled from source codes prior to the
ahead-of-time compilation; 50

an ahead-of-time compiler on the host, the ahead-of-time
compiler including a first unit and a second unit, the
first unit operable to convert, for each selected method,
the bytecodes corresponding to the selected method to 55

a platfonn-independent intermediate representation,
and the second unit operable to optimize the platform-
independent intermediate representation of each
selected method, wherein each of the optimized inter-
mediate representations is stored with a corresponding 60

selected method;

a class preloader operable to load, prior to runtime, at least
one of the selected methods onto a device for execu-
tion;

18
a virtual machine on a device, the virtual machine oper-

able to receive at least one method from one of the class
preloader and dynamic class loader;

an interpreter on the device, the interpreter operable to
access a method descriptor data structure of a method
about to be called, and detennine whether the method
descriptor data structure has an optimized platform-
independent intermediate representation associated
with it; and

a just-in-time compiler on the device, the just-in-time
compiler operable to convert the optimized intermedi-
ate representation associated with the method about to
be called to platform-dependent machine code based on
a determination that the method descriptor data struc-
ture has an optimized platform-independent intermedi-
ate representation associated with it.

46. An apparatus for platfonn-independent selective
ahead-of-time compilation, comprising:

means for selecting a subset of methods from bytecodes
for ahead-of-time compilation, wherein the bytecodes
are compiled from source codes prior to the ahead-of-
time compilation;

means for converting, for each selected method, the
bytecodes corresponding to the selected method to a
platform-independent intennediate representation;

means for optimizing the platfonn-independent intenne-
diate representation of each selected method; and

means for storing each of the optimized intermediate
representations as one of a field of a corresponding
method descriptor data structure and an attribute of the
corresponding method descriptor data structure;

means for loading at least one of the selected methods
onto a device for execution by a virtual machine on the
device, wherein the virtual machine accesses a method
descriptor data structure associated with the at least one
selected method, determines whether the at least one
selected method has an optimized intennediate repre-
sentation associated with it, and, based on a detenni-
nation that the at least one selected method is associ-
ated with an optimized intennediate representation,
converts the optimized intennediate representation
associated with the at least one selected method to
platform-dependent machine code.

47. The apparatus of claim 46, said means for selecting
comprising:

means for ranking a set of methods according to prede-
tennined criteria; and

means for identifying the subset of methods from the set
of methods using a heuristic.

48. The apparatus of claim 47, wherein the means for
ranking creates an ordered list of methods in the set of
methods.

49. The apparatus of claim 46, wherein an optimized
intermediate representation is stored as a field of a corre-
sponding method descriptor data structure when the corre-
sponding selected method is preloaded.

50. The apparatus of claim 46, wherein an optimized
intermediate representation is stored as an attribute of a
corresponding method descriptor data structure when the
corresponding selected method is dynamically loaded.

51. The apparatus of claim 46, wherein the virtual
machine determines whether the at least one selected
method has a platform-independent intermediate represen-
tation associated with it by checking a flag in the associated

a dynamic class loader operable to load, during runtime,
at least one of the selected methods onto the device for
execution;

65 method descriptor data structure.
52. The process of claim 46, wherein the virtual machine

selectively converts the platfonn-independent intermediate

US 7,213,240 B2
19

representation associated with the at least one selected
method to platfonn-dependent code.

53. The process of claim 52, wherein the selective con-
version is based on at least one of memory usage during
runtime, processor usage, user decision, or fuzzy logic.

54. A computer-readable storage medium containing
instructions for perfonning a process for platform-indepen-
dent selective ahead-of-time compilation in a system includ-
ing a host and a device, the process comprising: selecting, by
the host, a subset of methods from bytecodes for ahead-of-
time compilation, wherein the bytecodes are compiled from
source codes prior to the ahead-of-time compilation; con-
verting, by the host, for each selected method, the bytecodes
corresponding to the selected method to a platform-inde-
pendent intennediate representation; optimizing, by the
host, the platfonn-independent intermediate representation
of each selected method; and storing each of the optimized
intermediate representations as one of a field of a corre-
sponding method descriptor data structure and an attribute of
the corresponding method descriptor data structure; loading
at least one of the selected methods onto the device for
execution by a virtual machine on the device, wherein the
virtual machine accesses a method descriptor data structure
associated with the at least one selected method, determines
whether the at least one selected method has an optimized
intermediate representation associated with it, and, based on

20
ing a host and a device, the process comprising: receiving at
least one method from the host, wherein the method is from
a subset of methods from bytecodes selected by the host for
ahead-of-time compilation, wherein the bytecodes are com-
piled from source codes prior to the ahead-of-time compi-
lation, and wherein the bytecodes corresponding to each
selected method are converted by the host to a platform-
independent intennediate representation, the platform-inde-
pendent intennediate representation of each selected method

10 is optimized by the host, and each of the optimized platform-
independent intennediate representations is stored with a
corresponding selected method; accessing, by a virtual
machine on the device, a method descriptor data structure of
a method about to be called; determining, by the virtual

15 machine, whether the method descriptor data structure has
an optimized platfonn-independent intermediate represen-
tation associated with it; and converting, by the virtual
machine, the optimized intennediate representation associ-
ated with the at least one selected method to platform-

20 dependent machine code based on a determination that the
method descriptor data structure has an optimized platform-
independent intermediate representation associated with it.

60. An apparatus for platfonn-independent selective
ahead-of-time compilation in a system including a host and

25 a device, comprising:

a determination that the at least one selected method is
associated with an optimized intermediate representation,
converts the optimized intermediate representation associ-
ated with the at least one selected method to platform- 30

dependent machine code.

means for receiving at least one method from the host,
wherein the method is from a subset of methods from
bytecodes selected for ahead-of-time compilation,
wherein the bytecodes are compiled from source codes
prior to the ahead-of-time compilation, and wherein the
bytecodes corresponding to each selected method are

55. The computer-readable storage medium of claim 54,
said selecting comprising: ranking a set of methods accord-
ing to predetermined criteria; and identifying the subset of
methods from the set of methods using a heuristic. 35

56. The computer-readable storage medium of claim 55,
wherein the ranking includes creating an ordered list of
methods in the set of methods.

57. The computer-readable storage medium of claim 54,
wherein an optimized intermediate representation is stored 40

as a field of a corresponding method descriptor data struc-
ture when the corresponding selected method is preloaded.

58. The computer-readable storage medium of claim 54,
wherein an optimized intermediate representation is stored
as an attribute of a corresponding method descriptor data 45

structure when the corresponding selected method is
dynamically loaded.

59. A computer-readable storage medium containing
instructions for perfonning a process for platform-indepen-
dent selective ahead-of-time compilation in a system includ-

converted to a platfonn-independent intermediate rep-
resentation, the platfonn-independent intennediate rep-
resentation of each selected method is optimized, and
each of the optimized platfonn-independent intenne-
diate representations is stored with a corresponding
selected method;

means for accessing a method descriptor data structure of
a method about to be called;

means for determining whether the method descriptor
data structure has an optimized platform-independent
intennediate representation associated with it; and

means for converting the optimized intennediate repre-
sentation associated with the at least one selected
method to platfonn-dependent machine code based on
a determination that the method descriptor data struc-
ture has an optimized platform-independent intermedi-
ate representation associated with it.

* * * * *

Exhibit B-1

Our Ref.: 82225.P370

APPLICATION FOR UNITED STATES LEITERS PATENT

FOR

ｾｅｔｈｏｄ＠ AND APPARATUS

FOR RESOLVING DATA REFERENCES_

IN GENERATED CODE

Inventor: JAMES GOSLING

Prepared by:

Blakely Sokoloff Taylor & Zafman
595 Market Street, Suite 1330
San Francisco CA 94105-2800
(415) 243-4354

OAGOOGLE0000057182

ｾＧ＠ 1

5

WHAT IS CLAIMEP IS

1. In a computer system comprising a program in source code form, a method

for generating executable code for said program and resolving data references in

said generated code, said method comprising the steps of:

a) generating executable code in intermediate form for said program in

source code form with data references being made in said generated code on a

symbolic basis, said generated code comprising a plurality of instructions of said

computer system;

b) interpreting said instructions, one at a time, in accordance to a program

execution control;

c) resolving said symbolic references to corresponding numeric

references, replacing said symbolic references with their corresponding numeric

references, and continuing interpretation without advancing program execution,

as said symbolic references are encountered while said instructions are being

Interpreted; and

d) obtaining data in accordance to said numeric references, and

continuing interpretation after advancing program execution, as said numeric

references are encountered while said instructi09aBre being interpreted;

said steps b) through d) being performed iteratively and interleavingly.

2. The method as set forth in claim 1, wherein, said program in source code

form is implemented in source code form of an object oriented programming

language.

3. The method as set forth in claim 2, wherein, said programming language is

C.

Gosling
M&A For Resolving Data References

14 82225.P370
MEMS/ATAljh

OAGOOGLE0000057197

(b

4. The method as set forth in claim 2, wherein, said programming language is

C++.

5. The method as set forth in claim 1, wherein,

said program execution control is a program counter;

said continuing inte,rpretation in step c) is achieved by performing said step

b) after said step c) without incrementing said program counter; and

said continuing interpretation in said step d) is achieved by performing

said step b) after said d) after incrementing said program counter.

6. In a computer system comprising a program in source code form, an

apparatus for generating executable code for said program and resolving data

references in said generated code, said apparatus comprising:

a) compilation means for receiving said program in source code form and

generating executable code in intermediate form for said program in source code

form with data references being made in said generated code on a symbolic

basis, said generated code comprising a plurality of Instructions of said computer

system;

b) interpretation means for receiving said generated code and interpreting

said instructions, one at a time;

c) dynamic reference handling mea'ns coupled to said interpretation

means for resolving said symbolic references to corresponding numeric

references, replacing said symbolic references with their corresponding numeric

references, and continuing interpretation by said interpretation means without

advancing program execution, as said symbollc references are encountered

while said instructions are being interpreted by said interpretation means; and

Gosling 15
M&A For Resolving Data References

82225.P370
MEMS/ATAljh

OAGOOGLE0000057198

d) static reference handling means coupled to said interpretation means

for obtaining data in accordance to said numeric references, and continuing

interpretation by said interpretation means after advancing program execution, as

said numeric references are encountered while said instruction are being

interpreted by said interpretation means;

said interpretation means, said dynamic reference handling means, and

said static reference handling means performing their corresponding functions

iteratively and interleavingly.

7. The apparatus as set forth in claim 6, wherein, said program in source

code form is implemented in source code form of an object oriented programming

language.

8. The apparatus as set forth in claim 7, wherein, said programming

language is C.

9. The apparatus as set forth in claim 7, wherein, said programming

language is C++.

10. The apparatus as set forth in claim 6, wherein,

said program execution control is a program counter! •

said continuing interpretation in step } is achieved by performing said step

b}'after said step c} without incrementing s id program counter; and

said continuing interpretation in sai step d) is achieved by performing

said step b) after said d) after incrementi said program counter.

Gosling 16
M&A For Resolving Data References

82225.P370
MEMS/ATAljh

OAGOOGLE0000057199

r

UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trademark Office

Address: COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, D. C. 20231

FIRST NAMEO APPLICANT ATTORNEY OOCKET NO,

12/22/92 GOSLING T Q'")')")C:: O--:.,n

IRELL & MANELLA
1800 AVENUE OF THE
SUITE 900

STARS

i

B3M1/0527

EXAMINER

HECKLER.T

ART UNIT 1 PAPER NUMj;lER

If-
LOS ａｎｇｅｌｅｓｾ＠ CA 90067 ｄａｔｅｾｩｾｄＺ＠

EXAMINER INTERVIEW SUMMARY RECORD

All participants (applicant, applicant's representative, PTO personnel!: OS/27/94

(3) ____________________ _

[41 ___________________ _

Type' ｾｔ･ｬ･ｰｨｯｮｩ｣＠ 0 Pllrsonal (copy IS given to 0 applicant 0 applicant's reprasllntetivl!l.

Exhibit shown Dr dllfl1onstration conducted: 0 VIIS 0 No. If yes, brief description: _____________________ _

Agreement ｾｷ｡ｳ＠ reached with respect to some Dr all of the claims in qUlIstlon. 0 was not reached.

Claims discussed: ＭｊＰＭＫＭＮＡＮｾｾｻＩＧＭＭＭ

Identification of prior ert discussed: __ _

Description of the general nature of what wes agreed to if an agreement was rBached, or eny other comments: ______________ _

(A fuller dl!5cription. if necessary. and a copy of thl! amandments, if aVllllable, which the examiner agreed would render the claims allowable must be
attached. Also, where no copy of tha amendments which would rendllr the claims ellowable is available, a summary thl!reof must be attached.]

Unless the paragraphs below have been checkad to indicate to the Contrary. A FORMAL WRITTEN RESPONSE TO THE LAST OFFICE ACTION IS
NOT WAIV ED AND MUST INCLU DE THE SUBSTANCE OF THE INTE RV lEW (e.g., items 1-7 on the reverse side of this form). If a response to the
last Office action has already been filed, then applicant is given one month from this interl/iew date to provide a statement of the substancB of the interview.

!;')It is not necessary for applicant to provide a separate record of the substanca of the interviaw.

o Since the examiner's interview summery above (including any attach manu) reflects a complete responSB to each of the obiections, rejections and
requirements that may be present in the last Office action, and since the cleims ere now allowable, this completed form is considered to fulfill the

'Kp .. u' .. ＢｉｾｭＧＢＢｯＢｨＮＬｍＮｏｦｦ＠ .. ".;m'. ｇｾ＠ 1/.,< ilL
PTOI..413 (REV 1,84)

EKaminer's Signature

ORIGINAL FOR INS'ERTION 'IN RIGHT HAND FLAP OF FILE WRAPPER

OAGOOGLE0000057220

ＰＷＯＹＹＴｾＶＵＵ＠ 12/22/92 GOSLING

IRELL 8< MANELLA
1800 AVENUE OF THE STARS
SUITE 900
LOS ANGELES7 CA 90067

B3MlI0527

UNITED STATES DI:,ARTMENT OF COMMERCE
Palent and Trademark Office

Address: COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, DC, 20231

J ＸＲＲＲＵｾｐＳＷ＠ 0

｛ｾｒｾｾｾｾ［ﾥｾｾｎ｟ｾｾ］］ｾｾｾＭ］ｾＭ］ＭＭｊ＠

2316

DATE MAIU:D' OS/27/94

NOTICE OF ALLOWABILITY

PART I.

1 0 This communication IS responsive to

2 Pl All the claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED In this applicallOn. If nol included
herewith (or previously mailed), a Notice Of Allowance And Issue Fee Due or other appropriate communicallon Will be sent In due

course, 10
ｾｔｨ･ｾｾｷ･､､｡ｬｭｳ｡ｾｾｾＯｾＭｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾｾ｟＠
o The drawings filed on are acceptable,

o Acknowledgmenl IS made of the claim for priority under 35 U.S C 119 The certified copy has [--J been received. [-J not been
received [I been filed In parent applicatIOn Serial No ｾｾｾｾｾｾ｟ｾｾｾＬ＠ filed on ｾｾｾｾｾｾｾｾｾｾｾ｟ｾｾ＠

6, i:f(Nole the atlached Examiner's Amendment

)?J Note the attached Examiner Interview Summary Record, PTOL-413,

8)(:I Note the attached Examiner's Statement of Reasons for Allowance

9.,g: Note the attached NOTICE OF REFERENCES CITED, PTO-892

10 0 Note the attached INFORMATION DISCLOSURE CITATION, PTO-1449.

PART II.

A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS
FROM THE "DATE MAILED" Indicated on thiS form Failure to timely comply will result In the ABANDONMENT of thiS application
ExtenSions of time may be obtailled under the provIsions of 37 CFR 1 136(a)

1 0 Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL APPLICATION, PTO-152, whiCh discloses thai the oath
or declarallon IS deflclenl A SUBSTITUTE OATH OR DECLARATION IS REQUIRED

2 "F" APPLICANT MUST MAKE THE DRAWING CHANGES INDICATED BELOW IN THE MANNER SET FORTH ON THE REVERSE SIDE
OF THIS PAPER

a ｾ＠ Dlawlng Informalities are Indlcaled on the NOTICE RE PATENT DRAWINGS, PTO-948, attached hereto ｾｲ＠ Is Ps"er ｾＬｳ＠
CORRECTION IS REQUIRED.

b, 0 The proposed draWing correction filed on ｟ｾｾｾｾｾｾｾｾ｟＠ has been approved by the examiner CORRECTION IS
REQUIRED

c 0 Approved draWing corrections are described by the examiner In the attached EXAMINER'S AMENDMENT CORRECTION IS
REQUIRED

ｾ＠ Formal draWings are now REQUIRED.

Any response to thiS letter should IIlclude in the upper nght hand corner, lhe follOWing IntormaliOn from the NOTICE OF ALLOWANCE
AND ISSUE FEE DUE ISSUE BATCH NUMBER, DATE OF THE NOTICE OF ALLOWANCE, AND SERIAL NUMBER

Attachments.

)(Examiner s Amendmenl

X. Examiner InterView Summary Record, PTOl· 413

)C.. Reasons for Allowance

)(Nollee 01 Relerences Cited. PTO-892
_ Inlarmallon Disclosure CitatIOn PTO-1449

PTOl-37 (REV,4,89} 1<

_ Nollee ollnlormal Application PTO· t52

)(Notice ra Palen! DraWings PTO-948

_ listing of Bonded Draftsmen
_ Olller

THOMAS M. HECKLER
PRJMARY EXAMINER

ART UNIT 237

USCOMM·DC 89-37B9

OAGOOGLE0000057221

,

Serial Number: 07/994,655
Art unit: 2316

-2-

1. An Examiner's Amendment to the record appears below. Should

the changes and/or additions be unacceptable to applicant, an

amendment may be filed as provided by 37 C.F.R. § 1.312. To

ensure consideration of such an amendment, it MUST be submitted

no later than the payment of the Issue Fee.

Authorization for this Examiner's Amendment was given in a

telephone interview with Mr. Jeffrey Blatt on May 26, 1994.

2. The application has been amended as follows:

IN THE CLAIMS: /

Claim 1, line 17,4ange "instruction" to --instructions--;

Claim 10, line 2, change the ｾｮ＠ to a period;

delete lines ＳＭｾ＠
3. The following is an Examiner's statement of Reasons for

Allowance: the prior art, either alone or in combination, does

not teach a method or apparatus for generating executable code

from source code comprising generating executable code in

intermediate form with data references made on a symbolic basis,

interpreting instructions, replacing symbolic references with

ｾｵｾ･ｲｾ｣＠ references and continuing interpretation without

advancing program execution, obtaining data as numeric references

are encountered and continuing interpretation after advancing

program execution.

Any comments considered necessary by applicant must be

submitted no later than the payment of the Issue Fee and, to

avoid processing delays, should preferably accompany the Issue

OAGOOGLE0000057222

serial Number: 07/994,655
Art unit: 2316

Fee. Such sUbmissions should be clearly labeled "Comments on

statement of Reasons for Allowance."

4. Any inquiry concerning this communication or earlier
communications from the examiner should be directed to Tom
Heckler whose telephone number is (703) 305-9666.

TH
May 26, 1994

THOMAS M. HECKLER
PRIMARY EXAMINER

ART UNIT 237

-3-

OAGOOGLE0000057223

Exhibit B-2

Exhibit B-3

.. 1
'-::::r

149907-0064 PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re reissue application of

U.S. Patent No. 5,367,685

Issued: November 22, 1994

Inventor: James Gosling

For: METHOD AND APPARATUS FOR
RESOLVING DATA REFERENCES
IN GENERATED CODE

)
)

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

) "EXPRESS MAIL· Mailing Label Number
) EM458150000US

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

November 21. 1996
Date of Deposit

I hereby certify that this paper or fee is being deposited
with the United States Postal Service "EXPRESS MAIL
POST OFFICE TO ADDRESSEE" service under 37
C.F.R. § 1.10 on the date indicated above and is
addressed to the Commissioner of Patents and
Trademarks. Washington, D.C. 20231.

Typed

November 21
Date

REISSUE APPLICATION DECLARATION
AND POWER OF ATIQRNEY BY INVENTOR

Hon. Commissioner of
Patents and Trademarks

Washington, D.C. 20231

Sir:

I, James Gosling, declare:

1. I have reviewed and understand the contents of the specification and claims of the

above-identified reissue application, and believe myself to be the only inventor of the

invention described and claimed in the aforesaid reissue application and in U.S. Letters

Patent No. 5,367,685 on which said reissue application is based.

DHEN10EO.WP

OAGOOGLE0000059395

",

U.S. Patent No. 5,367,685
Page 2

2. I do not know and do not believe that said invention was ever known or used in

the United States of America before the invention thereof by myself.

3. U.S. Patent No. 5,367,685 is partly inoperative because it claims less than I had

a right to claim in the patent (37 C.F.R. § L175(a)(3».

4. The insufficiencies identified in paragraph 3 above arose as a result of errors on

the part of applicant. The first error was failing to realize that the commercial

embodiment of the invention was designed to be distributed in two parts, a compiler and

an interpreter, which were to be packaged as two separate computer programs and which

could be bought separately. My company and I realized on or around January of 1996

that competitors would probably also be shipping their competing products in two parts

for the same market-and technology-related reasons that we were doing so. An

infringer who shipped only one of those parts might argue that no claim reads on the

compiler or the interpreter separately. I believe that I have the right to claim more

specifically a compiler and an interpreter separately as supported by the original

disclosure. This error may be remedied by the addition of claims 11-34 in the above-

identified reissue application, which more specifically separately claim the compiler and

the interpreter as disclosed in the application. Moreover, claiming the compiler and the

interpreter separately, although they involve common inventive concepts, more closely

corresponds to likely commercial embodiments for my invention.

5. A further error was a lack of specificity in the claim scope as regards what is

done with the numerical values corresponding to symbolic references. In late 1995 or

DHEN10ED.WP
-2-

OAGOOGLE0000059396

U.S. Patent No. 5,367,685
Page 3

early 1996 a colleague suggested that an infringer could argue that the claims would not

,literally read on all possible ways of practicing the invention as regards numerical values

corresponding to symbolic references. I believe I have a right to claim more specifically

the handling of numerical values corresponding to symbolic references in my invention.

This error may be remedied by the addition of claims 11 and 25 in the above-identified

reissue application which more fully define the patentable aspects of my invention as

supported by the disclosure.

6. A further error was that the claims may be challenged by an infringer as not

reading literally on computer program code devices embodying the invention. Applicant

is informed and believes that subsequent to the Commissioner of Patents' change of

position in In re Beauregard, claims more specifically directed to computer program

code devices are now permissible. I believe I have the right to further specifically claim

computer program code devices which embody my invention as supported by the original

disclosure. This error may be remedied by claims 29-32 of the above identified reissue

application.

7. The errors identified above arose without any deceptive intention on the part of

the undersigned or the assignee of the application on which U.S. Letters Patent No.

5,367,685 issued, Sun Microsystems Inc.

8. Claim 11 is directed to a method for interpreting software in an intermediate

form code which includes instructions that contain symbolic references. In the method,

instructions are interpreted in accordance with a program execution control. When an

DHEN10ED .WP
-3-

OAGOOGLE0000059397

U.S. Patent No. 5,367,685
Page 4

unresolved symbolic reference is encountered, a numerical value corresponding to the

reference is determined and stored in memory. When a resolved symbolic reference is

encountered, the instruction is interpreted by reading the stored numeric value. Claim

22 is directed to a corresponding method for compiling software into an intermediate

form code which includes instructions that contain symbolic field references. In that

method, the source code is lexically analyzed, the output of the lexical analysis step is

parsed, an intermediate representation of the parsed output is built, and intermediate

form code containing symbolic field references is generated from the intermediate

representation. Both the interpreter claim 11 (and independent claims 25, 27, 29, 31,

n and 33) and the compiler claim 22 (as well as independent claims 26, 28, 30, 32, and

U 34) embody my original inventive concept, in that the compiler generates the

intermediate form code, including symbolic references, which the interpreter interprets.

9. I acknowledge a duty to disclose information I am aware of which is material to

the examination of this reissue application. The closest prior art known to applicant is

that cited against the application which became original U.S. Patent No. 5,367,685.

10. I hereby revoke all previous powers of attorney and appoint as my attorneys of

record in connection with this reissue application Matthew C. Rainey, Reg. No. 32,291;

Jeffrey J. Blatt, Reg. No. 30,244; Robert Steinberg, Reg. No. 33,144; Bruce D.

Kuyper, Reg. No. 33,937; Gary Frischling. Reg. No. 35,515; Robert Strawbrich, Reg.

No. 36,692; and Wen Liu, Reg. No. 32,822. All communications regarding this reissue

DHEN10ED.WP
-4-

OAGOOGLE0000059398

u.s. Patent No. 5,367,685
Page 5

application are to be addressed to Jeffrey J. Blatt at Irell & Manella LLP, 1800 Avenue

of the Stars, Suite 900, Los Angeles, CA 90067.

I declare further that all statements made herein of my own knowledge are true and

that all statements made on information and belief are believed to be true; and further

that these statements were made with the knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code and that such willful false statements may jeopardize

the validity of the application or any patent issuing thereon.

Full name of sole or fir
Inventor's ｳｩｧｮ｡ｴｵｲ･ｾＦｉｩｑＢＢＢＧＧＭＭＧＧＭＢＧＧＧＧＧＧｦＧＧＭＭｅｩｾＧＴＺＺＭ __ ｾ＠ ___________ _
Date f " ｾｃＮＺＺＺＺＮ､ＧＭｌｉｉｉＺｊｉｲＱｌＮＮＮ｣［ＢＧｊｬＮｬＮ､ｾｦｬｬｬＭＭ ____ --:-___ _
Residen e 75 ":j. HQIf""., lea,,· e J 1ft ed..ytilyi Cr ｦｾ＠ cd
Post Office Address ｰｾ＠ c. !CJ'f ｾｃ＾ｴ［ｴ＿ｌ＠

v../QtS'dsitJ.e LA- 1¥t}h'L

DHEN10ED.IIP
-5-

OAGOOGLE0000059399

. --1---·
--

I
j
I
I

,i
LAW OFFICES

NNEGAN, HENDEJON,
FARABOW, CARREi:r,-
8 DUNNER, L.L.P.

1300 I STREET, N. W.

,>HINGTON, DC 2.0005

'OZ-"I08-"I000

sIp
ＱＢｾ＠ ... ", ... ｾＹ＠

PATENT
Attorney Docket No. 06502.0083-02

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

James GOSLING

Serial No.: Rule 53(b) continuation
application of Serial No.
081755,764

Filed: November 21, 1996

For: METHOD AND APPARATUS
FOR RESOLVING DATA
REFERENCES IN
GENERATED CODE

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

Group Art Unit: Unassigned

Examiner: Unassigned

PRELIMINARY AMENDMENT

Prior to the examination of the above application, please amend this application

as follows:

IN THE CLAIMS: J
Please cancel claim 1 and add the following new claims 35-43:

t I ＭＭｾ＠ An apparatus comprising:

'0 ｾ＠ a memory containing ｩｮｴ･ｾ･､ｩ｡ｾ･＠ form object code constituted by a set of

instructions certain of said instructions containing one or more symbolic references·

--

OAGOOGLE0000059421

LAW ｏｆＧｆｉｾｅＺＤ＠

fNECAN, ｈｅｾｎＬ＠
\RABOW, GARRETT,
'\ DUNNER,LL.P.
'0 I STREET, ,... W.

NGTON, DC 20005
ｾＭＴＰ･ＭＴＰＰＰ＠

a processor configured to execute said instructions containing one or more

symbolic references by determining a numerical reference corresponding to said

symbolic reference, storing said numerical references and obtaining data in

accordance to said numerical references.

; (;l/38': A computer-readable medium containing instructions for controlling a data

processing system to perform a method for interpreting intermediate form object code

comprised of instructions certain of said instructions containing one or more symbolic

references, said method comprising the steps of:

interpreting said instructions in accordance with a program execution control:

ｾＩｾｲＡｩｬｓｑｬｶｩｮｑ＠ a symbQlic rererenC!il in an inslru!;tion being interpreted §aid step of

resolving said symbolic reference including the substeps of:

determining a numerical reference corresponding to said symbolic

reference. and

storing said numerical reference in a memory.

13
ｾＮ＠ A computer-implemented method for executing instructions certain of

said instructions containing one or more symbolic references said method comprising

the steps of:

resolving a symbolic reference in an instruction said step of resolving said
ｾ＠ . -.

symbolic reference including the substet's of:

-2-

OAGOOGLE0000059422

LJ

NNEGAN, ｈｅｎｄｾＬ＠
FARABOW, GARRETT,

.\\ DUNNER, L. L. P.
'300 1 STREET, N. W.

'AS H' NGTON t OC 20005

202-406-4000

determining a nymerical reference corresponding to said symbolic

reference and

storing said numerical reference in a memory.

3
The method of claim ｾ＠ wherein said substep of storing said numerical

--..-
reference comprises the substep of replacjng said symbolic reference with said

numerical reference.

:3
The method of claim 'Yf. wherein said step of resolving said symbolic

reference further comprises the substep of executing said instruction containing said

symbolic reference using the stored numerical reference.

J
The method of claim 3?; wherein said step of resolving said symbolic

reference further comprises the substep of advancing program execution control after

said substep of executing said instruction containing said symbolic reference.

ｴｾ＠ In a computer system comprising a program, a method for executing said

program comprising the steps of:

receiving intermediate form object code for said program with symboljc data

references in certain instructions of said intermediate form object code' and

converting the instructions of the intermediate form object code having symbolic

data references said converting step comprising the substeps of;

-3-

OAGOOGLE0000059423

ｾｗｏＢＧｆｬ･ｅｓ＠ ,
ｾ＠

FINNEGAN, ｈｅｎｄｅｾＬ＠

8 DUNNER, L.L.P.
1300 I STREET, N. w.

WASHINGTON, D. C.20005

202-408-4000

resolving said symbolic references to corresponding numerical references.

storing said numerical references. and

obtaining data in accordance to said numerical references.

Jg
,9. A computer-implemented method for executing program operations. each

operation being comprised of a set of instructions certain of said instructions containing

one or more symbolic references said method comprising the steps of:

receiving a set of instructions reflecting each operation: and

performing an operation corresponding to the received set of instructions.

wherein each of said symbolic references is resolved by determining a numerical

reference corresponding to said symbolic reference. storing said numerical reference.

and obtaining data in accordance to said stored numerical reference.

A memory for use in executing a program by a processor the memory

comprising'

intermediate form code containing symbolic field references associated with an

intermediate representation of source code for the program.

the intermediate representation having been generated by lexically analyzing the

source code and parsing output of said lexical analysis l and

wherein the symbolic field references are resolved by determining a numerical

reference in a memory.----
-4-

OAGOOGLE0000059424

FINNEGAN, HENDERSON,
FARABOW, GARRETT,
e DUNNER,L.L.P.

1300 1 STREET, N. W.

WASHINGTON, D. C. 20005

202-409·4000

REMARKS

This application is a continuation of reissue application Serial No. Oan55,764.

Claims 1-34 of the parent application have been allowed. Thus, Applicant has

cancelled those claims in this application.

Applicant submits this preliminary amendment for the Examiner to consider new

claims 35-43.

The Commissioner is hereby authorized to charge any fees which may be

required including fees due under 37 C.F.R. § 1.16 and any other fees due under 37

C.F.R. § 1.17, or credit any overpayment during the pendency of this application, to

Deposit Account No. 06-0916.

Dated: March 3, 1999

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER, L.L.P.

- 5-

OAGOOGLE0000059425

Exhibit B-4

ｾＭＮＺ＠

INNEGAN, HENDERSON,
FARABOW, GARRETT,

.3 DUNNER, L. L. P.
1300 r STREET, N. W.

NASHINGTON, DC ＲＰＰＰｾ＠

2:02 -40a -4000

UNITED STATES PATENT APPLICATION

of

FRANK YELLIN

and

RICHARD D. TUCK

for

METHOD AND SYSTEM FOR PERFORMING

STATIC INITIALIZATION

OAGOOGLE0000057461

! .
l'

INNEGAN, HENDERSON,
FARABOW, GARRETT,

S DUNNER,L.LP.
1300 I STREIi:T, N. w.

NASHINGTON, DC 200015

202-408-4000

What is claimed is:

1. A method in a ta processing system for statically initializing an array, comprising

the steps of:

compiling source c e containing the array with static values to generate a class file

with a c1init method containing byte odes to statically initialize the array to the static values;

play executing the byte c e of the c1init method against a memory to identify the

storing into an output file an in truction requesting the static initialization of the array;

and

interpreting the instruction by a irtual machine to perform the static initialization of

the array.

2. The method of claim 1 wherein the storing step includes step of:

storing a constant pool entry into the constant pool.

3. The method of claim 1 wherein the play executing step includes the steps of:

allocating a stack;

reading a byte code from the clinit method that manipulates the stack; and

performing the stack manipulation on the allocated stack.

18

OAGOOGLE0000057480

APPLICATION NO. FlLlNG DATE

0<-1./ I) 7/9::::

UNITED ｓｔａｾｓ＠ DEPARTMENT OF COMMERCE
Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS

Washington, D.C. 20231

FIRST NAMED INVENTOR ATTORNEY DOCKET NO.

YELLII\I

EXAMINER

'-.Iyln 2/1) :?::::: 1.
r I lW-.!CCiAI\! ｈｅＡ｜ｬｲｬ｛ｾＧｦｾＺｾＬ［ｵｬ｜ｬ＠ F ＬｦＮＺｪｆｾＨＮｩｂｏｗ＠ ｮｐｴｨＺｆｾｉＬＺ＠ I I

1.3f,! U] Ｈｾ［ｔｭｔＢＱ＠ hlW
lIk\'·::'H I N(::,TON r:-.c. Ｚｾｾｯｯｮｾｾ＠

ART UNIT I

DATE MAILED:

PAPER NUMBER I

1'17/:,::: j /9')

Please find below andlor attached an Office communication concerning this application or
proceeding.

Commluloner of Patents and Trademarks

PTO-90C (Rev, 21951 1· File Copy

OAGOOGLE0000057503

Application No.

09/055,947 Frank Yallin, Richard D. Tuck

Office Action Summary Examiner

Kelvin E. Booker
Group Art Unit

2762

o Responsive to communication(s) filed on _________________________ _

o This action is FINAL.

o Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed
in accordance with the practice under Ex parte Quay/e, 1935 C.D. 11; 453 O.G. 213.

A shortened statutory period for response to this action is set to expire 3 month(s), or thirty days, whichever
is longer, from the mailing date of this communication. Failure to respond within the period for response will cause the
application to become abandoned. (35 U.S.C. § 133). Extensions of time may be obtained under the provisions of
37 CFR 1.136(a).

Disposition of Claims

IX] Claim(s) Ｍ］ＭＱＭ］ＭＲＺＺＮＡＳｾ＠ ______________________ is/are pending in the application.

Of the above, claim(s) ___________________ is/are withdrawn from consideration.

IX] Claim!s) ｾＶＭ］ＭＲＺＺＮＡＳＺＮＮＮＮＮＮ＠ _______________________ islare allowed.

IX] Claim(s) ＮＡＮＱＮＮＮＡ［｡ＺＡＬ［ｮｾ､｟｟］ＳＺＺＮＮＮＮＭ _______________________ islare rejected.

!Xl Claim!s) 2, 4, and 5 is/are objected to.

o Claims are subject to restriction or election requirement.

Application Papers

o See the attached Notice of Draftsperson's Patent Drawing Review, PTO-948.

IXI The drawing(s) filed on ｟ＮＮＮＮＮＺＮＮａＮＳＮｰｾｲｾＷＧＮＮＮＡＮＬＭＭＧＱＺＮＮＮＮＺＹＺＺＮＮＺＺＹＺＮＮＮＺＺＸＺＮＮＮＮＮＮ｟＠ is/are objected to by the Examiner.

o The proposed drawing correction, filed on ________ is [Bpproved [)jisapproved.

o The specification is objected to by the Examiner.

o The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. § 119

o Acknowledgement is made of a claim for foreign priority ｵｮ､ｾｲ＠ 35 U.S. C. § 119(aHd).

o All 0 Some· 0 None of the CERTIFIED copies of the priority documents have been

o received.

o received in Application No. (Series Code/Serial Number) _______ _

o received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

*Certifiedcopies not received: ｟ｾ＠ __ ｾｾｾｾｾｾ｟ｾ＠ ____ ｾ＠ __________ ｾ｟ｾ＠

o Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).

Attachment(s)

IXI Notice of References Cited, PTO-892

IXI Information Disclosure Statement(s), PTO·1449, Paper No(s). 2

o Interview Summary, PTO·413

o Notice of Draftsperson's Patent Drawing Review, PTO-948

o Notice of Informal Patent Application, PTO-152

- SEE OFFICE ACTION ON THE FOLLOWING PAGES -

U. S. Pacen! an<j Trod,,",,", Offic.

PTO-326 !Rev. 9-95) Office Action Summery Part of Paper No. ｾ｟Ｓ＠ __

OAGOOGLE0000057504

Application/Control Number: 09/055,947 Page 2

Art Unit: 2762

DETAILED ACTION

Drawings

1. This application has been filed with informal drawings which are acceptable for

examination purposes only. Formal drawings will be required when the application is allowed.

Claim Rejections - 35 USC § 102

2. The following is a quotation of the appropriate paragraphs of35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use
or on sale in this country, more than one year prior to the date of application for patent in the United States.

3. Claims 1 and 3 are rejected under 35 U.S.c. 102(b) as being anticipated by Ciemiak,

"Briki: an optimizing Java compiler".

As per claim 1, Ciemiak teaches of a method for statically initializing an array

comprising the steps of:

a. compiling source code containing an array with static values to generate a class file

with a class initialization (cinit) method (see page 179, abstract and section 1, generating lavaIR

(Java Intermediate Representation));

OAGOOGLE0000057505

Application/Control Number: 091055,947

Art Unit: 2762

Page 3

b. receiving a class file into a preloader (see page 181, section 3, recovering high-level

structure) ;

c. compare the execution of byte codes ofthe cinit method against memory to identify

the static initialization of an array by the preloader (see page 18 I, section 3, mapping between

JavaIR and Java Source);

d. storing into an output file an instruction requesting the static initialization of an array

(see page 183, section 4.1, array layout optimization); and

e. interpreting the instruction by a virtual machine to perform the static initialization of

the array (see page 182, section 3.2, symbolic emulation).

As per claim 3, Cierniak teaches of a method whereby play executing comprise the steps:

a. allocating a stack (see page 182, section 3.2, stack allocation);

b. reading byte code from the clint method that manipulates the stack (see page 182,

section 3.2, stack recovery); and

c. performing stack manipulation on the allocated stack (see page 182, sections 3.2-3.3,

stack recovery and manipulation).

Allowable Subject Matter

4. Claims 2,4 and 5 are objected to as being dependent upon a rejected base claim, but

would be allowable if rewritten in independent form including all of the limitations of the base

claim and any intervening claims. Claims 6-23 are allowed.

OAGOOGLE0000057506

Application/Control Number: 091055,947 Page 4

Art Unit: 2762

5. The following is a statement of reasons for the indication of allowable subject matter: the

cited prior art above in the examination fails to teach of:

a. constant pool storage; and

b. explicit operations (e.g., initialization, allocation, manipulation and simulation) with

respect to "play" execution.

Conclusion

An inquiry concerning this communication or earlier communications from the examiner

should be directed to Kelvin Booker whose telephone number is (703) 308-4088. The examiner

can normally be reached on Monday-Thursday from 7:00 AM-5:30 PM EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

. supervisor, Tariq Hafiz, can be reached on (703) 305-9643. The fax phone number for the

organization where this application or proceeding is assigned is (703) 308-1396.

An inquiry of a general nature or relating to the status of this application proceeding

should be directed to the receptionist whose telephone number is (703) 305-3900.

Kelvin E. Booker

Patent Examiner

Group Art Unit 2762

OAGOOGLE0000057507

(11
LAW ｏｆｆｉｃｾＤ＠

FINNEGAN, HENDERSON,
FARABOW, GARRETT,
ｾ＠ DUNNER,L.L.P.

1300 1 STREET, N. W.

WASHINGTON, D. C.20005

202-408 -4000

PATENT
Attorney Docket No. 06502.0046-00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ｾ＠

In re Application of:

Frank Yellin et al.

Serial No.: 09/055,947

Filed: April 7, 1998

For: METHOD AND SYSTEM FOR
PERFORMING STATIC
INITIALIZATION

Assistant Commissioner for Patents
Washington, D.c. 20231

Sir:

Group Art Unit: 2762

Examiner: Kelvin E. Booker

-1
C")

['c'

c;
ＨｾＮ＠

AM.ENDMENT

Applicants submit this amendment in response to the Office Action dated

July 21, 1999.

IN THE CLAIMS:

Please amend claim 1 as follows:

!-:l :-::1
ｾ｟＼＠ Ｎｬｾ＠

"'1
ＺＮｾＩ＠

iK,
\,,':') .. '-

il

"
, -:J

1. (Amended) A method in a data processing system for statically initializing an

array, comprising the steps of:

compiling source code containing the array with static values to generate a class

file with a clinit method containing byte codes to statically initialize the array to the static values;

receiving the class file into a preloader;

OAGOOGLE0000057510

ｾｗ＠ ｏｾＢＱｉｃｅＮ＠

FINNEGAN, !-f'ENDERSON,
fARABOW, CARRETT,
a ｄｕｎｎｾＦｬＭＮｌＮｐＮ＠

1300 t $TREET, N. W.

WASHINGTON, o. C.2000S

202-408·4000

simulating execution of [play executing] the byte codes of the clinit method

against a memory without executing the byte codes to identify the static initialization of the array

by the preloader;

storing into an output file an instruction requesting the static initialization of the

array; and

interpreting the instruction by a virtual machine to perform the static initialization

of the array.

REMARKS

Claims 1-23 are pending in the application. In the Office Action, the Examiner rejected

claims 1 and 3 under 35 V.S.c. §102(b) as being anticipated by Ciemiak, "Brild: an optimizing

Java compilern; objected to claims 2, 4, and 5 as depending upon a rejected base claim; and

allowed claims 6-23. Responsive to the rejection of claims 1 and 3, applicants have amended

claim 1 to more particularly point out and distinctly claim the subject matter of applicants'

invention.

Applicants wish to thank the Examiner for his consideration during the telephone

interview with applicants' attorney on October 13, 1999. During the interview, applicants'

attorney and the Examiner agreed on an amendment to claim 1 that would further clarify the

distinctions between the claim and the cited art. Applicants' attorney and the Examiner also

agreed that this amendment rendered all of the pending claims allowable over the cited art,

although a subsequent search by the Examiner would be performed.

Based upon the above amendments and remarks, applicants submit that all of the pending

-2-

OAGOOGLE0000057511

I-AW Of"FICE:;$

FINNEGAN, HENDERSON,
FARABOW, GARRETT,

B DUNNER, L. L. P.
1300 1 STREET, N. W.

WASHINGTON, O. C. 20006

202-40a -4000

claims are either allowed or clearly allowable, and thus, applicants request the issuance of a

Notice of Allowance. Additionally, applicants respectfully request that the Examiner call

applicantsl attorney if it would expedite prosecution.

Please grant any extensions of time required to enter this response and charge any

additional required fees to our deposit account 06-0916.

Dated: October 18, 1999

/

Respectfully submitted,

FINNEGAN, HENDERSON, F ARAB OW, By gR,L.L.P,
Reg. No. 38.939

--I
C"")

r
= u.:.J
c-) ＬｾＡ＠

-I I :-)
::- ,', -,1

,- ｾｾ＠

(Tl
2; 0-' -:::J
ﾣｾ＠

Ir -3-
I
/

OAGOOGLE0000057512

APPUCATION NO. FlUNG DATE

UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS

Washington, D.C. 20231

FIRST NAMED INVENTOR ATTORNEY DOCKET NO.

VELLJN ｆｾ＠ U ",', F", 0 '; .. : ,. (I (14 t,

LlYlll/01.04 "I
FINNEGAN HENDERSON FARABOW GARRErT

EXAMINER

1 :10(1 I ｩＮＺｦｲｲｾｅｅＢｔ＠ NW
lIJAf;I-IINGirCIf\! DC 2000F.,

ART UNIT

DATE MAILED:

PAPER NUMBER

1.11/04/0(1

Please find below and/or attached an Office communication concerning this application or
proceeding.

Commissioner of Patents and Trademarks

PTO-BOC (Rllv. 219111 1- FUll Copy

OAGOOGLE0000057513

Notice of AllowabiJity

Application No.
091055,947

Examiner
Kelvin E. Booker

Yellin etal.

Group Art Unit
2762

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included
herewith (or previously mailed), a Notice of Allowance and Issue Fee Due or other appropriate communication will be mailed
in due course.

ｾ＠ This communication is responsive to Amendment mad October 18 1999 (see paper no. 4)

Qg The altowed claim(s) is/are ＭＡＮＮＱＭＮＮＡＺＲｾＳ＠ ______________________________ _

o The drawings filed on _________ are acceptable.

o Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d).

o All OSome* [fiJone of the CERTIFIED copies of the priority documents have been

o received.

o received in Application No. (Series Code/Serial Number) ________ _

o received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

·Certified copies not received: ______________________________ _

o Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).

A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE
THREE MONTHSl:OM THE "DATE MAILED" of this Office action. Failure to timely comply will result in
ABANDONMENT of this application. Extensions of time may be obtained under the provisIons of 37 CFR 1.136(a)

o Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL APPLICATION, PTO-152, which discloses that
the oath or declaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED.

Qg Applicant MUST submit NEW FORMAL DRAWINGS

ｾ＠ because the originally filed drawings were declared by applicant to be informal.

o inctuding changes required by the Notice of Draftsperson's Patent Drawing Review, PTO-948, attached hereto or to
Paper No. ___ .

o including changes required by the proposed drawing correction filed on _________ , which has been
ｾｰｰｲｯｶ･､＠ by the examiner.

o including changes required by the attached Examiner's Amendment/Comment

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the reverse side of
the drawings. The drawings should be filed as a separate paper with a transmittallettter addressed to the Official
Drafts person.

o Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL

Any response to this letter should include, in the upper right hand corner, the APPLICATION NUMBER (SERIES
CODE/SERIAL NUMBER). If applicant has received a Notice of Allowance and Issue Fee Due, the ISSUE BATCH NUMBER
and DATE of the NOTICE OF ALLOWANCE should also be included.

Attachment(s)

ｾ＠ Notice of References Cited, PTO-892

o Information Disclosure Statement(s), PTO-1449, Paper No(s). ___ _

o Notice of Draftsperson's Patent Drawing Review, PTO-948

o Notice of Informal Patent Application, PTO-152

Qg Interview Summary, PT0-413

o Examiner's Amendment/Comment

o Examiner's Comment Regarding Requirement for Deposit of Biological Material

ｾ＠ ExamIner's Statement of Reasons for Allowance

U $ Patent and Trademark OfIlce

PTO-37 (Rev. 9-95) Notice of Allowabilfty Part of Paper No __ 6 __

OAGOOGLE0000057514

Application/Control Number: 09/055,947

Art Unit: 2762

Allowable Subject MaUer

1. The following is an examiner's statement of reasons for allowance:

Page 2

the cited prior art, either singly or in combination, fails to anticipate or render obvious the

simulation of execution with respect to class initialization, without executing byte codes.

Cierniak, "Briki: An Optimizing Java Compiler", teaches of comparing the execution of

byte codes, but fails to address the issue of simulating the process without execution.

Any comments considered necessary by applicant must be submitted no later than the

payment of the issue fee and, to avoid processing delays, should preferably accompany the issue

fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for

Allowance. "

Conclusion

2. An inquiry concerning this communication or earlier communications from the examiner

should be directed to Kelvin Booker whose telephone number is (703) 308-4088. The examiner

can normally be reached on Monday-Thursday from 7:00 AM-5:30 PM EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Tariq Hafiz, can be reached on (703) 305-9643. The fax phone number for the

organization where this application or proceeding is assigned is (703) 308-1396.

OAGOOGLE0000057515

Application/Control Number: 09/055,947 Page 3

Art Unit: 2762

An inquiry of a general nature or relating to the status of this application proceeding

should be directed to the receptionist whose telephone number is (703) 305-3900.

Kelvin E. Booker

Patent Examiner

Group Art Unit 2762

OAGOOGLE0000057516

Exhibit C

1247474

EXEMPLARY L IST OF SUN PATENTS

 The following patents are examples of Sun patents claiming carrier waves or including

carrier waves in definitions of "computer-readable medium" or similar terms.

Filing Date Patent Number Example Citation

7/1/96 US 5,953,522 17:32-34 (Claim “15. The computer program
product of claim 14 wherein the computer readable
medium is a data signal embodied in a carrier
wave.”)

4/23/97 US 5,903,899 17:30–39 (“Such implementation may comprise a
series of computer instructions either fixed on a
tangible medium, such as a computer readable
media, e.g. diskette, CD-ROM, ROM, or fixed disk,
or transmittable to a computer system, via a modem
or other interface device, such as communications
adapter connected to a network over a medium.
Medium can be either a tangible medium, including
but not limited to optical or analog communications
lines, or may be implemented with wireless
techniques, including but not limited to microwave,
infrared or other transmission techniques.”)

6/30/97 US 5,978,588 10:54–58 (Claim “3. A computer data signal
embodied in a carrier wave and representing
sequences of instructions which, when executed by
a processor, cause said processor to compile a
source program into an object program, optimally
placing code blocks of the source program, by
performing the steps of . . .”)

10/6/97 US 5,970,249 16:51–53 (Claim “25. A computer-readable medium
as recited in claim 24 wherein the computer
program code devices are embodied in a carrier
wave.”)

12/11/97 US 6,047,377 5:7–15 (“Common forms of computer-readable
media include, for example, a floppy disk, a flexible

1247474

2

disk, hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical
medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave as
described hereinafter, or any other medium from
which a computer can read.”)

12/11/97 US 6,044,467 5:26–34 (“Common forms of computer-readable
media include, for example, a floppy disk, a flexible
disk, hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical
medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave as
described hereinafter, or any other medium from
which a computer can read.”)

12/12/97 US 5,946,489 11:1–7 (“Common forms of computer-readable
media include, for example, a floppy disk, a flexible
disk, hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical
medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM,
EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described below,
or any other medium from which a computer can
read.”)

5/27/98 US 5,983,021 6:44–51 (“Also, although aspects of one
embodiment are depicted as being stored in memory
303, one skilled in the art will appreciate that
systems and methods consistent with the present
invention may be stored on other computer-readable
media, such as secondary storage devices, like hard
disks, floppy disks, and CD-ROM; a carrier wave
received from the Internet 302; or other forms of
ROM or RAM.”)

6/29/98 US 6,115,715 16:42–47 (Claim “15. A computer data signal
embodied in a carrier wave and representing
sequences of instructions arranged to update a Java
system configuration database having a client
schema containing persistent and transient data, and

1247474

3

a server schema containing persistent data, the
sequence of instructions comprising: . . .”)

6/30/98 US 6,272,517 13:41–45 (Claim “22. A computer data signal
embodied in a carrier wave and representing
sequences of instructions which, when executed by
a processor, cause the processor to share a time
quantum between threads in a process by
performing the steps of: . . .”)

6/30/98 US 6,271,838 5:16–53 (“The term "computer-readable medium"
as used herein refers to any media that participates
in providing instructions to processor 604 for
execution. Such a medium may take many forms,
including but not limited to, non-volatile media,
volatile media, and transmission media. Non-
volatile media includes, for example, optical or
magnetic disks, such as storage device 610. Volatile
media includes dynamic memory, such as Memory
606. Transmission media includes coaxial cables,
copper wire, and fiber optics, including the wires
that comprise bus 602. Transmission media can also
take the form of acoustic or light waves, such as
those generated during radio-wave and infra-red
data communications.

Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk,
hard disk, magnetic tape, or any other magnetic
medium, a CD-ROM, any other optical medium,
punch cards, papertape, any other physical medium
with patterns of holes, a RAM, PROM, and
EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described
hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one
or more instructions to processor 604 for execution.
For example, the instructions may initially be
carried on magnetic disk of a remote computer. The
remote computer can load the instructions into its
dynamic memory and send the instructions over a
telephone line using a modem. A modem local to
computer system 600 can receive the data on the
telephone line and use an infra-red transmitter to

1247474

4

convert the data to an infra-red signal. An infra-red
detector coupled to bus 602 can receive the data
carried in the infra-red signal and place the data on
bus 602. Bus 602 carries the data to memory 606,
from which processor 604 retrieves and executes the
instructions. The instructions received by memory
606 may optionally be stored on storage device 610
either before or after execution by processor 604.”)

10/15/99 US 6,853,868 10:10–15 (“The computer-readable medium can
also be distributed as a data signal embodied in a
carrier wave over a network of coupled computer
systems so that the computer-readable code is stored
and executed in a distributed fashion.”)

5/19/00 US 6,542,920 17:50–18:3 (“The term "computer-readable
medium" as used herein refers to any medium that
participates in providing instructions to processor
604 for execution. Such a medium may take many
forms, including but not limited to, non-volatile
media, volatile media, and transmission media.
Non-volatile media includes, for example, optical or
magnetic to disks, such as storage device 610.
Volatile media includes dynamic memory, such as
main memory 606. Transmission media includes
coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 602.
Transmission media can also take the form of
acoustic or electromagnetic waves, such as those
generated during radio-wave, infra-red, and optical
data communications.

Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk,
hard disk, magnetic tape, or any other magnetic
medium, a CD-ROM, any other optical medium,
punchcards, papertape, any other physical medium
with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described
hereinafter, or any other medium from which a
computer can read.”)

5/19/00 US 6,938,085 14:4–11 (“Common forms of computer-readable
media include, for example, a floppy disk, a flexible
disk, hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical

1247474

5

medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave as
described hereinafter, or any other medium from
which a computer can read.”)

9/19/01 US 6,499,049 16:45–52 (“Additionally, although aspects of the
present invention are described as being stored in
memory, one skilled in the art will appreciate that
these aspects can also be stored on or read from
other types of computer-readable media, such as
secondary storage devices, like hard disks, floppy
disks, or CD-ROM; a carrier wave from the
Internet; or other forms of RAM or ROM, either
currently know or later developed.”)

4/1/02 US 6,983,455 10:1–8 (“Common forms of computer-readable
media include, for example, a floppy disk, a flexible
disk, hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical
medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave as
described hereinafter, or any other medium from
which a computer can read.”)

5/21/03 US 6,952,760 4:47–61 (“Although aspects of methods, systems,
and articles of manufacture consistent with the
present invention are depicted as being stored in
memory 106, one skilled in the art will appreciate
that these aspects may be stored on or read from
other computer-readable media, such as secondary
storage devices, like hard disks, floppy disks, and
CD-ROMs; a carrier wave received from a network
such as the Internet; or other forms of ROM or
RAM either currently known or later developed.”)

4/29/04 US 6,980,916 6:39–53 (“Software programming code, which
embodies aspects of the present invention, is
typically maintained in permanent storage, such as a
computer readable medium. In a client/server
environment, such software programming code may
be stored on a client or a server. The software
programming code may be embodied on any of a

1247474

6

variety of known media for use with a data
processing system, This includes, but is not limited
to, magnetic and optical storage devices such as disk
drives, magnetic tape, compact discs (CD's), digital
video discs (DVD's), and computer instruction
signals embodied in a transmission medium with or
without a carrier wave upon which the signals are
modulated. For example, the transmission medium
may include a communications network, such as the
Internet.”)

7/28/05 US 7,278,132 5:27–31 (“Storage 112 may also include computer-
readable media such as magnetic tape, flash
memory, signals embodied on a carrier wave, PC-
CARDS, portable mass storage devices, holographic
storage devices, and other storage devices.”)

6:34–38 (“The computer-readable medium can also
be distributed as a data signal embodied in a carrier
wave over a network of coupled computer systems
so that the computer-readable code is stored and
executed in a distributed fashion.”)

 More examples may be found by searching the U.S. Patent and Trademark Office online

database. U.S. Patent Full-Text Database Manual Search, available at

http://patft.uspto.gov/netahtml/PTO/search-adv.htm. One such search, which identified 460

candidate patents as of March 17, 2011, is:

 AN/"Sun Microsystems" and "carrier wave" and "computer-readable medium"

Exhibit D

 Top of Notices February 23,
2010

US PATENT AND TRADEMARK
OFFICE

Print This Notice 1351 OG 212

Subject Matter Eligibility of Computer Readable Media

 Subject Matter Eligibility of Computer Readable Media

 The United States Patent and Trademark Office (USPTO) is obliged to give
claims their broadest reasonable interpretation consistent with the
specification during proceedings before the USPTO. See In re Zletz, 893
F.2d 319 (Fed. Cir. 1989) (during patent examination the pending claims
must be interpreted as broadly as their terms reasonably allow). The
broadest reasonable interpretation of a claim drawn to a computer readablle
medium (also called machine readable medium and other such variations)
typically covers forms of non-transitory tangible media and transitory
propagating signals per se in view of the ordinary and customary meaning of
computer readable media, particularly when the specification is silent.
See MPEP 2111.01. When the broadest reasonable interpretation of a claim
covers a signal per se, the claim must be rejected under 35 U.S.C. § 101 as
covering non-statutory subject matter. See In re Nuijten, 500 F.3d 1346,
1356-57 (Fed. Cir. 2007) (transitory embodiments are not directed to
statutory subject matter) and Interim Examination Instructions for
Evaluating Subject Matter Eligibility Under 35 U.S.C. § 101, Aug. 24, 2009;
p. 2.

 The USPTO recognizes that applicants may have claims directed to
computer readable media that cover signals per se, which the USPTO must
reject under 35 U.S.C. § 101 as covering both non-statutory subject matter
and statutory subject matter. In an effort to assist the patent community
in overcoming a rejection or potential rejection under 35 U.S.C. § 101 in
this situation, the USPTO suggests the following approach. A claim drawn
to such a computer readable medium that covers both transitory and
non-transitory embodiments may be amended to narrow the claim to cover only
statutory embodiments to avoid a rejection under 35 U.S.C. § 101 by adding
the limitation "non-transitory" to the claim. Cf. Animals - Patentability,
1077 Off. Gaz. Pat. Office 24 (April 21, 1987) (suggesting that applicants
add the limitation "non-human" to a claim covering a multi-cellular
organism to avoid a rejection under 35 U.S.C. § 101). Such an amendment
would typically not raise the issue of new matter, even when the
specification is silent because the broadest reasonable interpretation
relies on the ordinary and customary meaning that includes signals per se.
The limited situations in which such an amendment could raise issues of new
matter occur, for example, when the specification does not support a
non-transitory embodiment because a signal per se is the only viable
embodiment such that the amended claim is impermissibly broadened beyond
the supporting disclosure. See, e.g., Gentry Gallery, Inc. v. Berkline
Corp., 134 F.3d 1473 (Fed. Cir. 1998).

 DAVID J. KAPPOS
 Under Secretary of Commerce for
 Intellectual Property and

 Director of the United States Patent
 and Trademark Office

http://www.uspto.gov/web/offices/com/sol/og/2010/week08/TOC.htm

1 of 1 3/17/2011 11:11 AM

Exhibit E

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(12), 1253–1268 (OCTOBER 1998)

Tailored Compression of Java Class Files

r. nigel horspool and jason corless

Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC,
Canada V8W 3P6

(email: nigelh@csr.uvic.ca)

SUMMARY

Java class files can be transmitted more efficiently over a network if they are compressed. After
an examination of the class file structure and obtaining statistics from a large collection of class
files, we propose a compression scheme that is tailored to class files. Our scheme achieves
significantly better compression than commonly used methods such as ZIP. 1998 John Wiley &
Sons, Ltd.

key words: data compression; Java; class file

INTRODUCTION

The Java programming language1 and its implementation using a Java Virtual
Machine (JVM)2 have greatly simplified the task of developing web-based application
programs. In this and in other roles, Java has been a runaway success. When a Java
program is compiled, it is translated into a collection ofclass files. Each class file
contains a variety of components, including instructions for the JVM as well as data
constants, interface specifications and other information. When a remote user executes
a Java applet, the class files are downloaded over the internet onto theuser’s
machine and interpretively executed by a copy of the JVM on that machine. An
alternative is that the class files might be translated on the user’s machine into
native machine code using a Just-In-Time (JIT) Java compiler.

It is clearly advantageous for the Java class files to be made as small as possible.
The smaller the file, the shorter the transmission time to deliver the file to its
destination. If the user is being charged for connect time or for the number of data
packets delivered, then smaller files would also have an economic benefit. Trans-
mission of a class file in a compressed format and decompressing the file on the
user’s machine should improve overall performance provided that the decompression
process consumes reasonable amounts of computation, and does not occupy excessive
amounts of main memory.

There are many general purpose data compression programs which could be used
to reduce the size of a Java class file. Some examples of widely available compression
programs are gzip, zip, and compress.3 However, they tend not to be as effective
on Java class files as on file formats. The reason is that these compression programs
work by finding repetitions and by coding the repeated patterns of data in an efficient

Received 10 September 1997
CCC 0038–0644/98/121253–16$17.50 Revised 19 March 1998
 1998 John Wiley & Sons, Ltd. Accepted 17 April 1998

1254 r. n. horspool and j. corless

manner. The longer the input, the more opportunity there is for finding repetitions
and the better the compression usually becomes. Unfortunately, a typical class file
for a Java program is quite short, perhaps just a few hundred bytes in size, and the
file is organized into several sections. Each section contains data in a different
format. It is unlikely that the data in one section of a class file will repeat any
patterns of bytes encountered in a previous section of the file. Given the short size
of a class file and the fragmented nature of each file, a general-purpose compression
algorithm has too little opportunity to adapt to a class file section before the end of
that section is reached.

There has been some work on compression methods that are specifically targeted
to executable files or tuned for such files. Recently, Ernstet al.4 reported a
compressed‘wire’ representation that reduces SPARC code to 21 per cent of its
original size. However, as we will argue, their techniques would be relatively
ineffective on Java class files because of their small size. Yu’s5 approach achieves
excellent compression on executable files and is well suited to its main task of
compressing software that is being distributed on floppy disks. It too benefits from
having reasonably large quantities of data to compress and would also be ineffectual
if applied separately to small files like the Java class files. Yu’s algorithm is based
on LZSS3,6 with a non-greedy matching heuristic and, in that regard, is similar to gzip.

If we wish to achieve good compression on Java class files, the only realistic
approach is to develop a compression program which has been customized to the
Java class file format. Such a program would waste very little time adapting itself
to a particular file and would be able to achieve some compression on even the
smallest files.

In this paper, we report on a compression/decompression program named clazz
which was developed specifically for Java class files. Our program outperforms both
gzip and bzip27 by a wide margin. The bzip2 method is close to being the best
available general-purpose compression method for text files. Detailed information
about the clazz program and the experimental methodology is available in the second
author’s MSc dissertation.8

The following sections of this paper provide an overview of the Java class file
structure, then explain how we developed a customized compression method, and
finally report on how well our method works on a collection of class files.

STRUCTURE OF JAVA PROGRAMS AND JAVA CLASS FILES

A Java program could comprise a stand-alone application program or an applet to
be invoked from a web page. In either form, the program will have been constructed
as a collection of Java classes. It is a requirement of some of the standard Java
compilers that each class declared as ‘public’ must be compiled separately. In effect,
a Java source code file should contain a declaration of exactly one public class plus,
optionally, some declarations of private classes. Each source code file is translated
by the compiler into a so-called class file. For example, if an application program
is constructed from source code files named Main.java, One.java and Two.java then
the compilation command

javac Main.java One.java Two.java

1255compression of java class files

using Sun’s JDK implementation on a Sun workstation will create three files with
the names Main.class, One.class and Two.class.

A group of related class files may be stored together on the computer’s hard drive
as a package. It is a common practice to use zip file format9 for this collection of
files, thus making it simpler to treat a package as a single entity while also saving
disk storage. The Java Archive (JAR) format also provides a mechanism for grouping
class files into a single entity for shipping over a network connection. It too is
based on the zip file format, although the capability of compressing members of the
archive does not appear to be used by Sun when distributing their class file libraries.
If the compression capabilities of the zip file or JAR file format are used, it should
not be forgotten that the zip file or JAR file is constructed from independently
created class files, and that individual class files can be extracted from the collection
and used. The files are compressed independently in order to facilitate extraction
and replacement of a single file. Consequently, no benefit to compression performance
is obtained by combining several small files into a single archive.

A Java program is normally executed by invoking the Java interpreter, specifying
to it the class file where execution is to begin. A less common alternative, but one
that is growing in popularity as JIT compiler technology develops, is to translate
the bytecode of each method into native code when it is invoked for the first time.
For a stand-alone application, execution begins at a standard method named main;
for applets, the class file has to implement other standard methods. While the
program executes, it will occasionally make a reference to a class type defined in
another file and which has not been previously accessed. In this case, the correspond-
ing class file must be dynamically loaded before execution can continue. For a
program invoked as an applet from a web browser, dynamic loading will typically
require that the class file be fetched from a host computer elsewhere on the network.

Regardless of the architecture of the client computer where the Java program is
to run, a class file always has the same format. The instructions in the class file
are instructions for a Java Virtual Machine (JVM).2 The client computer would
execute the class file either by using an interpreter for the JVM or a JIT compiler.
However, to maintain architecture neutrality, JIT translation is performed on the
client computer. The class file is in the standard format and not in native code form
when it is fetched over the network.

A slightly simplified picture of the overall layout of a class file is shown in
Figure 1. What should be observed from the picture is that the class file is organized
as a series of sections. One section in particular, the Methods Section, is itself
organized as a series of method entries, where each entry is itself subdivided into
sections. We explain the structure of some of the more important sections below.

The Constant Pool

Constants occurring in a Java source code file are converted by the compiler into
entries in the constant pool. The compiler may also create many additional entries
for constants which do not explicitly appear in the source code but which are needed
at execution time. As represented in a class file, each entry in the constant pool
consists of a tag byte followed by a group of bytes that contain the value of the
constant. For example, a UTF8 string constant containing 10 characters would be
stored as a 13-byte entry in the constant pool. The first byte is a tag with value 1,

1256 r. n. horspool and j. corless

Figure 1. Class file layout

the next two bytes hold the string length, and the following 10 bytes hold the
characters of the string constant.

The constant pool produced for the small sample program ofFigure 2 is shown
in Figure 3. Each entry is written as a tag name followed, in square brackets, by
the additional information required for that tag.

The relatively large size of the constant pool compared to the original program
should be noted. Many field names, class names, and type signatures are included
as character strings.

Figure 2. A sample Java source file

1257compression of java class files

Figure 3. Constant pool entries

The Methods Section

Each entry in the Methods Section is a variable-length structure that describes
one method in the class. In addition to some information about the class (its name,
access permissions, etc.), the entry normally contains both aCode attribute and an
Exceptionsattribute. The Code attribute contains an array of the bytecode that is to
be interpretively executed by the JVM when this method is invoked. It also includes
a table providing information about exception handlers in the code and, potentially,
a LineNumberTableand a LocalVariableTablewhich would enable a debugger to
relate the bytecode and the local variables of the method to its source code. The
Exceptions attribute is normally small.

A COMPRESSED‘WIRE’ REPRESENTATION FOR JAVA?

A recent paper4 describes an approach that compresses intermediate code from the
lcc C compiler to as little as 21 per cent of the corresponding executable code for
the SPARC architecture. This is a compression rate of 4·9 to 1. At first sight, it
would appear that a similar approach should be effective for Java. The Class file
format is similar in nature to the intermediate code, or IR code, generated by the
front-end of a conventional compiler.

The ‘wire’ format for C code is explained in Ref. 4. It is based on a heuristic
tree pattern matching method for compressing IR code that is described in Ref. 10.
It involves splitting the sequence of tree patterns into separate streams and then
applying three different compression methods to the streams—Move-To-Front enco-
ding, Huffman coding and gzip compression.

If we were to develop a similar approach for Java, we would need to re-engineer
the Java compiler so that it generates trees instead of the linearized byte code and

1258 r. n. horspool and j. corless

where constants appear as leaves in those trees instead of having been separated out
into a special Constants section. In principle, it should be possible though inefficient
to construct such trees from the information in the Class file.

The reason why we consider such an approach to be unappealing however is
provided by the compression results reported in Ref. 4. These results are reproduced
in Table I. As can be seen, wire format achieves its reported 4·9 to 1 compression
ratio only on the largest file. For the smallest of the three files reported in the
paper, the compression ratio is worse than that produced by gzip. This file has an
uncompressed size of 60 KB, which is already much larger than the average for
Java Class files. Consequently, we conclude that a Java wire format would rarely
achieve better compression than gzip. The tailored approach that we have developed
invariably achieves better compression than gzip.

DEVELOPING A TAILORED SOLUTION FOR JAVA CLASS FILES

Our review of the structure of the class file should have brought out the importance
of the constant pool section. First, every class file will almost necessarily include
many ‘standard’ character strings containing names and type signatures for methods
in the Java class libraries. These strings will have a major influence on small class
files, and the class files in package libraries do tend to be small. Second, the other
sections of the class file all contain indexes into the constant pool. The net result
is that the constant pool occupies 50–90 per cent of the entire file size when
measured on a test collection of about 1000 class files. A chart that shows the
contributions of the constant pool to the total file size is shown in Figure 4. The
chart should be read as follows: the height of the column centred around 0·7, for
example, represents the number of class files in our collection where the constant
pool occupied between 65 per cent and 75 per cent of the whole file, i.e. 380 of
our 1000 class files had constant pools that represented between 65 per cent and 75
per cent of the whole file.

Another important observation is that character string constants dominate the
constant pool. These are strings represented in the UTF8 format. Each string is
represented by a two-byte length immediately followed by the bytes that comprise
the string constant. Together, the string constants account for about 40–80 per cent
of the entire file size. Figure 5 graphically shows the size contribution fo UTF8
strings to the overall class file size. It should be abundantly clear that a good
compression scheme for Java class files would have to perform well on UTF8
constant strings.

After the constant pool, we found the next most significant component of the
class file to be the code attribute. Figure 6 shows the contribution of bytecode to
the overall class file size in our experimental measurements.

Table I. SPARC code compression reported by Ernst et al.

Executable file Original size Gzipped size Wire code size

lcc 315,636 75,928 64,475
gcc 1,381,304 380,451 287,260
agrep 61,036 15,936 16,013

1259compression of java class files

Figure 4. Distribution of constant pool contributions

Figure 5. Distribution of UTF8 string constant contributions

The third most important component of the class file is the LineNumberTable
Atribute. It is not necessarily present in a class file because it is needed only for
debugging and error reporting. If the table is present, it holds one entry for every
time the line number of the corresponding source code changes when making a
sequential scan through the bytecode array. Its size should be roughly proportional
to the bytecode array size.

The other components of the class file did not make significant contributions to

1260 r. n. horspool and j. corless

Figure 6. Contribution of Bytecode to class file size

overall file size in our experimental measurements. We therefore do not consider it
necessary to provide tailored compression schemes for them.

A general compression program such as gzip is lossless in the sense that a
decompressed file will beidentical to the original file. A key observation is that a
compression program for Java class files does not need to be perfectly identical to
the original. It is good enough if the decompressed fileexecutesin the same way
as the original. That is, we only need to preserve semantic equivalence and not textual
equivalence between the two files. For example, one of our biggest improvements to
space efficiency comes from reordering the constant pool. As long as all indexes
into the constant pool are adjusted to reflect the new order, the bytecode should
execute in exactly the same way as before.

We note that re-ordering the constant pool may cause the bytecode component of
the class file toincreasein size. This is because the LDC (load constant) instruction
has an operand which is a one byte index into the constant pool. If re-ordering
should cause a constant used as an operand of LDC to move out of the first 256
positions in the constant pool, then the wide form of the instruction, LDCW, must
be used instead and that occupies more memory. However, the risk is worth taking.
In our experiments, the effect was observed only rarely and caused only tiny
increases in the size of the decompressed file.

We now explain our transformations on the significant parts of the class file.

Constant Pool Entries

Our initial transformation is to reorder the entries of the constant pool so that all
entries of the same type are grouped together and so that UTF8 strings are sorted
by their lengths. The result of this reordering on the example constant pool of
Figure 3 is shown inFigure 7.

There are three important benefits from the reordering. First, we no longer need

1261compression of java class files

Figure 7. Reordered constant pool entries

to associate a tag byte with each entry when outputting the constant pool in its
compressed form. The decoding program needs to know only how many entries
there are of each type in order to reconstruct a constant pool that contains the
proper tag bytes. Thus, the compression program outputs a simple count of how
many entries there are of each type before outputting the entries of that type. We
used a start-step-stop code with parameters (1, 3, 16) to encode the count. (Start-
step-stop codes are variable-length codes where small integers are encoded in a few
bits while larger integers require more bits for their encoding. The scheme is
explained in more detail below.) Since there are so few counts to encode in each
class file, the choice of the particular encoding scheme is not critical.

The second benefit comes from encoding constant pool entries that contain
references to other constant pool entries. For example, an entry of type Fieldref is
normally coded as a tag byte followed by two 16-bit indexes. The first index always
references a constant pool entry of type Class and the second always references an
entry of type NameAndType. Since our reordered constant pool has grouped all the
Class and NameAndType entries together, we can replace the first index with a
number that represents the position within the group of Class entries, and similarly
for the second index. These relative indexes will almost always have much smaller
values than the original index numbers and we can therefore encode them using
fewer bits. We encoded each index into the group of Class entries using a fixed-
length binary code withlogNClass bits, whereNclass is the number of entries of type
Class in the constant pool.

The third benefit is that reordering the UTF8 strings into order of increasing
length means that we can encode the string lengths in a more efficient manner. If
we look at an arbitrary string constant, other than the first, inFigure 7, we can see
that its length is almost always identical to the length of the preceding entry or is

1262 r. n. horspool and j. corless

only very slightly longer. In other words, if we encode the length of a string as the
difference between its length and that of the preceding string, we will be encoding
much smaller numbers. Encoding differences rather than the values themselves is
known as delta coding. Since a typical class file contains relatively many string
constants, it is worthwhile to devise a scheme for encoding the deltas (differences)
as efficiently as possible. To that end, we determined the distribution of string length
deltas for our collection of class files. We then determined which start-step-stop
code matched that distribution best. The result is shown inFigure 8. The solid line
shows the distribution of delta values; the dashed line shows what the distribution
should be to perfectly match the (0, 1, 16) start-step-stop code that we picked as
being the closest match.

After extracting and encoding the length prefixes, the group of string constants
becomes a block of text that contains a substantial amount of repetition. (Observe,
for example, the repetition of the substring‘java’ in Figure 7.) This block of text is
well-suited for standard text compression algorithms. For convenience, we used the
ZLIB library functions11,12 to compress the text. ZLIB implements the same com-
pression algorithm as used in gzip, a method that is very similar to the deflate
compression method supported in the zip file format.9 The maximum compression
option for ZLIB/deflate was used here, as in all our uses of this compression method.

Other kinds of entries in the constant pool, such as integer or floating-point
constants, occurred so infrequently in our sample files that there was very little
benefit from devising special coding schemes for them. We therefore left their
representations unchanged.

Figure 8. Distribution of delta string lengths

1263compression of java class files

Code Attribute

The bytecode part of the class file contains the patterns of JVM instructions
generated by the Java compiler for the constructs in the source program. Unless the
compiler is sophisticated and optimizes these patterns extensively, there will necessar-
ily be repetitions of the coding patterns. However, we were unable to find a fast
and effective way to exploit these patterns. It would be easier and preferable for
the compiler to generate such patterns in a compact form directly, rather than having
to rediscover the patterns by analyzing the bytecode. Such is the approach of the
Slim Binariesformat of Kistler and Franz.13

In keeping with our desire to preserve the existing bytecode format, we chose to
perform only two simple transformations on the bytecode and then apply the ZLIB
compression algorithm11,12 to it. The first transformation was to separate the opcodes
and the operands into two separate arrays. By separating out the opcodes, any
repeated patterns of opcodes will become apparent and amenable to compression by
a general-purpose method.

The second transformation concerned operands of branching instructions. The
operands of branching instructions are the addresses of other instructions in the
bytecode array for the method being executed. They are normally implemented as
2-byte offsets. For example, if index positions 103–105 of the array hold the
ifnonnull branching instruction, and its target is an instruction at index position 124,
then bytes 103 and 104 will hold the value 21 (computed as 124–103). Such a
representation is redundant because not every position in the bytecode array represents
the start of an instruction—many JVM instructions occupy two or more bytes. We
eliminated the redundancy by replacing byte-offsets with instruction-offsets in our
compressed file format.

Following the re-encoding of all instruction-relative offsets, we separately compress
the two arrays created from the bytecode using the ZLIB routines.

LineNumberTable Attribute

Each entry in the LineNumberTable contains a code array index and a correspond-
ing source statement number. The indexes can only refer to the starts of JVM
instructions. Therefore, space can be saved by converting these indexes into instruc-
tion numbers. Further compression is achieved by using delta coding. Both the
instruction numbers and the statement numbers form slowly increasing sequences in
our collection of sample class files. Presumably a sophisticated Java compiler could
re-order code and thus break the property that statement numbers only increase
through the code array; however, statements would be likely to be moved in groups
and delta coding would still achieve good results. We used (2, 2, 16) start-step-stop
codes for both the instruction number differences and statement number differences.

Start-Step-Stop Codes

We make extensive use of start-step-stop codes6 to encode various kinds of
integers in our compressed class files. Such codes have the general property that
small integers receive shorter codes than large integers. The codes are generated in
a systematic manner that permits rapid conversions between an integer and its
encoded representation.

1264 r. n. horspool and j. corless

The codes have three parameters which control the range of integers that can be
represented and the rate at which the bit string encoding grows in length. The
encoding would be optimal if the range exactly matches the range of numbers that
we need to represent and if the number of bits used to encode an integerk is
logarithmically related to the frequency with whichk needs to be encoded. That is,
if len(k) is the number of bits used to encodek, and if Freqk is the frequency of
occurrences ofk, then we would desire that

len(k) 5 2log(Freqk)

should hold. In practice, we can only choose a start-step-stop code that approximately
matches the frequency distribution. Huffman coding6 will usually produce better
compression, but the compression and decompression algorithms are more compli-
cated and require that a coding table be provided.

The underlying number representation used by a start-step-stop code is the usual
binary. However, the encoder and decoder must agree on how many bits comprise
the binary number. Rather than using a fixed, predetermined, number of bits, the
start-step-stop code prefixes the binary number with a code that specifies the number
of bits in the binary part. This prefix code is implemented as a unary number; unary
being a scheme that can be decoded without knowing the number of bits in advance.
For example, the unary code for the integer 5 is 111110, constructed as five 1-bits
and terminated by a 0-bit. If the unary number ism, then the number of bits in the
immediately following binary part of the code isa + b 3 m where a is the start
parameter andb is the stop parameter. The stop parameterc is the maximum value
that the unary prefix is allowed to encode. Knowledge of this value is used to
optimize the way in which the unary code is written (its final 0 bit can be safely
dropped). As an example, the table of start-step-stop codes for (1, 2, 5) coding is
shown in Table II. To make the codes easier to interpret, the prefix part of each
code is underlined.

EXPERIMENTAL RESULTS

A C implementation of our tailored compression approach was programmed. We
named this programclazz. Compression results for some representative class files

Table II. (1,2,5) Start-Step-Stop codes

Integer Code Integer Code

0 0 0 8 10 110
1 0 1 9 10 111
2 10 000 10 11 00000
3 10 001 11 11 00001
4 10 010 12 11 00010
5 10 011 % %

6 10 100 40 11 11110
7 10 101 41 11 11111

1265compression of java class files

Table III. Compression results for representative class files

File Original size ZLIB deflated size bzip2 size clazz size

AudioClip.class 233 184 225 95
Component.class 24,622 11,154 11,269 10,050
Enumeration.class 261 203 254 107
HashTableEntry.class 630 404 458 229
Integer.class 3,733 1,919 2,113 1,610
Object.class 1,452 787 923 576

are shown inTable III. In this table, we compare the compression of our clazz
program against two general-purpose text compression programs—thedeflatemethod
of the ZLIB library (with maximum compression selected as an option) and bzip2.
The ZLIB program is relatively fast and could therefore be considered as a good
candidate for compressing Java class files. In this table, we show the results for
some of the largest files as well as for some of the smallest files. We can observe
that ZLIB and bzip2 perform better on large class files but quite poorly on small
files, where they have little opportunity to adapt to the file characteristics. Our clazz
program, on the other hand, achieves significant compression for all file sizes and
always outperforms both competitors. Its better performance with small file sizes
is marked.

Compression results for two collections of class files are shown inTable IV. Both
class file collections were taken from the Metrowerks Codewarrior distribution. The
first 50 classfile members of the Swing/Rose library and the first 128 members of
the standard Java class library were used. The files were compressed separately.
Again, clazz outperformed the ZLIB deflate method and bzip2 by a significant
margin. Expressed as compression ratios, clazz is achieving a reduction to 35–38
per cent of the original size, versus 46–51 per cent for ZLIB and 51–56 per cent
for bzip2.

Since the clazz program applies a variety of compression methods to different
components of the class file, it is interesting to observe how well each component
is compressed. We observed the following:

I Tag bytes attached to entries in the constant pool accounted for 2–6 per cent
of the size of our sample class files. Our reordering of the entries and replacing
the tags with counts, using start-step-stop codes, reduced the contribution of
tags to insignificance.

Table IV. Compression results for collections of class files

Library Average Sizes (in bytes)

Original file ZLIB/deflate bzip2 clazz

50 members of Rose class library 4047·2 1881·8 2063·6 1431·5
128 members of MW class library 2405·5 1221·9 1354·7 920·6

1266 r. n. horspool and j. corless

I The length fields of UTF8 strings were reduced from 2 bytes to an average of
2·7 bits, i.e. to 17 per cent of their original size.

I The entire constant pool was reduced, on average, to 31 per cent of its original
size, even though we made no attempt to compress entries for integer constants
or floating-point constants.

I A simpler method to compress the constant pool would be to reorder the entries
and remove the superfluous tag bytes, as explained above, and then apply the
ZLIB compression routine. This achieves somewhat worse compression than
that produced by our more complicated approach. For example, the file
Integer.class which is compressed to 1610 bytes with our method would be
compressed to 1761 bytes instead. We consider this difference to be worth the
price of the more complicated method.

I Our attempts to compress the bytecode arrays were successful only for larger
class files. In many cases, methods contained fewer than 20 bytes of bytecode.
On average, each method had its bytecode reduced to 59 per cent of its original
size. The best compression, observed for those methods with the most bytecode,
reduced the bytecode to 26 per cent of its original size.

I The LineNumberTable attribute, when present in the class file, was compressed,
on average, to 33 per cent of its original size. (Production code would not
normally contain this attribute.)

I Reordering the constant pool and making corresponding changes throughout
other sections of the class file indeed has no effect when executed by the JVM.
Spot checks with several files yielded no discernible difference in behaviour at
execution time.

Execution times for compressing and decompressing representative class files are
shown in Table V. All times are measured in seconds and were obtained with a
120 MHz Intel Pentium CPU. Compression times are quite competitive with the

Table V. Execution times for compression and decompression

File Size (bytes) Execution times (in seconds)

ZLIB/deflate bzip2 clazz

AudioClip.class 233 0·049 0·577 0·049
0·019 0·385 0·025

Component.class 24,622 0·368 1·340 0·338
0·088 0·577 0·370

Enumeration.class 261 0·052 0·538 0·052
0·024 0·373 0·025

HashTableEntry.class 630 0·053 0·563 0·058
0·026 0·376 0·030

Integer.class 3,733 0·105 0·747 0·103
0·032 0·417 0·070

Object.class 1,452 0·057 0·598 0·067
0·026 0·381 0·037

1267compression of java class files

ZLIB library, while decompression times are only a little worse. Our timings could
undoubtedly be further improved with a more careful implementation. We observe
too that the decompression time could be greatly reduced by integrating decom-
pression with the Java class loader. One reason is that our compressed format has
eliminated the need for one step of the bytecode verification process that is performed
before the bytecode is executed. The verifier must check that every branch address,
every entry point and every exception handler begins at the start of a bytecode
instruction. Our compressed file format guarantees that this property must hold. A
second reason is that the decompression program re-constructs the class file as an
organized collection of data structures in memory as an intermediate step. This is
work that the class loader would also perform.

CONCLUSIONS

The class file compression strategy, implemented as the clazz program, achieves
much better compression than general-purpose compression programs while retaining
full compatibility with the JVM architecture. A key insight is that the reconstructed
file does not need to be identical to the original—it need be only semantically
equivalent. Our implementation is not as fast as the competing compression programs,
but that issue could be alleviated or eliminated if we were to re-implement the
program more carefully and if we could combine the decompression code with the
Java class loader.

A longer term and more drastic way of achieving greater compression would
involve a complete re-design of the class file structure of the JVM instruction set.
The slim binaries proposal,13 for example, provides a very compact alternative format
for bytecode along with the constants used in that code. Yet another possibility
would be to design a new JAR file format where members of the archive share a
common string constants table. Class files belonging to the same package typically
duplicate many string constants, representing member names and method signatures.

acknowledgements

Financial support from Natural Sciences and Engineering Research Council of Canada,
in the form of a scholarship for the second author and a research grant for the first
author, is gratefully acknowledged. Comments provided by the reviewers were
invaluable in improving the experimental results.

REFERENCES

1. K. Arnold and J. Gosling,The Java Programming Language,Addison-Wesley, 1997.
2. T. Lindholm and F. Yellin,The Java Virtual Machine Specification, Addison-Wesley, 1997.
3. M. Nelson and J.-L. Gailly,The Data Compression Book, 2nd Edition. M & T Books, 1995.
4. J. Ernst, W. Evans, C. W. Fraser, S. Lucco and T. A. Proebsting, ‘Codecompression’, Proceedings of

PLDI’97, ACM Conference on Programming Languages, Design and Implementation, 1997, pp. 358–365.
5. T. L. Yu, ‘Data compression for PC software distribution’, Software—Practice and Experience, 26(11),

1181–1195 (1996).
6. T. C. Bell, J. G. Cleary and I. H. Witten, Text Compression, Prentice-Hall, 1990.
7. J. Seward, ‘The Bzip2 home page’, URL: http://www.muraroa.demon.co.uk and mirrored at

http://www.digistar.com/bzip2 in North America (1998).
8. J. Corless, ‘Compression of Java Class Files’, MSc Thesis, Department of Computer Science, University

of Victoria, 1997.
9. Info-ZIP ‘General format of a ZIP file’, Info-ZIP note 970311, URL:

http://www.cdrom.com/pub/infozip/doc/ (1997).

1268 r. n. horspool and j. corless

10. C. W. Fraser and T. A. Proebsting, ‘Custom instruction sets for codecompression’, URL:
http://www.cs.arizona.edu/people/todd/papers/pldi2.ps (1995).

11. L. P. Deutsch and J.-L. Gailly, ‘ZLIB compressed data format specification, version 3.3’, URL:
http://quest.jpl.nasa.gov/zlib/rfc-zlib.html (1996).

12. The Zlib home page, URL: http://www.cdrom.com/pub/infozip/zlib/, 1998.
13. T. Kistler and M. Franz, ‘A tree-based alternative to Java byte-codes’, Technical Report 96-58,

Department of Information and Computing Science, University of California at Irvine, 1996.

Exhibit F

1247372

PARTIAL PROSECUTION HISTORY SUMMARY

 U.S. Patent No. RE38,104 (“the ‘104 patent”) is a continuation of reissue patent

application Ser. No. 08/755,764 (now U.S. Patent No. RE36,204, “the ‘204 patent”), which was

a reissue of U.S. Patent No. 5,367,685 (“the ‘685 patent”). ‘104 patent, first page, 1:9–11. This

summary focuses on the use of the term “computer-readable medium” and is arranged

chronologically starting with the application that issued as the ‘685 patent.

‘685 Patent

 Dec. 22, 1992: The original patent application was filed listing ten claims directed to, a)

“a method for generating executable code,” and b) “an apparatus for generating executable

code.” ‘104 patent, first page, 1:9–11, Ex. B-2, OAGOOGLE0000057197–99. None of these

claims included the term “computer-readable medium.” Id.

 May 26, 1994: An Examiner interview was conducted with a summary submitted by the

Examiner stating: “changes made as per Examiner Amendment.” Ex. B-2,

OAGOOGLE0000057220.

 May 26, 1994: The Examiner issued a Notice of Allowability along with an Examiners

Amendment adding an “s” to the word “instruction” in independent claim 1 and deleting the last

two lines of dependent claim 10. Ex. B-2,OAGOOGLE0000057222.

 Nov. 22, 1994: The ‘685 patent was issued by the USPTO. ‘104 Patent, first page.

‘204 Patent

 Nov. 21, 1996: An application was filed seeking a broadening reissue of the ‘685 patent.

‘204 patent, first page. The reissue application contained new claims, including claims 29–34,

which recited the term “computer-readable medium.” Ex. B-2, OAGOOGLE0000059223.

 Sept. 24, 1997: The Examiner issued an Office Action rejecting all claims of the reissue

application because “[t]he reissue oath or declaration filed with this application is defective

because it fails to particularly specify the errors and/or how the errors relied up on arose or

1247372

2

occurred as required under 37 CFR 1.175(a)(5).” Ex. B-2, OAGOOGLE0000059222–24.

 Apr. 27, 1999: The ‘685 patent was reissued as the ‘204 patent without amendment to

claims 29–34 added on Nov. 21, 1996.

‘104 Patent

 Mar. 3, 1999: A continuation application was filed based on the still pending reissue

application (which issued as the ‘204 patent). ‘104 patent, first page. A preliminary amendment

was filed with the continuing reissue application. The preliminary amendment cancelled all

existing claims and added new claims 36–43, of which claim 36 recited the term “computer-

readable medium.” Ex. B-3, OAGOOGLE0000059421–25.

 Apr. 29, 2003: The ‘685 patent was again reissued as the ‘104 patent, including claim

12, which recites the term “computer-readable medium.” ‘104 patent, first page, 7:15–28.

	Fenton Declaration
	Ex. A - US7213240
	Ex. B-1, '685 File History Excerpts
	Ex. B-2, '204 File History Excerpts
	Ex. B-3, '104 File History Excerpts
	Nov. 21, 1996 - Reissue Declaration
	Mar. 3, 1999 -Preliminary Amendment

	Ex. B-4, '520 File History Excerpts
	Apr. 7, 1998 - Original Application
	July 21, 1999 - Office Action
	Oct. 18, 1999 - Amendment
	Jan. 4, 2000 - Notice of Allowability

	Ex. C - Exemplary list of Sun patents
	Ex. D - 1351 OG 212
	Ex. E - Horspool - Tailored Compression of Java Class Files
	INTRODUCTION
	STRUCTURE OF JAVA PROGRAMS AND JAVA CLASS FILES
	The Constant Pool
	The Methods Section

	A COMPRESSED ‘WIRE' REPRESENTATION FOR JAVA?
	DEVELOPING A TAILORED SOLUTION FOR JAVA CLASS FILES
	Constant Pool Entries
	Code Attribute
	LineNumberTable Attribute
	Start-Step-Stop Codes

	EXPERIMENTAL RESULTS
	CONCLUSIONS

	Ex. F - Summary of 104 File History

