Masterobjects, Inc. v. Microsoft Corp Doc. 1 Att. 3

EXHIBIT A

Dockets._Justia.com

http://dockets.justia.com/docket/california/candce/3:2011cv02402/240755/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2011cv02402/240755/1/3.html
http://dockets.justia.com/

1 O

»
az United States Patent (10) Patent No.: US 7,752,326 B2
Smit @s) Date of Patent: *Jul. 6, 2010
(54) SYSTEM AND METHOD FOR UTILIZING (56) References Cited
ASYNCHRONOUS CLIENT SERVER
COMMUNICATION OBJECTS US. PATENT DOCUMENTS
5,581,753 A 12/1996 Temyetal.
(75) Inventor: Mark H. Smit, Maarssen (NL) 5632015 A 51997 Zimowskietal.
7 3 . s . : 5,634,127 A 5/1997 Cloud et al.
(73) Assignee: Masterobjects, Inc., San Francisco, CA 701461 A 1271997 Dalaletal.
us) 5,754,771 A 5/1998 Epperson etal.
(*) Notice: Subject to any disclaimer, the term of this :
_patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 954 days. FOREIGN PATENT DOCUMENTS
This patent is subject to a terminal dis- » 8075272 v S/1983
claimer. (Continued)
(21) Appl. No.: 11/257,912 OTHER PUBLICATIONS
. Andrew Clinick: Remorte Scripting, Apr. 12, 1999, Microsoft Cor-
(22) Filed: Oct. 25, 2005 poration ht‘lp://msdn.micmsoﬁ.com/cn-usllibraryl
(65) Prior Publication Data e 74S60(prni) s, poges
Continued,
US 2006/0075120 Al Apr. 6, 2006 ¢)
Primary Examiner—Joseph E Avellino
Related U.S. Application Data Assistant Examiner—Catherine Thiaw
74) At , Agent, or Firm—TFlies} LLP
(63) Continuation-in-part of application No. 09/933,493, (74) Attorney, Agent, or Firm—SHester Meyer
filed on Aug. 20, 2001. en) ABSTRACT
(60) ;’xsn\gganal application No. 60/622,907, filed on Oct. A session-based client-server asynchronous information
’ : search and retrieval system for sending character-by-charac-
1) Int.C) ter or multi-character strings of data to an inteliigent server,
el that can be configured to immediately analyze the lengthen-
GOGF 15/16 (2006.01) 4
GO6F 7/00 200 6'0] ing string and retumn to the client increasingly appropriate
GOGF 17/30 (2 00 6. 0]) search information. Embodiments include integration within
GOGF 3/00 (01) an Internet, web orother online environment, including appli-
(2006.01) cations for use in interactive database searching, data entry,
GOG6F 3/048 (2006.01) online searching, online purchasing, music purchasing,
(52) US.Cl oorvncnririosansne 709/231; 709/227; 709/203; people-searching, and other applications. In some implemen-
707/3; 707/4; 715/700; 715/733; 715/760; tations the system may be used to provide dynamically
715/781 focused suggestions, auto-completed text, or other input-re-
(58) Field of Classification Searchcc.ccoe 709/227, lated assistance, to the user.
709/203, 217
See application file for complete search history. 20 Claims, 30 Drawing Sheets
s o
= ==
1 enalH
o tr‘ Choat
1] ™ B
= .
o W [
154 ‘.lll o —-4'9‘
e e
i —
| =)
=]
&) .

US 7,752,326 B2
Page 2

U.S. PATENT DOCUMENTS

5,802,292 A 9/1998 Mogul

5805911 A 9/1998 Miller

5,845,300 A 12/1998 Comer

5928335 A 7/1999 Morita

6,003,085 A 12/1999 Ratner et al.
6,067,514 A 5/2000 Chen

6,092,100 A 7/2000 Berstis et al.
6,201,176 B1* 3/2001 Yourlo .oercssercesinsne: 84/609
6,208,339 Bl 3/2001 Atlas et al.
6,223,059 Bl 4/2001 Haestrup
6,247,043 Bl 6/2001 Bates et al.
6,356,905 Bl 3/2002 Gershman et al.
6,377,965 Bl 4/2002 Hachamovitch et al.
6,430,558 Bl 8/2002 Delano

0/2002 Goiffonetal. ..ovccecrnrenins 7073
3/2003 Voraet al.

6453,312 B1*
6,539,379 Bl

6,564,213 Bl 5/2003 Ortega et al.
6,571,282 Bl 5/2003 Bowman-Amuah
6,751,603 BI 6/2004 Bauer et al.
6,772,194 Bl 8/2004 Goldschmidt
6,829,607 B! 12/2004 Tafoya et al.
6,847,959 Bl 1/2005 Arrouye et al.
6,993,723 Bl 1/2006 Danielsen et al.
7,130,843 B2 10/2006 Stockton
7,383,299 BI 6/2008 Hailpern et al.

8/2001 Purcell

1/2002 Ferris et al.

4/2002 Chuaetal .ocovmnsicineenes 707/4
5/2002 Spaey et al.

5/2002 Ambrose et al.

6/2002 Alvarado et al. 709/231
7/2002 Payne et al.

2002/0123994 Al 9/2002 Schabeset al.

2002/0129012 Al 9/2002 Green

2003/0041147 A1* 2/2003 vanden Oordetal. 709/227
2003/0050959 Al* 3/2003 Faybishenkoetal. 709/202
2003/0195876 Al 10/2003 Hughesetal.

2004/0039988 Al 2/2004 Leeetal.

2004/0117439 Al 6/2004 Levett etal.

2004/0139396 Al* 7/2004 Gelernteretal.ccccceee 715/515
2004/0148375 Al 7/2004 Levettetal.

2006/0075120 Al 4/2006 Smit

2006/0129906 Al* 6/2006 Wall w.oocvuriicerersninrrennr 715/500
2006/0184546 Al 8/2006 Yano et al.

2007/0033176 Al 2/2007 Enns

FOREIGN PATENT DOCUMENTS

WO WO00180079 10/2001
WO WO002057951 7/2002

OTHER PUBLICATIONS

Krishna Nareddy: Introduction to Microsoft Index Server, Oct. 185,
1997, Microsoft Corporation http://msdn.nﬁcrosoﬁ.com/en-usl
libarry/ms951563(printer).aspx, 9 pages.*

Rachele Harless: Membership D: onUSA Gy tics Online,
1996, USA Gymnastics Online http:/fwww.usa-gymnastics.org/pub-
lications/technique/ 1996/9/membership-query.html, 5 pages.*

2001/0013038 Al
2002/0010739 Al
2002/0049756 Al*
2002/0055981 Al
2002/0065879 Al
2002/0083182 Al*
2002/0087514 Al

Unknown, “Real-time dala visualization, interaction and
integration.”, Retrieved from the Internet: URL: http://www.altio.
com> [retrieved on Jul. 24, 2007}

Google, “Google Suggest”, Retrieved from the Internet: URL: htp:/
www.labs.google.com/suggestfaq btml> [retrieved on Jul, 24, 2007},
Google, Geeking With Greg Exploring the Future of Personalized
Information, Retricved from the Internet: URL: http/Awww.glinden.
blogspot.coml2004/12/google-suggest.html> [retrieved on Jul. 24,
2007).

Unknown, “Wiki Blog LiveSearch”, Retrieved from the Internet:
URL: http//www.wiki.ﬂux-cms.oxg/displaleLOG/LiveScaxch>
[retrieved on Jul. 24, 2007].

European Search Report dated Oct. 10, 2006 in re Application No.
05256651.0.

Jurgen Marsch, “Remote Scripting” [Online} Jun. 15, 2000,
XP002401062, Retrieved from the Internet: URL: http://www.
rnicrosoﬁ.comlgenmny/msdn/library/web/RemoteScripting.
mspx?pf=true> [retrieved on Sep. 28, 2006).

Anonymous, “Using the XML HTTP Request Object” [Online] Apr.
2002, XP-002401063, Retrieved from the Intemet: URL: http:/
www jibbering.com/2002/4/httpre quest.2002 html> [retrieved on
Sep. 28, 2006).

Anonymous: “Ajax (Programiming)”, Wikipedia.org, {online] Sep.
27, 2006, XP-002401064, Retrieved from the Internet: URL: hitp://
en.wikipedia.org/wiki/Ajax__(pmgmnuning» [retrieved on Sep. 28,
2006].

MasterObjects, Inc., “Introducing QuestObjects”, 2006,
XP002496891, retrieved fro the Intemnet URL :http://questobjects.
masterobjecls.com/docu.ments/go-introducing.pdf. 25 pages.
European Search Report dated Oct. 14, 2008 in connection with
European Application No. 08252534.6-1225, 9 pages.

European Examination Report dated Jul. 2, 2008 in connection with
European Application No. 02763441.9, 4 pages.

European Search Report dated Mar. 27, 2008 in connection with
European Application No. 02763441.9, 3 pages.

United States Official Filing Receipt in connection with U.S. App!.
No. 12/176,984, dated Jul. 31,2008, 3 pages.

United States Office Action dated Aug. 19, 2009 in connection with
U.S. Appl. No. 09/933,493, 34 pages.

United States Office Action dated Feb. 20, 2008 in connection with
U.S. Appl. No. 09/933,493, 25 pages.

United States Office Action dated Nov. 13, 2008 in connection with
U.S. Appl. No. 09/933,493, 39 pages.

United States Office Action dated Jul. 25, 2007 in connection with
U.S. Appl. No. 09/933,493, 16 pages.

United States Office Action dated Dec. 4, 2006 in connection with
U.S. Appl. No. 09/933,493, 15 pages.

United States Office Action dated Mar. 9, 2006 in connection with
U.S. Appl. No. 09/933,493, 12 pages.

United States Office Action dated Jun. 17, 2005 in connection with
U.S. Appl. No. 09/933,493, 14 pages.

United States Office Action dated Oct. 21, 2004 in connection with
U.S. Appl. No. 09/933,493, 15 pages.

United States Office Action mailed Mar. 31, 2010 in connection with
U.S. Appl. No. 09/933,493 (U.S. Publication No. 20030041147),34

pages.

* cited by examiner

US 7,752,326 B2

Sheet 1 of 30

Jul. 6,2010

U.S. Patent

k10108110

P

aseqeieq

SnoLeA

—

$921108 JUBJU0)

1 "Old

$o01AIag SjoRlgoiseny ~-~-------=--=--"

T | (R —
T ACRED o
dvdi zputegy()Gt | R | e B0

_&m } BULBYD()--ooomomrmeeee : B ot H_a<
(do0) (PlRLyISaND)

._w»wm.m.wgaoum:o 1030}01d S100laQisaND juaIpD 385988

oo ppaeno

-

U.S. Patent

Jul. 6, 2010 Sheet 2 of 30

r

QuestObjects
Client

104

NS

QuestObjects
Server

108

NS

QuestObjects
Service

FIG. 2

US 7,752,326 B2

102

NS

106

110

U.S. Patent Jul. 6, 2010 Sheet 3 of 30 US 17,752,326 B2

120
pemeereenemmmmememeenan v 122 ~
I ittt I g
i 124 i 126
Quester ‘ l ' Controller
i Questlet -~
Client
| 128
g ;5;{‘;;32 r~1J36 me
= | Controlier
i Quester I— 5 138 140
: : Persistent
L_Sessiont Quester Store Time Server
Server
144 '
150
o~
Y-V Y T T I
E ,~1-'54 5 n §f~1J52
; User Preference | Usage '
: | Manager Manager Statistics Store| |
' Syndicator :
I 160
162
pemmmmmememesonsmmamemnmondeooomenm oo e e]
T S 66 TTTTTTTTes) L
; = ~ e b
: Query Content Content-based | : ! i
: Manager Cache Pl
. Gontent Channel-i
Service

U.S. Patent Jul. 6, 2010 Sheet 4 of 30 US 7,752,326 B2

P NS
; <1 . N | bk
21 " v datastore

QuestField Channel 204
2001 A SN
2021 A ST
Quest 210
uestlet ------------ ;
eecemmmmmmmmmame R fJ 212
E /-_E_/
5 FIFTH AV_ S v i
5 t |— QuestFields
L S

U.S. Patent Jul. 6, 2010 Sheet 5 of 30 US 7,752,326 B2

220 222

(lient (-) Server rj

A Q RN 77 TR
................... /A\‘ /\4 3a'ck-:and
i | See | o] | e (2

230 240 250 260
Client Tier f—) Server Tier e Service Tier Content Tier,
A S | e — "\ data-
-Lv /A_\ e istorel
— : U resins]| 7=
Resu“s T - ik g (5""“:‘ » data-
I\ store

FIG. 8

U.S. Patent Jul. 6,2010 Sheet 6 of 30 US 7,752,326 B2

302 306
304 326 233
AppiWeb |, _ App/Host
Server 220 QO Adapter 328/ | Synchronizer
A Application/ v 318
Web o _
Host
Controller Quester
322 QuestObjects Server
300
v 7308
Application/Web Form
7330
Submit Button
310 , 312
— Controll
Quester niroTe 314
Client App/Browser

FIG. 9

U.S. Patent

Jul. 6,2010 Sheet 7 of 30 US 7,752,326 B2
The Music Store J
Music
@% Search Music 4 352
Select Category: J
Search For: L ~]|
| 354
Copyright® 2003 HastorObjecis ®
-(Strictiy Confidential)
Category: { Jﬂ
Artist: [Bealles Il >-360
Album: |Abbey Road J7]

FIG. 11

U.S. Patent Jul. 6, 2010 Sheet 8 of 30 US 7,752,326 B2

<script type="text/javascript’ language="javascript’
src="qo-common.js"></script>

<script type=*text/javascript’ language="javascript’
src="scripts/qo-questlet.js’ ></script>

~ <script type=“text/javascript’ language="javascript”>
<l.

var config = {};
config.connectString =*/qo-server’;
config.contentChannel ="artist-name”;
config.postString =*/your-application”;
config.helpLink =“http://www.questobjects.coml";
config.helpTarget ="help’;
config.helpParameters =“top=30,Ieft=30,width=760,height=560";
config.questFieldName =* ArtistField”;
config.questFieldFile =“qo-autocomplete-questfield.swf";
config.questFieldWidth =250;
config.questFieldHeight =20;
config.popUpFile ="go-autocomplete-popup.swf’;
config.popUpWidth =350;
config.popUpHeight =(14*17)+4;
config.popUpToLeft =false;
config.bgColor =*#FFFFFF’;
qolnsertPopUpQuestField (config);

I->
</script>

\

<370

FIG. 12

U.S. Patent Jul. 6, 2010 Sheet 9 of 30 US 7,752,326 B2

380

38
~

The Music Store

—

Search Music

@% Category: | JY]
Atist: [Beatles 1Y)
Atoum: [Abbey Read AM

Copyright ® 2003 MastarObjocts 1]
{Strictly Confidential)

FIG. 13

U.S. Patent Jul. 6, 2010 Sheet 10 of 30 US 7,752,326 B2

'|§ QuastObjocts - YradRlonai Muskc Stors - Wicrosolt memal Exploter R
The Music Store

Welcome to the Music Store {raditional close window

version)...

Search Muslc... 390
ey O SE3iCh GGG ang A he Search | oV

button.

HE \ ota: Tris simple demo wil only retum resulls for
e o quoy ‘Boaties”.

A 392
e Calegory:

Search For:

304

Copyright ©2001-2004 MasierQbjects. Al tights reserved U.S. and internatonal patents pending.

Use of {ha aits &8 subjact to Ihe Turmaaf Uae
1 you everanched thia pege without roceiving explict parmiesion,
Yo Ky bo ievidision of appicadle brve.

FIG. 14

U.S. Patent Jul. 6, 2010 Sheet 11 of 30

US 7,752,326 B2

"E ‘QuestObjects - Tradkional Music Stors » Microsoft Internal Explorar
P

The Music Store
Welcome to the Music Store (raditional close window
version)...
Search Music...

------- —Spacly Jow cearch Ciiena and i e Search
button.

] Nots: This simple demo will only relum results for
the quey “Beaties”,

&

Rock
Copyright ® 2001-2004 MesterObjects. All ights reserved US| Soundirack tenis pending.

Ve ofihig sl sublact o the Bpa et iias. 396
tf you have seachaed U3 pige withowt Tecaiving BpECH parmiseion,
You may b 1 vickaton of apoticable tawz.

FIG. 15

U.S. Patent

Jul. 6, 2010 Sheet 12 of 30

US 7,752,326 B2

« Microsolt Intema) Ex|

The Muslc-Store

Welcome to the Music Store - Enabled Music close window

Store!

Please enler alist and/or CD.
Note; Thesa QuestFialds access a copy of the

“FreeD8" database, containing over 3 mition CDs
and more than 3 hundred thousand arists. Some

f """ 2 duplicates and mistakes exist in the ariginal data. /

7 v

—=1 406

N

404

402

Copyrght ® 20012004 MasterOtjects. Allrights reserved .. and intemational patents panding.

Usa o7ty slieis subject to the Jarma of Uss.
1t you heva roached this pags wihout recaiving Bpikit parmission,
you may be i vickation o soglicable Bws.

FIG. 16

400
™/

U.S. Patent Jul. 6, 2010 Sheet 13 of 30 US 7,752,326 B2

||§ ﬂw@ds - Musle Stero ZQWSIEM mbE - WicrosoR nternal Explarer

The Music Store

I

Welcome to the Music Store - Enabled Music close wingow
Store!

Y Please enter artist andior CD.

Nole: Thesa QuestFleids access 3 copy of e 402
“FresDB" database, containing oves a milion CDs

and move than 8 hundrad thousand artists. Some J/

duplicates snd mistakes exist in the original dalV— 400

/|
410 412

Al

Copyright ® 2001-2004 MaslarOtiects. Al rights reserved 1.5, and Inlemational petents pending.

Wswol Vis sitels (o the T sl lag.
 you heve raached INs page jhout recaiving Lxpikc pormission,
‘you may be in viotation of appicatie taes.

FIG. 17

U.S. Patent Jul. 6,2010 Sheet 14 of 30 US 7,752,326 B2

r!guuum!m-mnc S (GuestOLect arabied) - Miciouah itrai] Exploer

The Music Store

Welcome to the Music Stere - Enabled Music close window
Store!

Pleass enter artis) andior CD.

¥ Noto; These QuestFieids access a copy of ke
B “FreeDB" dalabasa, conlaining ovar a millon COs
and more than a hundred thousand arlists. Some
kS duplicates and mistakes wxist in the ofiginal data. 40 0
. G

o

416

RO (OJ Amit/ Dj RO)
Ro (DJ Mike Cruz Presants Ineya Day 8 China Ro)
1o {Leny Escudéro}

10 {Lany Escuderc) =

Copyrighl ® 2001-2004 MasterObjzcls. All rights reserved V.S, and intemational patents pending.

Usa of bhis shiwia subject [0 O Tannacl.Uss.
1 you have tnachad this pags witheu! recaiving sxplick parmission,
you may be in vickation of appicable we.

FIG. 18

U.S. Patent Jul. 6,2010 Sheet 15 of 30 US 7,752,326 B2

B o]
Tha Muslc Store
Welcome to the Music Store - Enabled Music close window
Store!
Search Muslc...
: '_ Please enter artist snd/or CD.
8 Note: These QuesiFields accass a copy of the
8§ “FreeDB" database, conlaining over 2 miliion CDs
and mare than a hundred thousand adists. Some
400

3 dupiicates and mistakes existIn the original daia.

4

-
o

toxy cast
Roty Cast (Yim Curry & The Origingl Roxy Cast)

: Rozy Gub
418 |Rowybusk 420
S Roxy Music {Bryan Forry - Roxy Music)
Roxy Music (Bsyan Ferey and Roxy Muslc)
Roxy Msic For Yous Plaasura a

Copyright ® 2001-2004 MaslerOblects. All ighls resanved U.S. and intamational patents pending.
Vse of thia tlie s ubjact 1o v Tarmacilin.

Scil pamissson,

’ You s be o vilafon o gbealie run.

FIG. 19

U.S. Patent

QuestQ) - Muslc Stors {QuestO ‘enabled) - Microsoft intamal Explorer

Jul. 6, 2010 Sheet 16 of 30

US 7,752,326 B2

~ Dk |

The Music Store

Welcome to the Music Store - Enabled Music clase window

Store!

Search Muslc...

Please enter artist and/or CD.

Note: Thess QuestFields access a copy of the

“FreeDB" dalabasa, conlalning over a millon COs
M 21 more than @ hundred thousand artists. Some
duplicates and mistakes exisl in the original d&a.

400
N/

Atist: [Roxy Music [€)

2
3

10

Copyright ® 2001-2004 MastarQblacts. A8 rights resarved U.S. and inlarnational patents pending.

Use of Ihis site i subject to the I od s,
It you haws reached thia page without racaiving expict pwmission,
you sy be i Vi appiicadle aws.

FIG. 20

U.S. Patent Jul. 6, 2010 Sheet 17 of 30 US 7,752,326 B2

EQuastOb cts - Musle Store (QuestObjects ena! . Microsoft Intemal Explorer

The Muslc Store

Welcome to the Music Store - Enabled Music dlose window
Store!

Pleasa enter artst andfor CD.

Note: Thesa QuesiFieids access a copy of the
*FreeDB" database, containing over & migion CDs
and more then a hundred thousand sriists. Some
Juplicates and mislakes exist in the origina) data. 400
Y4

Arlist: TRoxy Music v
co: *

Roxy Music [Bryan Ferry - Roxy Music)
Roxy Music {Bryan Fessy and Roxy Music)
Roxy Music For Your Plaasure 424

Copyright © 2001-2004 MaslerObjecls. All ights reserved U.5. and inlemational palents pending.

mdma.iwmmv-mmh
1 you hove 1eached INIs pagow!) racaiving sxplict permission,
You Ty be o victation Of spplkatie ws.

FIG. 21

U.S. Patent Jul. 6, 2010 Sheet 18 of 30

US 7,752,326 B2

m—co

lﬁg QuostOblects - Musle Stors ’numi;._bt_gh anabled)- Wicrosoft internal Explorer
The Music Store

Welcome to the Music Store - Enabled Music close window
Storel

Please enler artist and/or CD.

Nots: These QuestFields access a capy of 1he

*FreeD8" datsbase, containing over 3 million CDS
and more than 8 hundrad thousand arlists. Some
duplicates and mistakes existin the original data.

B Artist: [y Mok Q 1v)

4 cD: A1 Q i
N

426

428

Copyrighl® 2001-2004 MastarQbjacts, Allrights reserved U.S. sndintemational patents pending.

Use o Wi sile is subjact 1o ¥ Termnctaa.
1 you have taached Uvs pags without & ikt pormission,
you may baln violalion of ap) Tows.

400
I~

FIG. 22

U.S. Patent Jul. 6, 2010 Sheet 19 of 30 US 7,752,326 B2

'!Qnumoaéw . Ilu:l:smiuu-smhg mabhaoulmwﬁlnhmul Eibm @]
The Music Store

Welcome to the Music Store - Enabled Music close window
Store!

Pieasa enter artisi andior CD.

Note; These QuestFields access @ copy of the
} *FreDB" database, containlng overa mifon COs
and more han hundred thousand artists. Some

dupicales and mistakes exist in tha origina) déta. 400
29 Artist: [Roxy Music iv) ~_/
|A_T5“’"Q_\ R
430

Copyrght ® 2001-2004 asterGhjects. Allfights reserved U.S. and International patents pending.

ke of i o s IO O s otUse.
m A
‘you tay be n vikekon of abie .

FIG. 23

U.S. Patent Jul. 6,2010 Sheet 20 of 30

@ OuumbEh - PegoF

US 7,752,326 B2

7 Derno - Microsolt internal Explores

Finder!
Nole: This demo accessas 3 database contzining the
names of the 500 richest people In the wortd.

Welcome 1o the QuestObjects-Enabled People close window

Option 1: Search by typing the first few letters
of elther first name or last name.
Namg: | Jv]
L AN
442 450
Option 2; Search by typing into the first nams
dlor last name fields. These fields are 446
pencent and wil tically be /
completed.
£
tast: [T O]
Fist [47
R
N
448

440

FIG. 24

U.S. Patent Jul. 6,2010 Sheet 21 of 30 US 7,752,326 B2

E ratiOb]vcls - Peopie Finder 0soR Intemal Explorer
Welcome to the QuestObjecls-Enabled People closs window v
Finder!

Nots: This demo accesses a dalabase containing the
names of the 500 richest paopla in the world,

Dpﬂon1:8eamhbytyphﬂhahsliawleuera 442
of either first name or last name. /
ey
Name: [gale] AL}
k"\
452 454 440
2 Option 2: Search by typing Into the first name
nd/or last name fitds, These fields are
dependent and wil jcall
completad
ast | — Y]
Fist | —I7]

FIG. 25

U.S. Patent Jul. 6, 2010 Sheet 22 of 30 US 7,752,326 B2

WMMW Eo &)
Welcome to the QuestObjects-Enabled People glose window ¥

Finderl
Noto: This demo accasses 8 database contalring the
names of the 500 richest people [the world,

Option 1: Search by typing the firs! few latters
of elther first name of fasl name.

440

456 458

OplionZ:Sealmbytymmuww:mme
dlor last name fislds. Thess fiekds are
Jepandent and wil fically be

Last [4]
dFest [_dv}

FIG. 26

U.S. Patent

Jul. 6,2010 Sheet 23 of 30

US 7,752,326 B2

=50

E QuostObjects - People Findet Demo - Micrasoft intems} ﬂmv

‘Welcome to the QuestObjects-Enabled People

Findert
Nole: This demo accesses a database containing the
names of the 500 riches! paopia in the workd.

clnse window

Option 1: Search by typing the first few letters
of either first name or last name.

,[vl

dont and wil

Option 2: Search by typing into the frst name
andlof last name fields. Thesa fields are

iybe 460

FIG. 27

U.S. Patent

Jul. 6, 2010 Sheet 24 of 30

US 7,752,326 B2

- The Sky Is The Limil Demo - Microsoft infemal Explorer

v 484 486
stName Last Name % r~. Coungz
482 Fli !N = G;":;N b Cli -

D) Chack Speig

Dear Bill,

¥m gontacing you be

Gates, ElEBMI'- Telephone +1 234 557 8910 L 488

Volce Mali 1234.5678910
Primary EMall whales@micmscl gae
Aboul e CTO

S. English :

Capyright © 2003 MesksGbiech®
{Suicty Conhowiial)

FIG. 28

U.S. Patent Jul. 6, 2010 Sheet 25 of 30

1ol
Smith Boeyen +1 804 278-3079
Smith Caresani +1 206 817-7416 =3
Smith Eiwood +1 510 247-9058 ==
Smith Gorfine +1 213 659-5276 =3
Smith Heddell +1 415 919-6135 =
Smith Howley +1 303 7564232 =
Smith Maeya +1 804 394.9224 =3
Smith Nishith +1 510 597-1573 &3
Smith Plssup +1 804 215-3212 &2
Smith Schulte +1 213 902-4906
Smith Shirinlou +1 818 120-3026 =3
Smith Ste +1 804 484-7529 =
Smith Swazey +1 804 348-4465 &=

US 7,752,326 B2

e

v

=i |

50 results

FIG. 29

[Enable QuestField
[Pop-Up List Automatically

Search Formats

Last Name,

First Name,

Last Name <comma> First Name, or
First Name <space> Last Name.

Nicknamas may not display in the fist.

This LDAP content channel contains fake data.

{Aliteral match is performed if only one of two characlers were entered)

v

fuestObjects

FIG. 30

490

U.S. Patent Jul. 6, 2010 Sheet 26 of 30 US 7,752,326 B2

estOlDJects

Enterprise QuestField (c) 2004 MasterObjects

)2

494

QuestField Id: LimitedQuestField
QueslField Version: 1.0,0 rc 2 & !4
Flash Player Version: MAC 7,0,24,0

Content Channel; Persons limited to 100 LDAP results L
Serverld: server1

Server Version: 1.0.0rc 2
Server Path: /questobjects/server =

FIG. 31

ISBN: [0-06-251587-x a b o

R 1:&:2

FIG. 32

U.S. Patent Jul. 6,2010 Sheet 27 of 30 US 7,752,326 B2

Management (Financial) ol —— 6’9"‘)"‘ Py
iC; all o) L

Management (Retail)
Manufacturing =~ I P
Marketing and Advertising Clutsh Fork Boot ($8) j

S .| A | Fork Pilot Pine ($3)
WY Fork Push Rod ($33)

. . . ole Plug - Auto ($2) L
Detroit-Halifax, Nova Scotia Pedal ($75) i
Detroit-Kitchener-Waterloo, On —
_Detroit-New York, Stewart Airpo
| Detroit-Northwest Arkansas Regi
Detroit-Rochester, NY '

K
B

FIG. 33

US 7,752,326 B2

Sheet 28 of 30

Jul. 6,2010

U.S. Patent

'y

Seiqoisen 1=l
2
I

- 3u0 J2 uonejuaLwa|du| SoUSIBIEY SPB[q0IsanD BY) IN0GE UCHEULIoj] popeieq B2 2
«+ K115 9q U3 Jey) J3puy B1ep A|pual-1asn ‘pabreyssadns e S| plelisanD v

AR
18

SPELTEETD SRS
*+ "jajiSany J8pULS|A0ad SUY YIM "dul P03 Ul plal) y4o4e3s JNIBIS gﬂ«%
Jusna 1nok dn Ass ABojouydsy s1aaiqoisand 1971 '(Had) pieidisend Japui4aydoad %‘&mﬁ;
BSOS, SIOIqOBISE N Barees

“* 10 SyJewapes) aJe 050 Mmouy D 3y} pue 40D 'a1sand ‘plaidisend ;
's198[qoisany ™ ‘piatdisany sopurajdoad 8y} ABojouyoa) sjI8[g0Isand uo Jing
LK

WRJAISAQ AUEAW] |-

—

- podA) St 18UM JROGE %0BqPaIs) SnodUBIURISUL Kifenia S3A1098) oSN Bl
:UONN|OS 131)aq Jej B SapiAoid 'plaldisany e pajied ‘pjoYj pasamod-spafuoISaND v |

X
7y

SWOH SPal0ISnD b

** 3]IGOY SMOPULM DUB 'SMOPUIM, 1JOSQII "asuadl] 1apun pasn ‘Ag s19[qoiIsend X \
10 sy wae) a1 05oj MOLY D 9y} pue 40D “lseny ‘piatdisany ‘spalqoisand

ESE

TOpULAII0Rd |

10 SyewWeNEs) 818 050| MOLIY D) 84} PUE * 40X '18NSaNy ‘plalisany ‘spelnoisend

g1y mau [njsomod € ‘SplqoIsany Y ¢PIANISEND B StIBUM ™ |2

AI015 SSA0NG :

“*pleMIsend SIY) Inoqy

sjonpoid yoieeg A
safied qop yosess

SaYeg UadsY 2Bl

|BLLUOS puB §}B3
pooy 1sd

[© Ippmsenb pue spelgorsanb av] [0

|piowsanb pue sjoelgaisenb auf |

SRNASG
L

®

®

®

U.S. Patent Jul. 6, 2010 Sheet 29 of 30 US 7,752,326 B2
|rAIaska X
North Carolina 2T United States of America |2
United States of America Anchorage)
| USA Fairbanks
' Homer
Juneau
Ketchikan
Kodiak N
Seward) 208
Iiecent terms < 12TE1 Thesa | Sounds |_Prefs J [4!
[the QuestObjects tecnology il] 510

FIG. 36

US 7,752,326 B2

Sheet 30 of 30

Jul. 6, 2010

U.S. Patent

Zis M

L€ "Old

ajqewwelbold ON leuondo SaA S8\ SaA >o=%hwwwﬂ

Auy afdiniy aldniniy b ? v msscwmuw_m

1 atowso) | ajdnni F ! 1 S oon

a|qewwe.bold) s|dyiniy } [4 b sjnduj

VN |leuondo jeuoydo SaA S9N ON 11| dndog

(leuondo) euoild

| VN DIOM 1587 feuondo mbo;.wmm.v_ wndug jind jeuondo aja|dwoooiny

¥N leuoido wojsng payuey pazpeqeydly SUON Bugsny

Auy umouy UMouy umouNun umouy| | l 10 hwan_“_ﬂo_“

Auy Auew-o}-Auely {Auew-o}-Auey | pejejsiufn Auew-oj-0uQ 8u0-0}-8uQ o} diuysu o_uaa_u”m
Piaidisend plotfiseny | piaidisend | PIakdisend p1ai4isond pisLdisand

puno.Byoeg wio4osid | |euonejdy | yoeagony | dmjootony dnyooo)ny adA). preiisend

S3114340¥d 013131S3N0

US 7,752,326 B2

1
SYSTEM AND METHOD FOR UTILIZING
ASYNCHRONOUS CLIENT SERVER
COMMUNICATION OBJECTS

CLAIM OF PRIORITY

is a continuation-in-part of U.S. patent
application Ser. No. 09/933,493, published as US.
20030041147, entitled “SYSTEM AND METHOD FOR A
SYNCHRONOUS CLIENT SERVER SESSION COMMU-
NICATION”, filed Aug. 20, 2001; and also claims the benefit
of U.S. Provisional Patent Application Ser. No. 60/622,907,
entitled “SYSTEM AND METHOD FOR UTILIZING
ASYNCHRONOUS CLIENT SERVER COMMUNICA-
TION OBJECTS”, filed Oct. 28, 2004; both of which appli-
cations are incorporated herein by reference.

This application

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
1ains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The invention relates generally to client-server communi-
cation systems, and particularly to systems and methods for
utilizing asynchronous client server communication objects
for interactive database searching, data entry, online purchas-
ing, and other applications.

BACKGROUND

The world has moved to embrace the Internet. In fact, the
Internet has become a world of its own: 2 world of informa-
tion, a world of marketing, a world in which virtually any-
thing can be brought to anyone, anywhere. If the Internet isa
world in itself, then intranets are enterprises in themselves.
Knowledge and domain components—from purchasing
orders, insurance policies and tax returns to shoes, chainsaws
and paper clips, as well as customers, employees, and infra-
structure—everything is available through Web applications,
or soon will be. The Internet offers an enormous connectivity
advantage: the ability to maintain information and business
rules in one place, accessible by anyone we wish it to be
accessible to.

Like most modem software applications, browser-based
applications typically use a client that runs in a web browser
or on a handheld wireless device, a server that provides a
centralized application that centrally manages application
data and the business logic, and a protocol that governs the
communications between the client and the server. However,
applications designed for the Internet are far more primitive
and far less powerful than LAN-based client/server applica-
tions because web browsers must work on as many platforms
and systems as possible, and because the protocols that made
the Internet a worldwide success were, by design, limited in
features. As such, missing from Web applications are man-
ageable windows, multiple document interfaces, drag-and-
drop, in-line editing, automatic completions, different views
on the same data, updating while typing or selecting, auto-
matic spell checking, intelligent Jookups, instant calcula-
tions, and many other powerful interactive end user tools that

35

45

50

. is a technology that

2

are now standard features on personal computers and work-
stations everywhere. Typically, users have to press Submit,
Search, Continue, Next, or a similar button for their input 10
have any effect, ofien resulting in a completely new page
loading into their browser. As Web applications attempt 1o
handle increasingly complex business data, users find them-
selves filling in huge forms, then being notified about typos or
incompleteness only after pressing Submit.

To address the deficiencies and limitations of the web
browser, a new class of client technologies has emerged.
These technologies enable developers to create “rich” Inter-
net applications (R1As). R1As are friendly, data-driven appli-
cations that run in web browsers and other “thin” client envi-
ronments, providing advanced Ul features that significantly
enhance the browser user’s experience.

RIAs can be developedusing frameworks and technologies
based on several popular platforms, including Macromedia
Flash, Sun Java, Microsoft ASPNET, DHTML (Dynamic
HTML), JavaScript, HTML, Extensible Markup Language
(XML), cascading style sheets (CSS), the Document Object
Model (DOM), and the Microsoft XMLHTTPRequest
object.

What, then, are users missing, from an interaction perspec-
tive, in current Web pages? It is not the mouse, which is an
intrinsic part of any Web experience and is often the only
device available to interact with a Web page. 1t is also not the
WYSIWYG natwe of modem GUl-based applications.
HTML in itself is quite rich in formatting text, adding pic-
tures, movies and everything else that make web pages
appealing. HTML is designed primarily for the presentation
of such information. However, because it must display this
information using different browsers across a diverse range of
platforms and systems, HTML offers only a simple user inter-
face that is relatively primitive by modern server-based appli-
cation standards. Consequently, Web applications are seri-
ously handicapped when delivering interactive applications.
Alternatives, such as replacing HTML pages by Java applets
or full-page Flash applications, can enhance interaction but
they have other disadvantages, which is a reason many com-
panies tend to stick with HTML and JavaScript when moving
their applications to the Web.

What users are primarily missing from their Internet or
online environment is feedback. Web applications cannot
provide users with feedback, the essential element of intelli-
gent interaction that users have come to expect from their
personal computers and workstations. Web pages are rela-
tively static. They canmot be automatically responsive to user
input. Instead, users must push a Submit button and wait for
the page to redraw before getting any useful feedback on the
data they typed into a form. This is totally contrary to the user
experience provided by today’s stand-alone or client/server
applications (e.g. Microsoft Word) where instantaneous feed-
back is a common and expected feane (¢.g. highlighting of
spelling mistakes). The ability to provide immediate feed-
back on user actions would be advantageous in turning Web
applications into interactive applications.

SUMMARY

As described herein, the QuestObjects system and method
adds interaction to Web applications.
Working hand-in-hand with HBTML, the technology allows
Web servers to actonstring inputonaper character basis, thus
enabling intelligent auto completion and complex lookups
using server side data. In short, the system enables interactive

data-driven behavior based on incremental string input. For
Web applications, this offers: Improved data entry speed and

US 7,752,326 B2

3

accuracy; Dramatically faster access to relevant data;
Improved data security; and Improved user friendliness. In
some implementations the system may also be used to pro-
vide dynamically focused suggestions 1o the user.

By enhancing rather than replacing HTML, the system
enables server interaction and improves interface usability
and responsiveness without changing the nature or look-and-
feel of Web applications. This architecture allows services 10
easily and transparently blend in with current Web applica-
tions. Moreover, clients work with the vast majority of Inter-
net browsers now in use—with no additional software for the
end user to install. Additionally, as a standards-based Web
service, the system functions seamlessly with modern Java-
based, Net, and other architectures, and imposes no restric-
tions on networks or firewalls.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an illustration of an example of a2 QuestOb-
jects system and architecture in accordance with an embodi-
ment of the invention.

FIG. 2 shows an illustration of a system in accordance with
an embodiment of the invention.

FIG. 3 shows an illustration of a system in accordance with
an embodiment of the invention.

FIG. 4 shows an illustration of an asynchronous session-
based search system including a front-end client search field
and a back-end server datastore.

FIG. 5 shows an illustration of an asynchronous session-
based search system- including multiple front-end client
search fields, multiple channels, and a back-end server datas-
tore.

FIG. 6 shows an illustration of an asynchronous session-
based search system including multiple front-end client
search fields.

FIG. 7 shows an illustration of an asynchronous session-
based search system including a front-end client search fields,
a server, result storage, and a back-end server datastore.

FIG. 8 shows an illustration of a multi-tier asynchronous
session-based search system including client tier, server tier,
service tier, and content tier.

FIG. 9 shows an illustration of an asynchronous session-
based search system for use with web forms or other web
interfaces.

FIG. 10 shows an illustration of a web interface in accor-
dance with the prior art.

FIG. 11 shows an illustration of a web-based search fieldin
accordance with an embodiment of the invention.

FIG. 12 shows a listing of a html and JavaScript code in
accordance with an embodiment of the invention.

FIG. 13 shows an illustration of a web-based search field as
it is used to receive data from a server in accordance with an
embodiment of the invention.

FIG. 14 shows a screenshot of a music search input screen
in accordance with the prior art.

FIG. 15 shows a screenshot of a music search input screen
in accordance with the prior art.

FIG. 16 shows a screenshot of a music record search input
screen in accordance with an embodiment of the invention.

FIG. 17 shows a screenshot of a music record search input
screen in accordance with an embodiment of the invention.

FIG. 18 shows a screenshot of a music record search input
screen in accordance with an embodiment of the invention.

FIG. 19 shows a screenshot of a music record search input
screen in accordance with an embodiment of the invention.

FIG. 20 shows a screenshot of a music record search input
screen in accordance with an embodiment of the invention.

S

15

20

25

30

35

55

4

FIG. 21 shows a screenshot of 2 music record search input
screen in accordance with an embodiment of the invention.

FIG. 22 shows a screenshot of a music record search input
screen in accordance with an embodiment of the invention.

FIG. 23 shows a screenshot of a music record search input
screen in accordance with an embodiment of the invention.

FIG. 24 shows a screenshot of a person search input screen
in accordance with an embodiment of the invention.

FIG. 25 shows a screenshot of a person search input screen
in accordance with an embodiment of the invention.

FIG. 26 shows a screenshot of a person search input screen
in accordance with an embodiment of the invention.

FIG. 27 shows a screenshot of a person search input screen
in accordance with an embodiment of the invention.

FIG. 28 shows a screenshot of a multiple field search input
screen in accordance with an embodiment of the invention.

FIG. 29 shows a screenshot of an altemate person search
input screen in accordance with an embodiment of the inven-
tion.

FIG. 30 shows a screenshot of an alternate person search
input screen in accordance with an embodiment of the inven-
tion.

FIG. 31 shows a screenshot of an alternate person search
input screen in accordance with an embodiment of the inven-
tion.

FIG. 32 shows an illusiration of a QuestFields type in
accordance with an embodiment of the invention.

FIG. 33 shows an illustration of a QuesiFields type in
accordance with an embodiment of the invention.

FIG. 34 shows an illustration of a QuestFields type in
accordance with an embodiment of the invention.

FIG. 35 shows an illustration of a QuestFields type in
accordance with an embodiment of the invention.

FIG. 36 shows an illustration of a QuestFields type in
accordance with an embodiment of the invention.

FIG. 37 shows a table comparing different QuestField
types in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

As described herein, the QuestObjects system ‘and method
is a technology that adds interaction to Web applications.
Working hand-in-hand with HTML, the technology allows
‘Web servers to act onstring input ona per character basis, thus
enabling intelligent auto completion and complex lookups
using server side data. In short, the system enables interactive
data-driven behavior based on incremental string input. For
‘Web applications, this offers: Improved data entry speed and
accuracy; Dramatically faster access to relevant data;
Improved data security; and Improved user friendliness. In
some implementations the system may also be used to pro-
vide dynamically focused suggestions to the user.

By enhancing rather than replacing HTML, the sysiem
enables server interaction and improves interface usability
and responsiveness without changing the nature or Jook-and-
feel of Web applications. This architecture allows services to
easily and transparently blend in with current Web applica-
tions. Moreover, clients work with the vast majority of Inter-
net browsers now in use—with no additional software for the

" end user to install. Additionally, as a standards-based Web

service, the system functions seamlessly with modern Java-
based, .Net, and other architectures, and imposes no restric-
tions on networks or firewalls.

The system offers a highly effective solution to the afore-
mentioned disadvantages of both client-server and Internet
systems by providing away to synchronize the data entered or
displayed on a client system with the data on a server system.

US 7,752,326 B2

5

Data input by the client can be immediately transmitted to the
server, at which time the server can immediately update the
client display. To ensure scalability, systems built around the
QuestObjects concept can be divided into multiple tiers, each
tier being capable of caching data input and output. A plural-
ity of servers can be used as a middle-tier to serve a large
number of static or dynamic data sources, hereinreferred o as
“coptent engines.”

A variety of embodiments may be designed to suit a cor-
respondingly wide variety of app! ications. As such the system
offers a standardized way to access server data that atlows
immediate vser-friendly data feedback based on user input.
Data can also be presented to a client without user input, i.e.
the data are automatically pushed to the client. This enables a
client component to display the data immediately, or to trans-
[mit the data to another software program to be handled as
required.

The system can 2lso be used to simply and quickly retrieve
up-to-date information from any string-based content source.
Strings can be linked to metadata allowing user interface
components to display corresponding information such as,
for example, the meaning of dictionary words, the description
of encyclopedia entries or pictures corresponding to a list of
names.

Embodiments of the system can be used to create a user
interface component that provides a sophisticated “auto-
completion” or “type-ahead” function that is extremely vse-
ful when filling out forms. This is analogous to simple, client-
side auto-complete functions that have been widely used
throughout the computing world for many years. As a user
inputs data into a field on a form, the auto-complete function
analyzes the developing character string, and makes intelli-
gent suggestions about the intended data being provided.
These suggestions change dynamically as the user types addi-
tional characters in the string. At any time, the user may stop
typing characters and select the appropriate suggestion to
auto-complete the field.

Today's client-side auto-complete functions are useful but
very limited. The system, however, in its various embodi-
ments, vastly expands the usefulness and capabilities of the
auto-complete function by enabling the anto-complete data,
Jogic and intelligence to reside on the server, thus taking
advantage of server-side power. Unlike the client-side auto-
complete functions in current use, an auto-complete function
created by the system generates suggestions at the server as
the user types in a character string. The suggestions may be
buffered on a middle tier so that access to the content engine
is minimized and speed is optimized.

The simple auto-complete schemes currently in popular
use (such as email programs that auto-complete e-mail
addresses, web browsers that auto-complete URLSs, and cell
phones that auto-complete names and telephone numbers)
require that the data used to generate the suggestions bestored
on the client. This substantially limits the flexibility, power,
and speed of these schemes. Embodiments of the system,
however, store and retrieve the auto-complete suggestions
from databases on the server. Using the system, the sugges-
tions generated by the server may, at the option of the appli-
cation developer, be cached on the middle tier or on the client
itself to maximize performance.

The system provides better protection of valuable data than
traditional methods, because the data js not present on the
client upti! the moment it is needed, and can be further pro-
tected with the use of user anthentication, if necessary.

The system is also useful in those situations that require
jmmediate data access, since no history of use needs to be
buslt on the client before data is available. Indeed, data

—
<o

—
“w

25

60

65

6

entered into an application by a user can automatically be
made available to that user for auto-completion on any other
computer, anywhere in the world.

Unlike existing data-retrieval applications, server data can
be accessed through a single standardized protocol that can be
built into programming languages, user interface components
or web components. The system can be integrated into and
combined with existing applications that access server data.
Using contentaccess modules, the system can access any type
of content on any server.

In the detailed description below, embodiments of the
present invention are described with reference 10 a particular
embodiment named QuestObjects, created by the MasterOb-
jects company. QuestObjects provides a system and method
for managing client input, server queries, server responses
and client output. One specific type of data that can be made
available through the system from a single source (or syndi-
cate of sources) is a QuestObjects Service. Other terms used
to describe the QuestObjects system can be found in the
glossary given below. It will be evident that the technology
described herein may be utilized in other embodiments, and
with other systems, in addition to the QuestObjects system.

FIG. 1 shows an example of the QuestObjects architecture
100. Generally described, QuestObjects is a powerful ultra-
thin smart client/server technology used to create intelligent
online data entry and retrieval applications called Quest-
Fields. QuestFields, the products based on the QuestObjects
technology, are deployed in web browser and handheld wire-
less device applications and enable up to millions of simul-
taneous users to have direct, virtually instantaneous access to
enterprise data on remote content Sources.

QuestFields compete primarily in the RIA market. How-
ever, unlike competitive products, 2 QuestField is an inte-
grated “end-to-end” client-server solution that is more pow-
erful, more universal and easier to deploy—all at a
substantially lower cost than typical RIAs.

QuestFields are comprised of three integrated and highly
optimized parts: the QuestObjects client, the QuestObjects
Server, and the QuestObjects Protocol (QOP). The different
parts of QuestFields can be distributed over multiple comput-
ers to provide load balancing and optimal performance.

The QuestObjects client typically comprises one or more
QuestFields that enable each user 1o efficiently query remote
content sources by providing a friendly but powerful user
interface that commugiicates directly with the QuestObjects
Server over the Internet. The QuestObjects Server easily
handles many simultaneous vser sessions and provides the
interface to the underlying content sources (such as data-
bases, directories, or search engines). The QuestObjects
Server enables administrators to easily configure any number
of content channels, each of which queries one of potentially
many content sources that are typically present on a remote
local area network (LAN).

Advantages of the QuestFields

Compared to existing RIA client technologies, QuestOb-
jects-based products offer several important advantages,
including; Far better performance; Proven functionality in
large-scale corporate environments; No rewriting of existing
web application code or redesign of web page layout; Com-
patibility with more than 99% of web browsers currently in
use; Substantially faster implementation time; and Substan-
tially lower implementation and maintenance cost.

QuestFields are designed to be compatible with virtually
all “thin” client platforms. QuestField products can be
designed to look like a “combo box” input field, that are used
primarily in web browsers. However, future QuestFields can

US 7,752,326 B2

7

come in many more shapes, sizes, fypes and uses. Unlike
other RIA technologies, QuestFields are truly universal
because they can be developed in virmally any programming
language that is supported by web browsers. Consequently,
QuestFields will always be able to take advantage of the best

available client technologies, even those yet 10 be developed.

Advantages of the QuestObjects Server

The QuestObjects Server competes with custom web
application development environments, dedicated Web Ser-
vices, groupware, and connectivity products that also provide
a means o access content sources from within the browser.
The QuestObjects Server has several advantages over com-
peting server products, including; Easily configurable “black
box” application requiring no programming and virtually no
maintenance; Enables users to retrieve information from vir-
tually any content source without the need to develop and
maintain a custom application or Web Service; Provides a
highly optimized service that enables many simultaneous
users to access content with minimal impact on the custom-
er’s network or content engines; Usable in a far broader
market than other groupware and connectivity products that
typically replace full applications; Significantly enhances
other, more complex, web applications, groupware, and con-
nectivity products; and Runs 24/7, antomatically connects to
redundant content sources, and requires virtually no systems
management.

Advantages of the QuestObjects Protocol

The QuestField and the QuestObjects Server communicate
with each other using the QuestObjects Protocol (QOP). QOP
is a standards-compliant communications protocol fully
‘compatible with Service Oriented Architectures (SOA). SOA
is an architectural approach that segments and isolates appli-
cation functionality into smaller,
pents, otherwise known as “services.” The primary goal of a
SOA is developing application functions that are reusable and
standardized so that once created they can be leveraged across
multiple projests. This approach greatly reduces time, effort
and cost of incorporating new functionality and extending
existing applications. The QuestObjects technology enables
organizations to do precisely that and to do it simply, quickly,
and easily.

QOP uses the same transport mechanism that is used by
standard web pages: HTTP over TCP/IP. As with all modern
SOAs, this allows QOP to trapsparently communicate over
the Internet without imposing unusual requirements on rout-
ers and firewalls, By contrast, legacy application protocols
typically rely on dedicated ports and required specialized
drivers to be installed on client and server.

QuestObjects Server

In accordance with an embodiment, the QuestObjects
Server is an application that runs in a standard Java Servlet
Container, compatible with open-source and commercial
Java application servers that are used in enterprises through-
out the world. A QuestObjects Server provides its QuestOb-
jects Services through content channels. Bach content chan-
nel returms a specific kind of data from a specific back-end
content source. Forhandling different kinds of back-end data,
the QuestObjects Server enables the use of multiple Content
Access Modules (CAMs) that each provide a means to com-
municate with a specific kind of content engine on the content
source, suchas SQL, LDAP, ora proprietary legacy database.
QuestObjects Server features include:

Request Management—The QuestObjects Server man-
ages the load of incoming client requests and queries to the

discrete and usable compo-

65

8

content source. Request managenent enables the server (o
scale to very large numbers of users and queries.

User Session Management—The QuestObjects Server
provides efficient metering and auditing by using the data in
each user’s session to keep track of the queries a user per-
forms and the results that have been sent back.

Unified Query Cache—The QuestObjects Server caches
query results in a cache that is common to all users, thus
improving performance on recurring queries and limiting the
Joad imposed on content engines.

Unlimited Content Sources—The QuestObjects Server
can query one or more content SOurces. Support for both SQL
databases and LDAP directories is built-in, and a modular
Java interface provides a simple AP that enables MasterOb-
jects and its customers to easily and quickly create custom
interfaces to legacy data.

Query Merging— Without requiring any additional pro-
gramming, a QuestObjects content channel can perform one
or more queries on the back-end database or directory and
intelligently corbine their results into a single results list.
This makes it very easy to implement QuestFields that enable
users to perform gueries in altemate ways, such as looking up
a person by first name, last name, email address, or any
combination thereof. A single content channel can even com-
bine results from multiple different content sources.

QuestObjecis Protocol (QOP)

In accordance with an embodiment, to enable the QuestO-
bjects technology to communicate efficiently over the Inter-
net, a protocol, called the QuestObjects Protocol (QOP), is
used for communication between large numbers of simulta-
neous QuestField users and any number of QuestObjects
Servers. QOP uses the very same network infrastructure that
is used by standard web pages. This means that if a web page
loads correctly into the browser, QOP works as well. Conse-
quently, neither users nor administrators need to worry about
the details of the communication protocol. Inaccordance with
an embodiment, QOP client-server messaging is based on
web standards. The application-layer protaco] is based on
XML, wrapped in optional SOAP envelopes using HTTP(S)
as the transport layer. QOP does not require the use of cookies
in the browser and is designed to be compliant with existing
Internet and security standards.

Security

QOP can be configured to run over Secure Sockets Layer
(SSL) for complete security of user queries and data received
from the server. Either the entire web page or individual
QuestField queries can be securely encrypted. This means
that a web page using QuestF ields can load very quickly by
keeping its images unencrypted, yet still flly securing con-
tent that appears in its QuestFields.

Load Balancing

The QuestObjects technology is specifically designed for
large intrapet and Internet applications. The QuestObjects
Server, QuestObjects Service and/or the content source can
reside simultaneously on multiple machines, permitting load
balencing and capacity expansion simply by adding more
hardware. A QuestObjects Server uses “sticky” session con-
pections so that a clieat can logically connect to any server
machine in the system. Once a session is established, all
communications from the client IP address go to and from the
same Server

QuestObjects Services

In accordance with an embodiment, each QuestObjects
Server can be configured to provide QuestObjects Services
that are available to users of independent websites. This

US 7,752,326 B2

9

makes virtually any content that is available on the Internet
accessible 1o QuestFields. QuestObjects Services can be pro-
vided from Internet domains other than the domain that serves
the web pages. Thus, QuestField users can subscribe to mul-
tiple QuestObjects Services that are hosted by different pro-
viders on the Internet. To manage these services, the QuestO-
bjects technology uses Syndicators, which offer content
provided through QuestObjects Servers. Syndicators offer
subscription-based access to specific content channels to
managed user groups, enabling the QuestObjects Server to
automatically collect usage statistics and provide billing
information for commercial use of the service.

GLOSSARY

AutoComplete QuestField

A type of QuestField that closely resembles the “combo
box” of traditiona) applications, whereby user entry is auto-
matically completed, and muitiple results can be displayed in
a popup list.

AutoLookup QuestField

The simplest type of QuestField, which performs a direct
lookup based on the user’s input and displays the correspond-
ing single result.

AutoSearch QuestField

A type of QuestField that is used to enteruser queries (such
as Boolean) and to display corresponding results in a filtered
and ranked result list,

Background QuestField

A type of QuestField that has nouser interface, but ratheris
integrated into an application where it runs in the background
accessing data from QuestObjects Services.

CAM
See Content Access Module.

CS8

Cascading Style Sheets (CSS) is a style sheet language
used to describe the presentation of a document written in
HTML (or other markup languages). It allows the “look” of a
web page to be modified without changing the underlying
HTML or web application, and thus separates the “presenta-
tion Jogic” from the “application logic” and business rules.
An embodiment of the invention takes advantage of CSS to
enable customers to change the “look” of QuestFields so they
“blend in” to their own web pages. Customers can easily
modify the colors and widths of QuestField borders, as well
as the images used for QuestField buttons.

Content Access Module

‘A Content Access Module (CAM) provides a standardized
mechanism to link the QuestObjects system to a specific type
of content engine. A CAM is the “middleware” between the
QuestObjects system and the data it accesses. QuestObjects
currently includes CAMs that communicate with any JDBC-
compliant database orany LDAP-compliant directory server,
as well as a Java CAM that allows customers to easily inte-
grate the QuestObjects Server with their legacy or proprietary
databases by using a powerful yet simple open Java APL.

Content Channel

A configuration on the QuestObjects Server that defines a
specific method of querying one or more specific content
sources, allowing QuestField users to perform queries and
retrieve corresponding results. A content channel accesses
one or more content engines, each through a specific Content
Access Module. A single content channel can be configured

20

25

30

35

50

60

65

10

to perform multiple queries to retrieve data from the content
sources, whereby the QuestObjects Server merges the results
from these “sub queries” into a single result set for the Quest-
Field user. For example, in a PeopleFinder application the
content channel can be configured to query the underlying
content engine by last name, first name, email address, and
any combination thereof. The QuestField user receives a con-
solidated list of person names that were returned by any of the
sub queries in the content channel.

Content Engine

A content engine is a third-party application that runs on
the content source that is capable of performing string-based
queries and retuming string-formatted answers 1o the
QuestObjects system. Examples include relational databases,
corporate directories, and search engines. A simple content
engine could read information directly from a file, or could
perform a query to access a Web Service over the Internet.
The QuestObjects Server simultaneously accesses different
content engine types through Content Access Modules.

Content Source

A server computer that provides the data that isaccessed by
the QuestObjects system. The content source makes its data
available through a content engine. For best performance, the
content source must be located on the same LAN as the
QuestObjects Server, and could even be hosted on the very
same server computer. The QuestObjects Server canbe linked
to any number of content sources. To retrieve specific infor-
mation from the content source, one or more content channels
are configured on the QuestObjects Server.

DHTML QuestField

A version of QuestField that is based on DHTML technol-
ogy. DHTML enables the QuestField to run in modemn web
browsers without requiring Flash or other plug-in technology.
QuestObjects technology enables QuestFields to detect the
browser, and to automatically activate the appropriate Quest-
Field for each individual user. Future QuestFields may be
built using alternative client technologies, such as J2ME.

ECMAScript
See JavaScript.

Flash

Multimedia authoring program and a corresponding runt-
ime environment called the Macromedia Flash Player, written
and distributed by Macromedia, that utilizes vector and raster
graphics, program code and bidirectional streaming video
and audio. Strictly speaking, Macromedia Flash is the author-
ing environment and Flash Player is the virtual machine
application used to run the Flash files, but in colloquial lan-
guage these have become mixed: “Flash” can mean either the
authoring environment, the player or the application files. The
Flash files, which usually have an SWE file extension, may
appear in a web page for viewing in a web browser, or stan-
dalone Flash players may “play” them. Flash files occur most
often as animations or design elements on web pages, and
more recently Rich Internet Applications. They are also
widely used in web advertisements, due to the fact that a flash
file can contain much more information than a GIF or JPEG
file of the same size.

Flash QuestField

A version of QuestField that is based on Flash technology,
allowing it to run in any browser that has the Flash Player
installed.

US 7,752,326 B2

11
FreeForm QuestField
A type of QuestField that consists of a large text area and
provides data management services such as remote spell
checking and auto-save.

HTTP

HTTP (Hypertext Transfer Protocol) is the set of rules for
wransferring files (text, graphic images, sound, video, and
other multimedia files) using the Internet protocol (TCP/1P)
on the World Wide Web.

HTTPS

HTTPS (HTTP over SSL) is an extension to HTTP that
provides security by encrypting and decrypling user page
requests as well as the pages that are retuned by the web
server.

Java

Java is an object-oriented programming language devel-
oped by Sun Microsystens. Specifications of the Java lan-
guage, the JVM (Java Virtua) Machine) and the Java APl are
community-maintained throngh the Sun-managed JavaCom-
munity Process.

Applets

Small applications written in Java that run in any web
browser that supports a JVM (Java Virtual Machine). Client-
side Java applications and Java applets have never become a
predominant client technology.

JavaScript

Object-based scripting programming language that is built
into web browsers, also known as ECMAScript after the
standards body that now governs the langoage. JavaScript is
best known for its use in websites, but is also used to enable
scripting access to objects embedded in other applications.

Java Servlet Container

Part of Java application servers such as 1BM WebSphere,
BEA WebLogic, and Apache Tomcat that allows multiple
Servlet-based applications to be hosted on a web server. A
servlet container controls the servlets that are deployed
within the web server, and is responsible for forwarding the
requests and responses for them. 1t has the functionality of
mapping a URL toa particular servlet and of ensuring that the
process requesting the URL has the correct access rights.

IDBC

Java Database Connectivity, or JDBC, is an API for the
Java programming language that defines how a client may
access a database, It provides methods for querying and
updating data in a database. JDBC is oriented towards rela-
tional databases that use SQL. An embodiment of the inven-
tion includes 2 Content Access Module that allows QuestO-
biects to query databases through JDBC. JDBC is supported
by virtually all commercial and open-source SQL databases
including Oracle, IBM DB2, Microsoft SQL Server, MySQL,
etc.

J2ME

Acronym for Java 2 Platform, Micro Edition (recently
renamed by Sun to Java ME, but still most often referred to as
J2ME), a collection of Java APIs targeting embedded prod-
uects such as PDAs, cell phones and other consumer appli-
ances. J2ME has become a popular option for creating games
for cell phones, as they can be emulated on a PC during the
development stage and easily uploaded to the phone.

25

30

45

50

60

65

12

VM
Acronym for Java Virtual Machine. All applications that

were built in Java run in a JVM, which is available for virtu-
ally all operating systems and embedded devices.

LDAP

The Lightweight Directory Access Protocol, or LDAP,
defines a relatively simple and efficient protocol for updating
and searching directories running over the Internet protocol,
TCP/P, It is in common use in enterprises worldwide. Virtu-
ally all commercial and open-source directory servers use
LDAP, allowing applications to access directory information
in a standardized way, similar to the way in which JDBC
provides a way to access SQL databases. An embodiment of
the invention includes a Content Access Module that allows

QuestObjects to query directories through LDAP.

PeopleFinder QuestField

Product name used for a specific kind of AutoComplete
QuesiField: Configured to access a content channel that
retrieves personnel records, enabling users to use their web
browser to quickly find names, addresses, phone numbers,
etc. in a corporate directory or personnel database without
leaving the HTML page they are on.

P
See QuestObjects Protocol.

QuestField

A user interface elementina browser-based “Rich Internet
Application” that sends queries to, and receives results from
the QuestObjects Server. Forms the client part of the QuestO-
bjects technology. Six different types of QuestFields are envi-
sioned: AutoLookup, AutoComplete, AutoSearch, Rela-
tional, FreeForm, and Background

QuestObjects Enterprise Server

Commercial name for the QuestObjects Server product
that is optimized and licensed for use in a closed intranet
setting, where the total number of users is known.

QuestObjects Protocol

The QuestField and the QuestObjects Server communicate
with each other using the QuestObjects Protocol (QOP). QOP
is a standards-compliant communications protocol that fits
wellinto Service Oriented Architectures (SOA). Itisbased on
small XML-formatted data packages that are exchanged over
the Internet using HTTP.

QuestObjects Server

A Java serverapplication that implements the server partof
the QuestObjects product. It communicates with the QuestO-
bjects Client (QuestFields) through the QuestObjects Proto-
col, and communicates with one or more content engines
through Content Access Modules.

QuestObjects Service

A logical name for one or more content channels that
provide a valuable service for QuestField users on the Inter-
net. A QuestObjects-specific Web Service.

Relational QuestField

A type of QuestField that provides multiple inputs to the
user allowing navigation through complex relational data
structures configured in multiple content channels.

Service Oriented Architectures

SOA is an architectural approach that segments and iso-
lates application functionality into smaller, discrete and
usable components, otherwise known as ‘Web Services. The
primary goa) of a SOA is developing application functions
that are rensable and standardized so that once created they

US 7,752,326 B2

13

can be leveraged across multiple projects. This approach
greatly reduces time, effort and cost of incorporating new
functionality and extending existing applications. The
QuestObjects technology enables organizations to do pre-
cisely that and to do it simply, quickly, and easily.

Servlet

A servlet is an object in a Java server application that
recejves requests and generates a response based on each
request. The QuestObjects Server implements servlets to per-
form these basic yet essential tasks, leveraging standard Java
Servler Container technology for optimal performance and
full compatibility with other server technologies in common
use. See Java Servlet Container.

Site Search QuestField

An AutoSearch QuestField that is customized and opti-
mized for performing web searches. Site Search QuestFields
access a content channel that performs queries onthe full-text
index of one or more websites, as well as databases used by
dynamic websites.

Site Search Service
A QuestObjects Service that is accessed by Site Search
QuestFields.

SOA
See Service Oriented Architectures.

SOAP

Simple Object Access Protocol (SOAP) provides a stan-
dardized structure for XML-based information used for
exchanging structured and typed information between peers
in a decentralized, distributed environment. 1t is most com-
monly used to package XML-formatted data that is
exchanged in Service Oriented Architectures.

SQL

Structured Query Langpage (SQL, often pronounced as
“sequel”) is the most popular computer language used to
create, modify and retrieve data from relational database
management systems. It is in common use in enterprises
worldwide. Virtually all commercial and opep-source data-
bases use SQL, allowing applications to access database
information ina standardized way, similar to the way in which
LDAP provides away to access corporate directories. An
embodiment of the invention includes a SQL Content Access
Module that allows QuestObjects to query databases through
JDBC.

SSL

The Secure Sockets Layer (SSL) is a commonly used pro-
tocol for managing the security of message transmission on
the Internet.

Syndicator

A logical componentin QuestObjects Server that manages
a group of content channels fora group of users. A Syndicator
manages user access privileges through subscriptions to one
or more content channels, performs metering, and can be used
as a source for billing information.

Web Service

A Web Service is a collection of protocols and standards
used for exchanging data between applications or systems
that implement a Service Oriented Architecture. Software
applications written in various programming languages and
rupning on various platforms can use Web Services to
exchange data over computer networks like the Internetina

=3

—
“n

20

25

35

60

14

manner similar to inter-process communication on a single
computer. This interoperability is due to the use of open
standards.

Embodiments of the present invention provide a system
and a method that allows clients or client applications 10
asynchronously retrieve database information from a remote
server or server application. The terms “client” and “'server”
are used herein to reflect specific embodiments of the inven-
tion, although it will be evident to one skilledinthe art that the
invention may be equally used with any implementation that
requires communication between a first process or applica-
tion and a second process or application, regardless of
whether these processes comprise a typical client-server
setup or not. The invention includes a Server, that handles
requests for information from clients, and a communication
protocol that is optimized for sending characters from a Cli-
ent to the Server, and lists of strings from the Server to the
Client. In one embodiment, as the Server receives a single
character from the Client, it immediately analyzes the Jength-
ening string of characters and, based on that analysis, returns
database information to the Client in the form of a list of
strings. Clients are not restricted to programs with a user
interface. Generally, any process or mechanism that can send
characters and receive string lists can be considereda clientof
the system. For example, in an industrial or power supply
setting, the control system of a power plant could send sensor
readings to the system, and in return receive lists of actions to
be taken, based on those sensor readings.

The system’s protocol is not restricted to sending single
characters. In fact, Clients can also use the protocol to send 2
string of characters. For example, when a user replaces the
contents of an entry field with a new siring, the Client may
then send the entire string all at once to the Server, instead of
character by character.

In accordance with one embodiment of the invention the
system is session-based, in that the server knows or recog-
nizes when subsequent requests originate at the same Client.
Thus, in responding to a character the Server receives from a
Client it can use the history of data that has been sent to and
from the current user. In one embodiment, the system stores
user preferences with each Service, so that they are always
availabletothe Client, (i.e., they are independent ofthe physi-
cal location of the client), Furthermore, client authentication
and a billing system based on actual data and content use by
Clients are supported, For faster response, the Server may
predict input from the Client based on statistics and/or algo-
rithms.

The system is bi-directional and asynchronous, in that both
the Client and the Server can initiate communications at any
moment in time. The functionality of the system is such that
it can run in parallel with the normal operation of clients.
Tasks that clients execute on the system are non-blocking, and
clients may resume normal operation while the system is
performing those tasks. For example, a communication initi-
ated by the Client may be a single character that is sent to the
Server, that responds by retuming appropriate data. An
example of a communication initiated by the Server is updat-
ing the information provided to the client, Because the system
is session-based it can keep track of database information that
has been sent to the Client. As information changes in the
database, the Server sends an updated version of that infor-
mation to the Client.

Embodiments of the system may be implemented as a
multi-tier environment This makes it scalable because the
individual tiers can be replicated as many times as necessary,
while load balancing algorithms (including but not limited to
random and round robin load-balancing) can be used to dis-

US 7,752,326 B2

15

tribute the load over the copies of the tiers. One skilled in the
art would appreciate that it is not necessary 10 replicate the
tiers. Indeed, there may be only a single copy of each tier, and
that all tiers (Client, Server, and Service) may be running on
a single computer system.

FIG. 2 illustrates one example of a system that embodies
the present invention. As shown in FIG. 2 there may be
various Clients 102 using the system. These Clients use a
communication protocol 104 to send information, including
but not limited to single characters, and to receive informa-
tion, including but not limited to lists of strings and corre-
sponding metadata. At Jeast one Server 106 recejves informa-
tion from the Client, and sends information to the Client. In a
typical embodiment if there is a plurality of Servers, then the
system can be designed so that each Client connects to only
one of them, which then relays connections to other Servers,
possibly using load-balancing algorithms. Servers have a
communication link 108 to a Service 110, which they use to
obtain the information that they send to the Client.

FIG. 3 is a schematic illustrating an embodiment of the
present invention, and displays a five-tier system that has a
user interface in which user interface elements usethe present
invention to assist the user in performing its tasks. For pur-
poses of illustration, FIG. 3 displays just one session and one
content Service. In an actual implementation there may be
multiple concurrently active sessions, and there may be more
thap one content Service that Clients can use. As shown
herein, the first of the five tiers is a Client tier 120. The Client
tier contains the user interface and the Client components that
are needed to use the system. The second tier is a Server or
server process 130, which handles the queries that Clients
execute, and in return displays results to the Client. Service
150, which corresponds to 110 of FIG. 2, is a logical entity
comprising three more tiers: a Syndicator 152, a Content
Channel 162 and a Content Engine 174. The Syndicator pro-
vides access to a number of Content Channels and performs
accounting services based on actual data use. The Content
Channel provides a specific type of information from a spe-
cific source (i.e. the Content Engine). The Content Engine is
the actual source of any content that is made available through
the QuestObjects system. The Client tier 120 corresponds to
the client 102 in FIG. 2. In this example, the Client may be an
application (and in some embodiments a web application)
with a user interface that accesses the system of the present
invention. As used in the context of this disclosure a user
interface element that uses the present invention is referred to
as a “Questlet” A Client can contain one or more Questlets
122 (e.g. an input field or a drop down list. A Questlet is
always associated with at least one Client Quester 124.
Questers are objects that tie a QuestObjects input buffer (con-
taining input from the Client) lo a QuestObjects Result Set
returned from a QuestObjects Server. Questers exist on both
the Client and Server, in which case they are referred to as a
Client Quester and a Sexver Quester, respectively. Every Cli-
ent Quester has one corresponding Server Quester, 1n accor-
dance with the invention, any event or change that happens in
either one of them is automatically duplicated to the other so
that their states are always equal. This synchronjzation
rmechanism is fault-tolerant so that a failure in the communi-
cation Jink does not prevent the Questers from performing
tasks for which they do not need to communicate. For
example, a Client Quester can retrieve results from the cache,
even if there is no communication link to the Server. Each
single Quester accesses exactly one QuestObjects Service,
i.e. one specific Content Channel offered by one specific
Syndicator. At initialization of the Client, the Questlet iells its
Quester which Service to access. In one embadiment a Ser-

40

a5

50

S5

60

65

16

vice is stored or made available on only one Server within a
network of Servers. However, this is transparent to the Client
because each Server will forward requests 10 the right com-
puter if necessary. The Client does not need to know the exact
location of the Service.

To comumunicate with its Server Quester 134, each Quester
ina session uses a controller 126. The system contains at least
one Client Controller 126 and a Server Controller 136, which
together implement the network communication protocol 128
of the present invention. Client Controllers may cache results
received from a Sexver, thus climinating the need for network
traffic when results are reused.

Client Questers are managed by a Questlet, which create
and destroy Questers they need. Ina similar fashion, Server-
Questers are managed by a Session 132. When a Client
Quester is created, it registers itself with the Client Controller.
The Client controller forwards this registration information
as a message 1o the Session using the Server Controller. The
Session then checks if the Persistent Quester Store 138 con-
tains a stored Quester belonging to the current user matching
the requested Service and Query Qualifier. If such a Quester
exists, it is restored from the Persistent Quester Store and
used as the peer of the Client Quester. Otherwise, the Session
creates a new Server Quester 10 be used as the Client
Quester’s peer.

A Time Server 140 provides a single source of timing
information within the system. This is necessary, because the
system itself may comprise multiple independent computer
systems that may be set to a different time. Using a single-
time source allows, for example, the expiration time of a
Result Set to be calibrated to the Time Server 50 that all parts
of the system determine validity of its data vsing the same
time.

Server communication link 144 is used by the Server to
send requests for informationtoa Service,and by a Service to
return requested information. Requests for information are
Query objects that are sent 10 and interpreted by a specific
Service. Query objects contain at least a string used by the
Service as a criterion for information to be retrieved, in addi-
tion to a specification of row numbers to be returned to the
Client. For example, two subsequent queries may request
“row mumbers 1 through 5”, and “6 through 107, respectively.
A query object may also contain a Qualifier that is passed to
the appropriate Service. This optional Qualifier contains
atiributes that are needed by the Service to execute the Query.
Qualifier attributes may indicate a desired sort order or in the
example of a thesaurus Service may contain a parameter
indicating that the result list roust contain broaderterms of the
Query string. Services use the communication link to send
lists of strings (with their attributes and metadata) to Servers.
Server communication link 144 is also used by Server
Questers to store and retrieve user preferences from a Syndi-
cator’s Preference Manager.

Questers use Services to obtain content. A Service is one of
the Coptent Channels managed by a Syndicator. When a
Quester is initialized, it is notified by its QuestField (Active
Component) of the Service it must use. The Service may
require suthentication, which is why the Syndicator provides
a User Manager 154. If a Client allows the vser to set prefer-
ences for the Service (or preferences needed by the Quest-
Field), it may store those preferences using the Syndicator’s
Preference Manager 156. The Server (i.e. Server Quester)
only uses the Syndicator for authentication and preferences.
To obtain content, it accesses the appropriate Content Chan-
nel directly. The Content Channel uses its Syndicator to store
usage data that can be later used for accounting and billing
purposes. Usage data is stored in a Usage Statistics Store 158.

US 7,752,326 B2

17

Content communication link 160 is used by Content Chan-
nels to send usage data to their Syndicator, and to retrieve user
information from the Syndicator. The Content Channel is a
Jayer between the QuestObjects System, and the actual con-
tent made available to the system by a Content Engine 174.
Each Content Channel has a corresponding Query Manager
164 that specifies the type of query that can be sent to the
corresponding Content Engine, and defines the types of data
that can be returned by the Content Channel.

Specification of query type comprises set of Query Pat-
terns and Query Filters that are used by the Server Quester to
validate a string before the string is sent to the Content Chao-
nel as a2 QuestObjects Query. For example, a query type
“URL” may allow the ServerQuester to check for the pres-
ence of a complete URL in the input string before the input
string is sent to the Content Channel as a query. A query type
“date” might check for the entry of a valid date before the
query is forwarded to the Content Channel.

The Query Manager optionally defines the types of string
data that can be returned to the Client by the Content Channel.
Specific QuestFields at the Client can use this information to
connect 1o Services that support specific types of data.
Examples of string types include: simple terms, definitional
terms, relational terms, quotes, simple numbers, compound
numbers, dates, URLS, e-mail addresses, preformatted phone
numbers, and specified XML formatted data etc.

The Query Manager 164 retrieves database information
through a Content Access Module 166. The Content Access

_ Module is an abstraction layer between the Query Manager
and a Content Engine. It is the only part of the system that
Kknows how to access the Content Engine that is linked to the
Content Channel. In this way, Query Managers can use a
standardized API to access any Content Engine. To reduce
information traffic between Content Channels and Content
Engines, Content Channels may access 2 content-based cache
168 in which information that was previously retrieved from
Content Engines is cached. Engine communication link 170
is used by Content Access Modules to commupicate with
Content Engines. The protocol used is the native protocol of
the Content Engine. For example, if the Content Engine is an
SQL based database system then the protocol used may be a
series of SQL commands. The Content Access Module is
responsible for connecting the Content Engine to the QuestO-
bjects System.

Content Engines 174 are the primary source of information
in the system. Content Engines canbe located onany physical
computer system, may be replicated to allow load balancing,
and may be, for example, a database, algorithm or search
engine from a third-party vendor. An example of such an
algorithm is Soundex developed by Kouth. Content Engines
may require user authentication, which, if required, is
handled by the Syndicator (through the Content Access Mod-
ule).

The invention uses Content Engines as a source of strings.
One skilled in the art would understand that a string may, for
example, contain a URL of, or a reference to any resource,
including images and movies stored on a network or local
drive. Furthermore, strings may have metadata associated
with them. In one embodiment, strings might have a language
code, creation date, modification date, etc. An entry in a
dictionary may have metadata that relates to its pronuncia-
tion, a list of meanings and possible uses, synonyims, refer-
ences, etc. A thesaurus term may have a scope note, its nota-
tion, its source and its UDC coding as metadata, for example.
Metadata of an encyclopedia entry may include its descrip-
tion, references, and links to multi-media objects such as
images and movies. A product database may have a product

—

0

5

w

0

50

18

code, category, description, price, and currency as metadata.
A stock quote may have metadata such as a symbol, a com-
pany name, the time of the quote, etc. Instructions to a control
system may contain parameters of those instructions as meta-
data. For example, the instruction to open a valve can have as
metadata how far it is to be opened.

Further details of an embodiment of the system are pro-
vided below, and also in copending U.S. patent application
Ser. No. 09/933,493, published as U.S. 20030041 147,
emtitled “SYSTEM AND METHOD FOR ASYNCHRO-
NOUS CLIENT SERVER SESSION COMMUNICATION",
filed Aug. 20, 2001, and incorporated herein by reference.

QuestField Products

The QuestObjects technology was designed to be compat-~
ible with any platform, including traditional client/server
environments, but it is especially powerful for applications
developed for use in web browsers and on handheld wireless
devices (cell phones, PDAs, etc.). Products based on the
QuestObjects technology, called QuestFields, have signifi-
cant technological features and competitive advantages,
many of which have never before been available for web
browser applications. These include:

Easy Integration—QuestFields are very easily added to
existing HTML pages. Contrary to other rich Internet tech-
nologies, QuestFields can be implemented in most web
browser applications without changing the existing applica-
tion’s source code or web page design. Moreover, using stan-
dard CSS (cascading style sheets), the borders and buttons of
aQuestField can easily be modified to reflect each customer’s
individual style.

Discrete Components—A QuestField is comprised of
standardized components that can easily be combined and
reused. Inaddition, multiple dependent QuestFields deployed
on a single web page can automatically share the same user
session.

Ultra-Thin—QuestFields have been designed as high per-
formance, ultra-thin clients that pevertheless offer the user
extremely high functionality and friendliness. By keeping
track of session information on the QuestObjects Server, a
QuestField effectively acts as an efficient, continuously
updated “window” on server data.

Field Dependencies—QuestFields can have dependencies
on each other’s data, enabling data in one field to be auto-
matically updated after a change in another field. Moreover,
this can be accomplished without any additional client-sideor
server-side coding, Dependencies canbe created between any
content channels. Thus, a QuestField querying an SQL data-
base can be dependent on the values ofa QuestField linked to
an LDAP directory.

Ubiquitous—QuestFields can use Macromedia’s Flash
Player, which is pow installed on 98% of the computers
connected to the Internet. This means that more than 500
million computers can use any Flash-based QuestObjects
product without installing any additional software. Neverthe-
less, 2 DHTML QuestField is currently under development to
ensure that QuestFields continue to offer the highest perfor-
mance for the most users.

Interchangeable—QuestFields can be implemented in any
programming language. By simultaneously supporting mul-
tiple client technologies and by dynamically selecting the
appropriate technology for a specific application user, Quest-
Fields can be used by virtually all Internet and intranet
users—a much wider user reach than any other Rich Internet
Application technology.

US 7,752,326 B2

19
Support for Web Services

Embodiments of the system may utilize web services to
provide some or all functionality. Web services are open
standards-based functional components that allow applica-
tions to connect over the Internet on demand, vsing loose
coupling. Today, Web services are the core 1T strategies of the
computer industry’s Jeaders, including 1BM, Microsoft, and
Sun, To address today’s business needs, applications have an
ever-increasing need to work closely together. By their very
nature, Web services offer interoperability across all plat-
forms that implement a Web services stack, regardless of
programming language or operating system. Web services
support this in a standard, well-defined manner. Web services
created using Sun’s J2EE-based technologies are fully
interoperable with Microsoft’s NETweb services.

By definition, QuestObjects is a document-type Web ser-
vice. MasterObjects has desigoed the product to be fully
compliant to open standards.

QuestObjects System Implementation

As described herein, the QuestObjects implementation of
the system is ideally suited for Intra-enterprise component
reuse. QuestObjects enhances legacy applications, which
ofien use proprietary connections to the database, by adding
a second service-based mechanism to access the information.
This can be done while maintaining current, proprietary invo-
cation mechanisms. QuestObjects can also be used for Corn-
ponentized E-Services (B2B), where information is provided
through a QuestObjects Serviceon a subscription basis.

QuestObjects brings interaction to static Web pages. As
result, it enables Web applications to deliver to users, through
a Web browser, much of the interactive richness of the user’s
typical personal computer or workstation. QuestObjects is a
powerful yet simple concept that can be summed up in one
sentence: “QuestObjects enables ‘Web clients to interact with
servers using string-based input on a per character basis.”

FIG. 4 shows an illustration of an asynchronous session-
based search system including a front-end client search field
190 and a back-end server datastore 192. QuestObjects’
power lies in its ability to leverage the textual nature of the
Web. Text is the basis of everything users find on the Internet.
Consequently, Web applications are all about string-based
data. The primary purpose of the Web is to find information,
but whether the user is Jooking for a book to buy, searching
train schedules, browsing holiday brochures, gathering data
on company customers or employees, or getting stock quotes,
all of the data presented to the user by the Web is delivered in
the form of text—including images which are represented, in
text, by their URL. Working together, it is rather astonishing
what HTML and Web browsers can accomplish just with text,
but the final result still falls far short of the user’s typical
personal computer and workstation experience because there
is no interaction and no automatic, instantaneous feedback.
Instead, new information is presented only after the user
enters some string-based data into a form, presses the Submit
button, and waits for the Web page t0 analyze the input and
redraw the entire page.

By contrast, today’s powerful, non Web-based applications
that are accessed directly by personal computers and work-
stations provide a vast amay of instant help and feedback.
Automatic type-aheads, selection lists, wiggly lines indicat-
ing spelling mistakes and other interactive features provide
users with real-time feedback based on real data insomekind
of data store. Efficiently and effectively, QuestObjects adds
this same kind of instant feedback to regular Web pages by
linking user actions to data stored anywhere on the Internet.

-

0

15

20

60

20

Providing instant feedback is 2 powerful enhancement to
Web applications, but the QuestObjects technology offers
more. Multiple fields containing dependent data can auto-
matically update themselves when one or the other changes.
QuestObjects collects statistics, provides user histories, and
allows accurate accounting of data retumned to the user.
QuestObjects does all this easily and transparently. Depend-
ing on the implementation, the product is no more than a
black box between the user and content located anywhere on
the Internet.

QuestObjects Architecture

QuestFields—QuestObjects enables dynamic interaction
between client-side Ul elements and back-end data. These
enabled Ul elements are called QuestFields. QuestFields are
conpected to a data source through a Content Channel.

FIG. 5 shows an illustration of an asynchronous session-
based search system including multiple front-end client
search fields 200, 202, multiple channels 204, 206, and a
back-end server datastore 208.

Questlels—QuestFields Tive within a lightweight applica-
tion called a Questlet. A typical Questlet is a little Ul appli-
cation, very much like a Java applet, an ActiveX component,
or a Flash movie. Questlets are not intended to take over the
HTML page. Rather, they enhance the typical behavior of
related Ul elements as might otherwise be used in prior art
systems.

FIG. 6 shows an
based search system
search fields.

QuestObjects service providers bundle and deliver their
services through Content Channels. Service providers are
also known as Syndicators because they can subscribe to each
other’s Content Channels.

Questlets are separate from the Web application: They
typically do not interact or interfere with current business
logic. Questlets are connected to an existing Web application
at only two points: the user interface and the data store.

As shown in FIG. 6, a Questlet 210 contains QuestFields
212, 214 that replace some or all of the input fields in the Web
application’s user interface. QuestFields do mnot usually
change the semantics of input values; they simply add
dynamic interactivity to the application.

A Questlet and its QuestField(s) interact with the database
10 accommodate the interactive behavior of the user interface.

Because QuestObjects adds interactive behavior to client-
side elements based on server side data, it might seem that
network traffic would be substantially increased and perfor-
mance degraded. However, network traffic is reduced to 2
minimum by sending partial datasets rather than complete
ones. For example, suppose a Web application has an auto-
completing QuestField using a Content Channel containing
artist names in a music database. When a user starts typing,
the QuestField requests data from the data source through the
Artist Channel. Ifthe first letterisac, the result set containing
all artists starting with a ¢ is probably quite large. The Quest-
Field can be configured to just ask, for instance, for just the
first 20 artists. The QuestField retrieves more results as the
user scrolls through the drop-down list contained in the
QuestField.

Even if the QuestField asks for more results, only the
difference between the QuestField’s current data set and the
QuestField’s requested data set is transmitted over the net-
work, thus further reducing traffic.

The QuestField’s “data retrieval intelligence™ has impor-
tant architectural implications. The client is not the only loca-
tion where the result set is maintained. The QuestObjects

illustration of an asynchronous session-
including multiple front-end client

US 7,752,326 B2

21

Server itself also maintains this information in order to cal-
culate information to be sent to the client.

FIG. 7 shows an illustration of an asynchronous session-
based search system including a front-end client search fields
220, a server 222, result storage 224, 226, and a back-end
server datastore 228.

The QuestObjects system can be deployed over multiple
tiers as shown in FIG. 8, which shows an illustration of a
rmulti-tier asynchronous session-based search system includ-
ing client tier 230, server tier 240, service tier 250, and con-
tent tier 260.

QuestObjects Client—The Client Tier runs the Questlet
and its QuestField(s). It is typically deployed in a Web page,
where a Web server such as Apache or Microsoft 1S serves
the Questlet.

QuestObjects Server—The Server Tier manages client ses-
sions. It maintains an administration for each QuestField. As
mentioned above, this administration reduces network traffic.

The QuestObjects Server runs as a servlet in a standard
servlet container such as Tomcat or JBoss.

QuestObjects Service—Service providers called Syndica-
tors offer information disclosed by QuestObjects. The Ser-
vice Tier runs these Syndicators, which provide their services
through Content Channels. A Syndicator offers subscription-
based access to its Content Channels for managed user
groups. A Syndicator collects statistics and provides billing
information.

Like the QuestObjects Server, QuestObjects Services run
as a servlet in a standard serviet container.

Content Engine—Content is stored in another tier, called
the Content Engine, which is usually located outside the
QuestObjects system. Syndicators use Content Access Mod-
ules (CAMs) to link each Content Channel to a data store
disclosed by the Content Engine. A CAM provides an
abstraction layer between the QuestObjects system and any
data store. QuestObjects currently includes CAMs that access
any SQL-compliant database through JDBC orany enterprise
directory through LDAP.

QuestObjects Clients

Client applications that take advantage of QuestObjects
will usnaily comprise multiple windows or web pages. Each
window or web page in a client application may use one or
more QO Client elements: Visible or invisible client compo-
nents that implement QuestObjects behavior. Some user
interfaces may dynamically add or remove QO Client ele-
ments to a window (e.g,, when a user opens a new tab pane in
the application), at which time other QO Client elements may
remain active, or are destroyed (e.g., when a web page is
replaced by another page). QO Client elements may beonly a
small part of the client-side application, although some QO
Clients may remain active during the entire life of the client
application. A QO Client Controller may refuse a Quester
(perhaps because it isn’t connected to a server that has the
Channel requested by the Quester) by passing itareferenceto
a different controller. This can be transparent to the Quest-
Field.

Multiple QO Client elements inan application (or multiple
client applications running in an OS or virtual machine) can
share connections to the database, This is achieved by having
them communicate through a single “QO Client Controller”.
The QO Client Controller is responsible for the QO Protocol
{(QOP), maintaining the Quester registry (including waiting
requests and matching results), handling of dependencies
(probably through a separate object), and request buffering
for network optiraization. When QO Client elements share a
connection to the database, the connection is only established

20

40

22

once. Additional QO Client elements an register themselves
with an existing session; QO Client elements that are no
longer used deregister themselves. The QO Client Controller
is independent of QO Client elements: Conceptually, the Cli-
ent elements find a suitable controller rather than the other
way around. This ensures that a QO Controller may survive
the life of QO Client elements: QO Client elements can be
instantiated and destroyed during the life of a QO Controller.
Client-server connection state {a.k.a. controller state) can be
displayed by any QuestField that has a Quester connected to
the corresponding QO Client Controller. In order not to
unnecessarily complicate the user interface, only the first
currently visible QuestField may actually display the connec-
tion state.

QO Client software is fault-tolerant. If communication
errors occur, the client-side objects can function in off-line
mode. An auto-completing QuestField, for example, will
allow users to keep typing into the field, and the value in the
entry field can still be submitted to the web application.

A QO Client’s full state, including the current input buffer,
results, selection state, etc, may be “frozen” and “restored” at
a later date. This allows a QO Server to restore the QO Client
afier the client has been away. This could be necessary if the
client application crashed, lost its connection, or if the client
page was refreshed by using the back-button in a browser. A
related feature is suspension and resumption of active ses-
sions during client-side sleep.

A QO Client may allow users tostore local preferences. For
example, a user ofan auto-completing QuestField may switch
auto-completion on or off. Or a user of a drop-down list may
set a preference to have the drop-down list open itself auto-
matically as soon as results are received from the QO Server.

Through the concept of “String Types” and “Query Types”,
QO Clients may interrogate directory services for QuestOb-
jects Services and Channels that return specific types of con-
tent using specific types of queries. This makes it possible to
create clients that work with result sets that contain data in a
known format, without making those clients dependent on a
specific channel.

QO Servers and Content Services may send meaningful
(textual) messages for display by the Client. The Client sends
optional language information to the Server at registration,
allowing Server or Service to refurn appropriate messages for
the Client locale. Clients do not need to be aware of possible
server-side messages and are thus generic.

A web-based QO Client is able to submit jts input buffer
(either the entered part or the auto-completed string), current
result string, or selected result strings (or corresponding keys)
to the server using the non-QO specific browser submit
mechanism (through GET or POST), allowing users to keep
using form fields in the “'old” way. QO Clients can therefore
be used 1o enhance existing web-based applications, without
needing to rewrite server-side application code.

Depending on rules set by the Channel, a QO Client may
validate a query before sending it to the server (note that the
server must still know the Jatest input buffer in order not to
send the previous query results to the client).

AQOClient may define a default (initial) value foritsinput
buffer, causing the QO Server to perform a query as soon as
the Quester is registered. This may be necessary to support
browser “back” functionality, where a QuestField retrieves its
previous input buffer value from a form input field.

‘A Client receives the expiration date/time for each result
set, which may be overridden by individual strings in the
result set. A client can use this to automatically re-query an
expired result set or to automatically re-query metadata for
strings that bave expired (which may be necessary in a docu-

US 7,752,326 B2

23

ment management system that returns a list of documents,
some of which may have very time-sensitive information).

A QO Client’s value and query may depend on values in
other fields in the application. If these other fields are also QO
Clients, these dependencies may include: thekey of a specific
index in the result set; the string at aspecificindex in the result
set; a set of keys for all selected indices in a result set; a set of
strings for all selected indices ina result set; a set of keys inan
index range; a set of strings in an index range; all result keys,
or all result strings.

Web Page Integration

FIG. 9 shows a method for using the present invention in
systems that have limited techrical capabilities on the Client
side, such as, for example, web browsers with embedded Java
applets, Flash movies, or other browser components or plug-
ins. If developers of client systems have not integrated Client
components of the present invention into their client software,
then Client components needed for the present invention may
be present as Plug-Ins, DLL’s, oran equivalent device, or they
can be downloaded to the client computer as applets. These
applets can be written in the Java language, ActionScript, or
other browser component language, when they are needed.

Although the system depicted in FIG. 8 can be used to
support clients in practically agy server-based application
server, and particularly in the case of a web server hosting an
application vsed by end users o enter data that is partially
retrieved using the present invention, the system is not limited
to the web. The system provides an ideal solution for current
web-based applications that consist of web browsers 300 on
the client side and web host computers 302 with web server
software 304 on the server side. To allow the web server to
access data selected using the present invention, this system
provides a link between the web server and the QuestObjects
Server 306. In this case, QuestObjects Server acts as 2 data-
entry proxy between the existing client system (web browser)
and the existing web server. Data entered by the client is
submitted 1o the QuestObjects Adaptor instead of to the web
server. The QuestObjects Adaptor then fills in the values of
the Questers and passes the data to the web server. An Appli-
cation Proxy is not required if the QuestObjects Client com-
ponents can directly insert data into the client entry form on
the web browser, as is the case on certain platforms that allow
integration between Java applets or other components and
JavaScript in the web browser.

In FIG. 9, the web server runs on a host computer 302,
typically associated with a fixed 1P address or an Internet host
name. The web server is accessed by any number of clients
using web browsers 300. To allow users to enter dataand send
data to the server, web pages make use of HTML forms 308.
To use the present invention, user interface elements such as
entry fields in these HTML forms are associated with
Questers 310 in the form of browser Plug-Ius, Java Applets,
Flash Movies, or other browser components, or Client-script
language implementations including QuestObjects Clients
built in JavaScript or VBScript. Through a QuestObjects Con-
troller 312 those Questers allow theuser to access one or more
QuestObjects Services hosted by a QuestObjects Server 306
using the protocol 314 of the present invention. The Server
Controlier 316 forwards user actions generated in the Client
Questers 310 to their corresponding Server Questers 318 that
thus are always.aware of data selected in the Client. When a
Server Quester is first activated, it checks whether it is being
used by a client system that requires the use of an Application
Proxy. If the answer is yes, then the Quester creates 320 a
corresponding AppHost Synchronizer 322 that contacts the
QuestObjects Adaptor 326 on the host computer 302 using a

10

45

(V.3
o

w

S

(-3
(7

24

standardized protocol 328. The QuestObjects Adaptor then
knows which QuestObjects Server lo contact (o retrieve
QuestObjects data 326 after the user submits form data 330 to
the application host using the existing application protocol
332, such as HTTP POST or HTTP GET. The QuestObjects
Adaptor then replaces the appropriate form field data with the
strings selected in the Server Questers 318 before forwarding
this form data, now including data selected using the present
invention, to the web server 320, and thence to the client 322.

QuestFields may be easily and seamlessly integrated into a
current Webpage. The first step is to determine which non-
interactive HTML search fields are 1o be replaced by interac-
tive QuestFields, as shown in FIG. 10. FIG. 10 shows an
iilustration of aweb interface 350 in accordance with the prior
art,

In this example, the “Category” 352 and “Search” 354
fields are to be replaced with QuestFields, and because Quest-
Fields are able to find and display records “on the fly”, the
“Search” button is now unnecessary and can be removed. To
provide the user with additional informatios, a QuestField
called “Album” is added.

The next step is to build the Questlet containing the Quest-
Fields with the same look-and-feel as the target Web page.
MasterObjects provides a default Questlet implementation
built using Macromedia Flash. FIG. 11 shows an illustration
of a web-based search field 360 in accordance with an
embodiment of the invention.

Finally, the client is added to the Web page after removing
old form fields or after making them invisible. FIG. 12 shows
a listing of a htm! and JavaScript code 370 in accordance with
an embodiment of the inveation.

FIG. 13 shows an illustration of a web-based search field
380 as it is used to receive data from a server in accordance
with an embodiment of the invention.

Configuration

QuestObjects configuration isdone using a straightforward
text files for each Server, each Content Channel, and each
database or directory connection. The configuration file of
Content Channels that communicate through the JDBC Con-
tent Access Module includes the actal database queries with
appropriate bind variables.

The configuration file of Content Channels that communi-
cate through an LDAP connection contain the actual LDAP
queries performed on the enterprise directory.

QuestObjects Protocol

QuestObjects uses a powerful protocol called the QuestO-
bjects Protocol (QOP). QOP does not rely on the use of
cookies and is designed to be compliant with existing Internet
and Security standards. QOP is used for communication
between Questlets and QuestObjects Servers. This is done
transparently using XML in optional SOAP envelopes using
HTTP(S) as the transport layer. Additional details defining an
embodiment of QOP are provided below.

Security

QOP can be configured 1o run over SSL for complete
security. Either the entire Web page, or just Questlet-Server
communications can be securely encrypted. QuestObjects is
designed so that neither users nor administrators need to
worry about the details of the communication protocol.

Load Balancing

QuestObjects is designed for large Internet applications.
The QuestObjects Server, QuestObjects Service and/or the
Content Engine (database) can reside on a plurality of
machines, allowing for Joad balancing and capacity expan-
sion simply by adding more hardware. A QuestObjects Server

US 7,752,326 B2

25

uses “sticky’” session connections. A client can logically con-
nect to any server machine in the system. Once a session is
established, all communications from the client IP address go
to and from the same server.

Use of System for Interactive Database Searching

The system described above may be utilized in a Web,
online, or similar environment, for purposes of interactive
database searching, data entry, online purchasing, or other
applications. This section describes how an embodiment of
the invention may be incorporated into such an online envi-
ronment.

FIG. 14 shows a screenshot of a typical search screen
interface 390 in accordance with the prior art, that may be
used, for example, with a database application, an online
application, or an online purchasing system. In this example,
the interface is part of an online music store application, and
allows a user to search for music records. As is typical with
such applications, the user may select a category (in this
instance from a pull-down list 392, although in other
instances the user may select from a bullet-list). When the
category has been defined, the user may enter their search
criteria in the window 394 provided. While a category pull-
down is not essential, it is commonly used in online and other
environments to allow the user to narrow down the potential
search resulis. When a category list is not provided, the sys-
tem typically returns more hits than is desired.

FIG. 15 shows a screenshot of the same search screen
interface 390 in accordance with the prior art, illustrating the
selection by the user of a particular category 396. One of the
problems with the traditional interface is it provides no feed-
back to the user as to available options. Using the interface
shown in FIGS. 14 and 15, all of the communication is one-
way, i.e. from the user. But when the user selects a category,
they have no knowledge as to whether there are any database
records matching that category. Similarly, when the user
enters a search criteria, there may be no matching hits. Fur-
thermore, there is po feedback provided to the user that, for
example, a more appropriate search might be useful, or that
there may be slightly different spellings of that search term.

FIG. 16 shows a screenshot of a search screen interface 400
in accordance with an embodiment of the present invention,
illustrating how the QuestObjects technology can be used to
assist a user with the search and selection of a database
resource, and particularly address the feedback problems dis-

cussed above. Similarly, this example illustrates the interface

as part of an online music store application, and allows a user
to search for music records. In this embodiment a pair of
pull-down lists are provided, one for Artist name 402 and one
for CD name 404. However, in other embodiments neither of
the search fields may necessarily includea pull-down portion.
Each search field indicates, in this instance by means of 2
small triangular arrow 406, that the search field is enabled for
use with the QuestObjects system. Depending on the embodi-
ment, other indicators may be used, or indeed no indicator
may be used.

FIG. 17 shows a screenshot of a search screen interface in
accordance with an embodiment of the present invention,
illustrating how the system responds when a user enters data
into a QuestObjects enabled search field. As shown in FIG.
17, as the user enters search data 410, in this instance the first
letter, or a few letters, of the Artists name, the search field
displays an icon, in this instance a pair of rotating arrows, to
sndicate that the search field is communicating, via the
QuestObject, search data to the server. The rotating arrow

26

icon also indicates that the client is receiving corresponding
information from the server as a result of the search data thal
has been sent.

FIG. 18 illustrates the type of information that is dynami-
cally returned to the user as they enter input data. Although
there is no **submit” or similar button, since the client main-
{ains a session with the server, and automatically sends and
receives information from the server as data is entered, the
server provides the client with increasingly appropriate infor-
mation from the database. In the example shown in FIG. 18,
as the user enters the text “r, 0, . - - » etc. 414, the server
automatically responds with a list of records 416 matching
this input data. In the embodiment shown, the records are
presented asalist, from which the user may selectoneor more
of those entries. Alternatively, if the desired record is not
currently shown, the user can continue to enter input data to
focus the search, and receive at the client more appropriate
results.

FIG. 19 shows the same example as the user enters more
input data 418. As the data is received, the server suggests
increasingly more appropriate records 420 from which the
user can select. In this manoer the system may also beused to
provide dynamically focused suggestions to the user.

FIG. 20 shows the same example as the user enters more
jnput data. 422 As the data is received, the server suggesls
increasingly more appropriate records from which the user
can select, At this point the user has entered almosta complete
Antist name. Again, as described above, the rotating arrow
icon 412 indicates that input data is being automatically sent
from the client to the server, while appropriate search records
are retrieved for subsequent display on the client.

FIG. 21 shows the same example as the user is presented
with appropriate Artist name records 424 from the server,
based upon the input data.

FIG. 22 shows the same example as, this time the user has
selected an Artist 426, and is repeating a similar search
sequence with the CD name 428.

FIG. 23 shows the same example as the user is presented
with appropriate CD name records 430 from the server, based
upon the input data.

Use of System for Interactive People Searching

FIG. 24 showsa screenshot of a search screen interface 440
in accordance with an embodiment of the present invention,
illustrating how the QuestObjects technology can be used to
assist a user with the search and selection of a name database
resource, for use in people searching. In one embodiment
(shown as Option 1 in FIG. 24) a pull-down list 442 is pro-
vided for the persons Name. In another embodiment (shown
as Option 2 in FIG. 24) a pair of pull-down lists 446, 448 are
provide for the persons Last Name, and First Name. As above,
in other embodiments neither of the search fields may neces-
sarily include a pull-down portion. Also as above, each search
field indicates, by means of a small trjangular arrow 450 or
other device, that the search field is enabled for use with the
QuestObjects system. Depending on the embodiment, other
indicators may be used, or indeed no indicator may be used.

FIG. 25 shows a screenshot of a search screen interface in
accordance with an embodiment of the present invention,
illustrating how the system responds when a user enters data
into a QuestObjects enabled search field. As shown in FIG.
25, as the user enters search data 452, in this instance the first
letter, or a few letters, of the persons Name, the search field
displays an icon, in this instance a pair of rotating arrows 454,
1o indicate that the search field is communicating, via the
QuestObject, search data to the server. The rotating amow

US 7,752,326 B2

27
icon also indicates that the client is receiving corresponding
information from the server as a result of the search data that
has been sent.

FIG. 26 illustrates the use of Option 1, and the type of
information that is dynamically returned to the user as they
enter input data. As above, although there is no “submit” or
similar button, since the client maintains a session with the
server, and automatically sends and receives information
from the server as data is entered, the server provides the
client with increasingly appropriate information from the
database. In the example shown in FIG. 26, as the user enters
the text“g, a, . . . " etc. 456, the server automatically responds
with a list 458 of name records matching this input data. Inthe
embodiment shown, the records are presented as a list, from
which the user may select one or more of those entries.
Alternatively, if the desired record is not currently shown, the
user can continue to enter input data to focus the search, and
receive at the client more appropriate results.

FIG. 27 illustrates the use of Option 2, and the type of
information that is dynamically retumed to the user as they
enter input data. In the example shown in FIG. 27, as the user
can enter either the Last Name 460 and/or the First Name 462
of the person, Matching records are returned using a similar
process as described above.

Use of System for Other Applications

FIG. 28 shows a screenshot of a complex search screen
interface in accordance with an embodiment of the present
invention, illustrating how the QuestObjects technology can
be used 1o create a multi-level search interface, with multiple
smart search fields or devices. In this example the search
interface includes QuestObjects-enabled fields for First
Name 482, Last Name 484, City 486 and Country 488. As
above, depending on the embodiment, the search fields may
or may not include a pull-down portion. Inthe example shown
in FIG. 28 the pull-down lists also include pictorial represen-
tation of the field entry, making it more intuitive for the user.
Also as above, each search field may indicate by means of a
small triangular arrow or other device that the search field is
enabled for use with the QuestObjects system. FIG. 28 pro-
vides only an example of the type of interface that may be
created using the QuestObjects system. It will be evident that
a wide range of other interfaces may be similarly built with
some or all of the QuestObjects features.

Variations on the Person Search Input Screen

FIG. 29 shows a screenshot of an alternative person search
input screen 490 in accordance with an embodiment of the
inveation. FIG. 29 shows a screenshot of a formatted results
list including email hyperlink buttons and an indication of the
number of results found.

FIG. 30 shows a screenshot of an alternative person search
input screen 492 in accordance with an embodiment of the
invention. FIG. 30 shows a screenshot ofan information pane
that allows users to configure the QuestField and that shows
QuestField- and Content-Channel-specific information and
help.

FIG. 31 shows a screenshot of an alternative person search
input screen 494 in accordance with an embodiment of the
invention. FIG. 31 shows a screenshot of an About Box that
shows technical information and copyright information for a
QuestField.

Variations on the Types of QuestFields

Using the QuestObjects technology, at least six basic types
of QuestFields can be created, some of whichare showninthe
above examples. These QuestField types differin complexity,
but they all have one thing in common: they can enhance any

—

B

25

45

50

55

o

0

28

web browser or handheld wireless device application that is
used to enter, find, retrieve and/or manipulate information
stored in remote databases.

AutoLookup QuestField

FIG. 32 shows a screenshot of an AutoLookup QuestField
502. This is the simplest kind of QuestField. Upon user input
{or after a dependent QuestField is modified), the QuestField
does a“direct lookup” in the underlying content source where
the data returned has a one-to-one relationship with the user
input. Examples include a simple City QuestField that auto-
matically displays the city for a specific Zip code, a Bank
Number QuestField that verifies the validity of an account
number, a Translation QuestField that automatically looks up
the translation of text that the user has entered, a Stock Quote
QuestField that retums 2 stock quote for a specific ticker
symbol, ora Calculator QuestField that returns the result of a
specific calculation performed on the user’s input.

AutoComplete QuestField

FIG. 33 shows a screenshot of an AutoComplete Quest-
Field 504. An AutoComplete QuestField assists the user dur-
ing data entry by looking up multiple possible matches
directly based on the user’s character-by-character input. As
the user types, the “best match” for the.input is autocompleted
into the input field. An optional popup list can display alter-
nate choices to the user. The user input typically has a one-
to-many relationship with the data that is retumed by the
content source, and the number of records returned is usually
known. Examples include the PeopleFinder QuestField that
looks up persons in a directory, a Product QuestField that
helps the user find products, or an Account QuestField that
helps the user in finding and entering customer account aum-
bers.

AutoSearch QuestField

FIG. 34 shows a screenshot of an AutoSearch QuestField
506. An AutoSearch QuestField interprets the user input as a
discrete search query that can be in any query format sup-
ported by the underlying search engine. The input is not
usually autccompleted in the input field because of the nature
of the input, although some AutoSearch QuestFields will
suggest queries from a word-index or from a user query
history list. Similar to the AutoComplete QuestField, search
results are immediately displayed in a formatted popup list.
The number of results retuned from the server is typically
unknown and limited by the search engine. Results in the
AutoSearch QuestField popup list are usually filtered and
ranked before they are displayed. Examples include a Site
Search QuestField that enables users to find pages on a web-
site based on full text Boolean searches, or a Document
Search QuestField that allows users to retrieve documents or
files based on full text as well as other criteria. A publishing
company, for example, can use AutoSearch QuestFields to
allow users to quickly and efficiently search newspaper and
magazine archives.

Relational QuestField

FIG. 35 shows a screenshot of a Relational QuestField 508.
A Relational QuestField provides a complex user interface
consisting of multiple entry fields adapted for a specific use.
A Relational QuestField simultaneously accesses multiple
content channels and allows users to enter multiple values or
click on results to “navigate” through relational content.
Relational QuesiFields provide a sophisticated user interface
that typically feelslikea “hrowser” or “navigator” because it
can use multiple columns, tree lists, or even three-dimen-
sional ways to display the results. Examples include an
Address QuestField that can be used to enter full addresses

US 7,752,326 B2

29

(street, city, state. zip, etc), a Thesaurus QuestField that
allows users to navigate through a taxonomy of terms, anda
File Browser QuestField that behaves similar to Windows
Explorer, yet operates efficiently and securely on remote con-
tent.

FreeForm QuestField

FIG. 36 shows a screenshot of a FreeForm QuestField 510.
A FreeForm QuestField isatextarea that allows users 1o enter
blocks of text of any size. Rather than treating the entireinput
as a query, a FreeForm QuestField intelligently interprets the
user input s it is typed, providing the user with wide range of
“on the fly” text editing enhancements. Examples include a
SpellCheck QuestField that checks and corrects the user’s
spelling or grammar based on remote dictionaries while the
user is typing, or an AutoSave QuestField that automaticaily
saves the user’s input remotely while the user is typing into
the browser.

Background QuestField

A Background QuestField does not have its own user inter-
face. Instead, it is a QuestField that can be invoked to run in
the background of an application, invisibly accessing a
QuestObjects service. For example, 2 Background Quest-
Field could be a real-time stock price lookup function avail-
able to stored procedures in a relational database.

FIG. 37 shows a table 512 that compares six basic Quest-
Field types. From these basic types, comp lex QuestFields can
be derived that combine the properties of multiple QuestField

types.

Protocol (QOP) Implementation Details

This section describes in detail an embodiment of the
QuestObject Protacol (QOP). As described above, the
QuestObjects Client and the QuestObjects Server may com-
municate over the Internet using the QuestObjects Protocol.
QOP is an application-layer protocol. Messages may be XML
formatted, They can be transported in the body of HTTP(S)
messages over TCP/IP, according 10 the HTTP specification.
The implementation of QOP described here uses XML over
HTTP, but other implementations of the protocol using dif-
ferent transport mechanism may be provided. To prepare for
different physical variations of the protocol, the Adapter
design pattern may be used in the software. The description
below provides the minimum pumber of messages that are
needed to implement QuestObjects functionality. The mes-
sage names, element names, and attribute names provide 3
possible implementation, but other implementations of the
protocol using different names are envisioned. To implement
specific optional features of the QuestObjects technology
such as pushing, additional messages may be implemented.

In a load balancing environment using the simplest imple-
mentation of QOP, the load balancer ensures that sessions are
“sticky”: QOP then assumes that communication from a spe-
cific QO Client takes place witha single QO Server instance.
QOP may be mixed with other XML in the same HTTP
request, or wrapped into a SOAP envelope (Simple Object
Access Protocol). QOP XML can support full Unicode char-
acters sets (typically using UTF-8 encoding). Each QOP
XML message contains a block of QOP messages, for
example:

<7xml version="1.0" encoding="UTF-8" 7>
<mcssages xmlns-“http:I/‘www.quatobjccts.comlqolprotocollvm" >

<Il'n"essages>

—

0

5

30

w

5

60

65

30

The messages block contains messages that validate
against an XML schema. Elements in the messages block
automatically adopt its default namespace. The recom-
mended qop: namespace prefix is therefore optional, result-
ing in the smallest possible XML message size.

Each element of the QOP messages block is referred to as
a QOP message. Every QOP message has a unique element
name that logically describes its purpose. QOP messages and
their attributes use so~called Wiki naming conventions: They
start with a Jowercase character and capitalize the first letter
of each subsequent word. No consecutive capitals are ever
used.

QOP messages sent from QO Clients are requests that have
a unique messagelndex attribute conlaining a positive integer
that is incremented for each message, starting at 1. The QO
Server does not need to reorder requests that it receives
according 1o the message index. It only uses the message
index as an attribute in its reply so that the QO Client can
match the reply to the original request. So, QOP relies on the
fact that in most cases TCP/IP will deliver requests in their
consecutive order. Since this is not guaranteed to happen,
however, the QO Server may return an error or “no operation”
results message to the QO Clientifit receives a request that it
cannot currently handle.

M, Ind:

#12345” ... >

<anyR
yheq

</anyRequestMessage>

Each QOP messages block that the QO Client sends to the
QO Server (except the first messages block) includes a ses-
sionld attribute containing the session id that was returned by
the QO Server in the sessionStarted message.

<7xml version=*1.0" encoding="UTF-8" 7>
<messages xmIns-"hnp://www.ques‘lobjems.comlqolpro(ocollvl o
sessionld-"4A74547885DAC49DDED925B6A0161BD5">

</messages>

Each QOP message sent from the QOServerisareplytoa
QOP request from a QO Client. Bach reply has a reply to
attribute that matches the messagelndex of the corresponding
request.

<anyReplyMessage replyTo=*12345" ... >

d;;ykeplyMesag&

QOP Client Requests

startSession

This is a single QOP message sent by a QO Client to 2 QO
Server in the very first request. It is used to create a unique
session, which the QO Server confirms by returning a ses-
sionStarted message. The QO Client must wait for session-
Started until it can send any additiona} messages. If the QO
Server cannot start a session, then it replies by returning an
€10r Message.

US 7,752,326 B2

31

<stastSession messagelndex="12345">
<timeOffset>PT10783043238 </timeOffser>
<cliemConlmllerVexsion>0.3.I<IclicnlConLrolleerxsion>
<clientRuntimeName>Flash</clientRuntimeName>
<clientRuntime Version>MAC 7,0,19,0</clientRuntime Version>
<clientOs>Mac OS 10.3.2</clientOs>
<clientBrowser>Mozilla/$ 0 (Macintosh; Ut PPC Mac OS X;en)
AppleWebKiv/124 (KHTML, like Gecko) Safari/125</clientBrowser>

32

registerQuester message for both Questers, but may be
grouped into the same messages block. The reason this mes-
sage works with Quester names instead of Quester ID’s, is
that this allows the dependency requests to be sent by the
client before the corresponding questerRegistered have been
received. The QO Server replies by either returning a corre-
sponding dependencyGranted or an error message.

</startSession™> 10 X
questDepend messagelndexw=12345” name=“artist-on-title">
<qumerName>mileuester</quesleanme>
The value timeOffset is an XML duration indicating the :‘”}Qu“‘FTN“"e;““":l‘_’“”;“"Q““‘”“““c"
QO Client’s current time in seconds from 00:00 AM on Jan. ﬂremge%:];?:;?:cyiﬂmgser
1, 1970. Inthe example implementation ituses standard XML 5

notation for durations in seconds. clientControllerVersion is
the QO Client communication controller's version number,
formatted as a string consisting of major version (one digit),
minor version (one digit) and patch version (one or more
digits) separated by decimal points (periods). A QO Server
can theoretically refuse to grant sessions 10 deprecated client
controllers depending on this version string and any of the
optional version elements (described below). The other start-
Session elements are optional. These elements have a default
value and may thus be omited. The QO Server uses the data
for logging. clientRuntimeName is a string containing the
name of the QO Client’s runtime environmenis. In the
example implementation, this is set to “Flash” and the default
is an Empty string. ¢l ientRuntimeVersion is a string contain-
ing the version number of the QO Client’s runtime environ-
ments. In the example implementation, this is the version
string of the Flash Player and the default is an Empty string.
clientOS is a string that contains the name and version of the
QO Client’s operating system with a default of Empty string.
clientBrowser is a string that contains the name and version of
the QO Client’s web browser. It is only mandatory if the QO
Client runs in a browser environment. Default value: Empty
string.
registerQuester

This message is sent by the QO Client after it has received
a sessionStarted reply. The QO Server replies by either return-
ing a corresponding questerRegistered or an error MEssage.
Multiple registerQuester messages may be grouped into a
single messages block. An optional block of requestDepen-
dency messages may follow these registerQuester messages,
as long as all the registerQuester messages for Questers
referred o in the” dependencies precede the dependency
request. The QO Server does not queue requestDependency
messages: A requestDependency will fail if any of the corre-
sponding registerQuester requests arrives later.

nd,

rQuester *112345"
pame=“com.masterobjects.artist”™>
b 11d>artist</ch 11d>
</registerQuester™>

The registerQuester name attribute contains the pame for
the Quester as it was configured in the Questlet. This name
must be unique among Questers that share a connection (ses-
sion) and should be unique among Questers in a client appli-
cation. channelld contains a string that matches the name of
the Content Channel configuration file on the QO Server.

requestDependency
This message is used by a QO Client to request a depen-
dency on another Quester. The request must be sent after the

25

5S

65

The value of the requestDependency name attribute is a
string that uniquely identifies the dependency. questerName
is the name of the Quester that requests to be dependent onthe
Quester specified in onQuesterName. onQuesterName is the
name of the Quester that should trigger the dependency. The
requestDependency message must contain one or more trig-
ger elements that define the events that trigger the depen-
dency query. The element contains one of any number of
constants reflecting dependency types.

Query

The QO Client sends query messages only after it has
received the questerRegistered message for the correspond-
ing Quester. The QO Server should either perform the query
and return a results message containing data, refuse o per-
form the query and return a results message with a no-opera-
tion element explaining the reason, Or returs an erxor message
if the query resulted in an error. Depending on user input
speed, a Quester may send multiple query messages, but they
shonld normally be sent as separate HTTP requests (thus
containing a messages block with only a single query ele-
ment), because the QO Server will only send a reply after
processing all messages in the request.

<query messagelndex="12345" queryIndex="59"">
<questerld>S</questerld>
<requestedRange from="0" to=*2" 1>
<string>be</string>
<qualiﬁer>CUSTOME&_APP_SESSIONlD_ABCD OR
WHATEVER</qualifier>

</query>

Each query sent by a Quester increments the queryIndex
attribute, which is a positive integer, starting at 1 for the first
query. The QO Server copies this number into the results
message so that the client Quester can match those results to
its original query. The QO Server will only return resuits for
the latest query: it will return a results message containing a
nop element if the query was skipped because a newer one
was received.

The QO Server will return a results message containing a
nop if the querylndex received is lower than the previous
querylndex received for the same Quester. questerld is the id
of the Quester as it was originally returned by the quester-
Registered message. requestedRange isanempty element has
two mandatory attributes from and to, which tell the QO
Server which “view” of the result set the user wants. The first
result in a result set corresponds to from value “0”; 10 is
exclusive. The QO Server may return a results message coB-
taining fewer results than requested, and indicate that this
matches the total number of available results. The QO Client

US 7,752,326 B2

33

displays the results and indicates to the user that no more
results are available. The query process is finished. The QO
Server may also return a results message containing the exact
number of requested results or more: The QO Client displays
them and the query process is finished. The QO Server may
also return fewer resuits than indicated by the range, but
indicate that the total number of results is bigger: The QO
Client displays the received batch and may send a getRange
message for the remainder of the result set. The string element
contains the input string.

Qualifier contains the query qualifier, a string that can be
used by a Content Channel to adjust its query. Itis usually
passed into the Questlet by the client application, or set by the
user as a QuestField preference. Default value: Empty string.

getRange

AQOClient sends a getRange message to the QO Serverto
request a range of results. It is an optimized way for the
Quester to ask for batches of results for the current query: The
QO Server only retums results for results that were not yet
sent in a previous results message for the same query (unless
the server refurns dropPrevious with value “1”, meaning that
previously sent results have expired). Otherwise, getRange
results in the same behavior as a regular query message. A
getRangeshould only be sent by the QO Client after receiving
a reply 1o the corresponding query.

<getRange messageIndex=+12345" queryIndex="60">
<quester1d>5<lquesr.erld>
<requestedRange from="2" to="4" />

</getRange>

In each getRange message, queryIndex from the previous
query or getRange is incremented by 1. The QO Server will
only return results for the getRange with the highest query-
Index received from the QO Client; getRange requests witha
lower querylndex receive a nop reply.

stopSession

This message is sent by a QO Client to stop the session,
thus allowing the QO Server to cleanup its corresponding
resources. Note that, as always, the session id is derived from
the sessionld attribute in the messages element. When the
session is stopped by the QO Client, is includes the reason in
the reason attribute, such as “submit”, “disable”, “suspend”,
“quit”, or “unjoad” indicating that the Questlet stopped the
session.

<stopSession message Index=*12345" reason="submit"/>
QOP Server Replies

sessionStarted
The QO Server returns this message in reply to a QO
Client’s startSession message.

<sessionStarted replyTo="12345"
id-"4A74$47885DAC49DDED9ZSB6A0 161BD5”
urlSuffix=";jsessionid=""
timeout="PT36008">
<serverld>serverl </serverid>
<serverVersion>1.0.0</serverVersion™
<serverBuild>RC1 </serverBuild>

<providerName>Ref G </providerName>
<providerDescription>R fe Server</providerDescription>
</sessionStarted>

10

15

25

30

40

55

60

65

34

The id attribute contains the unique session id that was
generated by the QO Server, identifying the unique client
session. After receiving this id, the QO Client includes it as
the value of sessionld in consecutive messages blocks that it
sends to the QO Server.

The urlSuffix attribute tells the QO Client to append its
value 1o the URL of any subsequent HTTP requests for the
same session. timeout is an XML duration that informs the
QO Client about the QO Server’s session timeout. serverld is
the unique id of the QO Server instance running on the server
machine. serverVersion is the QO Server’s version number,
formatted as a string consisting of major version (one digit),
minor version (one digit) and patch version (one or more
digits) separated by decimal points (periods). A QO Client
may theoretically refuse to work with a server that it knows
does not support its features by checking this version string.
serverBuild is a normalized string identifying the build of the
server. For example “RC1” for release candidate 1. The other
elements have a default value and may thus be omitted. pro-
viderName is a string that reflects the value that was config-
ared on the QO Server, It will usually contain the name of the
company that is hosting the server. providerDescription is a
string that reflects the value that was configured on the QO
Server. It will usually contain a textual description of the
services provided.

questerRegistered

This message is sent as the reply to a successful register-
Quester message. It tells the QO Client whichid isto be used
for any subsequent communication for the Quester, and
passed textual information about the Content Channel backto
the client.

<questerRegistered replyTo="12345" id="5">
<channelName>Person Name Secarch</channelName>
<chanpelHelpText>Enter the first characters of the first or last
pame of the person you are Jooking for.</channelHelpText>
<channelCopyrightText>For use by Reference Customer
employees only.</channelCopyrightText>
<IquesterRegistered>

The id attribute is a QO Server-generated id that is unique
within the server session and replaces the Quester name as the
unique identifier for the Quester used in subsequent client-
server communication for the session. channelName is a
human-readable string as it was defined in the Content Chan-
nel configuration, Along with providerName (which was
returned by sessionStarted), this uniquely identifies the Con-
tent Channel to the user.

Optional questerRegistered elements channeiHelpText
and channelCopyrightText contain strings containing help
fext, copyright text and/or usage restrictions (as it relates to
the content returned by the channel) to be displayed to the
user.

dependencyGranted

This message is sent as a reply to the requestDependency
message, confirming that the QO Server will include depen-
dent data in any subsequent Content Query sentto the Content
Access Module.

<dependencyGranted replyTo="12345"/>

Results

The QO Server sends this message as the reply to a query
orgetRange request. Themessage either contains one ormore
ranges containing zero or more results, or a “‘no operation”
element with an explanation of the reason why noresults were

US 7,752,326 B2

35
returned, There is no guarantee that results messages arriveon
the QO Client in the same order in which the QO Server sent
them. Therefore, the QO Client must maintain a queve of
results received, and handle them in the order of querylndex,
unless a new results message includes dropPrevious with
value “1”.

Results Message Variant 1

<results replyTo="12345" querylndex="1" dropPrevious=*0">
<range froms"0" to="2" total="1000" isComplete=true
expims-“P’l'1078304389995">
<result>
<value>first result string</valuc>
<key>AS57948</key>
<metadate>
<item>first metadata field</item>
<jtem>second metadata field</item>
<jtem>third metadata field</item>
</metadata>
<Iresult>
<result> <value>second result string</value> </result>
</range>
<range from=*3" to="5" total="1000" isComplete=true
cxpixes-"PTl073304389998">
<result> <value>fourth result string</value> </result>
<result> <value>fifth result string</value> <fresuit>
</range>
</results™>

Results Message Variant 2

<results replyTo="12345" queryIndex="1" dropPrevous=*1">
<nop reason="invalidQuery” />
</results> .

The queryIndex attribute matches the queryIndex that was
included in the corresponding query or getRange requ est. The
optional dropPrevious attribute, which defaults to *07, indi-
cates whether the QO Server wants the QO Client to forget
any previous results that were retumed for the same query. In
that case, dropPrevious has value “1”. The results message
either contains one or more range blocks, or a single nop
element. An empty nop element indicates to the QO Client
that the QO Server did not perform the query, or that the server
refused a getRange request. The mandatory reason attribute
explains the reason why by including a constant value suchas
invalidQuery or querySkipped. Each range block contains
zero or more result blocks and has three mandatory attributes
and one optional attribute. The from attribute is the index of
the first result of the range. The to attribute is the index one
after the last result in the range (exclusive). The total attribute
is the total pumber of available results. This is used by the QO
Client to update the UI (usually, scroll bar) and possibly to
automatically sendanother getRange message if fewer results
are sent back in this range than requested while total indicates
that more results exist. The optional is Complete attribute
indicates whether the server retrieved the complete result set
for the query in question or whether the result set was cut-off
ata certain maximum size, in which case the actual number of
results might be bigger than the amount specified in the total
attribute. The optional expires attribute indicates the time at
which the result expires, using the number of seconds since
1970 (corrected by the difference of timeOffset and QO
Server time at receipt of the startSession message). If the
valueis “PTOS” orif the attribute is omitted, the results donot
expire. For each result set entry that exists in the specified

20

25

30

35

36

range, the range block includes a result element. If no results
exist in the range, then the range block is empty. Each result
contains a value element and optional key and metadata ele-
ments. The value element contains a string that was received
from the Content Engine. The optional key element contains
a string that uniquely identifies the result in the Content
Channel. Using the value of key, elements value and optional
metadata can be fetched from the Content Engine. The
optional metadata block in each result element of a range
contains an ordered set of item elements. Each item is astring
that matches the corresponding metadata field as it was
fetched from the Content Engine. As such, 2n item element
may be empty to represent an empty metadata string, but an
empty item is never omitted. The order of the item tags
matches the order in which the Content Query was defined in
the Content Channel definition. Ifno metadata is available for
aresult, the metadata block is omitted from the result element
and the Quester considers all metadata items empty strings.

Error
The QO Server returns an error message whenever it
encounters a server-side error situation.

<error replyTo="12345" number="1001" sessionAlive="1">
<erorText>An error has occurred in the QuestObjects
server.</erorText>
<lerror>

Each error has a mandatory number attribute. The optional
noSession attribute indicates that there is no (longera) session
after the error occurred (value “17). The QO Client may
reconnect by calling startSession again. If this attribute is
omitted or “0”, then the session is either still alive, or the QO
Server does not know about session state. The latter is true if,
for example, the server was unable to parse the request. The
errorText element contains 2 human-readable string that is
displayed to the user. It must include any leading and trailing
punctuation marks.

sessionStopped

This message is sent to the QO Client after the QO Server
has successfully closed its session and cleaned up the corre-
sponding resources.

<sessionStopped replyTo="1 2345"/>
Additional Optional Features—QuestObjects Client

Multi-Controller Dependencies

Multiple Client-side controllers (communicating to mul-
tiple Servers) are aware of each other so that they can register
dependencies with each other. Multiple controllers on a Cli-
ent communicate dependency triggers using a common noti-
fication center concept.

“Lossy” and “Non-Lossy"” Pushing

Server denies a connection if it cannot guarantee quening
push replies between life beats, the interval of which is speci-
fied by the client, with a minimum enforced by the server.

Client Quester History
A Client Quester may have a history implemented as a
cache in the Client controller.

Quester Context

A Quester has a unique name within its context (usually,
window instance); dependencies assume the same confext
unless a specific context is specified.

US 7,752,326 B2

37
Additional Optional Features—QuestObjects Protocol

Server Referral Mechanism

A “Dummy Server” can be installed on the “old” IP
address/port so that Clients are automatically moved to a new
Server. The Server sends a “Moved Permanently” message.

Client-Server Daie Synchronization

Client and Server do not necessarily have Lo be set to the
exact same date. Instead, the Client “tells” the Server its
current date when it first connects, by sending 2 reference
date, a time zone, and the number of seconds that have passed
since that date. The Server will “translate” dates before send-
ing them to the client, sending the number of seconds relative
to the client’s reference date.

Metadata Optional

The Client tells the Server whether metadata is required in
each string transmitted to the Client. There are three moments
at which metadata can be transferred to the Client: With every
string in the result set, or With the current string in the result
set (i.e., metadata is received automatically when a string is
made the current string), or At request of the Client (the
protocol allows the Client to reguest metadata for a range of
strings). If metadata is not required, the Serveronly sendsitto
the Client at specific request.

“Metadata Displayed” Statistic
The Client tells the Server whether metadata for a string
was displayed to the user or not.

Client-Side Caching

By calculating the difference between what’s known on the
Client and a new result set to be transmitted by the Server,
Server-Client communication is limited. To this end, the pro-
tocol sends information to the Server about which result sets
are still in memory on the Client. Whenever the Server (re-)
sends a result set to the Client, it subtracts strings that are on
the Client already.

Client-Side “Keep Alive” Protocol

In order to aliow the Server to send updaies (updated result
sets) to the Client, the Client sends a NOP package to the
Server on a regular basis. This is different from the regular
way in which results are received, where the Server tells the
Client that a result set is not complete by sending a Server-
side NOP and the Client simply waits for the remaining
results.

Transmission of Dependency Data

A mechanism by which dependencies are sent to the Server
and the mechanism by which the Server includes dependency
data for transmission to the Service.

BLOB Communication

The QuestObjects protocol allows the Client to directly
retrieve binary large objects from a Service. This is done
through a separate Channel.

Welcome Messages

When regjstering, the Client tells the server whether itis
capable of displaying Server or Service-generated messages.
A “Welcome Message” sent to the Client by Server and/or
Service has the *“mustDisplayToUser” attribute. If this
attribute is false, then the client may ignore the message.

Dialog Messages

Servers and Services may send meaningful (textual) mes-
sages for display by the Client. Client sends optional lan-
guage information to the Server at registration, allowing
Server or Service to return appropriate messages. Clients are

I

0

20

25

30

45

50

55

38

not aware of possible server-side messages. Messages catry
one of the following types: Information Only; Waming; Dan-
ger; Fatal Error.

License Agreement
A Service can force a client to ask the user to agree 10 a
Ticense agreement before a session becomes active.

Incremental Diffed Query String
A Client may perform a DIFF on its query string so it only
sends incremental difference to the Server.

Conditional DIFFing .
To reduce processor load, a diff is only performed over a

certain package size.
Additional Optional Features—QuestObjects Server/Service

Automatic Server Discovery
A mechanism by which a client can discover Services
using a DHCP-like mechanism such as UDD! or Rendezvous.

Password Security
Each Server has an optional name/password segistry.

Inter-Server Dependencies

Dependency values are known on each Server and Server-
side controllers exchange the actval dependency data, even
for sessions on different servers. :

Server Hopping

Two Servers can exchange their cache for a specific Chan-
nel, allowing them to synchronize their result set for a par-
ticular session that was moved from one Server to another.

Service Determines Cost of Query
A Service sends the cost of each query to the Server so it
can be smart about caching the most expensive queries.

Client Session Influences Cache
The Server more likely caches a result set if any client
session that used the result set is still alive.

Auto-Update Queries for “Pushing” Services

An auto-updating query is sent o the Service once until the
reply was sent to the Client and the auto-update interval has
passed.

Smart Auto-Complete on Server

1f results are ordered in a known way, a Server may send a
new result set to the Client if the query matches a previous
“more global” query. In this case, the Service is notaware that
a more specific query was performed.

Request Management

The QuestObjects server has a configurable request man-
ager that manages the load of incoming client requests. By
limiting the number of request than can be executed in paral-
lel, and queuing requests that could not be immediately per-
formed, the request manager helps to ensure that the QuestO-
bjects server remains responsive in high-load situations and
that the server does not overload the content-source being
queried with many simultaneous queries.

Unified Query Cache

In order to improve performance on recurring queries and
to limit the load imposed on the content-sources being que-
ried, the QuestObjects server caches results to user queries by
storing them in cache that is common to all users. Bach user
has a view into the cache on the query that he/she performed.
1f more than one user performs the same query, there will be
one result set stored in the cache and each of these users will
only have a separate view on the query. Result sets are stored
in the cache until they either expire, based on a result set

US 7,752,326 B2

39

expiration lifetime defined in each channel configuration file,
orareevicted from the cache if it is full, usinga least-recently-
used cache algorithn.

Additional Uses and Applications

As a technology, QuestObjects™ has surprisingly broad
potential. Applications include a wide range of markets
including implementation on “connected devices” such as
PDAs, set top boxes and cell phones. Other applications
include those listed below. In applying the QuestObjects tech-
nology, existing applications may make use of enhanced
functionality, including: Improved user friendliness;
Improved speed of data entry; Improved quality of data entry;
Quicker access to relevant data; Increased security of data
entry; Increased security of data retrieved; Better contro] over
usage patterns; Guarantee over strings displayed and used;
and the ability Easily deliver and charge for content.

Auto-Complete, Type-Ahead:

1n a typical application, users enter data into a field (entry
field, cell phone, PDA) that automatically completes infor-
mation typed. A client application can implement multiple
QuestObjects™ components (called Questlets™ that possi-
bly have multiple ways of querying the server using
Quester™ instances, or QuestFields™ in specific situations)
that share a connection to one or more QuestObjects™ serv-
ers. Multiple Questers™ can depend on each other for the
data they retrieve. Depending on the client technology used, a
Questlet™ can copy values to and from existing (web) forms
or application windows.

Popup-Lists:

A QuestObjects™-cnabled popup-list dynamically dis-
plays data that corresponds to 2 single query in the content
engine. The associated Quester™ can take values from
another QuestField™ so that the popup-list displays appro-
priate data that is continuously updated to reflect dependent
data.

Look-Up, Finding Simple Reference Data (Dictionary, The-
saurus, Addresses, Etc)

A (possibly invisible) QuestField™ returns a string with
optional XML-formatted metadata. This XML-formatted
metadata could be data displayed in a separate area of the
Questlet™. A return string or its metadata could also contain
a URL to data that is to be displayed. Depending on the client
platform, data displayed could easily be in any multimedia
format (image, sound, movie, sireaming or not).

Usage Histories (URLs, Words Previously Used, Etc.)

As an authenticated user uses QuestObjects™, the service
tier stores usage histories, These are not only useful for doing
statistics and invoicing, but can also be used for separate
Questlets™ or Quester™ instances that disclose the usage
history to the user or to an application that uses QuestOb-
jects™ intemally. In this scenario, a web browser could auto-
matically store URLs visitedin a QO service, so that the user
bas persistent access to the browser history, regardless of the
workstation (or connected device) on which the browser is
used.

Spell-Checking on the Fly

Since QuestObjects™ only transfers modifications to
documents over the network, it can efficiently keep track of
modifications made to text blocks. Dedicated spell-checking
Questlets™ can be created that perform spell checking on-
the-fly on any platform thatsupports QuestObjects™, includ-
ing web browsers. .

—

0

30

40

45

60

65

40

On-the-Fly Verification of Credit Card, Bank Numbers Etc.

Due to its inherent security features, QuestObjects™ tech-
nology can be used to check the validity of credit card (or
similar) information while a user is entering data. The verifi-
cation can take place before the entire web page is submitted
to the server, or before database transactions are committed in
a client/server system.

Decision Support Systems, Sensor Control Systems

QuestObjects™ services (content channels) continuously
receive increasingly accurate information from client sys-
tems. This continuous nature (combined with the secure and
fast communication protocol) allow decision support systems
to immediately respond with appropriate actions to be taken
by the client.

Verified and Guaranteed Display of Advertisements

Using pushing QuestObjects™ technology, Questlets™
provide a way to deliver content 10 client systems. Given
certification of the client Questlet™, the content provider
(service) knows exactly what part of the content was viewed
and used.

Real-Time News Services

The pushing nature of QuestObjects™ allows real-time
delivery of news to any client that supports the efficient
QuestObjects™ protocol.

Composition of Ultra-Secure Documents (Continuously
Backed Up on the Server)

A QuestObjects™ service automatically receives each and
every modification to client data. This provides a highly
secure way of updating critical documents, where each modi-
fication is present on the server withina minimum amount of
time. Persistent Questers™ can be restored automatically
afterrecovery of a lost connection or after rebooting a crashed
client.

The preceding detailed description illustrates software
objects and methods of a system implementing the present
invention. By providing a simple and standardized interface
between Client components and any number of Content
Engines that accept string-based queries, the present inven-
tion gives content publishers, web publishers and sofiware
developers an attractive way to offer unprecedented interac-
tive, speedy, up-to-date and controlled access to content with-
out the need to write an access mechanism for each content
source.

In addition to acting as a standardized gateway to any
content engine, the present invention can intelligently cache
query results, distribute Services over a network of Servers,
validate user and other client input, authorize user access and
authenticate client software components as needed. These
and other optional services are provided by the present inven-
tion without requiring additional work on the part of software
developers or content publishers. Publishers can also keep
track of usage statistics, on a per-user basis as required allow-
ing flexible billing of content access. Content Access Mod-
ules allow software developers and vendors of Content
Engines such as database vendors and search engine vendors
to create simplified ways for developers and implementers of
such content engines to disclose information through the
present invention.

End users of the present invention experience an unprec-
edented level of user-friendliness accessing information that
is guaranteed to be up-to-date while being efficiently cached
for speedy access as the number of simultaneous users grows.

The present invention can be implemented on any client
and server system using any combination of operating sys-
tems and programming languages that support asynchronous

US 7,752,326 B2

41

network connections and preferably but not necessarily pre-
emptive multitasking and multithreading, The interface of the
present invention as it appcars to the outside world (i.e. pro-
grammers and developers Who provide access to end users
and programmers who provide Content Access Modules to
Content Engines used by content publishers) is independent
of both the operating systems and the programming lan-
guages used. Adapters can be built allowing the tiers of the
system to cooperate even if they use a different operating
system or a different programming language. The protocol of
the present invention can be implemented on top of network-
ing standards such as TCP/1 P. It can also take advantage of
inter-object communication standards such as CORBA and
DCOM. The object model of the present invention can be
mapped to most other programming languages, including
Java, C++, C#, Objective C and Pascal.

Third-party vendors of software development and database
management tools can create components that encapsulate
the present invention so that users of those tools can access its
functionality without any knowledge of the underlying pro-
tocols and server-side solutions. Por example, a 100l vendor
can add an ‘auto-complete field” to the toolbox of the devel-
opment environment allowing developers to simply drop 2
Questlet into their application. In order to function correctly,
the auto-complete field would only need a reference to the
QuestObjects Server and one or more QuestObjects Services,
but it would not require any additional programming.

The present invention may be conveniently implemented
using a conventional general purpose or a specialized digital
computer or MiCroprocessor programmed according to the
teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent
to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which is a storage medium (me-
dia) having instructions stored thereon/in which can be used
1o program a computer to perform any of the processes of the
present invention. The storage medium caninclude, but is not
limited to, any type of disk including floppy disks, optical
discs, DVD, CD-ROMs, microdrive, and magneto-optical
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMSs,
VRAMs, flash memory devices, magnetic or optical cards,
nanosystems (including molecular memory ICs), or any type
of media or device suitable for storing instructions and/or
data.

The foregoing description of the present invention has been

provided for the purposes of illustration and description. Itis

not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical appli-
cation, thereby enabling others skilled in the art to understand
the invention for various embodiments and with various
modifications that are suited to the particular use contem-
plated. Itis intended that the scope of the invention be defined
by the following claims and their equivalence.

What is claimed is:

1. A system for searching at a client for content at a server

or other content sources, comprising:

a communication protocol that provides an asynchronous
connection between each of a plurality of clients and a
server, and allows each client to send, as part of a user
session, a plurality of consecutive query strings to query
the server for content;

10

—

5

35

n
o

w
&

60

42

a requesting client of the plurality of clients, that provides
an input field and that transmits 1o the server within the
pser session a plurality of queries to retrieve content
from the server, wherein each of the plurality of queries
are consecutive and form a Jengthening query string for
retrieving content from the server, and wherein each
subsequent one of the plurality of queries extends the
lengthening query string by one or more additional char-
acters; and

a server, which is configured to access one or more content
sources that store content and that can be accessed by the
server o respond to the queries from theclients, wherein
the server frther includes a unified query and result
cache common to the plurality of clients and that stores
previously determined results from the content sources,
and wherein the server receives the queries from the
requesting client, and in response to receiving each of
the one or more additional characters in the lengthening
query string as they are being entered at the input field
recognizes the lengthening query string as an increas-

ingly focused query,
sutomatically maiches
string both
initially by matching the query string against the pre-
viously determined results stored in the unified
query cache at the server, and
subsequently, if no matching cache entry was found,
by matching the query string, against the content
sources as retrieved by the server, and
asynchronously retums, while the lengthening query
string is being formed at the input field at the request-
ing client, increasingly relevant content to the client,
for further use by the client within the same user
session.

2. The system of claim 1 further comprising a web browser
including a web-based interface accessible at the client for
creating queries, wherein the plurality of queries are entered
into the web-based interface by a userto forman increasingly
focused query string for retrieving content from the server,
and wherein the client and the server communicate via the
Internet using a hypertext transfer protocol.

3. The system of claim 1 wherein each of the plurality of
queries are a single additional character to be added to the
increasingly focused query siring.

4. The system of claim 1 wherein each of the plurality of
queries are a plurality of additional characters to be added to
the increasingly focused query string.

5. Thesystem of claim 1 further comprisinga server reposi-
tory for storing content information and for use as a dynami-
cally updated query and result cache in returning increasingly
relevant content to the client from the server repository in
response to avtomatically matching the increasingly focused
query string, prior to retrieving matching content from the
content sources if the relevant content was not found in the
server repository.

6. The system of claim 1 wherein the system is further
configured to access a plurality of content sources via a con-
tent engine and content channel associated with each content
source, and wherein the server comprises 2 plurality of query
and result caches, including a query cache associated with
each particular content source that stores previously deter-
mined results from that particular content source.

7. The system of claim 1 wherein only the difference
between a client’s current data set and the client’s requested
data set is transmitted over the network, and wherein the
server only retums those results that were not sent in a pre-
vious results message for the same query.

the increasingly focused query

US 7,752,326 B2

43

8. The system of claim 1 wherein the server antomatically
pushes the content to the client without user input, enabling
the client to display the data immediately, or to transmit the
data to ancther software program to be handled as required.

9. A method for searching at a client system for content at
a server system, comprising the steps of:

providinga communication protocol that provides anasyn-

chronous connection between each of a plurality of cli-
ents and a server, and allows each client to send, as part
of a user session, a plurality of consecutive query strings
to query the server for content;

transmitting from a requesting client of the plurality of

clients to the server within the user session a plurality of
queries to retrieve content from the server, as they are
being entered at an input field, wherein each of the
plurality of queries are consecutive and form a length-
ening query string for retrieving content from the server,
and wherein each subsequent one of the plurality of
queries extends the lengthening query string by one or
more additional characters; and

receiving at the server queries from the client, wherein the

server is configured to access ome or more content
sources that storecontent and that can be accessed by the
sexver to respond to the queries from the clients, wherein
the server further includes a unified query and result
cache common to the plurality of clients and that stores
previously determined results from the content sources,
and in response to receiving each of the one or more
additional characters in the lengthening query string
recognizing the lenpthening query string as an increas-
ingly focused query,
automatically matching the increasingly focused query
string both
initially by matching the query string against the pre-
viously determined results stored in the unified
query cache at the server, and
subsequently, if no matching cache entry was found,
by matching the query string against the content
sources as retrieved by the server, and
asynchronously returning, while the lengthening query
string is being formed at the input field at the request-
ing client, increasingly relevant content to the client,
for further use by the client within the same user
session.

19. The method of claim 9 further comprising receiving
inputata web browser including a web-based interface acces-
sible at the client, wherein the plurality of queries are entered
into the web-based interface by auser to forman increasingly
focused query string for retrieving content from the server,
and wherein the client and the server communicate via the
Internet using a hypertext transfer protocol.

11. The method of claim 9 wherein each of the plurality of
queries are a single additional character to be added to the
increasingly focused query string.

12. The method of claim 9 wherein each of the plurality of
queries are a plurality of additional characters to be added to
the increasingly focused query string.

13. The method of claim 9 further comprising providing a
server repository for storing content information and for use
as a dynamically updated query and result cache in returning
increasingly relevant content to the client from the server
repository in response to automatically matching the increas-
ingly focused query string, prior to retrieving matching con-
tent from the content sources if the relevant content was not
found in the server repository.

w

0

20

B
<

45

60

65

44

14. A system for asynchronous providing of information,
comprising:

a server configured to receive queries from clients for con-

tent;

a database of content information coupled to the server;

a unified query and result cache at the server, and shared by
a plurality of clients, that stores previously retrieved
content from the database;

a communication protoco! that provides an asynchronous
connection between each of a plurality of clients and the
server, and allows each client 10 send, as part of a user
session, a plurality of consecutive query strings to query
the server for content, wherein each of the plurality of
queries form a lengthening query string for retrieving
content from the database, and wherein each subsequent
one of the plurality of queries extends the lengthening
query string by one or more additional characters; and

wherein the server receives queries from 2 requesting cki-
ent, and in response to receiving each of the one or more
additional characters in the lengthening query string
recognizes the lengthening query string as an increas-

ingly focused query,
automatically matches the increasingly focused query
string both
initially by matching the query string against the pre-
viously determined results stored in the unified
query cache at the sexver, and
subsequently, if no matching cache entry was found,
by matching the query string against, and retrieving
the content from, the database of content, and
asynchronously returns, while the lengthening query
string is being formed at an input field at the request-
ing client, increasingly relevant content to the client,
for further use by the client within the same user
session.
15, The system of claim 14, wherein the system is provided
as a people-searching system, and wherein
the server is configured to receive requests from clients for
people-searching content;
the database includes biographic orother people-searching
content information coupled to the server; and
wherein the server receives queries from the client and in
response to receiving each of the one or more additional
characters in the lengthening query string
recognizes the lengthening query string while it is being
formed at an input field as an increasingly focused
query string, the query string being any of the first
letters of a person’s last name, first name, or other
personal information,

automatically matches the query string against the data-
base of content, and

asynchronously returns, while the lengthening query
string is being formed at the client, increasingly rel-
evant biographic or other people-searching content to
the client, for further use by the client within the user
session.

16. The system of claim 14, wherein the system is provided
asa system for searching for product-related information, and
wherein

the server is configured to receive requests from clients for
product-related information;

the database includes product names or other product-
related content information coupled to the server; and

wherein the server receives queries from the client and in
response to receiving each of the one or more additional
characters in the Jengthening query string

US 7,752,326 B2

45
recognizes the lengthening query string while it is being
formed at an input field as an increasingly focused
query string,
automatically matches the query string against the data-
base of product names or other product-related con-
tent information, and
asynchronously returns, while the lengthening query
string is being formed at the client, increasingly rel-
evant product-related information to the client, for
further use by the client within the user session.
17. The system of claim 14, wherein the system is provided
as a system for searching for documents in full-text databases,
and wherein
the server is configured to receive requests from clients for
locations of documents including the full-text of those
documents and metadata associated with those docu-
ments;,
the database includes a full-text word index of said docu-
ments; and
wherein the server receives queries from the client and in
response to receiving each of the one or more additional
characters in the lengthening query string
recognizes the lengthening query string while it is being
formed at an input field as an increasingly focused
query string from the client, said query string being
any of the first letters of one or more indexed words
with optional Boolean search operators, and
as the query string is being extended, applies the query
string against the database, and
asynchronously returns, while the lengthening query
string is being formed at the client, increasingly
appropriate document locations to the client within
the user session.
18. A system for suggesting database records or content in
response to a search request being formed, comprising:
a server configured to receive search requests from clients
for content, wherein the server includes a unified query
and result cache that stores in common previously
received search requests from clients to retrieve content;
a database of content information coupled to the server;
a communication protocol that provides an asynchronous
connection between each of a plurality of clients and the
server, and allows each client to send, as part of a user
session, a plurality of consecutive query strings to query
the server for content, wherein each of the plurality of
queries form a lengthening query string for retrieving
content from the database, and wherein each subsequent
one of the plurality of queries extends the lengthening
query string by one or more additional characters; and
wherein the server, upon receiving a search request for
content from a requesting client
recognizes the lengthening query string while it is being,
formed at an input field as an increasingly focused
query,

matches the increasingly focused query string initially
against the previously determined results stored in the
unified query cache at the server, and subsequently, if
no matching cache entry was found, against the data-
base, while the lengthening query string is being
formed at the client, and as the increasingly focused
query is being extended, and

suggests increasingly appropriate content or search cri-
teria to the requesting client, for further use by the
client within the same user session to further define
the search request.

10

20

30

[V

0

46

19. A method of suggesting database records or content in
response to a search request being formed, comprising the
steps of:
providing a server configured to receive search requests
from clients for content, wherein the server includes a
unified query cache that stores in common previously
received search requests from clients to retrieve content;

providing a database of content information coupled to the
server;

accepting at the server requests from a client, via a com-

munication protocol that provides an asynchronous con-
nection between each of a plurality of clients and the
server, and allows each client to send, as part of a user
session, a plurality of consecutive query strings to query
the server for content, wherein each of the plurality of
queries form a lengthening query string for retrieving
content from the database, and wherein each subsequent
one of the plurality of queries extends the lengthening
query string by one or more additional characters,
including upon receiving a search request for content
from a requesting client,
recognizing the lengthening
being formed at aa input
focused query,
matching the increasingly focused query string initially
against the previously determined results stored in the
unified query cache at the server, and subsequently, if
no matching cache entry was found, against the data-
base, while the lengthening query string is being
formed at the client, and as the increasingly focused ~
query is being extended, and
suggesting increasingly appropriate content or search
criteria to the requesting client, for further use by the
client within the same user session to further define
the search request.

20. A non-transitory computer readable storage medium
including instructions stored thereon, which when read and
executed by one or more computers cause the computers to
perform the steps comprising:

providinga communication protocol that provides anasyn-

chronous connection between each of a plurality of chi-
ents and a server, and allows each client to send, as part
of a user session, a plurality of consecutive query strings
to query the server for content;

transmitting from a requesting client of the plurality of

clients to the server within the user session a plurality of
queries to retrieve content from the server, wherein each
of the plurality of queries are consecutive and form a
lengthening query string for retrieving content from the
server, and wherein each subsequent one of the plurality
of queries extends the lengthening query string by one or
more additional characters; and

receiving at the server queries from the client, wherein the

server is configured to access one or more content
sources that store content and that can be accessed by the
server to respond to the queries from the clients, wherein
the server further includes a unified query and result
cache common fo the plurality of clients and that stores
previously determined results from the content sources,
and in response to receiving each of the one or more
additional characters in the lengthening query string
recognizing the lengthening query string while it is
being formed at an input field as an increasingly
focused query,
automatically matching the increasingly focused query
string both

query string while it is
field as an increasingly

US 7,752,326 B2

47 48
initially by matching the query string agaiost the pre- asynchronously returning, while the lengthening query
viously determined results stored in the unified string is being formed at the requesting client, increas-
query cache at the server, and ingly relevant content 10 the client, for further use by
subsequently, if no matching cache entry was found, the client within the user session.
by matching the query string against the content 5
* * * ¥ K

sources as retrieved by the server, and

