
EXHIBIT A

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 1 of 57 PageID #: 14

EXHIBIT A

PersonalWeb Technologies LLC v. Google, Inc. et al Doc. 1 Att. 10

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/3:2013cv04113/269829/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2013cv04113/269829/1/10.html
http://dockets.justia.com/

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 2 of 57 PageID #: 15

United States Patent [19]

Farber et ai.

[54] DATA PROCESSING SYSTEM USING
SUBSTANTIALLY UNIQUE IDENTIFIERS TO
IDENTIFY DATA ITEMS, WHEREBY
IDENTICAL DATA ITEMS HAVE THE SAME
IDENTIFIERS

[75] Inventors: David A. Farber, Ojai, Calif.; Ronald
D. Lachman, Northbrook, Ill.

[73] Assignee: Kinetech, Inc., Northbrook, Ill.

[21] Appl. No.: 08/960,079

[22] Filed: Oct. 24, 1997

Related U.S. Application Data

[63] Continuation of application No. 08/425,160, Apr. 11, 1995,
abandoned.

[51]
[52]
[58]

[56]

Int. CI. 6
.. G06F 17/30

U.S. CI. 707/2; 707/1; 707/200
Field of Search 707/2, 1,200

3,668,647
4,215,402
4,290,105
4,376,299
4,405,829
4,412,285
4,414,624
4,441,155
4,464,713
4,490,782
4,571,700
4,577,293
4,642,793
4,675,810
4,691,299
4,725,945
4,773,039
4,887,235
4,888,681

References Cited

U.S. PATENT DOCUMENTS

6/1972 Evangelisti et al. 340/172.5
7/1980 Mitchell et al. 364/200
9/1981 Cichelli et al. 364/200
3/1983 Rivest 364/900
9/1983 Rivest et al. 178/22.1

10/1983 Neches et al. 364/200
11/1983 Summer, Jr. et al. 364/200
4/1984 Fletcher et al. 364/200
8/1984 Benhase et al. 364/200

12/1984 Dixon et al. 364/200
2/1986 Emry, Jr. et al. 364/900
3/1986 Matick et al. 365/189
2/1987 Meaden 364/900
6/1987 Gruner et al. 364/200
9/1987 Rivest et al. 365/185
2/1988 Kronstadt et al. 364/200
9/1988 Zamora 364/900

12/1989 Holloway et al. 364/900
12/1989 Barnes et al. 364/200

111111 111
US005978791A

[11] Patent Number:

[45] Date of Patent:

5,978,791
Nov. 2, 1999

4,922,414
4,972,367
5,007,658
5,025,421
5,050,074
5,050,212
5,057,837
5,129,081
5,129,082
5,144,667
5,179,680
5,202,982
5,208,858
5,276,901
5,301,286
5,301,316
5,343,527
5,357,623
5,384,565
5,404,508

5/1990 Holloway et al. 364/200
11/1990 Burke 364/900
4/1991 Bendert et al. 395/600
6/1991 Cho 365/230.05
9/1991 Marca 364/200
9/1991 Dyson 380/25

10/1991 Colwell et al. 341/55
7/1992 Kobayashi et al. 395/600
7/1992 Tirling et al. 395/600
9/1992 Pogue, Jr. et al. 380/45
1/1993 Colwell et al. 395/425
4/1993 Gramlich et al. 395/600
5/1993 Vollert et al. 380/43
1/1994 Howell et al. 395/800
4/1994 Rajani 395/400
4/1994 Hamilton et al. 395/600
8/1994 Moore ... 380/4

10/1994 Megory-Cohen 395/425
1/1995 Cannon 340/825.44
4/1995 Konrad et al. 395/600

OTHER PUBLICATIONS

Witold Litwin et ai, Linear Hashing for Distributed Files,
ACM SIGMOD, May, 1993 pp. 327-336.
Ming-Ling Lo, et ai, On Optimal Processor Allocation to
Support Pipelined Hash loins, ACM SIGMOD, pp. 69-78,
May 1993.
Thomas A. Berson, Differential Cryptanalysis Mod 232 with
Applications to MD5, pp. 69-81, 1992.

(List continued on next page.)

Primary Examiner-Paul V. Kulik
Assistant Examiner-lean R. Homere
Attorney, Agent, or Firm-Pillsbury Madison & Sutro LLP

[57] ABSTRACT

In a data processing system, a mechanism identifies data
items by substantially unique identifiers which depend on all
of the data in the data items and only on the data in the data
items. The system also determines whether a particular data
item is present in the database by examining the identifiers
of the plurality of data items.

=_:r--_-
102

I"'l
~
["126l
L":':J
["126l
~
["126l
L-J
["126l
~

48 Claims, 31 Drawing Sheets

MEMORY

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 3 of 57 PageID #: 16

5,978,791
Page 2

OlliER PUBLICATIONS

William Perrizo, et aI., Distributed Join Processing Perfor­
mance Evaluation, 1994. Twenty-Seventh Hawaii Interna­
tional Conference on System Sciences, vol. II, pp. 236-244.
A concurrency Control Mechanism based on Extendible
Hashing for Main Memory Database Systems, Vijay Kumar,
pp. 109-113, ACM, vol. 3, 1989.
Birgit Pfitzmann, Sorting Out Signature Schemes, Nov.
1993, 1st Conf. Computer & Comm. Security '93 pp. 74-85.
Bert dem Boer, et aI., Collisions for the compression func­
tion of MDs pp. 292-304, 1994.
Sakti Pramanik, et aI., Multi-Directory Hashing, 1993, Info.
Sys., vol. 18, No.1, pp. 63-74.
Murlidhar Koushik, Dynamic Hashing With Distributed
Overflow Space: A File Organization With Good Insertion
Performance, 1993, Info. Sys., vol. 18, No.5, pp. 299-317.
Witold Litwin, et aI., LH*-Linear Hashing for Distributed
Files, HP Labs Tech. Report No. HPL-93-21 Jun. 1993 pp.
1-22.
Yuliang Zheng, et aI., HAVAL - A One-Way Hashing
Algorithm with Variable Length of Output (Extended
Abstract), pp. 83-105, Advances in Cryptology, AUSCRIPT
'92,1992.

Chris Charnes and Josef Pieprzky, Linear Nonequivalence
versus Nonlinearity, Pieprzky, pp. 156-164, 1993.

Zhiyu Tian, et aI., A New Hashing Function: Statistical
Behaviour and Algorithm, pp. 3-13, SIGIR Forum, 1993.

G. L. Friedman, Digital Camera With Apparatus For
Authentication of Images Produced From an Image File,
NASA Case No. NPO-19108-1-CU, Serial No. 08/159,980,
Nov. 24, 1993.
H. Goodman, Feb. 9, 1994 Ada, Object-Oriented Tech­
niques, and Concurrency in Teaching Data Sructures and
File Management Report Documentation P. AD-A275
385 - 94-04277.

Advances in Cryptology-EUROCRYPT '93, Workshop on
the Theory and Application of Cryptographic Techniques
Lofthus, Norway, May 23-27, 1993 Proceedings.

Proceedings of the 1993 ACM SIGMOD International Con­
ference on Management of Data, vol. 22, Issue 2, Jun. 1993.

Advances in Cryptology-AUSCRYPT '92 - Workshop on
the Theory and Application of Cryptographic Techniques
Gold Coast, Queensland, Australia Dec. 13-16, 1992 Pro­
ceedings.

Search Report dated Jun. 24, 1996.

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 4 of 57 PageID #: 17

u.s. Patent Nov. 2, 1999 Sheet 1 of 31 5,978,791

0 0::
0r- O

CI)

N CI)

~ 0 W ,... 0 0 0 CI) 0::
N CI) a.
0 w ,... (.)

0
~
a.

• I

•
•

I

c O::!
0
CI) - N CJ)

0 W .
(!) -lL.

,... 0 I

0

I 0:::
a. ,

0::

'W
0
CI)

N CI)
(!)W 0 W

~ ~~ ,... (.)
0 ~ 0 fij ~

1- 0 a.
)CI)

•
• 0::
• 0

CJ)

N CJ)

f\ 0 w ,... (.)
0 ~w 0::

~ ~ g a.
~I ~ 0 £ij

1-0
\) CI)

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 5 of 57 PageID #: 18

u.s. Patent Nov. 2, 1999 Sheet 2 of 31 5,978,791

r---- ---l
I I

: I
I I
I I
I I
I ~ I
I L'- I
I C) I

i ~ I~ ~ II~ ~ II~ ~ II~ ~ II~ ~ I I

I

H
I I

IC\J
10
I
I
I
I
I
I
I
I
I

o
.......

~w 00::: [JI- [JI- 81- E]...l C\I 0 C\I U. C\I 0::: «') CJ) ('<)...l LO (!)
..-...l 1-..- ..- ..- ..-

I
I I ..q t
I~ ~ I
IC) ~ I
I CJ) /\ I
I CJ) W I
I W .J(!)W I
t U co :J C\I .~ <2:: ~ t

: ~ ~ ~ ~ ~~ ~ fij :
I 0.. ,u I- C I

I \} CJ) I
I L: L ___ J

.
(!)

lL.

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 6 of 57 P

ageID
 #: 19

FILE
SYSTEM

I
I 117 I 117 I

REGION REGION • • • REGION

I
118 118

DIRECTORY DIRECTORY •••

1

(FILE FILE)

I 122 12~

SEGMENT SEGMENT

~

r117 I
REGION

118

DIRECTORY

l FILE

I
SEGMENT

'--

d •
rJl •
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
~

o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 7 of 57 PageID #: 20

u.s. Patent Nov. 2, 1999 Sheet 4 of 31 5,978,791

FIG.3 138

Region ID

Pathname

True Name

Type

File ID

Time of last access

Time of last modification

Safe flag

Lock flaq

Size

Owner

FIG.4
140

True Name

File ID

Compressed File ID

Source IDs

Dependent processors

Use count

Time of last access

Expiration

Grooming delete count

142

Reqion ID

Reqion file system

Reqion pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG.5

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 8 of 57 P

ageID
 #: 21

FIG.6

FIG. 7

FIG.8

FIG.9

source ID

source type

source rights

source availability

source location

Original Name

Operation

Type

Processor ID

Timestamp

Pathname

True Name

144

146

148 l::::: :::~ ----
True Name

150

I T~e Name
l~censee

d
•
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
Ul
o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 9 of 57 PageID #: 22

u.s. Patent Nov. 2, 1999 Sheet 6 of 31

FIG. 10(0)

I

I
I

,
I
\
\
\

\

",

,
....

SIMPL
DATA ITEM

-------------- ---------------

S212
COMPUTE MD FUNCTION ON

DATA ITEM

S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

TRUE NAME

~

5,978,791

\

I ,.

\

\ ,

,
I

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 10 of 57 PageID #: 23

u.s. Patent

_YES

r
I ~ - - - - -82 f8- - --- '\
r ,

r '
, COMPUTE TRUE : ,
, NAME OF SIMPLE : ,
: DATA ITEM :

I
/ ------

Nov. 2, 1999

8216
DATA ITEM

SIMPLE?

Sheet 7 of 31 5,978,791

0 __ ...,

FIG. IO(b)

S220
PARTITION DATA ITEM INTO

SEGMENTS

S222
ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

S224
CREATE INDIRECT BLOCK OF

SEGMENT TRUE NAMES

8226
ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

S228
REPLACE FINAL 32 BITS OF TRUE

NAME WITH LENGHT MOD 32 OF DATA
ITEM

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 11 of 57 P

ageID
 #: 24

FI G. II

..
8236

* CREATE NEW ENTRY
* SET USE COUNT TO 1
* STORE FILE 10
* SET OTHER FIELDS

...

a---/"

8230
DETERMINE
TRUE NAME

---- _- -_ .. ,. __ _ _I. _ ",-YES

8238

DELETE FILE 10
8239

STORE FILE ID

d •
rJl •
~
~
~ =

z
0
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
00
o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 12 of 57 PageID #: 25

u.s. Patent

NO

Nov. 2, 1999 Sheet 9 of 31 5,978,791

FIG.12

YES
S240

UPDATE
DEPENDENCY

LIST

S242

SEND MESSAGE TO
~--------------~ CACHESERVERTO

S244
COMPRESS
(IF DESIRED)

8246
MIRROR

(IF DESIRED)

UPDATE CACHE

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 13 of 57 PageID #: 26

u.s. Patent Nov. 2,1999 Sheet 10 of 31 5,978,791

FIG.13

8250
SEARCH FOR

THE
PATH NAME

FOUND

S258

ASSIMILATE
FILE 10

FAIL

S256
FREEZE

DIRECTORY

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 14 of 57 PageID #: 27

u.s. Patent Nov. 2, 1999

8260

CONFIRM THAT
TRUE NAME

EXISTS LOCALLY

8262
SEARCH FOR
PATHNAME IN

LDETABLE

8264

CONFIRM THAT
DIRECTORY

EXISTS

NO

8270
CREATE

ENTRY IN LDE
& UPDATE

Sheet 11 of 31

FIG.14

YES

5,978,791

S268
DELETE

TRUE FILE

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 15 of 57 P

ageID
 #: 28

S278
REQUEST

MOUNT

S280

FIND FILE

NO ./ YES

NEGATIVE
RESPONSE

FAIL

S282
VERIFY TRUE

S274
SEND RTF

MESSAGE &
WAIT FOR
RESPONSE

POSITIVE
RESPONSE

S276
ENTER TRUE FILE
RETURNED INTO

TFR

l----------.-t-.I FILE (IF ... I I---------J

FIG.15
DESIRED)

~ •
rJJ. •
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
'""'" N
o,
~

'""'"

Ol
\C
~ oe
~
\C
~

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 16 of 57 PageID #: 29

u.s. Patent Nov. 2,1999

...J «
11.

~~

o

Sheet 13 of 31

"" C
"'"' <.0 -•
(!) -LL

CIJ
I-

I-CIJ
z<
w O
_0 ...J<
00

0::
m

LU
~C/) I­
i=:~ ::;:, L-____________________________ ~ 0 --0

ll. LU
ffifact~
<::ctO~

I-CIJ
ZI-w--<
(33:

5,978,791

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 17 of 57 P

ageID
 #: 30

FIG. 16(b)

S290

STORE
PROCESSOR ID

S291c
SEND MESSAGE TO
RESERVE TRUE FILE

ON SOURCE
PROCESSOR

S290B
LOOK UP TFR FOR
TRUE NAME & ADD

SOURCE LOCATION ID
TO SOURCE IDS FOR

TRUE NAME

S290C

0 ~

S291d

~
OURCE IS ->- -1 DETERMINE

o PUBLISHING YES EXPIRATION DATE
SYSTEM? .. AND ADD TO LIST

~

d
•
rJl
•
~
~
~ =

Z
0
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
'""'" ~
o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 18 of 57 PageID #: 31

u.s. Patent Nov. 2,1999 Sheet 15 of 31 5,978,791

(J)
(J)

w w
~ ..J Z co a..

~ 0 0)

:is c N en 0
0 w
c

0 fa z).: fa
);;

0
0
<::

<::

-•
(!) -

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 19 of 57 PageID #: 32

u.s. Patent Nov. 2,1999 Sheet 16 of 31 5,978,791

I

I c - W i 0 W 0 0:::: ... Z
r -~ ('C')

0
~ 0

CI) C , l-
I en
I

- •
(!) -l.L

W en ::J~Ci)

N>-O:::: 1- 9 0:::: 0 -
"¢ ow CD I-o::::w

o~w 0 wo 0 wu..° ('C')I-en ('C') ..JO:::: ('C')
~w!5 Cl)O::J CI) CI)

W::J ..J..J0 Z eno l5U::en en
0::::

llJ9
f3 >:

tt llJ
0<">
::s!5
00 <:(1)

W
..J

co ~u::
0 c:(W ('C') 0'" CI) 00

..J~
W
0::::

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 20 of 57 P

ageID
 #: 33

8320

DELETE
TRUE FILE

CREATENSW I~~~ ______ ~
seRA TCH FILE

DONE

,--YES,

8322
MAKE TRUE
FILE LOCAL

FIG.18{c)

YEs{;;]

d
•
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
'""'" -..J
o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 21 of 57 P

ageID
 #: 34

--- - -r-- - ----

0 / USE COUNT """ YES

FIG.18(b)
..... .-

S330
COpy FILE TO NEW S328
FILE, STORE FILE 10 SAVE FILE 10 &

IN LDE TABLE, REMOVETFR
DECREMENT USE ENTRY

COUNT

d •
rJl •
~
~
~ =

z
0
~
~N

'""'" \C
\C
\C

'JJ.

=-~
~
'""'" 00

0,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 22 of 57 P

ageID
 #: 35

f

..
S332

INCREMENT
FREEZE LOCK

y-

FOR EACH
SUBORDINATE

FILE AND
DIRECTORY IN THE
GIVEN DIRECTORY
\)

..
S337

CREATE NEW
DATA ITEM

___ I-_

FIG. 19(0)

~

""'" i

S334 H S336
r-----I~~I FREEZE IF ASSIMILATE

DIRECTORY UNASSIMILATED
FILE

d
•
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
'""'" \C
o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 23 of 57 P

ageID
 #: 36

/
~

~

~

8338 FOR EACH
SUBORDINATE

FILE AND
DIRECTORY IN THE
GIVEN DIRECTORY

J

I
ADD ENTRY TO I I

.---~~~ NEWDATA ~

~
S342

ASSIMILATE THE
NEW DATA ITEM

• S344
DECREMENT
THE FREEZE

LOCK

...

ITEM

FIG.19(b)

1
8340

RECORD
ADDITIONAL

DESIRED
INFORMATION

d
•
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
N
C
o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 24 of 57 P

ageID
 #: 37

~.
FIG. 20

S346
MAKE TRUE
FILE LOCAL

~,.

~ S353 ""\ r 8354) NO MORE
L_DONE~ ENTruES

FOR EACH MORE
DIRECTORY t-ENTRIES ~

ENTRY
\

.4~

S348
READ

DIRECTORY

+ S350

CREATE FULL
PATHNAME

• S352

LINK PATH TO
TRUE NAME

d •
rJl •
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
N

'""'" o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 25 of 57 PageID #: 38

u.s. Patent Nov. 2,1999

S354
WAIT FOR

FREEZE LOCK
TO TURN OFF

S356
FINDTFR

ENTRY

S358
DECREMENT
REFERENCE

COUNT

NO

Sheet 22 of 31 5,978,791

FIG.21

YES S362
DELETE

TRUE FILE

S364

REMOVE FILE 10
AND COMPRESSED

FILE to

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 26 of 57 PageID #: 39

u.s. Patent Nov. 2,1999 Sheet 23 of 31

S365
GET

OPERATION

FIG. 22

">--_YES _____ ~

S379
FOR EACH PARENT

DIRECTORY OR FILE,
UPDATE USE COUNT,

LAST ACCESS AND
MODIFY TIMES

~_YES

S378

MODIFY USE
COUNT OF EACH

COMPONENT

5,978,791

S368

ASSIMILATE

S369
NEW TRUE

FILE

S370
RECORD TRUE
NAME IN AUDIT

FILE

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 27 of 57 PageID #: 40

u.s. Patent Nov. 2,1999

FIG. 23

Sheet 24 of 31

."

8382
VERIFY

GROOMING
LOCK OFF

5,978,791

S384
SET

GROOMING
LOCK

."
S386

SET GROOM
COUNTS

."

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 28 of 57 PageID #: 41

u.s. Patent Nov. 2,1999

S388
FIND LDE
RECORD

."
S390

FIND TFR
RECORD

S392

INCREMENT
GROOMING

DELETE COUNT

."

S394
ADJUST FILE

SIZES

Sheet 25 of 31 5,978,791

FIG. 24

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 29 of 57 PageID #: 42

u.s. Patent Nov. 2,1999 Sheet 26 of 31 5,978,791

FIG. 25

S396
DELETE

FILE

S398
UNLOCK

GROOMING
LOCK

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 30 of 57 P

ageID
 #: 43

~ _____ NO c

8404
O~ PROHIBIT

OPEN

FIG. 26(0)
YES ____ ---,

8408
DETERMINE

REGION

YES

8422
PROHIBIT

OPEN

YES

YES_

----- .

d
•
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=-~
~
N
-..J
0,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 31 of 57 P

ageID
 #: 44

~ERASEFILE

S406

CREATE
SCRATCH FILE

YES

..I", I LOCK IF NOT

S424

LOCKED

'--"10 __ --,

S417
CREATE

SCRATCH
COpy

RETURN ,
SCRATCH FILE 1-' ~

ID

FIG.26(b)

~-

..
5420

MAKE LOCAL
VERSION &

RETURN FILE ID
FROMTFR

..

d •
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
N
00

o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 32 of 57 P

ageID
 #: 45

d •
rJl •
~
~ S422
~ = DETERMINE LDE &

RTENTRY
RECORDS FOR

FILE

z
0
~
N
~

'""'" \C
\C
\C

~ PROHIBIT
DELETION

'JJ.

=-~
~
N
\C

N°O 0,
~

'""'"
Y

8424
IDENTIFY TRUE

FILE FROM TRUE I
FIG. 27(0) Ul

NAME
....
\C
-.....l
00
-.....l Y
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 33 of 57 P

ageID
 #: 46

") YES

S430

DELETE
TRUE FILE

) NO ___ --.

S427
DELETE

SCRATCH COPY
OF FILE

8431 I I S428
REDUCE USE ~ ~ ADD ENTRY TO

COUNT BY ONE AUDIT FILE

FIG. 27(b)

d
•
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=­~
~
~ c
o,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

C
ase 6:11-cv-00656 D

ocum
ent 1-2 F

iled 12/08/11 P
age 34 of 57 P

ageID
 #: 47

S444
POSITIVE

RESPONSE

YES

S432

LOOKUP
TRUE NAME

NO

FIG. 28

~ FO~;RD ~YES~EQUESTTO 80
REQUEST FORWARDED?

NEGATIVE
RESPONSE

d
•
rJl
•
~
~
~ =

z
o
~
~N

'""'" \C
\C
\C

'JJ.

=-~
~
~

'""'"
0,
~

'""'"

Ul
\C
""-l
00
""-l
\C
~

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 35 of 57 PageID #: 48

5,978,791
1

DATA PROCESSING SYSTEM USING
SUBSTANTIALLY UNIQUE IDENTIFIERS TO

IDENTIFY DATA ITEMS, WHEREBY
IDENTICAL DATA ITEMS HAVE THE SAME

IDENTIFIERS

This is a continuation of application Ser. No. 08/425,160,
filed on Apr. 11, 1995, which was abandoned upon the filing
hereof.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and,
more particularly, to data processing systems wherein data
items are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the
data in the data items.

2. Background of the Invention

Data processing (DP) systems, computers, networks of
computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a
typical operating system (OS) on a computer provides a file
system in which data items are named by alphanumeric
identifiers. Programs typically identify data in the data
processing system using a location or address. For example,
a program may identify a record in a file or database by using
a record number which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able to create and use collections of named
data items, these collections themselves being named by
identifiers. These named collections can then, themselves,

2
object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a par­
ticular file name can only be determined when the directory

5 containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
(context) is known. Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are

10 meaningful only because they are specified relative to a
context.

In prior art systems for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to

15 different data items, and two different data names in the
same context may refer to the same data item.

In addition, because there is no correlation between a data
name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a

20 data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in
general, verify that the data delivered is the correct data
(given only the name). Therefore it may require further

25 processing, typically on the part of the requestor, to verify
that the data item it has obtained is, in fact, the item it
requested.

30

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi­
processing system when data items are created and identified

35 be made part of other named collections. For example, an
OS may provide mechanisms to group files (data items) into
directories (collections). These directories can then, them­
selves be made part of other directories. A data item may
thus be identified relative to these nested directories using a
sequence of names, or a so-called pathname, which defines 40

a path through the directories to a particular data item (file

at separate processors in distinct locations, and in which
there is no other need for communication when data items
are added.

In many data processing systems or environments, data
items are transferred between different locations in the
system. These locations may be processors in the data
processing system, storage devices, memory, or the like. For
example, one processor may obtain a data item from another
processor or from an external storage device, such as a

or directory).
As another example, a database management system may

group data records (data items) into tables and then group 45

these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

floppy disk, and may incorporate that data item into its
system (using the name provided with that data item).

However, when a processor (or some location) obtains a
data item from another location in the DP system, it is
possible that this obtained data item is already present in the

Other examples of identifying data items include: identi­
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

50 system (either at the location of the processor or at some
other location accessible by the processor) and therefore a
duplicate of the data item is created. This situation is
common in a network data processing environment where
proprietary software products are installed from floppy disks In general, the terms "data" and "data item" as used herein

refer to sequences of bits. Thus a data item may be the
contents of a file, a portion of a file, a page in memory, an
object in an object-oriented program, a digital message, a
digital scanned image, a part of a video or audio signal, or
any other entity which can be represented by a sequence of
bits. The term "data processing" herein refers to the pro- 60

cessing of data items, and is sometimes dependent on the
type of data item being processed. For example, a data
processor for a digital image may differ from a data pro­
cessor for an audio signal.

55 onto several processors sharing a common file server. In
these systems, it is often the case that the same product will
be installed on several systems, so that several copies of
each file will reside on the common file server.

In all of the prior data processing systems the names or 65

identifiers provided to identify data items (the data items
being files, directories, records in the database, objects in

In some data processing systems in which several pro­
cessors are connected in a network, one system is designated
as a cache server to maintain master copies of data items,
and other systems are designated as cache clients to copy
local copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache client
must either reload the cached item, be informed of changes
to the cached item, or confirm that the master item corre­
sponding to the cached item has not changed. In other words,

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 36 of 57 PageID #: 49

5,978,791
3 4

the system provides the size, age, and location of groups
of data items in order to decide whether they can be safely
removed from a local file system;

a cache client must synchronize its data items with those on
the cache server. This synchronization may involve reload­
ing data items onto the cache client. The need to keep the
cache synchronized or reload it adds significant overhead to
existing caching mechanisms.

the system can efficiently record and preserve any col-
5 lection of data items;

In view of the above and other problems with prior art
systems, it is therefore desirable to have a mechanism which
allows each processor in a multiprocessor system to deter­
mine a common and substantially unique identifier for a data
item, using only the data in the data item and not relying on 10

any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification of
identical data items so as to reduce multiple copies. It is 15

further desirable to determine whether two instances of a

the system can efficiently make a copy of any collection
of data items, to support a version control mechanism for
groups of the data items;

the system can publish data items, allowing other, possi­
bly anonymous, systems in a network to gain access to the
data items and to rely on the availability of the data items;

the system can maintain a local inventory of all the data
items located on a given removable medium, such as a
diskette or CD-ROM, the inventory is independent of other
properties of the data items such as their name, location, and
date of creation;

data item are in fact the same data item, and to perform
various other systems' functions and applications on data
items without relying on any context information or prop­
erties of the data item.

It is also desirable to provide such a mechanism in such

the system allows closely related sets of data items, such
as matching or corresponding directories on disconnected

20 computers, to be periodically resynchronized with one
another;

a way as to make it transparent to users of the data
processing system, and it is desirable that a single mecha­
nism be used to address each of the problems described 25

above.

SUMMARY OF THE INVENTION

the system can verify that data retrieved from another
location is the desired or requested data, using only the data
identifier used to retrieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items, for
purposes of later legal verification and to provide anonym-
ity; This invention provides, in a data processing system, a

method and apparatus for identifying a data item in the
system, where the identity of the data item depends on all of
the data in the data item and only on the data in the data item.
Thus the identity of a data item is independent of its name,
origin, location, address, or other information not derivable
directly from the data, and depends only on the data itself. 35

30 the system tracks possession of specific data items accord-
ing to content by owner, independent of the name, date, or
other properties of the data item, and tracks the uses of
specific data items and files by content for accounting

This invention further provides an apparatus and a method
for determining whether a particular data item is present in
the system or at a location in the system, by examining only
the data identities of a plurality of data items.

Using the method or apparatus of the present invention,
the efficiency and integrity of a data processing system can
be improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a
plurality of data items, by making possible or improving the
design and operation of at least some or all of the following
features:

the system stores at most one copy of any data item at a
given location, even when multiple data names in the system
refer to the same contents;

the system avoids copying data from source to destination
locations when the destination locations already have the
data;

purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions
of the related elements of structure, and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description

40 and the appended claims with reference to the accompany­
ing drawings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. l(a) and l(b) depicts a typical data processing
45 system in which a preferred embodiment of the present

invention operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

50 FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(a)-28 are flow charts depicting operation of
various aspects of the present invention.

the system provides transparent access to any data item by
reference only to its identity and independent of its present 55

location, whether it be local, remote, or offline;

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY

EMBODIMENTS

the system caches data items from a server, so that only
the most recently accessed data items need be retained;

when the system is being used to cache data items, 60

problems of maintaining cache consistency are avoided;

An embodiment of the present invention is now described
with reference to a typical data processing system 100,
which, with reference to FIGS. l(a) and l(b), includes one
or more processors (or computers) 102 and various storage
devices 104 connected in some way, for example by a bus
106.

the system maintains a desired level of redundancy of data
items in a network of servers, to protect against failure by
ensuring that multiple copies of the data items are present at
different locations in the system;

the system automatically archives data items as they are
created or modified;

Each processor 102 includes a CPU 108, a memory 110
65 and one or more local storage devices 112. The CPU 108,

memory 110, and local storage device 112 may be internally
connected, for example by a bus 114. Each processor 102

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 37 of 57 PageID #: 50

5,978,791
5

may also include other devices (not shown), such as a
keyboard, a display, a printer, and the like.

6
processor, a storage device, a removable storage medium
(such as a floppy disk or compact disk), or any other physical
location in the system. The term "local" with respect to a
particular processor 102 refers to the memory and storage

5 devices of that particular processor.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server,
client/client, or a server/server relationship. These inter­
processor relationships may be dynamic, changing depend­
ing on particular situations and functions. Thus, a particular
processor 102 may change its relationship to other proces- 10

sors as needed, essentially setting up a peer-to-peer relation­
ship with other processors. In a peer-to-peer relationship,
sometimes a particular processor 102 acts as a client
processor, whereas at other times the same processor acts as
a server processor. In other words, there is no hierarchy 15

imposed on or required of processors 102.
In a multiprocessor system, the processors 102 may be

homogeneous or heterogeneous. Further, in a multiprocessor
data processing system 100, some or all of the processors
102 may be disconnected from the network of processors for 20

periods of time. Such disconnection may be part of the
normal operation of the system 100 or it may be because a
particular processor 102 is in need of repair.

Within a data processing system 100, the data may be
organized to form a hierarchy of data storage elements, 25

wherein lower level data storage elements are combined to
form higher level elements. This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, segments, and the like. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be 30

organized or structured as a file system 116 which comprises
regions 117, each of which comprises directories 118, each
of which can contain other directories 118 or files 120. Each
file 120 being made up of one or more data segments 122.

In a typical data processing system, some or all of these
elements can be named by users given certain implementa­
tion specific naming conventions, the name (or pathname) of

35

an element being relative to a context. In the context of a
data processing system 100, a pathname is fully specified by 40

a processor name, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this
case segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of 45

directories 118. A directory 118 is a collection of named files
120---both data files 120 and other directory files 118. A file
120 is a named data item which is either a data file (which
may be simple or compound) or a directory file 118. A
simple file 120 consists of a single data segment 122. A 50

compound file 120 consists of a sequence of data segments
122. A data segment 122 is a fixed sequence of bytes. An
important property of any data segment is its size, the
number of bytes in the sequence.

A single processor 102 may access one or more file 55

systems 116, and a single storage device 104 may contain
one or more file systems 116, or portions of a file system 116.
For instance, a file system 116 may span several storage
devices 104.

In order to implement controls in a file system, file system 60

116 may be divided into distinct regions, where each region
is a unit of management and control. A region consists of a
given directory 118 and is identified by the pathname (user
defined) of the directory.

In the following, the term "location", with respect to a 65

data processing system 100, refers to any of a particular
processor 102 in the system, a memory of a particular

In the following, the terms "True Name", "data identity"
and "data identifier" refer to the substantially unique data
identifier for a particular data item. The term "True File"
refers to the actual file, segment, or data item identified by
a True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing oper­
ating system by augmenting some of the operating system's
file management system codes. The embodiment provided
relies on the standard file management primitives for actu­
ally storing to and retrieving data items from disk, but uses
the mechanisms of the present invention to reference and
access those data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories:
primitive mechanisms, operating system mechanisms,
remote mechanisms, background mechanisms, and extended
mechanisms.

Primitive mechanisms provide fundamental capabilities
used to support other mechanisms. The following primitive
mechanisms are described:

1. Calculate True Name;

2. Assimilate Data Item;

3. New True File;

4. Get True Name from Path;

5. Link path to True Name;

6. Realize True File from Location;

7. Locate Remote File;

8. Make True File Local;
9. Create Scratch File;
10. Freeze Directory;
11. Expand Frozen Directory;
12. Delete True File;
13. Process Audit File Entry;
14. Begin Grooming;
15. Select For Removal; and
16. End Grooming.
Operating system mechanisms provide typical familiar

file system mechanisms, while maintaining the data struc­
tures required to offer the mechanisms of the present inven­
tion. Operating system mechanisms are designed to augment
existing operating systems, and in this way to make the
present invention compatible with, and generally transparent
to, existing applications. The following operating system
mechanisms are described:

1. Open File;
2. Close File;
3. Read File;
4. Write File;
5. Delete File or Directory;
6. Copy File or Directory;
7. Move File or Directory;
8. Get File Status; and
9. Get Files in Directory.
Remote mechanisms are used by the operating system in

responding to requests from other processors. These mecha­
nisms enable the capabilities of the present invention in a

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 38 of 57 PageID #: 51

5,978,791
7

peer-to-peer network mode of operation.
remote mechanisms are described:

1. Locate True File;

The following
8

100. However, they can also be shared by placing them on
a remote, shared file server (for instance, in a local area
network of machines). In order to accommodate sharing data
structures, it is necessary that the processors accessing the 2. Reserve True File;

3. Request True File;
4. Retire True File;
5. Cancel Reservation;

5 shared database use the appropriate locking techniques to
ensure that changes to the shared database do not interfere
with one another but are appropriately serialized. These
locking techniques are well understood by ordinarily skilled

6. Acquire True File;
7. Lock Cache;
8. Update Cache; and
9. Check Expiration Date.

10

programmers of distributed applications.
It is sometimes desirable to allow some regions to be local

to a particular processor 102 and other regions to be shared
among processors 102. (Recall that a region is a unit of file
system management and control consisting of a given direc­
tory identified by the pathname of the directory.) In the case

Background mechanisms are intended to run occasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The fol­
lowing background mechanisms are described:

1. Mirror True File;
2. Groom Region;

15 of local and shared regions, there would be both local and
shared versions of each data structure. Simple changes to the
processes described below must be made to ensure that
appropriate data structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
3. Check for Expired Links; and
4. Verify Region; and
5. Groom Source List.

20 structure which provides information about files 120 and
directories 118 in the data processing system 100. The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu­
tions to specific problems and applications. The following 25

extended mechanisms are described:
1. Inventory Existing Directory;
2. Inventory Removable, Read-only Files;

local directory extension table 124 is in addition to that
provided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for listing
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File 3. Synchronize directories;

4. Publish Region;
5. Retire Directory;
6. Realize Directory at location;
7. Verify True File;

30 registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores
location, dependency, and migration information about True
Files.

8. Track for accounting purposes; and 35

9. Track for licensing purposes.
The file system herein described maintains sufficient

information to provide a variety of mechanisms not ordi­
narily offered by an operating system, some of which are
listed and described here. Various processing performed by 40

this embodiment of the present invention will now be
described in greater detail.

The region table (RT) 128 defines areas in the network
storage which are to be managed separately. Region table
128 defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The
source table 130 includes removable volumes and remote
processors.

The audit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, these changes to
be processed in background.

In some embodiments, some files 120 in a data processing
system 100 do not have True Names because they have been
recently received or created or modified, and thus their True 45

Names have not yet been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have a
user provided name.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of

50 their name or location.
Some of the processing performed by the present inven­

tion can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to
determine information that is not immediately required by
the system or which may never be required. As an example, 55

in some cases a scratch file is being changed at a rate greater
than the rate at which it is useful to determine its True Name.

The license table (LT) 136 is a table identifying files,
which may only be used by licensed users, in a manner
independent of their name or location, and the users licensed
to use them.

Detailed Descriptions of the Data Structures

In these cases, determining the True Name of the file can be
postponed or performed in the background.
Data Structures

The following table summarizes the fields of an local
directory extensions table entry, as illustrated by record 138

60 in FIG. 3.
The following data structures, stored in memory 110 of

one of more processors 102 are used to implement the
mechanisms described herein. The data structures can be
local to each processor 102 of the system 100, or they can
reside on only some of the processors 102. 65

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system

Field

Region ID

Pathname

Description

identifies the region in which this file is
contained.
the user provided name or contextural name

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 39 of 57 PageID #: 52

5,978,791

Field

True Name

Type

Scratch
File ID

Time of
last
access
Time of
last modi­
fication

Safe flag

Lock flag

Size

Owner

9
-continued

Description

of the file or directory, relative to the
region in which it occurs.
the computed True Name or identity of the
file or directory. This True Name is not
always up th date, and it is set to a
special value when a file is modified and
is later recomputed in the background.
indicates whether the file is a data file
or a directory.
the physical location of the file in the
file system, when no True Name has been
calculated for the file. As noted above,
such a file is called a scratch file.
the last access time to this file. If this
file is a directory, this is the last
access time to any file in the directory.
the time of last change of this file. If
this file is a directory, this is the last
modification time of any file in the
directory.
indicates that this file (and, if this file
is a directory, all of its subordinate
files) have been backed up on some other
system, and it is therefore safe to remove
them.
indicates whether a file is locked, that
is, it is being modified by the local pro­
cessor or a remote processor. Only one
processor may modify a file at a time.
the full size of this directory (including
all subordinate files), if all files in it
were fully expanded and duplicated. For a
file that is not a directory this is the
size of the actual True File.
the identity of the user who owns this
file, for accounting and license tracking
purposes.

Each record of the True File registry 126 has the fields
shown in the True File registry record 140 in FIG. 4. The
True File registry 126 consists of the database described in
the table below as well as the actual True Files identified by
the True File IDs below.

Field

True Name

Compressed
File ID

Grooming
delete count

Time of last
access
Expiration

Dependent
processors

Source IDs

True File 10

Description

computed True Name or identity of
the file.
compressed version of the True File
may be stored insteaded of, or in
addition to, an uncompressed
version. This field provides the
identity of the actual
representation of the compressed
version of the file.
tentative count of how many
references have been selected for
deletion during a grooming
operation.
most recent date and time the
content of this file was accessed.
date and time after which this file
may be deleted by this server.
processor IDs of other processors
which contain references to this
True File.
source ID(s) of zero or more
sources form which this file or
data item may be retrieved.
identity or disk location of the
actual physical representation of
the file or file segment. It is
sufficient to use a filename in the
registration directory of the

Field

5

Use count

10

10
-continued

Description

underlying operation system. The
True File ID is absent if the
actual file is not currently
present at the current location.
number of other records on this
processor which identify this True
File.

A region table 128, specified by a directory pathname,
records storage policies which allow files in the file system
to be stored, accessed and migrated in different ways.

15 Storage policies are programmed in a configurable way
using a set of rules described below.

Each region table record 142 of region table 128 includes
the fields described in the following table (with reference to

20 FIG. 5):

25

30

35

40

45

50

55

60

Field

Region ID

Region file system

Region pathname

Mirror processor(s)

Mirror duplication
count

Region status

Policy

Description

internally used identifier for this
region.
file system on the local processor of
which this region is a part.
a pathname relative to the region file
system which defines the location of
this region. The region consists of
all files and directories subordinate
to this pathname, except those in a
region subordinate to this region.
zero or more identifiers of processors
which are to keep mirror or archival
copies of all files in the current
region. Multiple mirror processors
can be defined to form a mirror group.
number of copies of each file in this
region that should be retained in a
mirror group.
specifies whether this region is local
to a single processor 102, shared by
several processors 102 (if, for
instance, it resides on a shared file
server), or managed by a remote
processor.
the migration policy to apply to this
region. A single region might
participate in several policies. The
policies are as follows (parameters in
brackets are specified as part of the
policy):
region is a cached version from
[processor 10];
region is a member of a mirror set
defined by [processor 10].
region is to be archived on
[processor 10].
region is to be backed up locally,
by placing new copies in [region
ID].
region is read only and may not be
changed.
region is published and expires on
[date].
Files in this region should be
compressed.

A source table 130 identifies a source location for True
Files. The source table 130 is also used to identify client
processors making reservations on the current processor.

65 Each source record 144 of the source table 130 includes the
fields summarized in the following table, with reference to
FIG. 6:

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 40 of 57 PageID #: 53

5,978,791

Field

source ID

source
type

source
rights

source
availability

source
location

11

Description

internal identifier used to identify a
particular source.
type of source location:
Removable Storage Volume
Local Region
Cache Server
Mirror Group Server
Cooperative Server
Publishing Server
Client
includes information about the rights
of this processor, such as whether it
can ask the local processor to store
data items for it.
measurement of the bandwidth, cost,
and reliability of the connection to
this source of True Files. The avail­
ability is used to select from among
several possible sources.
information on how the local processor
is to access the source. This may be,
for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote processor.

The audit file 132 is a table of events ordered by
timestamp, each record 146 in audit file 132 including the
fields summarized in the following table (with reference to
FIG. 7):

Field

Original Name
Operation

Type

Processor ID

Timestamp

Pathname

True Name

Description

path of the file in question.
whether the file was created, read,
written, copied or deleted.
specifies whether the source is a file
or a directory.
ID of the remote processor generating
this event (if not local).
time and date file was closed (required
only for accessed/modified files).
Name of the file (required only for
rename).
computed True Name of the file. This is
used by remote systems to mirror changes
to the directory and is filled in during
background processing.

5

Field

True Name

licensee

12

Description

True Name of a data item subject to
license validation.
identity of a user authorized to have
access to this 0 bj ect.

Various other data structures are employed on some or all
10 of the processors 102 in the data processing system 100.

Each processor 102 has a global freeze lock (GFL) 152
(FIG. 1), which is used to prevent synchronization errors
when a directory is frozen or copied. Any processor 102 may
include a special archive directory (SAD) 154 into which

15 directories may be copied for the purposes of archival. Any
processor 102 may include a special media directory (SMD)
156, into which the directories of removable volumes are
stored to form a media inventory. Each processor has a
grooming lock 158, which is set during a grooming opera-

20 tion. During this period the grooming delete count of True
File registry entries 140 is active, and no True Files should
be deleted until grooming is complete. While grooming is in
effect, grooming information includes a table of pathnames
selected for deletion, and keeps track of the amount of space

25 that would be freed if all of the files were deleted.
Primitive Mechanisms

The first of the mechanisms provided by the present
invention, primitive mechanisms, are now described. The
mechanisms described here depend on underlying data man-

30 agement mechanisms to create, copy, read, and delete data
items in the True File registry 126, as identified by a True
File ID. This support may be provided by an underlying
operating system or disk storage manager.

The following primitive mechanisms are described:
35 1. Calculate True Name;

2. Assimilate Data Item;
3. New True File;
4. Get True Name from Path;

40 5. Link Path to True Name;
6. Realize True File from Location;
7. Locate Remote File;
8. Make True File Local;

45 9. Create Scratch File;
10. Freeze Directory;

Each record 148 of the accounting log 134 records an
event which may later be used to provide information for
billing mechanisms. Each accounting log entry record 148
includes at least the information summarized in the follow- 50

ing table, with reference to FIG. 8:

11. Expand Frozen Directory;
12. Delete True File;
13. Process Audit File Entry;
14. Begin Grooming;
15. Select For Removal; and

Field

date of
entry
type of
entry

Description

date and time of this log entry.

Entry types include create file,
delete file, and transmit file.

55

16. End Grooming.
1. Calculate True Name

A True Name is computed using a function, MD, which
reduces a data block B of arbitrary length to a relatively
small, fixed size identifier, the True Name of the data block,
such that the True Name of the data block is virtually
guaranteed to represent the data block B and only data block True Name

owner
True Name of data item in question.
identity of the user responsible for
this action.

60 B.

Each record 150 of the license table 136 records a
relationship between a licensable data item and the user
licensed to have access to it. Each license table record 150 65

includes the information summarized in the following table,
with reference to FIG. 9:

The function MD must have the following properties:
1. The domain of the function MD is the set of all data

items. The range of the function MD is the set of True
Names.

2. The function MD must take a data item of arbitrary
length and reduce it to an integer value in the range 0
to N-1, where N is the cardinality of the set of True

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 41 of 57 PageID #: 54

5,978,791
13

Names. That is, for an arbitrary length data block B,
O~MD(B)~N.

3. The results of MD(B) must be evenly and randomly
distributed over the range of N, in such a way that
simple or regular changes to B are virtually guaranteed 5

to produce a different value of MD(B).
4. It must be computationally difficult to find a different

value B' such that MD(B)=MD(B').
5. The function MD(B) must be efficiently computed.
A family of functions with the above properties are the 10

so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MD4, MD5, and
SHA.

14
A mechanism for calculating a True Name given a data

item is now described, with reference to FIGS. 10(a) and
10(b).

A simple data item is a data item whose size is less than
a particular given size (which must be defined in each
particular implementation of the invention). To determine
the True Name of a simple data item, with reference to FIG.
10(a), first compute the MD function (described above) on
the given simple data item (Step S212). Then append to the
resulting 128 bits, the byte length modulo 32 of the data item
(Step S214). The resulting 160-bit value is the True Name of
the simple data item.

A compound data item is one whose size is greater than
the particular given size of a simple data item. To determine
the True Name of an arbitrary (simple or compound) data

In the presently preferred embodiments, either MD5 or
SHA is employed as the basis for the computation of True
Names. Whichever of these two message digest functions is
employed, that same function must be employed on a
system-wide basis.

15 item, with reference to FIG. 10(b), first determine if the data
item is a simple or a compound data item (Step S216). If the
data item is a simple data item, then compute its True Name
in step S218 (using steps S212 and S214 described above),
otherwise partition the data item into segments (Step S220)

It is impossible to define a function having a unique
output for each possible input when the number of elements
in the range of the function is smaller than the number of
elements in its domain. However, a crucial observation is
that the actual data items that will be encountered in the
operation of any system embodying this invention form a
very sparse subset of all the possible inputs.

A colliding set of data items is defined as a set wherein,
for one or more pairs x and y in the set, MD(x)=MD(y).
Since a function conforming to the requirements for MD
must evenly and randomly distribute its outputs, it is
possible, by making the range of the function large enough,
to make the probability arbitrarily small that actual inputs
encountered in the operation of an embodiment of this
invention will form a colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 230 storage devices in the world,
and that each storage device has an average of at most 220

different data items. Then there are at most 250 data items in
the world. If the outputs of MD range between 0 and 2128

,

it can be demonstrated that the probability of a collision is
approximately 1 in 229

. Details on the derivation of these
probability values are found, for example, in P. Flajolet and

20 and assimilate each segment (Step S222) (the primitive
mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then create an
indirect block consisting of the computed segment True
Names (Step S224). An indirect block is a data item which

25 consists of the sequence of True Names of the segments.
Then, in step S226, assimilate the indirect block and com­
pute its True Name. Finally, replace the final thirty-two (32)
bits of the resulting True Name (that is, the length of the
indirect block) by the length modulo 32 of the compound

30 data item (Step S228). The result is the True Name of the
compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively

35 until only simple data items are being processed.
Both the use of segments and the attachment of a length

to the True Name are not strictly required in a system using
the present invention, but are currently considered desirable
features in the preferred embodiment.

40 2. Assimilate Data Item

A. M. Odlyzko, "Random Mapping Statistics," Lecture
Notes in Computer Science 434: Advances in Cryptology­
Eurocrypt '89 Proceedings, Springer-Verlag, pp. 329-354. 45

A mechanism for assimilating a data item (scratch file or
segment) into a file system, given the scratch file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used Note that for some less-preferred embodiments of the

present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be
useful to have more than one level of True Names, with 50

some of the True Names having different degrees of unique­
ness. If such a scheme is implemented, it is necessary to
ensure that less unique True Names are not propagated in the
system.

While the invention is described herein using only the 55

True Name of a data item as the identifier for the data item,
other preferred embodiments use tagged, typed, categorized

during this process, and the duplicate will be eliminated.
Thereby the system stores at most one copy of any data

item or file by content, even when multiple names refer to
the same content.

First, determine the True Name of the data item corre­
sponding to the given scratch File ID using the Calculate
True Name primitive mechanism (Step S230). Next, look for
an entry for the True Name in the True File registry 126
(Step S232) and determine whether a True Name entry,
record 140, exists in the True File registry 126. If the entry
record includes a corresponding True File ID or compressed
File ID (Step S237), delete the file with the scratch File ID
(Step S238). Otherwise store the given True File ID in the

or classified data items and use a combination of both the
True Name and the tag, type, category or class of the data
item as an identifier. Examples of such categorizations are
files, directories, and segments; executable files and data
files, and the like. Examples of classes are classes of objects

60 entry record (step S239).

in an object-oriented system. In such a system, a lower
degree of True Name uniqueness is acceptable over the
entire universe of data items, as long as sufficient uniqueness
is provided per category of data items. This is because the
tags provide an additional level of uniqueness.

If it is determined (in step S232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
a new entry in the True File registry 126 for this True Name.
Set the True Name of the entry to the calculated True Name,

65 set the use count for the new entry to one, store the given
True File ID in the entry and set the other fields of the entry
as appropriate.

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 42 of 57 PageID #: 55

5,978,791
15

Because this procedure may take some time to compute,
it is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi­
lated scratch file.
3. New True File

The New True File process is invoked when processing
the audit file 132, some time after a True File has been
assimilated (using the Assimilate Data Item primitive
mechanism). Given a local directory extensions table entry
record 138 in the local directory extensions table 124, the
New True File process can provide the following steps (with
reference to FIG. 12), depending on how the local processor
is configured:

16
record 140 of the corresponding True Name; note whether
the entry is a directory by reading the True File to see if it
contains a tag (magic number) indicating that it represents a
frozen directory (see also the description of the Freeze

5 Directory primitive mechanism regarding the tag); and com­
pute and set the other fields of the local directory extensions
appropriately. For instance, search the region table 128 to
identify the region of the path, and set the time of last access
and time of last modification to the current time.

10 6. Realize True File from Location
This mechanism is used to try to make a local copy of a

True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference to FIG. 15.

First, in step S272, determine whether the location speci-
fied is a processor. If it is determined that the location
specified is a processor, then send a Request True File
message (using the Request True File remote mechanism) to
the remote processor and wait for a response (Step S274). If

First, in step S238, examine the local directory extensions
table entry record 138 to determine whether the file is locked 15

by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache
server to update the cache of the current processor using the
Update Cache remote mechanism (Step 242). 20 a negative response is received or no response is received

after a timeout period, this mechanism fails. If a positive
response is received, enter the True File returned in the True
File registry 126 (Step S276). (If the file received was
compressed, enter the True File ID in the compressed File ID

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File
background mechanism (Step S248).
4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents,
or to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for
the entry record 138 with the given pathname (Step S250).

25 field.)
If, on the other hand, it is determined in step S272 that the

location specified is not a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the

30 given volume and assimilate the file using the Assimilate
Data Item primitive mechanism. If the volume does not
contain a True File registry 126, search the media inventory
to find the path of the file on the volume. If no such file can

If the pathname is not found, this process fails and no True
Name corresponding to the given pathname exists. Next,
determine whether the local directory extensions table entry
record 138 includes a True Name (Step S252), and if so, the 35

mechanism's task is complete. Otherwise, determine
whether the local directory extensions table entry record 138
identifies a directory (Step S254), and if so, freeze the
directory (Step S256) (the primitive mechanism Freeze
Directory is described below).

be found, this mechanism fails.
At this point, whether or not the location is determined (in

step S272) to be a processor, if desired, verify the True File
(in step S282).
7. Locate Remote File

This mechanism allows a processor to locate a file or data
40 item from a remote source of True Files, when a specific

source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can
supply a data object with a given True Name. The steps to

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the
File ID field to generate its True Name and store its True
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory 45

extensions table 124.

perform this mechanism are as follows (with reference to
FIGS. 16(a) and 16(b).

The client processor 102 uses the source table 145 to
select one or more source processors (Step S284). If no
source processor can be found, the mechanism fails. Next,
the client processor 102 broadcasts to the selected sources a

5. Link Path to True Name
The mechanism to link a path to a True Name provides a

way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used to
copy, move, and rename files without a need to copy their
contents. The mechanism to link a path to a True Name is
now described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local
directory extensions table 135 (Step S260). Most uses of this
mechanism will require this form of validation. Next, search
for the path in the local directory extensions table 135 (Step
S262). Confirm that the directory containing the file named
in the path already exists (Step S264). If the named file itself
exists, delete the File using the Delete True File operating
system mechanism (see below) (Step S268).

50 request to locate the file with the given True Name using the
Locate True File remote mechanism (Step S286). The
request to locate may be augmented by asking to propagate
this request to distant servers. The client processor then
waits for one or more servers to respond positively (Step

55 S288). After all servers respond negatively, or after a timeout
period with no positive response, the mechanism repeats
selection (Step S284) to attempt to identify alternative
sources. If any selected source processor responds, its pro­
cessor ID is the result of this mechanism. Store the processor

60 ID in the source field of the True File registry entry record
140 of the given True Name (Step S290).

Then, create an entry record in the local directory exten­
sions with the specified path (Step S270) and update the
entry record and other data structures as follows: fill in the 65

True Name field of the entry with the specified True Name;
increment the use count for the True File registry entry

If the source location of the True Name is a different
processor or medium than the destination (Step S290a),
perform the following steps:

(i) Look up the True File registry entry record 140 for the
corresponding True Name, and add the source location ID to
the list of sources for the True Name (Step S290b); and

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 43 of 57 PageID #: 56

5,978,791
17

(ii) If the source is a publishing system, determine the
expiration date on the publishing system for the True Name
and add that to the list of sources. If the source is not a
publishing system, send a message to reserve the True File
on the source processor (Step S290c).

Source selection in step S284 may be based on optimi­
zations involving general availability of the source, access
time, bandwidth, and transmission cost, and ignoring pre­
viously selected processors which did not respond in step
S288.
8. Make True File Local

This mechanism is used when a True Name is known and
a locally accessible copy of the corresponding file or data
item is required. This mechanism makes it possible to
actually read the data in a True File. The mechanism takes

18
If the local directory extensions table entry record 138

identifies a scratch file ID (Step S312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
5 identifies a True File (S316), and there is no True File ID for

the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step S322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. If the use count
10 in the corresponding True File registry entry record 140 is

one (Step S326), save the True File ID in the scratch file ID
of the local directory extensions table entry record 138, and
remove the True File registry entry record 140 (Step S328).
(This step makes the True File into a scratch file.) This
mechanism's task is complete.

a True Name and returns when there is a local, accessible 15

copy of the True File in the True File registry 126. This
mechanism is described here with reference to the flow chart

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step S326), copy the
file with the given True File ID to a new scratch file, using
the Read File OS mechanism and store its file ID in the local
directory extensions table entry record 138 (Step S330), and

of FIGS. 17(a) and 17(b).
First, look in the True File registry 126 for a True File

entry record 140 for the corresponding True Name (Step
S292). If no such entry is found this mechanism fails. If
there is already a True File ID for the entry (Step S294), this
mechanism's task is complete. If there is a compressed file
ID for the entry (Step S296), decompress the file corre­
sponding to the file ID (Step S298) and store the decom­
pressed file ID in the entry (Step S300). This mechanism is
then complete.

20 reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.
10. Freeze Directory

This mechanism freezes a directory in order to calculate
its True Name. Since the True Name of a directory is a

25 function of the files within the directory, they must not
change during the computation of the True Name of the
directory. This mechanism requires the pathname of a direc­
tory to freeze. This mechanism is described with reference If there is no True File ID for the entry (Step S294) and

there is no compressed file ID for the entry (Step S296), then
continue searching for the requested file. At this time it may 30

be necessary to notify the user that the system is searching
for the requested file.

to FIGS. 19(a) and 19(b).
In step S332, add one to the global freeze lock. Then

search the local directory extensions table 124 to find each
subordinate data file and directory of the given directory, and
freeze each subordinate directory found using the Freeze
Directory primitive mechanism (Step S334). Assimilate

If there are one or more source IDs, then select an order
in which to attempt to realize the source ID (Step S304). The
order may be based on optimizations involving general
availability of the source, access time, bandwidth, and
transmission cost. For each source in the order chosen,
realize the True File from the source location (using the
Realize True File from Location primitive mechanism), until
the True File is realized (Step S306). If it is realized,
continue with step S294. If no known source can realize the
True File, use the Locate Remote File primitive mechanism
to attempt to find the True File (Step S308). If this succeeds,
realize the True File from the identified source location and
continue with step S296.
9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored

35 each unassimilated data file in the directory using the
Assimilate Data Item primitive mechanism (Step S336).
Then create a data item which begins with a tag or marker
(a "magic number") being a unique data item indicating that
this data item is a frozen directory (Step S337). Then list the

40 file name and True Name for each file in the current
directory (Step S338). Record any additional information
required, such as the type, time of last access and
modification, and size (Step S340). Next, in step S342, using
the Assimilate Data Item primitive mechanism, assimilate

45 the data item created in step S338. The resulting True Name
is the True Name of the frozen directory. Finally, subtract
one from the global freeze lock (Step S344).
11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
50 location. It requires a given pathname into which to expand

the directory, and the True Name of the directory and is
described with reference to FIG. 20.

in the file system of the underlying operating system. The
scratch copy is eventually assimilated when the audit file
record entry 146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of a scratch file that 55

First, in step S346, make the True File with the given True
Name local using the Make True File Local primitive
mechanism. Then read each directory entry in the local file
created in step S346 (Step S348). For each such directory is not contained in the True File registry 126 and that may

be modified. This mechanism is now described with refer­
ence to FIGS. 18(a) and 18(b).

First determine whether the scratch file should be a copy
of the existing True File (Step S310). If so, continue with 60

step S312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True
File (Step S316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scratch file and store its scratch file ID 65

in the local directory extensions table entry record 138 (Step
S320). This mechanism is then complete.

entry, do the following:
Create a full pathname using the given pathname and the

file name of the entry (Step S350); and
link the created path to the True Name (Step S352) using

the Link Path to True Name primitive mechanism.
12. Delete True File

This mechanism deletes a reference to a True Name. The
underlying True File is not removed from the True File
registry 126 unless there are no additional references to the
file. With reference to FIG. 21, this mechanism is performed
as follows:

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 44 of 57 PageID #: 57

5,978,791
19

If the global freeze lock is on, wait until the global freeze
lock is turned off (Step S354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File registry entry record 140 given the
True Name (Step S356). If the reference count field of the 5

True File registry 126 is greater than zero, subtract one from
the reference count field (Step S358). If it is determined (in
step S360) that the reference count field of the True File
registry entry record 140 is zero, and if there are no
dependent systems listed in the True File registry entry 10

record 140, then perform the following steps:
(i) If the True File is a simple data item, then delete the

True File, otherwise,
(ii) (the True File is a compound data item) for each True

Name in the data item, recursively delete the True File 15

corresponding to the True Name (Step S362).

20
(Step S388). Then find the True File registry entry record
140 corresponding to the True File name in the local
directory extensions table entry record 138 (Step S390). Add
one to the grooming delete count in the True File registry
entry record 140 and add the pathname to a list of files
selected for deletion (Step S392). If the grooming delete
count of the True File registry entry record 140 is equal to
the use count of the True File registry entry record 140, and
if the there are no entries in the dependency list of the True
File registry entry record 140, then add the size of the file
indicated by the True File ID and or compressed file ID to
the total amount of space freed during grooming (Step
S394).
16. End Grooming

This grooming mechanism ends the grooming phase and
removes all files selected for removal. With reference to
FIG. 25, for each file in the list of files selected for deletion,
delete the file (Step S396) and then unlock the global
grooming lock (Step S398).

(iii) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and
remove the True File registry entry record 140 (Step S364).
13. Process Audit File Entry 20 Operating System Mechanisms

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
Entries 142 in the audit file 132 should be processed at a 25

background priority as long as there are entries to be
processed. With reference to FIG. 22, the steps for process­
ing an entry are as follows:

Determine the operation in the entry 142 currently being
processed (Step S365). If the operation indicates that a file 30

was created or written (Step S366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
S368), use the New True File primitive mechanism to do
additional desired processing (such as cache update,
compression, and mirroring) (Step S369), and record the 35

newly computed True Name for the file in the audit file
record entry (Step S370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)
(Step S376), then for each component True Name in the 40

compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre­
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, time of last access, and time of last 45

modification, according to the operation in the audit record
(Step S379).

Note that the audit record is not removed after processing,
but is retained for some reasonable period so that it may be
used by the Synchronize Directory extended mechanism to 50

allow a disconnected remote processor to update its repre­
sentation of the local system.
14. Begin Grooming

This mechanism makes it possible to select a set of files
for removal and determine the overall amount of space to be 55

recovered. With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of
space freed during grooming to zero and empty the list of
files selected for deletion (Step S384). For each True File in 60

the True File registry 126, set the delete count to zero (Step
S386).

The next of the mechanisms provided by the present
invention, operating system mechanisms, are now described.

The following operating system mechanisms are
described:

1. Open File;
2. Close File;
3. Read File;
4. Write File;
5. Delete File or Directory;
6. Copy File or Directory;
7. Move File or Directory;
8. Get File Status; and
9. Get Files in Directory.

1. open File
A mechanism to open a file is described with reference to

FIGS. 26(a) and 26(b). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, write, read/write, create, etc.) and produces
either the File ID of the file to be opened or an indication that
no file should be opened. The local directory extensions
table record 138 and region table record 142 associated with
the opened file are associated with the open file for later use
in other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists
locally by examining the local directory extensions table 124
to determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type,
determine whether or not the file is being created by this
opening process (Step S402). If the file is not being created,
prohibit the open (Step S404). If the file is being created,
create a zero-length scratch file using an entry in local
directory extensions table 124 and produce the scratch file
ID of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step S400 that the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to
find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identi-
fies the region of the specified file.

15. Select For Removal
This grooming mechanism tentatively selects a pathname

to allow its corresponding True File to be removed. With
reference to FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only

65 for reading (Step S410). If the file is being opened for
reading only, then, if the file is a scratch file (Step S419),
return the scratch File ID of the file (Step S424). Otherwise

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 45 of 57 PageID #: 58

5,978,791
21 22

5. Delete File or Directory
The process of deleting a file, for a given pathname, is

described here with reference to FIGS. 27(a) and 27(b).
First, determine the local directory extensions table entry

get the True Name from the local directory extensions table
124 and make a local version of the True File associated with
the True Name using the Make True File Local primitive
mechanism, and then return the True File ID associated with
the True Name (Step S420).

If the file is not being opened for reading only (Step
S410), then, if it is determined by inspecting the region table
entry record 142 that the file is in a read-only directory (Step
S416), then prohibit the opening (Step S422).

5 record 138 and region table entry record 142 for the file
(Step S422). If the file has no local directory extensions table
entry record 138 or is locked or is in a read-only region,
prohibit the deletion.

Identify the corresponding True File given the True Name
If it is determined by inspecting the region table 128 that

the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the return message says
the file is already locked, prohibit the opening.

10 of the file being deleted using the True File registry 126
(Step S424). If the file has no True Name, (Step S426) then
delete the scratch copy of the file based on its scratch file ID
in the local directory extensions table 124 (Step S427), and
continue with step S428.

If the file has a True Name and the True File's use count
is one (Step S429), then delete the True File (Step S430), and
continue with step S428.

If the access type indicates that the file being modified is
being rewritten completely (Step S419), so that the original 15

data will not be required, then Delete the File using the
Delete File OS mechanism (Step S421) and perform step
S406. Otherwise, make a scratch copy of the file (Step S417)
and produce the scratch file ID of the scratch file as the result
(Step S424).

If the file has a True Name and the True File's use count
is greater than one, reduce its use count by one (Step S431).

20 Then proceed with step S428.
2. Close File

This mechanism takes as input the local directory exten­
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to
the audit file indicating the time and operation (create, read 25

or write). The audit file processing (using the Process Audit
File Entry primitive mechanism) will take care of assimi­
lating the file and thereby updating the other records.
3. Read File

To read a file, a program must provide the offset and 30

length of the data to be read, and the location of a buffer into
which to copy the data read.

In Step S428, delete the local directory extensions table
entry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).
6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the
path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link
the destination path to the True Name.

(C) If the source and destination processors have different

The file to be read from is identified by an open file
descriptor which includes a File ID as computed by the Open
File operating system mechanism defined above. The File ID
may identify either a scratch file or a True File (or True File
segment). If the File ID identifies a True File, it may be
either a simple or a compound True File. Reading a file is
accomplished by the following steps:

35 True File registries, find (or, if necessary, create) an entry for
the True Name in the True File registry table 126 of the
destination processor. Enter into the source ID field of this
new entry the source processor identity.

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the underlying
operating system.

(D) Add an entry to the audit file 132 indicating the time
40 and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In
addition, because of the ability to freeze a directory, this

In the case where the File ID identifies a compound file,
break the read operation into one or more read operations on
component segments as follows:

A. Identify the segment(s) to be read by dividing the
specified file offset and length each by the fixed size of a
segment (a system dependent parameter), to determine the
segment number and number of segments that must be read.

45 mechanism also addresses capability of the system imme­
diately to make a copy of any collection of files, thereby to
support an efficient version control mechanisms for groups
of files.

B. For each segment number computed above, do the 50

following:
i. Read the compound True File index block to determine

the True Name of the segment to be read.
ii. Use the Realize True File from Location primitive

mechanism to make the True File segment available 55

locally. (If that mechanism fails, the Read File mecha­
nism fails).

iii. Determine the File ID of the True File specified by the
True Name corresponding to this segment.

iv. Use the Read File mechanism (recursively) to read 60

from this segment into the corresponding location in
the specified buffer.

4. Write File

7. Move File or Directory
A mechanism is described which moves (or renames) a

file from a source path to a destination path. The move
operation, like the copy operation, requires no actual transfer
of data, and is performed as follows:

(A) Copy the file from the source path to the destination
path.

(B) If the source path is different from the destination
path, delete the source path.
8. Get File Status

This mechanism takes a file pathname and provides
information about the pathname. First the local directory
extensions table entry record 138 corresponding to the
pathname given is found. If no such entry exists, then this
mechanism fails, otherwise, gather information about the file
and its corresponding True File from the local directory File writing uses the file ID and data management capa­

bilities of the underlying operating system. File access
(Make File Local described above) can be deferred until the
first read or write.

65 extensions table 124. The information can include any
information shown in the data structures, including the size,
type, owner, True Name, sources, time of last access, time of

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 46 of 57 PageID #: 59

5,978,791
23

last modification, state (local or not, assimilated or not,
compressed or not), use count, expiration date, and reser­
vations.
9. Get Files in Directory

This mechanism enumerates the files in a directory. It is 5

used (implicitly) whenever it is necessary to determine
whether a file exists (is present) in a directory. For instance,
it is implicitly used in the Open File, Delete File, Copy File
or Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames 10

containing directory names. The mechanism works as fol­
lows:

24
One the other hand, if a True File registry entry record 140

is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436),
then forward a request for this True File to some other
processors in the system (Step S442). If the source table for
the current processor identifies one or more publishing
servers which should have a copy of this True File, then
forward the request to each of those publishing servers (Step
S436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a
True File ID or Compressed File ID (Step S440), respond
positively (Step S444). If the entry includes a True File ID
then this provides the identity or disk location of the actual

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. If no such
entry is found, or if the entry found is not a directory, then
this mechanism fails.

15 physical representation of the file or file segment required.
If the entry include a Compressed File ID, then a com­
pressed version of the True File may be stored instead of, or
in addition to, an uncompressed version. This field provides
the identity of the actual representation of the compressed

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
True File represents a frozen directory. The Expand Frozen
Directory primitive mechanism is used to expand the exist­
ing True File into directory entries in the local directory
extensions table.

20 version of the file.
If the True File registry entry record 140 is found (Step

S434) but does not include a True File ID (the File ID is
absent if the actual file is not currently present at the current
location) (Step S440), and if the True File registry entry

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.
Remote Mechanisms

25 record 140 includes one or more source processors, and if
the request can be forwarded, then forward the request for
this True File to one or more of the source processors (Step
S444).

The remote mechanisms provided by the present inven­
tion are now described. Recall that remote mechanisms are
used by the operating system in responding to requests from
other processors. These mechanisms enable the capabilities 30

of the present invention in a peer-to-peer network mode of
operation.

2. Reserve True File
This mechanism allows a remote processor to indicate

that it depends on the local processor for access to a specific
True File. It takes a True Name as input. This mechanism is
described here. In a presently preferred embodiment, processors commu­

nicate with each other using a remote procedure call (RPC)
style interface, running over one of any number of commu­
nication protocols such as IPX/SPX or TCP/IP. Each peer
processor which provides access to its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by its
peers.

(A) Find the True File registry entry record 140 associated
35 with the given True File. If no entry exists, reply negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the True
File registry entry record 140 includes no source IDs for
removable storage volumes, then this processor does not

40 have access to a copy of the given file. Reply negatively.
The following remote mechanisms are described:
1. Locate True File;
2. Reserve True File;

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry record
140. Reply positively, with an indication of whether the
reserved True File is on line or off line. 3. Request True File;

4. Retire True File;
45 3. Request True File

5. Cancel Reservation;
6. Acquire True File;
7. Lock Cache;

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a
True Name and responds positively by sending a True File
back to the requesting processor. The mechanism operates as

8. Update Cache; and 50 follows:
9. Check Expiration Date.

1. Locate True File
(A) Find the True File registry entry record 140 associated

with the given True Name. If there is no such True File
registry entry record 140, reply negatively. This mechanism allows a remote processor to determine

whether the local processor contains a copy of a specific
True File. The mechanism begins with a True Name and a
flag indicating whether to forward requests for this file to
other servers. This mechanism is now described with refer­
ence to FIG. 28.

(B) Make the True File local using the Make True File
55 Local primitive mechanism. If this mechanism fails, the

Request True File mechanism also fails.

First determine if the True File is available locally or if
there is some indication of where the True File is located (for 60

example, in the Source IDs field). Look up the requested
True Name in the True File registry 126 (Step S432).

If a True File registry entry record 140 is not found for this
True Name (Step S434), and the flag indicates that the
request is not to be forwarded (Step S436), respond nega- 65

tively (Step S438). That is, respond to the effect that the True
File is not available.

(C) Send the local True File in either it is uncompressed
or compressed form to the requesting remote processor.
Note that if the True File is a compound file, the components
are not sent.

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it.
4. Retire True File

This mechanism allows a remote processor to indicate
that it no longer plans to maintain a copy of a given True
File. An alternate source of the True File can be specified, if,
for instance, the True File is being moved from one server

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 47 of 57 PageID #: 60

5,978,791
25

to another. It begins with a True Name, a requesting pro­
cessor ID, and an optional alternate source. This mechanism
operates as follows:

(A) Find a True Name entry in the True File registry 126.

26
Link the given pathname to the given True Name using

the Link Path to True Name primitive mechanism.
Unlock the local directory extensions table entry record

138 and return positively.
If there is no entry for this True Name, this mechanism's task
is complete.

5 9. Check Expiration Date

(B) Find the requesting processor on the source list and,
if it is there, remove it.

Return current or new expiration date and possible alter­
native source to caller.
Background Processes and Mechanisms

The background processes and mechanisms provided by (C) If an alternate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File primitive
mechanism to search for another copy of the file. If it fails, . .
raIse a senous error.

10 the present invention are now described. Recall that back­
ground mechanisms are intended to run occasionally and at
a low priority to provide automated management capabilities
with respect to the present invention.

5. Cancel Reservation
This mechanism allows a remote processor to indicate 15

that it no longer requires access to a True File stored on the
local processor. It begins with a True Name and a requesting
processor ID and proceeds as follows:

(A) Find the True Name entry in the True File registry
126. If there is no entry for this True Name, this mecha- 20

nism's task is complete.
(B) Remove the identity of the requesting processor from

the list of dependent processors, if it appears.

The following background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links;

4. Verify Region; and

5. Groom Source List.
1. Mirror True File

This mechanism is used to ensure that files are available
in alternate locations in mirror groups or archived on archi­
val servers. The mechanism depends on application-specific (C) If the list of dependent processors becomes zero and

the use count is also zero, delete the True File.
6. Acquire True File

This mechanism allows a remote processor to insist that

25 migration/archival criteria (size, time since last access, num­
ber of copies required, number of existing alternative
sources) which determine under what conditions a file
should be moved. The Mirror True File mechanism operates a local processor make a copy of a specified True File. It is

used, for example, when a cache client wants to write
through a new version of a file. The Acquire True File 30

mechanism begins with a data item and an optional True
Name for the data item and proceeds as follows:

(A) Confirm that the requesting processor has the right to
require the local processor to acquire data items. If not, send
a negative reply.

(B) Make a local copy of the data item transmitted by the 35

remote processor.
(C) Assimilate the data item into the True File registry of

the local processor.
(D) If a True Name was provided with the file, the True

Name calculation can be avoided, or the mechanism can 40

verify that the file received matches the True Name sent.
(E) Add an entry in the dependent processor list of the true

file registry record indicating that the requesting processor
depends on this copy of the given True File.

as follows, using the True File specified, perform the fol­
lowing steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the True File registry
entry record 140 for the True File. This step determines how
many copies of the True File are available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file
should be sent. Use the Acquire True File remote mechanism
to copy the True File to the selected mirror group server. Add
the identity of the selected system to the source list for the
True File.
2. Groom Region

This mechanism is used to automatically free up space in
a processor by deleting data items that may be available
elsewhere. The mechanism depends on application-specific

(F) Send a positive reply.
7. Lock Cache

This mechanism allows a remote cache client to lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The
mechanism begins with a pathname and proceeds as follows:

45 grooming criteria (for instance, a file may be removed if
there is an alternate online source for it, it has not been
accessed in a given number of days, and it is larger than a
given size). This mechanism operates as follows:

Repeat the following steps (i) to (iii) with more aggressive

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists, reply
negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the file is
already locked.

50 grooming criteria until sufficient space is freed or until all
grooming criteria have been exercised. Use grooming infor­
mation to determine how much space has been freed. Recall
that, while grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and

55 keeps track of the amount of space that would be freed if all
of the files were deleted.

(C) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply positively.
8. Update Cache

This mechanism allows a remote cache client to unlock a 60

local file and update it with new contents. It begins with a
pathname and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138 65

corresponding to the given pathname. Reply negatively if no
such entry exists or if the entry is not locked.

(i) Begin Grooming (using the primitive mechanism).
(ii) For each pathname in the specified region, for the True

File corresponding to the pathname, if the True File is
present, has at least one alternative source, and meets
application specific grooming criteria for the region, select
the file for removal (using the primitive mechanism).

(iii) End Grooming (using the primitive mechanism).
If the region is used as a cache, no other processors are

dependent on True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 48 of 57 PageID #: 61

5,978,791
27

criteria would ordinarily eliminate the least recently
accessed True Files first. This is best done by sorting the
True Files in the region by the most recent access time
before performing step (ii) above. The application specific
criteria would thus be to select for removal every True File
encountered (beginning with the least recently used) until
the required amount of free space is reached.
3. Check for Expired Links

28
Extended Mechanisms

The extended mechanisms provided by the present inven­
tion are now described. Recall that extended mechanisms
run within application programs over the operating system

5 to provide solutions to specific problems and applications.
The following extended mechanisms are described:

1. Inventory Existing Directory;

This mechanism is used to determine whether dependen­
cies on published files should be refreshed. The following 10

steps describe the operation of this mechanism:

2. Inventory Removable, Read-only Files;

3. Synchronize Directories;

4. Publish Region;
For each pathname in the specified region, for each True

File corresponding to the pathname, perform the following
step:

5. Retire Directory;

6. Realize Directory at Location;

If the True File registry entry record 140 corresponding to
the True File contains at least one source which is a 15

publishing server, and if the expiration date on the depen­
dency is past or close, then perform the following steps:

7. Verify True File;
8. Track for Accounting Purposes; and
9. Track for Licensing Purposes.

1. Inventory Existing Directory
(A) Determine whether the True File registry entry record

contains other sources which have not expired.
(B) Check the True Name expiration of the server. If the

expiration date has been extended, or an alternate source is
suggested, add the source to the True File registry entry
record 140.

20

This mechanism determines the True Names of files in an
existing on-line directory in the underlying operating sys­
tem. One purpose of this mechanism is to install True Name
mechanisms in an existing file system.

(C) If no acceptable alternate source was found in steps 25

(A) or (B) above, make a local copy of the True File.

An effect of such an installation is to eliminate immedi­
ately all duplicate files from the file system being traversed.
If several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

(D) Remove the expired source.
4. Verify Region

(A) Traverse the underlying file system in the operating
system. For each file encountered, excluding directories,
perform the following: This mechanism can be used to ensure that the data items

in the True File registry 126 have not been damaged acci-
30 dentally or maliciously. The operation of this mechanism is

(i) Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes its
True Name and moves its data into the True File
registry 126.

described by the following steps:
(A) Search the local directory extensions table 124 for

each pathname in the specified region and then perform the
following steps: 35

(i) Get the True File name corresponding to the pathname;

(ii) Create a pathname consisting of the path to the volume
directory and the relative path of the file on the media.
Link this path to the computed True Name using the
Link Path to True Name primitive mechanism. (ii) If the True File registry entry 140 for the True File

does not have a True File ID or compressed file ID,
ignore it.

(iii) Use the Verify True File mechanism (see extended
mechanisms below) to confirm that the True File speci­
fied is correct.

S. Groom Source List
The source list in a True File entry should be groomed

sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or
its mirror criteria are changed, it may be necessary to inspect
the affected True Files to determine whether there are too
many mirror copies. This can be done with the following
steps:

For each affected True File,
(A) Search the local directory extensions table to find

each region that refers to the True File.
(B) Create a set of "required sources", initially empty.
(C) For each region found,
(a) determine the mirroring criteria for that region,
(b) determine which sources for the True File satisfy the

mirroring criteria, and
(c) add these sources to the set of required sources.
(D) For each source in the True File registry entry, if the

source identifies a remote processor (as opposed to remov­
able media), and if the source is not a publisher, and if the
source is not in the set of required sources, then eliminate the
source, and use the Cancel Reservation remote mechanism
to eliminate the given processor from the list of dependent
processors recorded at the remote processor identified by the
source.

2. Inventory Removable, Read-only Files
A system with access to removable, read-only media

40 volumes (such as WORM disks and CD-ROMs) can create
a usable inventory of the files on these disks without having
to make online copies. These objects can then be used for
archival purposes, directory overlays, or other needs. An
operator must request that an inventory be created for such

45 a volume.

50

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as
diskettes and CD-ROMS, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to iden­
tify each file, providing a way to locate the data independent

55 of its name, date of creation, or location.
The inventory can be used for archival of data (making it

possible to avoid archiving data when that data is already on
a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved

60 from removable volumes), for version control (making it
possible to generate a new version of a CD-ROM without
having to copy the old version), and for other purposes.

The inventory is made by creating a volume directory in
the media inventory in which each file named identifies the

65 data item on the volume being inventoried. Data items are
not copied from the removable volume during the inventory
process.

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 49 of 57 PageID #: 62

5,978,791
29

An operator must request that an inventory be created for
a specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism 5

which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha­
msm.

To create an inventory the following steps are taken:
(A) A volume directory in the media inventory is created 10

to correspond to the volume being inventoried. Its contex­
tual name identifies the specific volume.

(B) A source table entry 144 for the volume is created in
the source table 130. This entry 144 identifies the physical
source volume and the volume directory created in step (A). 15

(C) The filesystem on the volume is traversed. For each
file encountered, excluding directories, the following steps
are taken:

(i) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the 20

True Name of the file using the primitive mechanism.
The source field of the True Name registry entry 140
identifies the source table entry 144.

(ii) A pathname is created consisting of the path to the
volume directory and the relative path of the file on the 25

media. This path is linked to the computed True Name
using Link Path to True Name primitive mechanism.

(D) After all files have been inventoried, the volume
directory is frozen. The volume directory serves as a table of
contents for the volume. It can be copied using the Copy File 30

or Directory primitive mechanism to create an "overlay"
directory which can then be modified, making it possible to
edit a virtual copy of a read-only medium.
3. Synchronize Directories

Given two versions of a directory derived from the same 35

starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file
is changed in both versions, this mechanism provides a user
exit for handling the discrepancy. By using True Names,
comparisons are instantaneous, and no copies of files are 40

necessary.

30
(i) Compute the pathname of the corresponding file in the

local directory. Determine the True Name of the cor­
responding file.

(ii) If the True Name of the local file is the same as the old
True Name in the audit file, or if there is no local file
and the audit entry indicates a new file is being created,
link the new True Name in the audit file to the local
pathname using the Link Path to True Name primitive
mechanism.

(iii) Otherwise, note that there is a problem with the
synchronization by sending a message to the operator
or to a problem resolution program, indicating the local
pathname, remote pathname, remote processor, and
time of change.

(C) After synchronization is complete, record the time of
the final change. This time is to be used as the new start time
the next time this directory is synchronized with the same
remote processor.
4. Publish Region

The publish region mechanism allows a processor to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor to service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the pub­
lishing system's True File registry entry record 140 for each
file.

When a remote file is copied, for instance using the Copy
File operating system mechanism, the expiration date is
copied into the source field of the client's True File registry
entry record 140. When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in
background, check for expired links, to make sure it still has
access to these files. This is described in the background
mechanism Check for Expired Links.
5. Retire Directory

This mechanism lets a local processor synchronize a
directory to account for changes made at a remote processor.
Its purpose is to bring a local copy of a directory up to date
after a period of no communication between the local and
remote processor. Such a period might occur if the local
processor were a mobile processor detached from its server,
or if two distant processors were run independently and
updated nightly.

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those

45 files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

An advantage of the described synchronization process is
that it does not depend on synchronizing the clocks of the
local and remote processors. However, it does require that
the local processor track its position in the remote proces­
sor's audit file.

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred alternate

50 source processor for clients to use. The mechanism performs
the following steps:

This mechanism does not resolve changes made simulta- 55

neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, opera-
tor intervention, is required.

The mechanism takes as input a start time, a local
directory pathname, a remote processor name, and a remote 60

directory pathname name, and it operates by the following
steps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mechanism.

(B) For each entry 146 in the audit file 132 after the start 65

time, if the entry indicates a change to a file in the remote
directory, perform the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(i) Get the True Name of the file from its path and find the
True File registry entry 140 associated with the True
Name.

(ii) Determine an alternate source for the True File. If the
source IDs field of the TFR entry includes the preferred
alternate source, that is the alternate source. If it does
not, but includes some other source, that is the alternate
source. If it contains no alternate sources, there is no
alternate source.

(iii) For each dependent processor in the True File registry
entry 140, ask that processor to retire the True File,
specifying an alternate source if one was determined,
using the remote mechanism.

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 50 of 57 PageID #: 63

5,978,791
31

6. Realize Directory at Location
32

(A) Note every time a file is created or deleted, for
instance by monitoring audit entries in the Process Audit
File Entry primitive mechanism. When such an event is
encountered, create an entry 148 in the accounting log 134

This mechanism allows the user or operating system to
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,

5 that shows the responsible party and the identity of the file
created or deleted.

or if the source is being retired. 10

This mechanism is provided in the following steps for
each file in the given directory, with the exception of
subdirectories:

(A) Get the local directory extensions table entry record
138 given the pathname of the file. Get the True Name of the
local directory extensions table entry record 138. This 15

service assimilates the file if it has not already been assimi-
1ated.

(B) Every time a file is transmitted, for instance when a
file is copied with a Request True File remote mechanism or
an Acquire True File remote mechanism, create an entry in
the accounting log 134 that shows the responsible party, the
identity of the file, and the source and destination proces-
sors.

(C) Occasionally run an accounting program to process
the accounting log 134, distributing the events to the account
records of each responsible party. The account records can
eventually be summarized for billing purposes.
9. Track for Licensing Purposes

(B) Realize the corresponding True File at the given
location. This service causes it to be copied to the given
location from a remote system or removable media.
7. Verify True File

This mechanism is used to verify that the data item in a
True File registry 126 is indeed the correct data item given

This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a safe way to

20 identify licensed material. This service allows proof of
possession of specific files according to their contents with­
out disclosing their contents.

its True Name. Its purpose is to guard against device errors,
malicious changes, or other problems.

If an error is found, the system has the ability to "heal"
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated to other systems, and to log the problem

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)

25 or passive (for example, by creating a report of users who do
not have proper authorization).

or indicate it to the computer operator. These details are not 30

described here.
To verify a data item that is not in a True File registry 126,

use the Calculate True Name primitive mechanism described
above.

One possible way to perform license validation is to
perform occasional audits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is, files
which are required in order to use the product, and which do
not occur in other products) Typically, for a software

The basic mechanism begins with a True Name, and
operates in the following steps:

(A) Find the True File registry entry record 140 corre­
sponding to the given True Name.

35 product, this would include the main executable image and
perhaps other major files such as clip-art, scripts, or online
help. Also record the identity of each system which is
authorized to have a copy of the file.

(B) If there is a True File ID for the True File registry
entry record 140 then use it. Otherwise, indicate that no file
exists to verify.

(B) Occasionally, compare the contents of each user
40 processor against the license table 136. For each True Name

in the license table do the following:

(C) Calculate the True Name of the data item given the file
ID of the data item.

(D) Confirm that the calculated True Name is equal to the
given True Name.

(E) If the True Names are not equal, there is an error in
the True File registry 126. Remove the True File ID from the
True File registry entry record 140 and place it somewhere
else. Indicate that the True File registry entry record 140
contained an error.
8. Track for Accounting Purposes

This mechanism provides a way to know reliably which
files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for

45

50

a value-based accounting system in which charges are based 55

on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to content by owner, indepen­
dent of the name, date, or other properties of the data item, 60

and tracks the uses of specific data items and files by content
for accounting purposes. True names make it possible to
identify each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for accounting or 65

billing purposes. The mechanism operates in the following
steps:

(i) Unless the user processor is authorized to have a copy
of the file, confirm that the user processor does not have
a copy of the file using the Locate True File mecha­
msm.

(ii) If the user processor is found to have a file that it is
not authorized to have, record the user processor and
True Name in a license violation table.

The System in Operation
Given the mechanisms described above, the operation of

a typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan­
tially unique identifiers (True Names), the identifiers
depending on all of the data in the data items and only on the
data in the data items. The primitive mechanisms Calculate
True Name and Assimilate Data Item support this property.
For any given data item, using the Calculate True Name
primitive mechanism, a substantially unique identifier or
True Name for that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
(unless they are required for some reason such as backups or

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 51 of 57 PageID #: 64

5,978,791
33

mirror copies in a fault-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to
the same data item. The primitive mechanisms Assimilate
Data Items and New True File support this property. Using
the Assimilate Data Item primitive mechanism, if a data item 5

already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example,
if a data file is being copied onto a system from a floppy 10

disk, if, based on the True Name of the data file, it is
determined that the data file already exists in the system (by
the same or some other name), then the duplicate copy will
not be installed. If the data item was being installed on the
system by some name other than its current name, then, 15

using the Link Path to True Name primitive mechanism, the
other (or new) name can be linked to the already existing
data item.

34
Location primitive mechanism to make sure that component
segments are locally available, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote
system, only its True Name is copied. When it is opened,
only its indirect block is copied. When the corresponding file
is read, the required component segments are realized and
therefore copied.

In operation data items can be accessed by reference to
their identities (True N ames) independent of their present
location. The actual data item or True File corresponding to
a given data identifier or True Name may reside anywhere in
the system (that is, locally, remotely, offline, etc). If a
required True File is present locally, then the data in the file
can be accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of the True
File registry table, the location(s) of copies of the True File
corresponding to a given True Name can be determined. The In general, the mechanisms of the present invention

operate in such a way as to avoid recreating an actual data
item at a location when a copy of that data item is already
present at that location. In the case of a copy from a floppy
disk, the data item (file) may have to be copied (into a
scratch file) before it can be determined that it is a duplicate.
This is because only one processor is involved. On the other
hand, in a multiprocessor environment or DP system, each
processor has a record of the True Names of the data items

20 Realize True File from Location primitive mechanism tries
to make a local copy of a True File, given its True Name and
the name of a source location (processor or media) that may
contain the True File. If, on the other hand, for some reason
it is not known where there is a copy of the True File, or if

25 the processors identified in the source IDs field do not
respond with the required True File, the processor requiring
the data item can make a general request for the data item
using the Request True File remote mechanism from all on that processor. When a data item is to be copied to

another location (another processor) in the DP system, all
that is necessary is to examine the True Name of the data 30

item prior to the copying. If a data item with the same True
Name already exists at the destination location (processor),
then there is no need to copy the data item. Note that if a data
item which already exists locally at a destination location is
still copied to the destination location (for example, because
the remote system did not have a True Name for the data
item or because it arrives as a stream of un-named data), the
Assimilate Data Item primitive mechanism will prevent
multiple copies of the data item from being created.

processors in the system that it can contact.
As a result, the system provides transparent access to any

data item by reference to its data identity, and independent
of its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in

35 which True Names are determined. This can be used for

Since the True Name of a large data item (a compound 40

data item) is derived from and based on the True Names of
components of the data item, copying of an entire data item
can be avoided. Since some (or all) of the components of a
large data item may already be present at a destination
location, only those components which are not present there 45

need be copied. This property derives from the manner in
which True Names are determined.

security purposes, for instance, to check for viruses and to
verify that data retrieved from another location is the desired
and requested data. For example, the system might store the
True Names of all executable applications on the system and
then periodically redetermine the True Names of each of
these applications to ensure that they match the stored True
Names. Any change in a True Name potentially signals
corruption in the system and can be further investigated. The
Verify Region background mechanism and the Verify True
File extended mechanisms provide direct support for this
mode of operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have not
been damaged accidentally or maliciously. The Verify True
File mechanism verifies that a data item in a True File

When a file is copied by the Copy File or Directory
operating system mechanism, only the True Name of the file
is actually replicated. 50 registry is indeed the correct data item given its True Name.

When a file is opened (using the Open File operating
system mechanism), it uses the Make True File Local
primitive mechanism (either directly or indirectly through
the Create Scratch File primitive mechanism) to create a
local copy of the file. The Open File operating system 55

mechanism uses the Make True File Local primitive
mechanism, which uses the Realize True File from Location
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

The Request True File remote mechanism copies only a 60

single data item from one processor to another. If the data
item is a compound file, its component segments are not
copied, only the indirect block is copied. The segments are
copied only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads 65

data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from

Once a processor has determined where (that is, at which
other processor or location) a copy of a data item is in the
DP system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely
on retrieving the data from somewhere else when needed. To
this end the system allows a processor to Reserve (and
cancel the reservation of) True Files at remote locations
(using the remote mechanism). In this way the remote
locations are put on notice that another location is relying on
the presence of the True File at their location.

A DP system employing the present invention can be
made into a fault-tolerant system by providing a certain
amount of redundancy of data items at multiple locations in
the system. Using the Acquire True File and Reserve True
File remote mechanisms, a particular processor can imp le-

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 52 of 57 PageID #: 65

5,978,791
35

ment its own form of fault-tolerance by copying data items
to other processors and then reserving them there. However,
the system also provides the Mirror True File background
mechanism to mirror (make copies) of the True File avail­
able elsewhere in the system. Any degree of redundancy 5

(limited by the number of processors or locations in the
system) can be implemented. As a result, this invention
maintains a desired degree or level of redundancy in a
network of processors, to protect against failure of any
particular processor by ensuring that multiple copies of data 10

items exist at different locations.
The data structures used to implement various features

and mechanisms of this invention store a variety of useful
information which can be used, in conjunction with the
various mechanisms, to implement storage schemes and
policies in a DP system employing the invention. For 15

example, the size, age and location of a data item (or of
groups of data items) is provided. This information can be
used to decide how the data items should be treated. For
example, a processor may implement a policy of deleting
local copies of all data items over a certain age if other 20

copies of those data items are present elsewhere in the
system. The age (or variations on the age) can be determined
using the time of last access or modification in the local
directory extensions table, and the presence of other copies
of the data item can be determined either from the Safe Flag 25

or the source IDs, or by checking which other processors in
the system have copies of the data item and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users (or 30

regardless of whether the data items even have names). The
system can also track data items that have different names
(in different or the same location) as well as different data
items that have the same name. Since a data item is identified
by the data in the item, without regard for the context of the 35

data, the problems of inconsistent naming in a DP system are
overcome.

36
A publishing server, on the other hand, may want to

provide access to many clients, and possibly anonymous
ones, without incurring the overhead of tracking dependen­
cies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows
client systems to safely maintain references to a True File on
the public server. The Check For Expired Links background
mechanism allows the client of a publishing server to
occasionally confirm that its dependencies on the publishing
server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or of
needed) data in the system by requesting it from a server
processor. Any such processor can send a request to update
or resynchronize all of its directories (starting at a root
directory), simply by using the Synchronize Directories
extended mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) a list
of all True Names in the system on a given day (or at some
given time), a user can later refer back to that list to show
that a particular data item was present in the system at the
time that list was published. Such a mechanism is useful in
tracking, for example, laboratory notebooks or the like to
prove dates of conception of inventions. Such a mechanism
also permits proof of possession of a data item at a particular
date and time.

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted
through its computer systems, and use these identities to
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the
information utility and/or its data suppliers; this information

In operation, the system can publish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of
these data items. True Names are globally unique identifiers
which can be published simply by copying them. For
example, a user might create a textual representation of a file
on system A with True Name N (for instance as a hexadeci­
mal string), and post it on a computer bulletin board.
Another user on system B could create a directory entry F
for this True Name N by using the Link Path to True Name
primitive mechanism. (Alternatively, an application could
be developed which hides the True Name from the users, but
provides the same public transfer service.)

40 would be joined periodically with the information in the
accounting log file to produce customer statements.

When a program on system B attempts to open pathname
F linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True
File remote mechanism to search for True Name N on one
or more remote processors, such as system A. If system B
has access to system A, it would be able to realize the True
File (using the Realize True File from Location primitive
mechanism) and use it locally. Alternatively, system B could
find True Name N by accessing any publicly available True
Name server, if the server could eventually forward the
request to system A.

Clients of a local server can indicate that they depend on
a given True File (using the Reserve True File remote
mechanism) so that the True File is not deleted from the
server registry as long as some client requires access to it.
(The Retire True File remote mechanism is used to indicate
that a client no longer needs a given True File.)

Backing up data items in a DP system employing the
present invention can be done based on the True Names of
the data items. By tracking backups using True Names,

45 duplication in the backups is prevented. In operation, the
system maintains a backup record of data identifiers of data
items already backed up, and invokes the Copy File or
Directory operating system mechanism to copy only those
data items whose data identifiers are not recorded in the

50 backup record. Once a data item has been backed up, it can
be restored by retrieving it from its backup location, based
on the identifier of the data item. Using the backup record
produced by the backup to identify the data item, the data
item can be obtained using, for example, the Make True File

55 Local primitive mechanism.
In operation, the system can be used to cache data items

from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local registry (its cache) with a

60 remote Local Directory Extensions table (from the cache
server). Whenever a file is opened (or read), the Local
Directory Extensions table is used to identify the True
Name, and the Make True File Local primitive mechanism
inspects the local registry. When the local registry already

65 has a copy, the file is already cached. Otherwise, the Locate
True File remote mechanism is used to get a copy of the file.
This mechanism consults the cache server and uses the

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 53 of 57 PageID #: 66

5,978,791
37

Request True File remote mechanism to make a local copy,
effectively loading the cache.

38

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client's True File registry. While a file is being modified on 5

a cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

Whenever a pathname is traversed, the Get Files in
Directory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be copied from one pathname to
another efficiently, merely by copying its True Name. The
Copy File operating system mechanism is used to copy a
frozen directory.

Thus it is possible to efficiently create copies of different
versions of a directory, thereby creating a record of its
history (hence a version control system).

In operation, when the system is being used to cache data
items, the problems of maintaining cache consistency are 10

avoided. In operation, the system can maintain a local inventory of
all the data items located on a given removable medium,
such as a diskette or CD-ROM. The inventory is indepen­
dent of other properties of the data items such as their name,

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname
of a file). If the data associated with such a key is changed,
the client's cache becomes inconsistent; when the cache
client refers to that name, it will retrieve the wrong data. In
order to maintain cache consistency it is necessary to notify
every client immediately whenever a change occurs on the
server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When
the data associated with a name changes, the key itself
changes. Thus, when a cache client wishes to access the
modified data associated with a given file name, it will use
a new key (the True Name of the new file) rather than the key
to the old file contents in its cache. The client will always
request the correct data, and the old data in its cache will be
eventually aged and flushed by the Groom Cache back­
ground mechanism.

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present inven­
tion makes it possible for a single server to support a much
larger number of clients than is otherwise possible.

In operation, the system automatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism cre­
ates an audit file record, which is eventually processed by
the Process Audit File Entry primitive mechanism. This
mechanism uses the New True File primitive mechanism for
any file which is newly created, which in turn uses the
Mirror True File background mechanism if the True File is
in a mirrored or archived region. This mechanism causes one
or more copies of the new file to be made on remote
processors.

In operation, the system can efficiently record and pre­
serve any collection of data items. The Freeze Directory
primitive mechanism creates a True File which identifies all
of the files in the directory and its subordinates. Because this
True File includes the True Names of its constituents, it
represents the exact contents of the directory tree at the time
it was frozen. The frozen directory can be copied with its
components preserved.

The Acquire True File remote mechanism (used in mir­
roring and archiving) preserves the directory tree structure
by ensuring that all of the component segments and True
Files in a compound data item are actually copied to a
remote system. Of course, no transfer is necessary for data
items already in the registry of the remote system.

15 location, and date of creation.
The Inventory Existing Directory extended mechanism

provides a way to create True File Registry entries for all of
the files in a directory. One use of this inventory is as a way
to pre-load a True File registry with backup record infor-

20 mation. Those files in the registry (such as previously
installed software) which are on the volumes inventoried
need not be backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files

25 on the medium, but also records directory entries for each
file in a frozen directory structure. By copying and modi­
fying this directory, it is possible to create an on line patch,
or small modification of an existing read-only file. For
example, it is possible to create an online representation of

30 a modified CD-ROM, such that the unmodified files are
actually on the CD-ROM, and only the modified files are
online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the

35 name, date, or other properties of the data item, and tracks
the uses of specific data items and files by content for
accounting purposes. Using the Track for Accounting Pur­
poses extended mechanism provides a way to know reliably
which files have been stored on a system or transmitted from

40 one system to another.
True Names in Relational and Object-Oriented Databases

Although the preferred embodiment of this invention has
been presented in the context of a file system, the invention
of True Names would be equally valuable in a relational or

45 object-oriented database. A relational or object-oriented
database system using True Names would have similar
benefits to those of the file system employing the invention.
For instance, such a database would permit efficient elimi­
nation of duplicate records, support a cache for records,

50 simplify the process of maintaining cache consistency, pro­
vide location-independent access to records, maintain
archives and histories of records, and synchronize with
distant or disconnected systems or databases.

The mechanisms described above can be easily modified
55 to serve in such a database environment. The True Name

registry would be used as a repository of database records.
All references to records would be via the True Name of the
record. (The Local Directory Extensions table is an example

In operation, the system can efficiently make a copy of 60

any collection of data items, to support a version control
mechanism for groups of the data items.

of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi­
lating records into the registry, and then updating a primary
key index to map the key of the record to its contents by

The Freeze Directory primitive mechanism is used to
create a collection of data items. The constituent files and
segments referred to by the frozen directory are maintained
in the registry, without any need to make copies of the
constituents each time the directory is frozen.

65 using the True Name as a pointer to the contents.
The mechanisms described in the preferred embodiment,

or similar mechanisms, would be employed in such a

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 54 of 57 PageID #: 67

5,978,791
39

system. These mechanisms could include, for example, the
mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copying, and moving True
Files, for mirroring True Files, for maintaining a cache of
True Files, for grooming True Files, and other mechanisms 5

based on the use of substantially unique identifiers.
While the invention has been described in connection

with what is presently considered to be the most practical
and preferred embodiments, it is to be understood that the
invention is not to be limited to the disclosed embodiment, 10

but on the contrary, is intended to cover various modifica­
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed is:
1. In a data processing system, an apparatus comprising:
identity means for determining, for any of a plurality of 15

data items present in the system, a substantially unique
identifier, the identifier being determined using and
depending on all of the data in the data item and only
the data in the data item, whereby two identical data
items in the system will have the same identifier; and 20

existence means for determining whether a particular data
item is present in the system, by examining the iden­
tifiers of the plurality of data items.

2. An apparatus as in claim 1, further comprising:
local existence means for determining whether an

instance of a particular data item is present at a par­
ticular location in the system, based on the identifier of
the data item.

25

3. An apparatus as in claim 2, wherein each location
contains a distinct plurality of data items, and wherein said 30

local existence means determines whether a particular data
item is present at a particular location in the system by
examining the identifiers of the plurality of data items at said
particular location in the system.

35 4. An apparatus as in claim 2, further comprising:
data associating means for making and maintaining, for a

data item in the system, an association between the data
item and the identifier of the data item; and

access means for accessing a particular data item using 40

the identifier of the data item.
5. An apparatus as in claim 2, further comprising:
duplication means for copying a data item from a source

to a destination in the data processing system, by
providing said destination with the data item only if it 45

is determined using the data identifier that the data item
is not present at the destination.

6. An apparatus as in claim 4, further comprising:
assimilation means for assimilating a new data item into

the system, said assimilation means invoking said 50

identity means to determine the identifier of the new
data item and invoking said data associating means to
associate the new data item with its identifier.

7. An apparatus as in claim 4, further comprising:
duplication means for duplicating a data item from a 55

source location to a destination location in the data
processing system, based on the identifier of the data
item, said duplication means invoking said local exist­
ence means to determine whether an instance of the
data item is present at the destination location, and 60

invoking said access means to provide said destination
with the data item only if said local existence means
determines that no instance of the data item is present
at the destination.

8. An apparatus as in claim 7, further comprising: 65

backup means for making copies of data items in the
system, said backup means maintaining a backup

40
record of identifiers of data items backed up, and
invoking duplication means to copy only those data
items whose data identifiers are not recorded in the
backup record.

9. An apparatus as in claim 8, further comprising:

recovery means for retrieving a data item previously
backed up by said backup means, based on the identi­
fier of the data item, said recovery means using the
backup record to identify the data item, and invoking
access means to retrieve the data item.

10. An apparatus as in claim 2, wherein a location is a
computer among a network of computers, the apparatus
further comprising:

remote existence means for determining whether a data
item is present at a remote location in the system from
a current location in the system, based on the identifier
of the data item, said remote location using local
existence means at the remote location to determine
whether the data item is present at the remote location,
and providing the current location with an indication of
the presence of the data item at the remote location.

11. An apparatus as in claim 4, wherein a location is a
computer among a network of computers, the apparatus
further comprising:

requesting means for requesting a data item at a current
location in the system from a remote location in the
system, based on the identifier of the data item, said
remote location using access means at the remote
location to obtain the data item and to send it to the
current location if it is present.

12. An apparatus as in claim 1, further comprising:

context means for making and maintaining a context
association between at least one contextual name of a
data item in the system and the identifier of the data
item; and

referencing means for obtaining the identifier of a data
item in the system given a contextual name for the data
item, using said context association.

13. An apparatus as in claim 12, further comprising:

assignment means for assigning a data item to a contex­
tual name, invoking said identity means to determine
the identifier of the data item, and invoking said context
means to make or modify the context association
between the contextual name of the data item and the
identifier of the data item.

14. An apparatus as in claim 12, further comprising:
data associating means for making and maintaining, for a

data item in the system, an association between the data
item and the identifier of the data item;

access means for accessing a particular data item using
the identifier of the particular data item; and

contextual name access means for accessing a data item in
the system for a given context name of the data item,
determining the data identifier associated with the
given context name, and invoking said access means to
access the data item using the data identifier.

15. An apparatus as in claim 11, further comprising:

transparent access means for accessing a data item from
one of several locations, using the identifier of the data
item, said transparent access means invoking said local
existence means to determine if the particular data item
is present at the current location, and, in the case when
the particular data item is not present at the current
location, invoking said requesting means to obtain the
data item from a remote location.

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 55 of 57 PageID #: 68

5,978,791
41

16. An apparatus as in claim 15, further comprising:
identifier copy means for copying an identifier of a data

item from a source location to a destination location.
17. An apparatus as in claim 15, further comprising:
context means for making and maintaining a context 5

association between a contextual name of a data item in
the system and the identifier of the data item;

context copy means for copying a data item from a source
location to a destination location, given the contextual
name of the data item, by copying only the context 10

association between the contextual identifier and the
data identifier from the source location to the destina­
tion location; and

transparent referencing means for obtaining a data item
from one of several locations the system given a 15

contextual name for the data item, said transparent
referencing means invoking said context association to
determine the data identifier of a data item given a
contextual name, and invoking said transparent access
means to access the data item from one of several 20

locations given the identifier of the data item.
18. An apparatus as in claim 1, wherein at least some of

said data items are compound data items, each compound
data item including at least some component data items in a
fixed sequence, and wherein the identity means determines 25

the identifier of a compound data item based on each
component data item of the compound data item.

19. An apparatus as in claim 18, wherein said compound
data items are files and said component data items are
segments, and wherein the identity means determines the 30

identifier of a file based on the identifier of each data
segment of the file.

20. An apparatus as in claim 18, wherein said compound
data items are directories and said component data items are
files or subordinate directories, and wherein the identity 35

means determines the identifier of a given directory based on
each file and subordinate directory within the given direc­
tory.

21. An apparatus as in claim 11, further comprising:
means for advertising a data item from a location in the 40

system to at least one other location in the system, said
means for advertising providing each of said at least
one other location with the data identifier of the data
item, and providing the data item to only those loca­
tions of said other locations that request said data item 45

in response to said providing.
22. An apparatus as in claim 18, further comprising:
local existence means for determining whether a particu-

lar data item is present at a particular location in the
system, based on the identifier of the data item; and 50

compound copy means for copying a data item from a
source to a destination in the data processing system,
said compound copy means invoking said local exist­
ence means to determine whether the data item is
present at the destination, and to determine, when the 55

data item is a compound data item, whether the com­
ponent data items of the compound data item are
present at the destination, and providing said destina­
tion with the data item only if said local existence
means determines that the data item is not present at the 60

destination, and providing said destination with each
component data item only if said local existence means
determines that the component data item is not present
at the destination.

23. An apparatus as in claim 11, further comprising: 65

means for verifying the integrity of a data item obtained
from the requesting means in response to providing the

42
requesting with a particular data identifier, to confirm
that the data item obtained from the requesting means
is the same data item as the data item requested, the
verifying means invoking the identity means to deter­
mine the data identifier of the obtained data item, and
comparing the determined data identifier with the par­
ticular data identifier to verify the obtained data item.

24. An apparatus as in claim 2, wherein a location is at
least one of a storage location and a processing location, and
wherein a storage location is at least one of a data storage
device and a data storage volume, and wherein a processing
location is at least one of a data processor and a computer.

25. An apparatus as in claim 3, wherein at least some of
said data items are compound data items, each compound
data item including at least some component data items in a
fixed sequence, and wherein the identity means determines
the identifier of a compound data item based on the identifier
of each component data item of the compound data item.

26. An apparatus as in claim 3, further comprising:

context associating means for making and maintaining a
context association, for any data item in the system,
between the identifier of the data item and at least one
contextual name of the data item at a particular location
in the system;

means for obtaining the identifier of a data item in the
system given a contextual name for the data item at a
particular location in the system; and

logical copy means for associating the data identifier
corresponding to a contextual name at a source location
with a contextual name at a destination location in the
data processing system.

27. An apparatus as in claim 25, wherein said compound
data items are files and said component data items are
segments, and wherein the identity means determines the
identifier of a file based on the identifier of each data
segment of the file.

28. An apparatus as in claim 25, further comprising:

compound copy means for copying a data item from a
source location to a destination location in the data
processing system, said compound copy means invok­
ing said local existence means to determine whether the
data item is present at the destination, and to determine,
when the data item is a compound data item, whether
the component data items of the compound data item
are present at the destination, and providing said des­
tination with the data item only if said local existence
means determines that the data item is not present at the
destination, and providing said destination with each
component data item only if said local existence means
determines that the component data item is not present
at the destination.

29. An apparatus as in any of claims 1-28, wherein a data
item is at least one of a file, a database record, a message,
a data segment, a data block, a directory, and an instance an
object class.

30. A method of identifying a data item present in a data
processing system for subsequent access to the data item, the
method comprising:

determining a substantially unique identifier for the data
item, the identifier depending on and being determined
using all of the data in the data item and only the data
in the data item, whereby two identical data items in the
system will have the same identifier; and

accessing a data item in the system using the identifier of
the data item.

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 56 of 57 PageID #: 69

5,978,791
43

31. A method as in claim 30, further comprising:
making and maintaining, for a plurality of data items

present in the system, an association between each of
the data items and the identifier of each of the data
items, wherein said accessing a data item accesses a 5

data item via the association.
32. A method as in claim 31, further comprising:
assimilating a new data item into the system, by deter­

mining the identifier of the new data item and associ­
ating the new data item with its identifier.

33. A method for duplicating a given data item present at
a source location to a destination location in a data process­
ing system, the method comprising:

10

determining a substantially unique identifier for the given
data item, the identifier depending on and being deter- 15

mined using all of the data in the data item and only the
data in the data item, whereby two identical data items
in the system will have the same identifier;

determining, using the data identifier, whether the data 20

item is present at the destination location; and
based on the determining whether the data item is present,

providing the destination location with the data item
only if the data item is not present at the destination.

34. A method as in claim 33, wherein the given data item 25

is a compound data item having a plurality of component
data items, the method further comprising:

for each data item of the component data items,
obtaining the component data identifier of the data item

by determining a substantially unique identifier for 30

the data item, the identifier depending on and being
determined using all of the data in the data item and
only the data in the data item, whereby two identical
data items in the system will have the same identi­
fier;

determining, using the
identifier, whether the
destination; and

obtained component data
data item is present at the

35

based on the determining, providing the destination
with the data item only if the data item is not present 40

at the destination.
35. A method for determining whether a particular data

item is present in a data processing system, the method
comprising:

(A) for each data item of a plurality of data items present 45

in the system,
(i) determining a substantially unique identifier for the

data item, the identifier depending on and being
determined using all of the data in the data item and
only the data in the data item, whereby two identical 50

data items in the system will have the same identi­
fier; and

(ii) making and maintaining a set of identifiers of the
plurality of data items; and

(B) for the particular data item, 55

(i) determining a particular substantially unique iden­
tifier for the data item, the identifier depending on
and being determined using all of the data in the data
item and only the data in the data item, whereby two
identical data items in the system will have the same 60

identifier; and
(ii) determining whether the particular identifier is in

the set of data items.
36. A method of backing up, of a plurality of data items

present in a data processing system, data items modified 65

since a previous backup time in the data processing system,
the method comprising:

44
(A) maintammg a backup record of identifiers of data

items backed up at the previous backup time; and
(B) for each of the plurality of data items present in the

data processing system,
(i) determining a substantially unique identifier for the

data item, the identifier depending on and being
determined using all of the data in the data item and
only the data in the data item, whereby two identical
data items in the system will have the same identi­
fier;

(ii) determining those data items of the plurality of data
items whose identifiers are not in the backup record;
and

(iii) based on the determining, copying only those data
items whose data identities are not recorded in the
backup record.

37. A method as in claim 36, further comprising:
recording in the backup record the identifiers of those data

items copied in said copying.
38. A method of locating a particular data item at a

location in a data processing system, the method compris­
ing:

(A) determining a substantially unique identifier for the
data item, the identifier depending on and being deter­
mined using all of the data in the data item and only the
data in the data item, whereby two identical data items
in the system will have the same identifier;

(B) requesting the particular data item by sending the data
identifier of the data item from the requester location to
at least one location of a plurality of provider locations
in the system; and

(C) on at least some of the provider locations,
(a) for each data item of a plurality of data items at the

provider locations,
(i) determining a substantially unique identifier for the

data item, the identifier depending on and being
determined using all of the data in the data item and
only on the data in the data item, whereby two
identical data items in the system will have the same
identifier; and

(ii) making and maintaining a set of identifiers of data
items,

(b) determining, based on the set of identifiers, whether
the data item corresponding to the requested data
identifier is present at the provider location; and

(c) based on the determining, when the provider loca­
tion determines that the particular data item is
present at the provider location, notifying the
requestor that the provider has a copy of the given
data item.

39. The method of claim 38, further comprising:
(a) for each data item of a plurality of data items present

at said provider locations,
making and maintaining an association between the

data item and the identifier of the data item,
(b) in response to said notifying, said client location

copying said data item from one of said responding
remote locations, using said association to access the
data item given the data identifier.

40. A method of locating a particular data item among a
plurality of locations, each of the locations having a plurality
of data items, the method comprising:

determining, for the particular data item and for each data
item of the plurality of data items, a substantially
unique identifier for the data item, the identifier
depending on and being determined using all of the

Case 6:11-cv-00656 Document 1-2 Filed 12/08/11 Page 57 of 57 PageID #: 70

5,978,791
45

data in the data item and only the data in the data item,
whereby two identical data items in the system will
have the same identifier; and

46
system, at different locations in the data processing system,
the data processing system being one wherein data is iden­
tified by a substantially unique identifier, the identifier
depending on and being determined using all of the data in determining the presence of the particular data item in

each of the plurality of locations by determining
whether the identifier of the particular data item is
present at each of the locations.

41. The method of claim 30, wherein said accessing
further comprises: for a given data identifier and for a given
current location and a remote location in the system:

5 the data item and only the data in the data item, whereby two
identical data items in the system will have the same
identifier, and wherein any data item in the system may be
accessed using only the identifier of the data item, the

determining whether the data item corresponding to the
given data identifier is present at the current location,
and

10

based on said determining, if said data item is not present 15

at the current location, fetching the data item from a
remote location in the system to the current location.

42. The method of claim 41, further comprising:

for each contextual name at a location,
making and maintaining a context association between 20

the context name of a data item and the identifier of
said data item, and when some context association
changes at said current location, and

notifying said remote location of a modification to the
context association.

43. The method of claim 42, further comprising:

at said remote location, updating the association between
the contextual identifier of the data item and the iden­
tifier of the data item.

44. The method of claim 43, further comprising:

from said remote location, notifying all other locations
that said data item has been modified, by providing the
contextual identifier and data identifier of said data item
to said other locations.

25

30

45. The method of claim 44, further comprising, at each 35

location notified that the data item has been modified:

modifying an association between the contextual identi­
fier of the data item and the data identifier of the data
item, to record that the data item has been modified.

46. A method of maintaining at least a predetermined
number of copies of a given data item in a data processing

40

method comprising:

(i) sending, from a first location in the system, the data
identifier of the given data item to other locations in the
system; and

(ii) in response to the sending, at each of the other
locations,

(A) determining whether the data item corresponding to
the data identifier is present at the other location, and
based on the determining, and

(B) informing the first location whether the data item is
present at the other location; and

(iii) in response to the informing from the other locations,
at the first location,

(A) determining whether the data item is present in at least
the predetermined number of other locations, and based
on the determining,

(B) when less than the predetermined number of other
locations have a copy of the data item, requesting some
locations that do not have a copy of the data item make
a copy of the data item.

47. A method as in claim 46, wherein said step (iii) further
comprises:

(C) when more than the predetermined number of other
locations have a copy of the data item present, request­
ing some locations that do have a copy of the data item
present delete the copy of the data item.

48. A method as in any of claims 30--45, 46 and 47,
wherein said data items are at least one of a file, a database
record, a message, a data segment, a data block, a directory,
and an instance of an object class.

* * * * *

