Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 1 of 63 PagelD #: 128

EXHIBIT C

http://dockets.justia.com/docket/california/candce/3:2013cv04113/269829/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2013cv04113/269829/1/12.html
http://dockets.justia.com/

case tirarorest Doeument T IARFTRNC AR R G

a2 United States Patent

Farber et al.

US006928442B2
10y Patent No.: US 6,928,442 B2
5) Date of Patent: Aug. 9, 2005

(54

(75)

(73)

*)

@D
(22

(65)

(63)

D
(52)

(58)

(56)

ENFORCEMENT AND POLICING OF
LICENSED CONTENT USING
CONTENT-BASED IDENTIFIERS

Inventors: David A. Farber, Ojai, CA (US);
Ronald D. Lachman, Northbrook, IL

(US)

Assignees: Kinetech, Inc., Northbrook, IL (US);
Savvis, Inc., Town & Country, MO

(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/987,723

Filed: Nov. 15, 2001
Prior Publication Data

US 2002/0052884 Al May 2, 2002

Related U.S. Application Data

Continuation of application No. 09/283,160, filed on Apr. 1,
1999, now Pat. No. 6,415,280, which is a division of
application No. 08/960,079, filed on Oct. 24, 1997, now Pat.
No. 5,978,791, which is a continuation of application No.
08/425,160, filed on Apr. 11, 1995, now abandoned.

Int. CL7 ..o,
US.Cl

........................... GOGF 17/30
........ 707/10; 707/3; 707/101;

707/200; 709/203; 709/219; 709/229

Field of Search

...................... 707/3, 6, 9, 10,

707/101, 200; 709/203, 219, 229

References Cited
U.S. PATENT DOCUMENTS

3,668,647 A 6/1972 Evangelisti
4215402 A 7/1980 Mitchell
4290,105 A 9/1981 Cichelli
4376299 A 3/1983 Rivest
4405829 A 9/1983 Rivest
4,412,285 A 10/1983 Neches
(Continued)

SIMPJ.E

FOREIGN PATENT DOCUMENTS
EP 0592045 4/1994

OTHER PUBLICATIONS

Gwertzman, James, et al. “The Case for Geographical Push—
Caching.” Technical Report HU TR 34-94 (excerpt), Har-
vard University, DAS, Cambridge, MA 02138, 1994, 2 pgs.

Grigni, Michelangelo, et al. “Tight Bounds on Minimum
Broadcasts Networks.” SIAM Journal of Discrete Math-
ematics, vol. 4, No. 2, May 1991, pp. 207-222.

Devine, Robert. “Design and Implementation of DDH: A
Distributed Dynamic Hashing Algorithm.” In Proceedings
of 4th International Conference on Foundations of Data
Organizations and Algorithms, 1993, pp. 101-114.

Deering, Stephen, et al. “Multicast Routing in Datagram
Internetworks and Extended LANs.” ACM Transactions on
Computer Systems, vol. 8, No. 2, May 1990, pp. 85-110.

(Continued)

Primary Examiner—Luke S Wossum

Assistant Examiner—Khanh Pham

(74) Antorney, Agent, or Firm—Davidson Berquist Jackson
& Gowdey, LLP

(7) ABSTRACT

Data files are distributed across a plurality of computers. The
computers may form a network such as a content delivery
network (CDN) or a peer-to-peer network. The network may
operate as a TCP/IP network such as the Internet. Data files
may represent may represent digital messages, images,
videos or audio signals. For content—data items or files in
the system—a name is obtained (or determined), where the
name is based, at least in part, on a given function of the data
in a data item or file. The given function may be a message
digest or hash function, and it may be MD4, MD5, and SHA.
A cony of a requested file is only provided to licensed (or
authorized) parties. The system may check one or more
computers for unauthorized or unlicensed content. Content
is served based on a measure of availability of servers.

56 Claims, 31 Drawing Sheets

DATA ITEM

: CGOMPUTE MD FUNCTION ON i
: DATA ITEM

A
8214

APPEND LENGTH MODULO 32 OF
DATA ITEM

TRUE NAME

!

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 3 of 63 PagelD #: 130

US 6,928,442 B2
Page 2

U.S. PATENT DOCUMENTS

4414624 A 11/1983 Summer, Jr.
4,441,155 A 4/1984 Fletcher

4,464,713 A 8/1984 Benhase

4,490,782 A 12/1984 Dixon

4,571,700 A 2/1986 Emry, Jr.

4577203 A 3/1986 Matick

4,642,793 A 2/1987 Meaden

4675810 A 6/1987 Gruner

4691209 A 9/1987 Rivest

4725945 A 2/1988 Kronstadt

4,773,039 A 9/1988 Zamora

4,887,235 A 12/1989 Holloway

4,888,681 A 12/1989 Barnes

4922414 A 5/1990 Holloway

4922417 A 5/1990 Churm et al.uuee..... 707/1
4972367 A 11/1990 Burke

5025421 A 6/1991 Cho

5,050,074 A 9/1991 Marca

5,050,212 A 9/1991 Dyson

5,057,837 A 10/1991 Colwell

5077658 A 12/1991 Bendert

5,129,081 A 7/1992 Kobayashi

5129082 A 7/1992 Tirfing

5144667 A 9/1992 Pogue, Ir.

5,179,680 A 1/1993 Colwell

5,202,982 A 4/1993 Gramlich et al. 707/2
5208858 A 5/1993 Vollert

5276901 A 1/1994 Howell

5,287,499 A 2/1994 Nemes ...ccoeeeeeeneeeeeeennens 707/2
5301,286 A 4/1994 Rajani

5,301,316 A 4/1994 Hamilton

5,341,477 A 8/1994 Pitkin et al. 709/226
5,343,527 A 8/1994 Moore

5,357,623 A 10/1994 Megory-Cohen

5,384,565 A 1/1995 Cannon

5,404,508 A 4/1995 Konrad

5,452,447 A 9/1995 Nelson et al. 707/205
5,459,860 A 10/1995 Burnett

5,542,087 A 7/1996 Neimat et al. 707/10
5,581,758 A 12/1996 Burnett

5,638,443 A 6/1997 Stefik et al.coueueeeee. 705/54
5,640,564 A 6/1997 Hamilton et al. 709/303
5,781,629 A * 7/1998 Haber et al. 713/177
5,802,291 A 9/1998 Balick et al. 709/202
5,809,494 A 9/1998 Nguyenccccceeveeennn. 707/1
5,835,087 A * 11/1998 Herz et al.c.cco..... 345/810
5,907,704 A 5/1999 Gudmundson et al.

6,006,018 A 12/1999 Burnett et al. 395/200.49
6,134,603 A 10/2000 Jones et al. 709/330

OTHER PUBLICATIONS

Cormen, Thomas H., et al. Infroduction to Algorithms, The
MIT Press, Cambridge, Massachusetts, 1994, pp. 219-243,
991-993.

Naor, Moni, et al. “The Load, Capacity and Availability of
Quorum Systems.” In Proceedings of the 35th IEEE Sym-
posium on Foundations of Computer Science, Nov. 1994,
pp- 214-225.

Nisan, Noam. “Pseudorandom Generators for Space—
Bounded Computation.” In Proceedings of the Twenty—
Second Annual ACM Symposium on Theory of Computing,
May 1990, pp. 204-212.

Palmer, Mark, et al. “Fido: A Cache that Learns to Fetch.”
In Proceedings of the 17th International Conference on Very
Large Data Bases, Sep. 1991, pp. 255-264.

Peleg, David, et al. “The Availability of Quorum Systems.”
Information and Computation 123, 1995, 210-223.

Rabin, Michael. “Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance.” Journal of
the ACM, vol. 36, No. 2, Apr. 1989, pp. 335-348.

Ravi, R., “Rapid Rumor Ramification: Approximating the
Minimum Broadcast Time.” In Proceedings of the 35th
IEEE Symposium on Foundation of Computer Science, Nov.
1994, pp. 202-213.

Schmidt, Jeanette, et al. “Chernoff-Hoeffding Bounds for
Applications with Limited Independence.” In Proceedings
of the 4th ACS-SIAM Symposium on Discrete Algorithms,
1993, pp. 331-340.

Tarjan, Robert Endre, et al. “Storing a Sparse Table.”
Communications of the ACM, vol. 22, No. 11, Nov. 1979,
pp. 606-611.

Wegman, Mark, et al. “New Hash Functions and Their Use
in Authentication and Set Equality.” Journal of Computer
and System Sciences vol. 22, Jun. 1981, pp. 265-279.
Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data
Compression.” In Proceedings of 32nd IEEE Symposium on
Foundations of Computer Science, Nov. 1991, pp. 121-130.
Fredman, Michael, et al. “Storing a Sparse Table with 0(1)
Worst Case Access Time.” Journal of the Association for
Computing Machinery, vol. 31, No. 3, Jul. 1984, pp.
538-544.

Yao, Andrew Chi—Chih. “Should Tables be Sorted?” Journal
of the Association for Computing Machinery, vol. 28, No. 3,
Jul. 1981, pp. 615-628.

Floyd, Sally, et al. “A reliable Multicast Framework for
Light—Weight Sessions and Application Level Framing.” In
Proceeding of ACM SIGCOMM 95, pp. 342-356.
Feeley, Michael, et al. “Implementing Global Memory Man-
agement in a Workstation Cluster.” In Proceedings of the
15th ACM Symposium on Operating Systems Principles,
1995, pp. 201-212.

Carter, J. Lawrence, et al. “Universal Classes of Hash
Functions.” Journal of Computer and System Sciences, vol.
18, No. 2, Apr. 1979, pp. 143-154.

Patent Abstracts of Japan, “Electronic Mail Multiplexing
System and Communication Control Method in The Sys-
tem.” Jun. 30, 1993, JP 05162529.

Kim et al., “Experiences with Tripwire: Using Integrity
Checkers For Intrusion Detection”, COAST Labs. Dept. of
Computer Sciences Purdue University, Feb. 22, 1995, pp.
1-12.

Kim et al., “The Design and Implementation of Tripwire: A
file System Integrity Checker”, COAST Labs. Dept. of
Computer Sciences Purdue University, Nov. 19, 1993, pp.
1-21.

Bert dem Boer et al., Collisions for the compression function
of MDy, pp. 292-304.

Sakti Pramanik et al., Multi—Directory Hasing, 1993, Info.
Sys., vol. 18, No. 1, pp. 63-74.

Murlidhar Koushik, Dynamic Hashing with Distributed
Overflow Space: A File Organization with Good Insertion
Performance, 1993, Info. Sys., vol. 18, No. 5, pp. 299-317.
Witold Litwin et al., LH -Linear Hashing for Distributed
Files, HP Labs Tech. Report No. HPL-93-21, Jun. 1993, pp.
1-22.

Yuliang Zheng et al., HAVAL—A One—Way Hashing Algo-
rithm with Variable Length of Output (Extended Abstract),
pp. 83-105.

Chris Charnes and Josef Pieprzky, Linear Nonequivalence
versus Nonlinearity, Pieprzky, pp. 156-164.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 4 of 63 PagelD #: 131

US 6,928,442 B2
Page 3

Witold Litwin et al., Linear Hashing for Distributed Files,
ACM SIGMOD, May 1993, pp. 327-336.

Ming-Ling Lo et al., On Optimal Processor Allocation to
Support Pipelined Hash Joins, ACM SIGMOD, pp. 69-78,
May 1993.

Thomas A. Berson, Differential Cryptanalysis Mod 2> with
Applications to MDS5, pp. 69-81.

William Perrizo et al., Distributed Join Processing Perfor-
mance Evaluation, Twenty—Seventh Hawaii International
Conference on System Sciences, vol. II, pp. 236-244.
Vijay Kumar, A Concurrency Control Mechanism Based on
Extendible Hashing for Main Memory Database Systems,
ACM, vol. 3, 1989, pp. 109-113.

Birgit Pfitzman, Sorting Out Signature Schemes, Nov. 1993,
1°* Conf. Computer & Comm. Security *93, p. 74-85.
Zhiyu Tian et al., A New Hashing Function: Statistical
Behaviour and Algorithm, pp. 3-13.

G. L. Friedman, Digital Camera with Apparatu for Authen-
tication of Images Produced from an Image File, NASA
Case No. NPO-19108-1-CU, U.S. Appl. No. 08/159,980,
filed Nov. 24, 1993.

H. Goodman, Ada, Object—Oriented Techniques, and Con-
currency in Teaching Data Structures and File Management
Report Documentation p. AD-A275 385 — 94-04277.
Advances in Cryptology—Eurocrypt’93, Workshop on the
Theory and Application of Cryptographic Techniques
Lofthus, Norway, May 23-27, 1993 Proceedings.
Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, vol. 22, Issue 2, Jun. 1993.

Advances in Cryptology—AUSCRYPT *92—Workshop on
the Theory and Application of Cryptographic Techniques
Gold Coast, Queensland, Australia, Dec. 13-16, 1992 Pro-
ceedings.

Peter Deutsch (peterd@bunyip.com), “Re: MD5 and LiFNs
(was: Misc Comments)”, www.acl.lanl.gov/URI/archive/
uri-94q2.messages/0106.html, Apr. 26, 1994.

Alexander Dupuy (dupuy@smarts.com), “RE: MD5 and
LIFNs (was: Misc Comments)”, www.acl.lanl.gov/URI/ar-
chive/uri—94q2.messages/0113.html, Apr. 26, 1994.
Alexander Dupuy (dupuy@smarts.com), “MD5 and LIFNs
(was: Misc Comments)”, www.acl.lanl.gov/URI/archive/
uri-94q2.messages/0081.html, Apr. 17, 1994.

Albert Langer (cmf851@anu.oz.au), http://groups.google-
.com/groups?selm=

1991 Aug7.225159.786%40newshost.anu.edu.au&oe=
UTF-8&output=gplain, Aug. 7, 1991.

Clifford Lynch (Calur@uccmvsa.bitnet), “ietf url/uri over-
view draft paper (long)”, www.acl.lanl.gov/URI/archive/
uri-93q1l.messages/0015.html, Mar. 25, 1993.

K. Sollins and L. Masinter, “Functional Requirements for
Uniform Resource Names”, www.w3.org/Addressing/
rfc1737.txt, Dec. 1994, pp. 1-7.

W3C:ID, HTTP: A protocol for networked information,
“Basic HTTP as defined in 1992”, www.w3.org/Protocols/
HTTP2.html, 1992.

European Search Report issued Dec. 23, 2004.

* cited by examiner

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 5 of 63 PagelD #: 132

U.S. Patent Aug. 9, 2005 Sheet 1 of 31 US 6,928,442 B2

106

102
PROCESSOR

102
PROCESSOR

102
PROCESSOR

FIG. 1(a)

102
PROCESSOR

STORAGE
DEVICE

102
PROCESSOR

STORAGE
DEVICE
100

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 6 of 63 PagelD #: 133

US 6,928,442 B2

Sheet 2 of 31

Aug. 9, 2005

U.S. Patent

1424

BRIl
39V0ls

: 19

m avs a5l

' 1410

“ 11

| 149 oeL

! [4%))

| 1s

! ans 0€}

! 951

_” IS

" v 9zl

" pel

' yd1

" v 9z}

! ZeL

! =lop)

.H AMOW3N rek

“ oLl

| 204
R

Ndd

801

()1 914

FiLe | 116
FIG. 2 SYSTEM
117 117 147 117
REGIONI REGION I REGION REGION
118 118 118
DIRECTORY DIRECTORY DIRECTORY
120 120 120

‘FLE’

122

122

lSEGMENTl lSEGMENT'

122

‘SEGMENTI

S00T ‘6 “3ny jued ‘SN

1€ JO € 199yS

79 8769 SN

Y€1 # dl9bed €9 Jo 2 abed TT/80/2T Palld +-T uswndod 95900-AI-TT:9 8sed

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 8 of 63 PagelD #: 135

U.S. Patent Aug. 9, 2005 Sheet 4 of 31 US 6,928,442 B2

FIG. 3

Region ID
Pathname

True Name
Type

File ID

138 -

Time of last access

Time of last modification

Safe flag

Lock flag

Size

owner

FIG. 4

True Name

140

File ID

Compressed File ID

Source IDs

Dependent processors

Use count

Time of last access

Expiration

Grooming delete count

142

Region ID

Regicon file system

Region pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG. 5

FIG. 6

FIG. 7

FIG.8

FIG. O

144

source ID

source type

source rights

source availability

source location

146

Original Name

Operation

Type

Processor ID

Timestamp

Pathname

True Name

148

date of entry

type of entry

True Name

150

True Name

licensee

€007 ‘6 SNy judged ‘SN

1€ JO € 199YS

79 8769 SN

9ET # Aldbed €9 Jo 6 8bed TT/80/CT Palld ¥-T udwNd0oQ 95900-A2-TT:9 aseD

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 10 of 63 PagelD #: 137

U.S. Patent Aug. 9, 2005 Sheet 6 of 31 US 6,928,442 B2

FIG. 10(a)

5212 \

COMPUTE MD FUNCTION ON
DATA ITEM

A 4
S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

- T e em e S E e e e e e e -,
T am s a0 wm e ee S em G D W s GR e T e T Em S e e s oS

e e e e wm e e e ms e L s GRS M W ST e e E ew e e e o

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 11 of 63 PagelD #: 138

U.S. Patent Aug. 9, 2005 Sheet 7 of 31 US 6,928,442 B2

5216

DATA ITEM
SIMPLE?

O—l FIG. 10(b)

PARTITION DATA ITEM INTO
SEGMENTS

$§222

ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

~

! COMPUTE TRUE '
' NAME OF SIMPLE !

 DATAITEM | 554

--------------- CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

S226

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

5228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

v

§230
F| G l l DETERMINE
TRUE NAME
NO DOES TRUE NAME
EXIST IN TRUE FILE
REGISTRY?
5236
* CREATE NEW ENTRY
*SET USE COUNTTO 1

* STORE FILEID
* SET OTHER FIELDS

v

YES

YES. DOES ENTRY

HAVE FILE ID?

5238

DELETEFILE ID

|

§239
STORE FILE ID

!

v

S007 ‘6 ‘3ny uNed ‘SN

1€ J0 8 199YS

79 8769 SN

6ET # Qlebed €9 jo zT abed TT/80/2T PaIld +-T uawndoq 95900-A2-TT:9 8se)

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 13 of 63 PagelD #: 140

U.S. Patent Aug. 9, 2005 Sheet 9 of 31 US 6,928,442 B2

FIG.I2

238 5240
YES
FILE UPDATE

P
LOCKED? DEPESggNCY
NO l

S242
SEND MESSAGE TO
v<~ CACHE SERVER TO
S044 UPDATE CACHE
COMPRESS
(IF DESIRED)
5246
MIRROR

(IF DESIRED)

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 14 of 63 PagelD #: 141

U.S. Patent Aug. 9, 2005 Sheet 10 of 31 US 6,928,442 B2

FIG.13
!

S250
SEARCH FOR

THE NOT EOUND EAL

PATHNAME

LDE INCLUDES NO

JRUE NAME?

S258
q4—{ ASSIMILATE LDE IDENTIFIES
FILEID DIRECTORY?
S256
¢ FREEZE
DIRECTORY

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 15 of 63 PagelD #: 142

U.S. Patent Aug. 9, 2005 Sheet 11 of 31 US 6,928,442 B2

S§260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

y FIG.14

5262
SEARCH FOR
PATHNAME IN

LDE TABLE

S264

CONFIRM THAT
DIRECTORY
EXISTS

5266

5268
NAMED FILE VES DELETE
EXISTS? TRUE FILE

S270
CREATE
ENTRY IN LDE
& UPDATE

NO

S§278

REQUEST
MOUNT

A 4

S280
FIND FILE

FIG.15

YES
IS LOCATION A
ROGESSOR?
NEGATIVE
RESPONSE 5274
SEND RTF
MESSAGE &
WAIT FOR
RESPONSE
POSITIVE
RESPONSE
FAIL
Y
S276
ENTER TRUE FILE
RETURNED INTO
5282 TFR
VERIFY TRUE ,
FILE (IF
DESIRED)

v

00T ‘6 "3ny judged ‘SN

1€ 30 TT 1994S

79 8769 SN

YT ‘# Qlebed €9 Jo 9T abed TT/80/2T PaIld +-T uawnd0Q 95900-A2-TT:9 8se)

NEGATIVE
RESPONSE
OR
TIMEOUT

| CLIENT

N

5284
CLIENT
SELECTS
PROCESSOR(S)

5285

ANY NO

PROCESSORS
ELECTED

5286

CLIENT
BROADCASTS

v

5288

WAITS

POSITIVE
RESPONSE

FAIL

FIG.16(a)

S007 ‘6 ‘3ny uNed ‘SN

1€ 30 €1 1994S

79 8769 SN

YT # dlebed €9 Jo LT abed TT/80/2T pPolid #-T Juswndod 95900-Ad-TT:9 9sed

——

S290

STORE
PROCESSORID

SOURCE OF TRUE
NAME DIFFERS FROM
DESTINATION?

$290B
LOOK UP TFR FOR
TRUE NAME & ADD
FIG. 16(b) SOURCE LOCATION ID
TO SOURCE IDS FOR
TRUE NAME

S00T ‘6 ‘sny juaed ‘SN

1€ JO ¥1 194§

S291c)\ =573

S200C

SEND MESSAGE TO .
SOURCE IS DETERMINE

R e - [€ O—Quausnms YES-3 EXPIRATION DATE

O SouReE SYSTEM? AND ADD TO LIST

N

7d 8769 SN
ST # Qlebed €9 jo 8T abed TT/80/2T PaIld +-T uawndoq 95900-A2-TT:9 8se)

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 19 of 63 PagelD #: 146

U.S. Patent Aug. 9, 2005 Sheet 15 of 31 US 6,928,442 B2

DECOMPRESS

NO

> 1 S,
[=] <
EE o & a
& W Fm &m
Q2 9L ©
Ly) &=

-1 = =™
o =T
-m C

FIG.17(a)

Ff

$308

LOCATE
REMOTE FILE

-

S302
NOTIFY
USER

A 4 A

S304
NO MORE

SELECT
SOURCE IDS™ SOURCE IDS

WYR'ET—' |

S306

REALIZE TRUE
FILE FROM
SOURCE(S)

5300
STORE ID

FIG. 17(b)

$00T ‘6 “3ny juged ‘SN

1€ 30 91 3994S

7d 8769 SN

LT # Qldbed €9 Jo 0z abed TT/80/T PaIld ¥-T UBWNX0Q 9G900-AJ-TT:9 8SeD

FIG. I8(a)

BE COPY OF TRUE
FILE?

JuLIed ‘SN

LDE IDENTIFIES
EXISTING TRUE

FILEID FOR
TRUE FILE?

YES» poNE

S00T ‘6 "Sny

FILE?

S318
o) DELETE 0
TRUEFILE ¢
S320 5322
CREATE NEW > MAKE TRUE
SCRATCH FILE FILE LOCAL

l R

DONE

1€ JO LT 3994S
8T # Aldbed €9 Jo Tz abed TT/80/T PAIld -T WUBWNX0Q 9G900-AI-TT:9 8SeD

79 8769 SN

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 22 of 63 PagelD #: 149

US 6,928,442 B2

Sheet 18 of 31

Aug. 9, 2005

U.S. Patent

AdLN3
A4l SAONY
? 41 371d IAVS

8CES

A

| S3A

3SN INIW3H034

£

airg1d oLs ‘aid
M3N 0.1 3714 AdOD

INNOD

=ic) AR=(ap By

0£ES

il =

A

INNOD 3SN

ON

(4)81 914

!

S332

INCREMENT
FREEZE LOCK

l

/

FOR EACH
SUBORDINATE
FILE AND

DIRECTORY IN THE
\GIVEN DIRECTORy

FIG. 19(a)
l 5336
FRSZZ‘;_ F ASSIMILATE
DIRECTORY ' UNASS;mlé-ATED

S337
CREATE NEW
DATA ITEM

¥y

0063y Jualed S

1€ J0 61 39948

79 8769 SN

0GT # dlabed €9 J0 gz 8bed TT/80/2T Pall4 t-T WBWNJ0d 9G900-A0-TT:9 8seDd

-

/

FOR EACH
SUBORDINATE
FILE AND

DIRECTORY IN THE

\ﬂ

5338
ADD ENTRY TO
NEW DATA
ITEM

GIVEN DIRECTORY
\ J

l

ASSIMILATE THE

S342

NEW DATA ITEM

S344
DECREMENT
THE FREEZE

LOCK

!

FIG. 19(b)

S§340
RECORD
ADDITIONAL
DESIRED
INFORMATION

00T ‘6 SNV judged ‘SN

1€ 30 0T 19YS

7d Wr'876°9 SN

TGT # Qldbed €9 Jo ¥z abed TT/80/¢T PaIld ¥-T WUBWINX0Q 9G900-AI-TT:9 8S€D

FI1G.20

S354 NO MORE
DONE

ENTRIES

!

S346

MAKE TRUE
FILELOCAL

5353
FOR EACH
DIRECTORY
ENTRY

MORE
ENTRIE

S348

READ
DIRECTORY

v

S350

CREATE FULL
PATHNAME

v

S352

LINK PATHTO
TRUE NAME

S00T ‘6 “3ny jued ‘SN

1€ 30 1T 19948

79 8769 SN

2GT # Qlsbed €9 Jo Gz abed TT/80/2T Palld ¥-T WUBWNX0Q 9G900-AJ-TT:9 8SeD

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 26 of 63 PagelD #: 153

U.S. Patent Aug. 9, 2005 Sheet 22 of 31 US 6,928,442 B2

!

5354
WAIT FOR
FREEZE LOCK
TO TURN OFF

5356
FIND TFR FIG’ 2'

ENTRY

5358
DECREMENT

REFERENCE
COUNT

REFERENCE COUNT IS YES 023255
ZERO & NO DEPENDENT TRUE FILE
SYSTEMS IN TFR?
NO
h 4
S364
REMOVE FILE ID
< AND COMPRESSED
$ FILE ID

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 27 of 63 PagelD #: 154

U.S. Patent Aug. 9, 2005 Sheet 23 of 31 US 6,928,442 B2
S365
GET
OPERATION
$366 ===
CREATE OR YES >
MODIFY? ASSIMILATE
5369
NEW TRUE
COPY OR DELETE YES FILE
COMPOUND? l
8378 S370
NO MODIFY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
e l
h 4
S379
FOR EACH PARENT
DIRECTORY OR FILE,
UPDATE USE COUNT,
LAST ACCESS AND
MODIFY TIMES

'

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 28 of 63 PagelD #: 155

U.S. Patent

FIG. 23

Aug. 9, 2005

Sheet 24 of 31

US 6,928,442 B2

VERIFY
GROOMING
LOCK OFF

GROOMING

SET GROOM
COUNTS

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 29 of 63 PagelD #: 156

U.S. Patent Aug. 9, 2005 Sheet 25 of 31 US 6,928,442 B2

S388

FIND LDE
RECORD

FIG. 24

S390

FIND TFR
RECORD

S§392

INCREMENT
GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 30 of 63 PagelD #: 157

U.S. Patent Aug. 9, 2005 Sheet 26 of 31 US 6,928,442 B2

FIG. 29

A 4
S398
UNLOCK
GROOMING

LOCK

$400 FIG. 26(a)
NO FILE EXISTS YES)
LOCALLY?:
54
02 5404 408
BEING O—p| PROHIBIT DETERMINE
CREATED? OPEN REGION
5410
NO READ YES_
ONLY?

READ-ONLY
RIRECTORY

YES.

-

S422
PROHIBIT 5419

OPEN SCRATCH
FILE?

S00T ‘6 “3ny jued ‘SN

1€ JO LT 194§

79 8769 SN

8GT # Aldbed €9 Jo T abed TT/80/2T PAIld ¥-T WUBWNX0Q 9G900-AI-TT:9 8SeD

S419

BEING
COMPLETELY

A 4
S421
ERASE FILE
g
5406
CREATE
SCRATCH FILE
S424
1 RETURN
»| SCRATCH FILE
D

5418

LOCKIF NOT
LOCKED

0

-

S417
CREATE
SCRATCH
COPY

'

<

FIG.26(b)

v

S420
MAKE LOCAL
VERSION &
RETURN FILE ID
FROM TFR

l

S007 ‘6 ‘3ny uNed ‘SN

1€ 30 8T 1994S

79 8769 SN

6GT # Aldbed €9 Jo g€ abed TT/80/T PAIld -T WUBWNX0Q 9G900-AI-TT:9 8SeD

!

S422
DETERMINE LDE &
RT ENTRY
RECORDS FOR
FILE

NO LDE RECORD OR
FILE LOCKED OR IN
READ-ONLY

DIRECTORY?

IDENTIFY TRUE
FILE FROM TRUE
NAME

4

Juased 's'n

S00T ‘6 ‘Sny

YES—p| PROHIBIT
DELETION

1€ 30 6T 31994S

FIG. 27(a)

7d ‘8769 SN

09T # Qlabed €9 jo €€ abed TT/80/2T Pl ¥-T JUBWINXOQ 9G900-AI-TT:9 8SeD

YES

TRUE FILE'S

NO

v

USE COUNT IS
ON/

5431

REDUCE USE
COUNT BY ONE

FILE HAS NO
TRUE NAME?
$427
DELETE
YES SCRATCH COPY
OF FILE
S430
DELETE
TRUEFILE
5428
» |ADD ENTRY TO
AUDIT FILE
FIG. 27(b) \

00T ‘6 "3ny juaned ‘s

1€ 30 (€ 31994S

7d Thh'8T6‘9 SN

T9T # Qldbed €9 Jo ¥ abed TT/80/T Palld -T WUBWINX0Q 9G900-AI-TT:9 8SeD

YES

!

$§432

LOOKUP
TRUE NAME

NCLUDES FILEID
OR COMPRESSED
FILE ID?

POSITIVE
RESPONSE

S434

FOUND?

NO

FIG. 28

5442
FORWARD
REQUEST

{———YES

REQUEST TO BE
FORWARDED?

v

S438

NEGATIVE
RESPONSE

00T ‘6 "3ny judged ‘SN

1€ 30 1€ 1994S

79 8769 SN

29T # QIdbed €9 Jo G abed TT/80/2T PAlld ¥-T WUBWINX0Q 9G900-AI-TT:9 8SeD

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 36 of 63 PagelD #: 163

US 6,928,442 B2

1

ENFORCEMENT AND POLICING OF
LICENSED CONTENT USING CONTENT-
BASED IDENTIFIERS

This is a continuation of application Ser. No. 09/283,160,
filed Apr. 1, 1999, now U.S. Pat. No. 6,415,280, which is a
division of application Ser. No. 08/960,079, filed Oct. 24,
1997, now U.S. Pat. No. 5,978,791 filed Oct. 24, 2001 which
is a continuation of Ser. No. 08/425,160, filed Apr. 11, 1995,
now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and,
more particularly, to data processing systems wherein data
items are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the
data in the data items.

2. Background of the Invention

Data processing (DP) systems, computers, networks of
computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a
typical operating system (OS) on a computer provides a file
system in which data items are named by alphanumeric
identifiers. Programs typically identify data in the data
processing system using a location or address. For example,
a program may identify a record in a file or database by using
a record number which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able to create and use collections of named
data items, these collections themselves being named by
identifiers. These named collections can then, themselves,
be made part of other named collections. For example, an
OS may provide mechanisms to group files (data items) into
directories (collections). These directories can then, them-
selves be made part of other directories. A data item may
thus be identified relative to these nested directories using a
sequence of names, or a so-called pathname, which defines
a path through the directories to a particular data item (file
or directory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item™ as used herein
refer to sequences of bits. Thus a data item may be the
contents of a file, a portion of a file, a page in memory, an
object in an object-oriented program, a digital message, a
digital scanned image, a part of a video or audio signal, or
any other entity which can be represented by a sequence of
bits. The term “data processing” herein refers to the pro-
cessing of data items, and is sometimes dependent on the
type of data item being processed. For example, a data
processor for a digital image may differ from a data pro-
cessor for an audio signal.

In all of the prior data processing systems the names or
identifiers provided to identify data items (the data items

10

15

20

25

30

35

40

45

50

55

60

65

2

being files, directories, records in the database, objects in
object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a par-
ticular file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
(context) is known. Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are
meaningful only because they are specified relative to a
context.

In prior art systems for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the
same context may refer to the same data item.

In addition, because there is no correlation between a data
name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a
data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in
general, verify that the data delivered is the correct data
(given only the name). Therefore it may require further
processing, typically on the part of the requester, to verify
that the data item it has obtained is, in fact, the item it
requested.

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi-
processing system when data items are created and identified
at separate processors in distinct locations, and in which
there is no other need for communication when data items
are added.

In many data processing systems or environments, data
items are transferred between different locations in the
system. These locations may be processors in the data
processing system, storage devices, memory, or the like. For
example, one processor may obtain a data item from another
processor or from an external storage device, such as a
floppy disk, and may incorporate that data item into its
system (using the name provided with that data item).

However, when a processor (or some location) obtains a
data item from another location in the DP system, it is
possible that this obtained data item is already present in the
system (either at the location of the processor or at some
other location accessible by the processor) and therefore a
duplicate of the data item is created. This situation is
common in a network data processing environment where
proprietary software products are installed from floppy disks
onto several processors sharing a common file server. In
these systems, it is often the case that the same product will
be installed on several systems, so that several copies of
each file will reside on the common file server.

In some data processing systems in which several pro-
cessors are connected in a network, one system is designated
as a cache server to maintain master copies of data items,
and other systems are designated as cache clients to copy
local copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache client
must either reload the cached item, be informed of changes
to the cached item, or confirm that the master item corre-

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 37 of 63 PagelD #: 164

US 6,928,442 B2

3

sponding to the cached item has not changed. In other words,
a cache client must synchronize its data items with those on
the cache server. This synchronization may involve reload-
ing data items onto the cache client. The need to keep the
cache synchronized or reload it adds significant overhead to
existing caching mechanisms.

In view of the above and other problems with prior art
systems, it is therefore desirable to have a mechanism which
allows each processor in a multiprocessor system to deter-
mine a common and substantially unique identifier for a data
item, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification of
identical data items so as to reduce multiple copies. It is
further desirable to determine whether two instances of a
data item are in fact the same data item, and to perform
various other systems’ functions and applications on data
items without relying on any context information or prop-
erties of the data item.

It is also desirable to provide such a mechanism in such
a way as to make it transparent to users of the data
processing system, and it is desirable that a single mecha-
nism be used to address each of the problems described
above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing system, a
method and apparatus for identifying a data item in the
system, where the identity of the data item depends on all of
the data in the data item and only on the data in the data item.
Thus the identity of a data item is independent of its name,
origin, location, address, or other information not derivable
directly from the data, and depends only on the data itself.

This invention further provides an apparatus and a method
for determining whether a particular data item is present in
the system or at a location in the system, by examining only
the data identities of a plurality of data items.

Using the method or apparatus of the present invention,
the efficiency and integrity of a data processing system can
be improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a
plurality of data items, by making possible or improving the
design and operation of at least some or all of the following
features:

the system stores at most one copy of any data item at a

given location, even when multiple data names in the
system refer to the same contents;

the system avoids copying data from source to destination

locations when the destination locations already have
the data;

the system provides transparent access to any data item by

reference only to its identity and independent of its
present location, whether it be local, remote, or offline;
the system caches data items from a server, so that only
the most recently accessed data items need be retained;
when the system is being used to cache data items,
problems of maintaining cache consistency are
avoided;
the system maintains a desired level of redundancy of data
items in a network of servers, to protect against failure
by ensuring that multiple copies of the data items are
present at different locations in the system;

10

20

25

30

35

40

45

50

55

60

65

4

the system automatically archives data items as they are

created or modified;

the system provides the-size, age, and location of groups

of data items in order to decide whether they can be
safely removed from a local file system;

the system can efficiently record and preserve any col-

lection of data items;

the system can efficiently make a copy of any collection

of data items, to support a version control mechanism
for groups of the data items;

the system can publish data items, allowing other, possi-

bly anonymous, systems in a network to gain access to
the data items and to rely on the availability of the data
items;

the system can maintain a local inventory of all the data

items located on a given removable medium, such as a
diskette or CD-ROM, the inventory is independent of
other properties of the data items such as their name,
location, and date of creation;

the system allows closely related sets of data items, such

as matching or corresponding directories on discon-
nected computers, to be periodically resynchronized
with one another;

the system can verify that data retrieved from another

location is the desired or requested data, using only the
data identifier used to retrieve the data;

the system can prove possession of specific data items by

content without disclosing the content of the data items,
for purposes of later legal verification and to provide
anonymity;

the system tracks possession of specific data items accord-

ing to content by owner, independent of the name, date,
or other properties of the data item, and tracks the uses
of specific data items and files by content for account-
ing purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions
of the related elements of structure, and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a) and 1(b) depicts a typical data processing
system in which a preferred embodiment of the present
invention operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(2)-28 are flow charts depicting operation of
various aspects of the present invention.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

An embodiment of the present invention is now described
with reference to a typical data processing system 100,
which, with reference to FIGS. 1(a) and 1(b), includes one
or more processors (or computers) 102 and various storage
devices 104 connected in some way, for example by a bus
106.

Each processor 102 includes a CPU 108, a memory 110
and one or more local storage devices 112. The CPU 108,

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 38 of 63 PagelD #: 165

US 6,928,442 B2

5

memory 110, and local storage device 112 may be internally
connected, for example by a bus 114. Each processor 102
may also include other devices (not shown), such as a
keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server,
client/client, or a server/server relationship. These inter-
processor relationships may be dynamic, changing depend-
ing on particular situations and functions. Thus, a particular
processor 102 may change its relationship to other proces-
sors as needed, essentially setting up a peer-to-peer relation-
ship with other processors. In a peer-to-peer relationship,
sometimes a particular processor 102 acts as a client
processor, whereas at other times the same processor acts as
a server processor. In other words, there is no hierarchy
imposed on or required of processors 102.

In a multiprocessor system, the processors 102 may be
homogeneous or heterogeneous. Further, in a multiprocessor
data processing system 100, some or all of the processors
102 may be disconnected from the network of processors for
periods of time. Such disconnection may be part of the
normal operation of the system 100 or it may be because a
particular processor 102 is in need of repair.

Within a data processing system 100, the data may be
organized to form a hierarchy of data storage elements,
wherein lower level data storage elements are combined to
form higher level elements. This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, segments, and the like. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system 116 which comprises
regions 117, each of which comprises directories 118, each
of which can contain other directories 118 or files 120. Each
file 120 being made up of one or more data segments 122.

In a typical data processing system, some or all of these
elements can be named by users given certain implementa-
tion specific naming conventions, the name (or pathname) of
an element being relative to a context. In the context of a
data processing system 100, a pathname is fully specified by
a processor name, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this
case segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of
directories 118. A directory 118 is a collection of named files
120—both data files 120 and other directory files 118. A file
120 is a named data item which is either a data file (which
may be simple or compound) or a directory file 118. A
simple file 120 consists of a single data segment 122. A
compound file 120 consists of a sequence of data segments
122. A data segment 122 is a fixed sequence of bytes. An
important property of any data segment is its size, the
number of bytes in the sequence.

A single processor 102 may access one or more file
systems 116, and a single storage device 104 may contain
one or more file systems 116, or portions of a file system 116.
For instance, a file system 116 may span several storage
devices 104.

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region
is a unit of management and control. A region consists of a
given directory 118 and is identified by the pathname (user
defined) of the directory.

In the following, the term “location”, with respect to a
data processing system 100, refers to any of a particular

10

15

25

35

40

45

50

55

60

65

6

processor 102 in the system, a memory of a particular
processor, a storage device, a removable storage medium
(such as a floppy disk or compact disk), or any other physical
location in the system. The term “local” with respect to a
particular processor 102 refers to the memory and storage
devices of that particular processor.

In the following, the terms “True Name”, “data identity™
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by
a True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing oper-
ating system by augmenting some of the operating system’s
file management system codes. The embodiment provided
relies on the standard file management primitives for actu-
ally storing to and retrieving data items from disk, but uses
the mechanisms of the present invention to reference and
access those data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories:
primitive mechanisms, operating system mechanisms,
remote mechanisms, background mechanisms, and extended
mechanisms.

Primitive mechanisms provide fundamental capabilities
used to support other mechanisms. The following primitive
mechanisms are described:

1. Calculate True Name;

. Assimilate Data Item;

. New True File;

. Get True Name from Path;
. Link path to True Name;

. Realize True File from Location;
. Locate Remote File;

. Make True File Local;

. Create Scratch File;

. Freeze Directory;

. Expand Frozen Directory;
. Delete True File;

. Process Audit File Entry;
. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

Operating system mechanisms provide typical familiar
file system mechanisms, while maintaining the data struc-
tures required to offer the mechanisms of the present inven-
tion. Operating system mechanisms are designed to augment
existing operating systems, and in this way to make the
present invention compatible with, and generally transparent
to, existing applications. The following operating system
mechanisms are described:

1. Open File;

. Close File;

. Read File;

. Write File;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating system in
responding to requests from other processors. These mecha-

O 00 NN AW

== = e
A~ WO

O 1 & B~ W

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 39 of 63 PagelD #: 166

US 6,928,442 B2

7

nisms enable the capabilities of the present invention in a
peer-to-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;

. Cancel Reservation;
. Acquire True File;

. Lock Cache;

. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run occasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The fol-
lowing background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu-
tions to specific problems and applications. The following
extended mechanisms are described:

. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize directories;

. Publish Region;

. Retire Directory;

. Realize Directory at location;

. Verify True File;

. Track for accounting purposes; and

. Track for licensing purposes.

The file system herein described maintains sufficient
information to provide a variety of mechanisms not ordi-
narily offered by an operating system, some of which are
listed and described here. Various processing performed by
this embodiment of the present invention will now be
described in greater detail.

In some embodiments, some files 120 in a data processing
system 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not yet been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have a
user provided name.

Some of the processing performed by the present inven-
tion can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to
determine information that is not immediately required by
the system or which may never be required. As an example,
in some cases a scratch file is being changed at a rate greater
than the rate at which it is useful to determine its True Name.
In these cases, determining the True Name of the file can be
postponed or performed in the background.

Data Structures

The following data structures, stored in memory 110 of
one of more processors 102 are used to implement the
mechanisms described herein. The data structures can be
local to each processor 102 of the system 100, or they can
reside on only some of the processors 102.

o N B Y Y I]

—

Nelie JEN Be NV I Y 2)

10

15

20

25

30

35

40

45

50

55

60

65

8

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system
100. However, they can also be shared by placing them on
a remote, shared file server (for instance, in a local area
network of machines). In order to accommodate sharing data
structures, it is necessary that the processors accessing the
shared database use the appropriate locking techniques to
ensure that changes to the shared database do not interfere
with one another but are appropriately serialized. These
locking techniques are well understood by ordinarily skilled
programmers of distributed applications.

It is sometimes desirable to allow some regions to be local
to a particular processor 102 and other regions to be shared
among processors 102. (Recall that a region is a unit of file
system management and control consisting of a given direc-
tory identified by the pathname of the directory.) In the case
of local and shared regions, there would be both local and
shared versions of each data structure. Simple changes to the
processes described below must be made to ensure that
appropriate data structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100. The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in
local directory extension table 124 is in addition to that
provided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for listing
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File
registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores
location, dependency, and migration information about True
Files.

The region table (RT) 128 defines areas in the network
storage which are to be managed separately. Region table
128 defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The
source table 130 includes removable volumes and remote
processors.

The audit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, these changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name or location.

The license table (LT) 136 is a table identifying files,
which may only be used by licensed users, in a manner
independent of their name or location, and the users licensed
to use them.

Detailed Descriptions of the Data Structures

The following table summarizes the fields of an local
directory extensions table entry, as illustrated by record 138
in FIG. 3.

Field Description

Region ID identifies the region in which this file is

contained.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 40 of 63 PagelD #: 167

US 6,928,442 B2

9

10

-continued -continued
Field Description Field Description
Pathname the user provided name or contextual name 5 the file or file segment. It is
of the file or directory, relative to the sufficient to use a filename in the
region in which it occurs. registration directory of the
True Name the computed True Name or identity of the underlying operating system. The
file or directory. This True Name is not True File ID is absent if the
always up to date, and it is set to a actual file is not currently
special value when a file is modified and 10 present at the current location.
is later recomputed in the background. Use count number of other records on this
Type indicates whether the file is a data file processor which identify this True
or a directory. File.
Scratch the physical location of the file in the
File ID file system, when no True Name has been . . .
calculated for the file. As noted above, 15 A region table 128, specified by a directory pathname,
] such a file is called a scratch file. records storage policies which allow files in the file system
Time of the last access time to this file. If this to be stored, accessed and migrated in different ways.
last file is a directory, this is the last . e .
; ; : Storage policies are programmed in a configurable way
access access time to any file in the directory. . 5
Time of the time of last change of this file. If using a set .Of rules described below. . .
last this file is a directory, this is the last 20 Each region table record 142 of region table 128 includes
modification modification time of any file in the the fields described in the following table (with reference to
directory. FIG. 5):
Safe flag indicates that this file (and, if this file
is a directory, all of its subordinate
files) have been backed up on some other
system, and it is therefore safe to remove
them. 25 Field Description
Lock flag indicates whether a file is locked, that - - - - -
is, it is being modified by the local pro- Region ID 1nte:rna11y used identifier for this
cessor or a remote processor. Only one . region.
processor may modify a file at a time. Region file system ﬁle.syste.m on .the .local processor of
Size the full size of this directory (including which this region is a part.
all subordinate files), if all files in it 30 Region pathname a pathname.z relative to the regifm file
were fully expanded and duplicated. For a sy.stem _Wthh deﬁne:s the loc.anon of
file that is not a directory this is the this region. The region consists of
size of the actual True File. all files and directories subordinate
Owner the identity of the user who owns this to t.his pathnar.ne, except thOSf_’ ina
file, for accounting and license tracking . region subord%nate.to this region.
purposes. 35 Mirror processor(s) zero or more identifiers of processors
which are to keep mirror or archival
copies of all files in the current
Each record of the True File registry 126 has the fields region. Multiple mirror processors
i : ; : can be defined to form a mirror group.
shown in the True File registry record 140 in FIG. 4. The Mirror duplication number of copies of each file in this
True File registry 126 consists of the database described in | count region that should be retained in a
the table below as well as the actual True Files identified by Regi T §IOUD- o
X egion status specifies whether this region is local
the True File IDs below. to a single processor 102, shared by
several processors 102 (if, for
instance, it resides on a shared file
server), or managed by a remote
. . 45 processor.
Fleld Description Policy the migration policy to apply to this
True Name computed True Name or identity of region. A single region might
the file. participate in several policies. The
Compressed compressed version of the True File policies are as fo!lows (parameters in
File ID may be stored instead of, or in bra.ckets are specified as part of the
addition to, an uncompressed 50 policy):
version. This field provides the
identity of the actual region is a cached version from
representation of the compressed [processor ID];
version of the file. region is a member of a mirror set
Grooming tentative count of how many deﬁ.ned. by [processc.yr ID].
delete count references have been selected for 55 region is to be archived on
deletion during a grooming [processor ID]
operation. region is to be backed up locally,
Time of last most recent date and time the by placing new copies in [region
access content of this file was accessed. ID]_' .
Expiration date and time after which this file region is read only and may not be
may be deleted by this server. 60 cha.nge(.i. . .
Dependent processor IDs of other processors region is published and expires on
processors which contain references to this [date].
True File. Files in this region should be
Source IDs source ID(s) of zero or more compressed.
sources from which this file or
data item may be retrieved.)))
True File ID 65 A source table 130 identifies a source location for True

identity or disk location of the
actual physical representation of

Files. The source table 130 is also used to identify client
processors making reservations on the current processor.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 41 of 63 PagelD #: 168

US 6,928,442 B2

11

Each source record 144 of the source table 130 includes the
fields summarized in the following table, with reference to
FIG. 6:

Field Description

source ID internal identifier used to identify a
particular source.

type of source location:

Removable Storage Volume

Local Region

Cache Server

Mirror Group Server

Cooperative Server

Publishing Server

Client

includes information about the rights
of this processor, such as whether it
can ask the local processor to store
data items for it.

measurement of the bandwidth, cost,
and reliability of the connection to
this source of True Files. The availability
is used to select from among

several possible sources.

information on how the local processor
is to access the source. This may be,
for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote Processor.

source
type

source
rights

source
availability

source
location

The audit file 132 is a table of events ordered by
timestamp, each record 146 in audit file 132 including the
fields summarized in the following table (with reference to
FIG. 7).

Field Description

Original Name
Operation

path of the file in question.

whether the file was created, read,
written, copied or deleted.

specifies whether the source is a file
or a directory.

ID of the remote processor generating
this event (if not local).

Processor ID

Timestamp time and date file was closed (required
only for accessed/modified files).

Pathname Name of the file (required only for
rename).

True Name computed True Name of the file. This is

used by remote systems to mirror changes
to the directory and is filled in during
background processing.

Each record 148 of the accounting log 134 records an
event which may later be used to provide information for
billing mechanisms. Each accounting log entry record 148
includes at least the information summarized in the follow-
ing table, with reference to FIG. 8:

Field Description

date of entry date and time of this log entry.

type of Entry types include create file,
entry delete file, and transmit file.

True Name True Name of data item in question.
owner identity of the user responsible for

this action.

Each record 150 of the license table 136 records a
relationship between a licensable data item and the user

10

15

20

25

()
o

35

40

45

50

55

65

12

licensed to have access to it. Each license table record 150
includes the information summarized in the following table
“with reference to FIG. 9:

Field Description
True Name True Name of a data item subject to license validation.
licensee identity of a user authorized to have

access to this object.

Various other data structures are employed on some or all
of the processors 102 in the data processing system 100.
Each processor 102 has a global freeze lock (GFL) 152
(FIG. 1), which is used to prevent synchronization errors
when a directory is frozen or copied. Any processor 102 may
include a special archive directory (SAD) 154 into which
directories may be copied for the purposes of archival. Any
processor 102 may include a special media directory (SMD)
156, into which the directories of removable volumes are
stored to form a media inventory. Each processor has a
grooming lock 158, which is set during a grooming opera-
tion. During this period the grooming delete count of True
File registry entries 140 is active, and no True Files should
be deleted until grooming is complete. While grooming is in
effect, grooming information includes a table of pathnames
selected for deletion, and keeps track of the amount of space
that would be freed if all of the files were deleted.
Primitive Mechanisms

The first of the mechanisms provided by the present
invention, primitive mechanisms, are now described. The
mechanisms described here depend on underlying data man-
agement mechanisms to create, copy, read, and delete data
items in the True File registry 126, as identified by a True
File ID. This support may be provided by an underlying
operating system or disk storage manager.

The following primitive mechanisms are described:

. Calculate True Name;

. Assimilate Data Item;

. New True File;

. Get True Name from Path;
. Link Path to True Name;

. Realize True File from Location;
. Locate Remote File;

. Make True File Local;

. Create Scratch File;

. Freeze Directory;

. Expand Frozen Directory;
. Delete True File;

. Process Audit File Entry;
. Begin Grooming;

15. Select For Removal; and

16. End Grooming.
1. Calculate True Name
A True Name is computed using a function, MD, which
reduces a data block B of arbitrary length to a relatively
small, fixed size identifier, the True Name of the data block,
such that the True Name of the data block is virtually
guaranteed to represent the data block B and only data block
B.
The function MD must have the following properties:
1. The domain of the function MD is the set of all data
items. The range of the function MD is the set of True
Names.

O 01N~ WD

== e
A~ W= O

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 42 of 63 PagelD #: 169

US 6,928,442 B2

13

2. The function MD must take a data item of arbitrary
length and reduce it to an integer value in the range 0
to N-1, where N is the cardinality of the set of True
Names. That is, for an arbitrary length data block B,
0<MD(B)<N.

3. The results of MD(B) must be evenly and randomly
distributed over the range of N, in such a way that
simple or regular changes to B are virtually guaranteed
to produce a different value of MD(B).

4. It must be computationally difficult to find a different
value B' such that MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.

A family of functions with the above properties are the
so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MD4, MD5, and
SHA.

In the presently preferred embodiments, either MD5 or
SHA is employed as the basis for the computation of True
Names. Whichever of these two message digest functions is
employed, that same function must be employed on a
system-wide basis.

It is impossible to define a function having a unique
output for each possible input when the number of elements
in the range of the function is smaller than the number of
elements in its domain. However, a crucial observation is
that the actual data items that will be encountered in the
operation of any system embodying this invention form a
very sparse subset of all the possible inputs.

A colliding set of data items is defined as a set wherein,
for one or more pairs x and y in the set, MD(x)=MD(y).
Since a function conforming to the requirements for MD
must evenly and randomly distribute its outputs, it is
possible, by making the range of the function large enough,
to make the probability arbitrarily small that actual inputs
encountered in the operation of an embodiment of this
invention will form a colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 2°° storage devices in the world,
and that each storage device has an average of at most 2%°
different data items. Then there are at most 2 *° data items
in the world. If the outputs of MD range between 0 and 2%,
it can be demonstrated that the probability of a collision is
approximately 1 in 2°°. Details on the derivation of these
probability values are found, for example, in P. Flajolet and
A. M. Odlyzko, “Random Mapping Statistics,” Lecture
Notes in Computer Science 434: Advances in Cryptology—
Eurocrypt '89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be
useful to have more than one level of True Names, with
some of the True Names having different degrees of unique-
ness. If such a scheme is implemented, it is necessary to
ensure that less unique True Names are not propagated in the
system.

While the invention is described herein using only the
True Name of a data item as the identifier for the data item,
other preferred embodiments use tagged, typed, categorized
or classified data items and use a combination of both the
True Name and the tag, type, category or class of the data
item as an identifier. Examples of such categorizations are
files, directories, and segments; executable files and data
files, and the like. Examples of classes are classes of objects
in an object-oriented system. In such a system, a lower
degree of True Name uniqueness is acceptable over the

10

15

20

25

30

35

40

45

50

55

60

65

14

entire universe of data items, as long as sufficient uniqueness
is provided per category of data items. This is because the
tags provide an additional level of uniqueness.

A mechanism for calculating a True Name given a data
item is now described, with reference to FIGS. 10(a) and
10(b).

A simple data item is a data item whose size is less than
a particular given size (which must be defined in each
particular implementation of the invention). To determine
the True Name of a simple data item, with reference to FIG.
10(a), first compute the MD function (described above) on
the given simple data item (step S212). Then append to the
resulting 128 bits, the byte length modulo 32 of the data item
(Step S214). The resulting 160-bit value is the True Name of
the simple data item.

A compound data item is one whose size is greater than
the particular given size of a simple data item. To determine
the True Name of an arbitrary (simple or compound) data
item, with reference to FIG. 10(b), first determine if the data
item is a simple or a compound data item (Step S216). If the
data item is a simple data item, then compute its True Name
in step S218 (using steps S212 and S214 described above),
otherwise partition the data item into segments (Step S220)
and assimilate each segment (Step S222) (the primitive
mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then create an
indirect block consisting of the computed segment True
Names (Step S224). An indirect block is a data item which
consists of the sequence of True Names of the segments.
Then, in step S226, assimilate the indirect block and com-
pute its True Name. Finally, replace the final thirty-two (32)
bits of the resulting True Name (that is, the length of the
indirect block) by the length modulo 32 of the compound
data item (Step S228). The result is the True Name of the
compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Both the use of segments and the attachment of a length
to the True Name are not strictly required in a system using
the present invention, but are currently considered desirable
features in the preferred embodiment.

2. Assimilate Data Item

A mechanism for assimilating a data item (scratch file or
segment) into a file system, given the scratch file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used
during this process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of any data
item or file by content, even when multiple names refer to
the same content.

First, determine the True Name of the data item corre-
sponding to the given scratch File ID using the Calculate
True Name primitive mechanism (Step S230). Next, look for
an entry for the True Name in the True File registry 126
(Step S232) and determine whether a True Name entry,
record 140, exists in the True File registry 126. If the entry
record includes a corresponding True File ID or compressed
File ID (Step S237), delete the file with the scratch File ID
(Step S238). Otherwise store the given True File ID in the
entry record (step S239).

If it is determined (in step S232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
anew entry in the True File registry 126 for this True Name.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 43 of 63 PagelD #: 170

US 6,928,442 B2

15

Set the True Name of the entry to the calculated True Name,
set the use count for the new entry to one, store the given
True File ID in the entry and set the other fields of the entry
as appropriate.

Because this procedure may take some time to compute,
it is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

The New True File process is invoked when processing
the audit file 132, some time after a True File has been
assimilated (using the Assimilate Data Item primitive
mechanism). Given a local directory extensions table entry
record 138 in the local directory extensions table 124, the
New True File process can provide the following steps (with
reference to FIG. 12), depending on how the local processor
is configured:

First, in step S238, examine the local directory extensions
table entry record 138 to determine whether the file is locked
by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache
server to update the cache of the current processor using the
Update Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File
background mechanism (Step S248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents,
or to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for
the entry record 138 with the given pathname (Step S250).
If the pathname is not found, this process fails and no True
Name corresponding to the given pathname exists. Next,
determine whether the local directory extensions table entry
record 138 includes a True Name (Step S252), and if so, the
mechanism’s task is complete. Otherwise, determine
whether the local directory extensions table entry record 138
identifies a directory (Step 5254), and if so, freeze the
directory (Step S256) (the primitive mechanism Freeze
Directory is described below).

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the
File ID field to generate its True Name and store its True
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory
extensions table 124.

5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used to
copy, move, and rename files without a need to copy their
contents. The mechanism to link a path to a True Name is
now described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local
directory extensions table 135 (Step S260). Most uses of this
mechanism will require this form of validation. Next, search
for the path in the local directory extensions table 135 (Step
$262). Confirm that the directory containing the file named
in the path already exists (Step S264). If the named file itself
exists, delete the File using the Delete True File operating
system mechanism (see below) (Step S268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step S270) and update the

10

15

20

25

30

35

40

45

50

55

60

65

16

entry record and other data structures as follows: fill in the
True Name field of the entry with the specified True Name;
increment the use count for the True File registry entry
record 140 of the corresponding True Name; note whether
the entry is a directory by reading the True File to see if it
contains a tag (magic number) indicating that it represents a
frozen directory (see also the description of the Freeze
Directory primitive mechanism regarding the tag); and com-
pute and set the other fields of the local directory extensions
appropriately. For instance, search the region table 128 to
identify the region of the path, and set the time of last access
and time of last modification to the current time.

6. Realize True File from Location

This mechanism is used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference to FIG. 15.

First, in step S272, determine whether the location speci-
fied is a processor. If it is determined that the location
specified is a processor, then send a Request True File
message (using the Request True File remote mechanism) to
the remote processor and wait for a response (Step S274). If
a negative response is received or no response is received
after a timeout period, this mechanism fails. If a positive
response is received, enter the True File returned in the True
File registry 126 (Step S276). (If the file received was
compressed, enter the True File ID in the compressed File ID
field.)

If, on the other hand, it is determined in step S272 that the
location specified is not a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the
given volume and assimilate the file using the Assimilate
Data Item primitive mechanism. If the volume does not
contain a True File registry 126, search the media inventory
to find the path of the file on the volume. If no such file can
be found, this mechanism fails.

At this point, whether or not the location is determined (in
step S272) to be a processor, if desired, verify the True File
(in step S282).

7. Locate Remote File

This mechanism allows a processor to locate a file or data
item from a remote source of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can
supply a data object with a given True Name. The steps to
perform this mechanism are as follows (with reference to
FIGS. 16(a) and 16(b)).

The client processor 102 uses the source table 145 to
select one or more source processors (Step S284). If no
source processor can be found, the mechanism fails. Next,
the client processor 102 broadcasts to the selected sources a
request to locate the file with the given True Name using the
Locate True File remote mechanism (Step S286). The
request to locate may be augmented by asking to propagate
this request to distant servers. The client processor then
waits for one or more servers to respond positively (Step
S288). After all servers respond negatively, or after a timeout
period with no positive response, the mechanism repeats
selection (Step S284) to attempt to identify alternative
sources. If any selected source processor responds, its pro-
cessor 1D is the result of this mechanism. Store the processor
ID in the source field of the True File registry entry record
140 of the given True Name (Step S290).

If the source location of the True Name is a different
processor or medium than the destination (Step S290q),
perform the following steps:

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 44 of 63 PagelD #: 171

US 6,928,442 B2

17

(1) Look up the True File registry entry record 140 for the
corresponding True Name, and add the source location
ID to the list of sources for the True Name (Step
$290b); and

(ii) If the source is a publish ing system, determine the

expiration date on the publishing system for th ¢ True
Name and add that to the list of sources. If the source
is not a publishing system, send a message to reserve
the True File on the source processor (Step S290c¢).

Source selection in step S284 may be based on optimi-
zations involving general availability of the source, access
time, bandwidth, and transmission cost, and ignoring pre-
viously selected processors which did not respond in step
S288.

8. Make True File Local

This mechanism is used when a True Name is known and
a locally accessible copy of the corresponding file or data
item is required. This mechanism makes it possible to
actually read the data in a True File. The mechanism takes
a True Name and returns when there is a local, accessible
copy of the True File in the True File registry 126. This
mechanism is described here with reference to the flow chart
of FIGS. 17(a) and 17(b).

First, look in the True file registry 126 for a True File entry
record 140 for the corresponding True Name (Step $292). If
no such entry is found this mechanism fails. If there is
already a True File ID for the entry (Step S294), this
mechanism’s task is complete. If there is a compressed file
ID for the entry (Step S296), decompress the file corre-
sponding to the file ID (Step S296) and store the decom-
pressed file ID in the entry (Step S300). This mechanism is
then complete.

If there is no True File ID for the entry (Step S294) and
there is no compressed file ID for the entry (Step S296), then
continue searching for the requested file. At this time it may
be necessary to notify the user that the system is searching
for the requested file.

If there are one or more source IDs, then select an order
in which to attempt to realize the source ID (Step S304). The
order may be based on optimizations involving general
availability of the source, access time, bandwidth, and
transmission cost. For each source in the order chosen,
realize the True File from the source location (using the
Realize True File from Location primitive mechanism), until
the True File is realized (Step S306). If it is realized,
continue with step S294. If no known source can realize the
True File, use the Locate Remote File primitive mechanism
to attempt to find the True File (Step S308). If this succeeds,
realize the True File from the identified source location and
continue with step $296.

9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The
scratch copy is eventually assimilated when the audit file
record entry 146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of a scratch file that
is not contained in the True File registry 126 and that may
be modified. This mechanism is now described with refer-
ence to FIGS. 18(a) and 18(b).

First determine whether the scratch file should be a copy
of the existing True File (Step S310). If so, continue with
step S312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True

10

15

20

25

30

35

40

45

50

55

60

65

18
File (Step S316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scratch file and store its scratch file ID
in the local directory extensions table entry record 138 (Step
$320). This mechanism is then complete.

If the local directory extensions table entry record 138
identifies a scratch file ID (Step S312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File (S316), and there is no True File ID for
the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step S322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. If the use count
in the corresponding True File registry entry record 140 is
one (Step S326), save the True File ID in the scratch file ID
of the local directory extensions table entry record 138, and
remove the True File registry entry record 140 (Step S328).
(This step makes the True File into a scratch file.) This
mechanism’s task is complete.

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step S326), copy the
file with the given True File ID to a new scratch file, using
the Read File OS mechanism and store its file ID in the local
directory extensions table entry record 138 (step S330), and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.
10. Freeze Directory

This mechanism freezes a directory in order to calculate
its True Name. Since the True Name of a directory is a
function of the files within the directory, they must not
change during the computation of the True Name of the
directory. This mechanism requires the pathname of a direc-
tory to freeze. This mechanism is described with reference
to FIGS. 19(a) and 19(b).

In step S332, add one to the global freeze lock. Then
search the local directory extensions table 124 to find each
subordinate data file and directory of the given directory, and
freeze each subordinate directory found using the Freeze
Directory primitive mechanism (Step S334). Assimilate
each unassimilated data file in the directory using the
Assimilate Data Item primitive mechanism (Step S336).
Then create a data item which begins with a tag or marker
(a “magic number”) being a unique data item indicating that
this data item is a frozen directory (Step S337). Then list the
file name and True Name for each file in the current
directory (Step s338). Record any additional information
required, such as the type, time of last access and
modification, and size (Step S340). Next, in step S342, using
the Assimilate Data Item primitive mechanism, assimilate
the data item created in step S338. The resulting True Name
is the True Name of the frozen directory. Finally, subtract
one from the global freeze lock (Step S344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
location. It requires a given pathname into which to expand
the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step S346, make the True File with the given True
Name local using the Make True File Local primitive
mechanism. Then read each directory entry in the local file
created in step S346 (Step S348). For each such directory
entry, do the following:

Create a full pathname using the given pathname and the

file name of the entry (Step S350); and

link the created path to the True Name (Step S352) using

the Link Path to True Name primitive mechanism.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 45 of 63 PagelD #: 172

US 6,928,442 B2

19

12. Delete True File

This mechanism deletes a reference to a True Name. The
underlying True Pile is not removed from the True File
registry 126 unless there are no additional references to the
file. With reference to FIG. 21, this mechanism is performed
as follows:

If the global freeze lock is on, wait until the global freeze
lock is turned off (Step S354). This prevents deleting a
True File while a directory which might refer to it is
being frozen. Next, find the True File registry entry
record 140 given the True Name (Step S356). If the
reference count field of the True File registry 126 is
greater than zero, subtract one from the reference count
field (Step S358). If it is determined (in step S360) that
the reference count field of the True File registry entry
record 140 is zero, and if there are no dependent
systems listed in the True File registry entry record 140,
then perform the following steps:

() If the True File is a simple data item, then delete the
True File, otherwise,

(ii) (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File
corresponding to the True Name (Step S362).

(iii) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and
remove the True File registry entry record 140 (Step
S364).

13. Process Audit File Entry

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
Entries 142 in the audit file 132 should be processed at a
background priority as long as there are entries to be
processed. With reference to FIG. 22, the steps for process-
ing an entry are as follows:

Determine the operation in the entry 142 currently being
processed (Step S365). If the operation indicates that a file
was created or written (Step S366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
S368), use the New True File primitive mechanism to do
additional desired processing (such as cache update,
compression, and mirroring) (Step S369), and record the
newly computed True Name for the file in the audit file
record entry (Step S370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)
(Step S376), then for each component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre-
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, time of last access, and time of last
modification, according to the operation in the audit record
(Step S379).

Note th at the audit record is not removed after
processing, but is retained for some reasonable period so that
it may be used by the Synchronize Directory extended
mechanism to allow a disconnected remote processor to
update its representation of the local system.

14. Begin Grooming

This mechanism makes it possible to select a set of files
for removal and determine the overall amount of space to be
recovered. With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of
space freed during grooming to zero a nd empty the list of

15

20

25

30

35

40

45

50

55

60

65

20
files selected for deletion (Step S384). For each True File in
the True File registry 126, set the delete count to zero (Step
S$386).
15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its corresponding True File to be removed. With
reference to FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
(Step S388). Then find the True File registry entry record
140 corresponding to the True File name in the local
directory extensions table entry record 138 (Step S390). Add
one to the grooming delete count in the True File registry
entry record 140 and add the pathname to a list of files
selected for deletion (Step S392). If the grooming delete
count of the True File registry entry record 140 is equal to
the use count of the True File registry entry record 140, and
if the there are no entries in the dependency list of the True
File registry entry record 140, then add the size of the file
indicated by the True File ID and or compressed file ID to
the total amount of space freed during grooming (Step
S394).

16. End Grooming

This grooming mechanism ends the grooming phase and
removes all files selected for removal. With reference to
FIG. 25, for each file in the list of files selected for deletion,
delete the file (Step S396) and then unlock the global
grooming lock (Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the present
invention, operating system mechanisms, are now described.

The following operating system mechanisms are
described:

1. Open File;

. Close File;

. Read File;

. Write File;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Get Files in Directory.
1. Open File

A mechanism to open a file is described with reference to
FIGS. 26(a) and 26(b). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, write, read/write, create, etc.) and produces
either the File ID of the file to be opened or an indication that
no file should be opened. The local directory extensions
table record 138 and region table record 142 associated with
the opened file are associated with the open file for later use
in other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists
locally by examining the local directory extensions table 124
to determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type,
determine whether or not the file is being created by this
opening process (Step S402). If the file is not being created,
prohibit the open (Step S404). If the file is being created,
create a zero-length scratch file using an entry in local
directory extensions table 124 and produce the scratch file
ID of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step S400 that the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to

[C BN B e RV IRV)

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 46 of 63 PagelD #: 173

US 6,928,442 B2

21

find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identi-
fies the region of the specified file.

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only
for reading (Step S410). If the file is being opened for
reading only, then, if the file is a scratch file (Step S419),
return the scratch File ID of the file (Step S424). Otherwise
get the True Name from the local directory extensions table
124 and make a local version of the True File associated with
the True Name using the Make True File Local primitive
mechanism, and then return the True File ID associated with
the True Name (Step S420).

If the file is not being opened for reading only (Step
S410), then, if it is determined by inspecting the region table
entry record 142 that the file is in a read-only directory (Step
S416), then prohibit the opening (Step S422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the return message says
the file is already locked, prohibit the opening.

If the access type indicates that the file being modified is
being rewritten completely (Step S419), so that the original
data will not be required, then Delete the File using the
Delete File OS mechanism (Step S421) and perform step
S406. Otherwise, make a scratch copy of the file (Stop S417)
and produce the scratch file ID of the scratch file as the result
(Step S424).

2. Close File

This mechanism takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to
the audit file indicating the time and operation (create, read
or write). The audit file processing (using the Process Audit
File Entry primitive mechanism) will take care of assimi-
lating the file and thereby updating the other records.

3. Read File

To read a file, a program must provide the offset and
length of the data to be read, and the location of a buffer into
which to copy the data read.

The file to be read from is identified by an open file
descriptor which includes a File ID as computed by the Open
File operating system mechanism defined above. The File ID
may identify either a scratch file or a True File (or True File
segment). If the File ID identifies a True File, it may be
either a simple or a compound True File. Reading a file is
accomplished by the following steps:

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the under-
lying operating system.

In the case where the File ID identifies a compound file,
break the read operation into one or more read opera-
tions on component segments as follows:

A. Identify the segment(s) to be read by dividing the
specified file offset and length each by the fixed size
of a segment (a system dependent parameter), to
determine the segment number and number of seg-
ments that must be read.

B. For each segment number computed above, do the
following:

i. Read the compound True File index block to
determine the True Name of the segment to be
read.

ii. Use the Realize True File from Location primitive
mechanism to make the True File segment avail-
able locally. (If that mechanism fails, the Read
File mechanism fails).

10

15

20

25

30

35

40

45

50

55

60

65

22

iii. Determine the File ID of the True File specified
by the True Name corresponding to this segment.
iv. Use the Read File mechanism (recursively) to
read from this segment into the corresponding
location in the specified buffer.
4. Write File

File writing uses the file ID and data management capa-
bilities of the underlying operating system. File access
(Make File Local described above) can be deferred until the
first read or write.

5. Delete File or Directory

The process of deleting a file, for a given pathname, is
described here with reference to FIGS. 27(a) and 27(b).

First, determine the local directory extensions table entry
record 138 and region table entry record 142 for the file
(Step S422). If the file has no local directory extensions table
entry record 138 or is locked or is in a read-only region,
prohibit the deletion.

Identify the corresponding True File given the True Name
of the file being deleted using the True File registry 126
(Step S424). If the file has no True Name, (Step S426) then
delete the scratch copy of the file based on its scratch file ID
in the local directory extensions table 124 (Step S427), and
continue with step S428.

If the file has a True Name and the True File’s use count
is one (Step S429), then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File’s use count
is greater than one, reduce its use count by one (Step S431).
Then proceed with step S428.

In Step S428, delete the local directory extensions table
entry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the

path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link
the destination path to the True Name.

(C) If the source and destination processors have different
True File registries, find (or, if necessary, create) an
entry for the True Name in the True File registry table
126 of the destination processor. Enter into the source
ID field of this new entry the source processor identity.

(D) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In
addition, because of the ability to freeze a directory, this
mechanism also addresses capability of the system imme-
diately to make a copy of any collection of files, thereby to
support an efficient version control mechanisms for groups
of files.

7. Move File or Directory

A mechanism is described which moves (or renames) a
file from a source path to a destination path. The move
operation, like the copy operation, requires no actual transfer
of data, and is performed as follows:

(A) Copy the file from the source path to the destination

path.

(B) If the source path is different from the destination
path, delete the source path.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 47 of 63 PagelD #: 174

US 6,928,442 B2

23

8. Get File Status

This mechanism takes a file pathname and provides
information about the pathname. First the local directory
extensions table entry record 138 corresponding to the
pathname given is found. If no such entry exists, 10 then this
mechanism fails, otherwise, gather information about the file
and its corresponding True File from the local directory
extensions table 124. The information can include any
information shown in the data structures, including the size,
type, owner, True Name, sources, time of last access, time of
last modification, state (local or not, assimilated or not,
compressed or not), use count, expiration date, and reser-
vations.

9. Get Files in Directory

This mechanism enumerates the files in a directory. It is
used (implicitly) whenever it is necessary to determine
whether a file exists (is present) in a directory. For instance,
it is implicitly used in the Open File, Delete File, Copy File
or Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. If no such
entry is found, or if the entry found is not a directory, then
this mechanism fails.

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
True File represents a frozen directory.

The Expand Frozen Directory primitive mechanism is
used to expand the existing True File into directory entries
in the local directory extensions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.
Remote Mechanisms

The remote mechanisms provided by the present inven-
tion are now described. Recall that remote mechanisms are
used by the operating system in responding to requests from
other processors. These mechanisms enable the capabilities
of the present invention in a peer-to-peer network mode of
operation.

In a presently preferred embodiment, processors commu-
nicate with each other using a remote procedure call (RPC)
style interface, running over one of any number of commu-
nication protocols such as IPX/SPX or TCP/IP. Each peer
processor which provides access to its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by its
peers.

The following remote mechanisms are described:

. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;

. Cancel Reservation;

. Acquire True File;

. Lock Cache;

. Update Cache; and

. Check Expiration Date.
1. Locate True File

This mechanism allows a remote processor to determine
whether the local processor contains a copy of a specific
True File. The mechanism begins with True Name and a flag
indicating whether to forward requests for this file to other
servers. This mechanism is now described with reference to
FIG. 28.

Nello o B RV B S N S

10

15

20

25

30

35

40

45

50

55

60

65

24

First determine if the True File is available locally or if
there is some indication of where the True File is located (for
example, in the Source IDs field). Look up the requested
True Name in the True File registry 126 (Step S432).

If a True File registry entry record 140 is not found for this
True Name (Step S434), and the flag indicates that the
request is not to be forwarded (Step S436), respond nega-
tively (Step S438). That is, respond to the effect that the True
File is not available.

One the other hand, if a True File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436),
then forward a request for this True File to some other
processors in the system (Step S442). If the source table for
the current processor identifies one or more publishing
servers which should have a copy of this True File, then
forward the request to each of those publishing servers (Step
S436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a
True File ID or Compressed File ID (Step S440), respond
positively (Step S444). If the entry includes a True File ID
then this provides the identity or disk location of the actual
physical representation of the file or file segment required.
If the entry include a Compressed File ID, then a com-
pressed version of the True File may be stored instead of, or
in addition to, an uncompressed version. This field provides
the identity of the actual representation of the compressed
version of the file.

If the True File registry entry record 140 is found (Step
S434) but does not include a True File ID (the File ID is
absent if the actual file is not currently present at the current
location) (Step S440), and if the True File registry entry
record 140 includes one or more source processors, and if
the request can be forwarded, then forward the request for
this True File to one or more of the source processors (Step
S444).

2. Reserve True File

This mechanism allows a remote processor to indicate
that it depends on the local processor for access to a specific
True File. It takes a True Name as input. This mechanism is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply
negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the
True File registry entry record 140 includes no source
IDs for removable storage volumes, then this processor
does not have access to a copy of the given file. Reply
negatively.

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry
record 140. Reply positively, with an indication of
whether the reserved True File is on line or off line.

3. Request True File

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a
True Name and responds positively by sending a True File
back to the requesting processor. The mechanism operates as
follows:

(A) Find the True File registry entry record 140 associated
with the given True Name. If there is no such True File
registry entry record 140, reply negatively.

(B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism also fails.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 48 of 63 PagelD #: 175

US 6,928,442 B2

25

(C) Send the local True File in either it is uncompressed
or compressed form to the requesting remote processor.
Note that if the True File is a compound file, the
components are not sent.

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it.

4. Retire True File

This mechanism allows a remote processor to indicate
that it no longer plans to maintain a copy of a given True
File. An alternate source of the True File can be specified, if,
for instance, the True File is being moved from one server
to another. It begins with a True Name, a requesting pro-
cessor ID, and an optional alternate source. This mechanism
operates as follows:

(A) Find a True Name entry in the True File registry 126.
If there is no entry for this True Name, this mecha-
nism’s task is complete.

(B) Find the requesting processor on the source list and,
if it is there, remove it.

(O) If an alternate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File
primitive mechanism to search for another copy of the
file. If it fails, raise a serious error.

5. Cancel Reservation

This mechanism allows a remote processor to indicate
that it no longer requires access to a True File stored on the
local processor. It begins with a True Name and a requesting
processor ID and proceeds as follows:

(A) Find the True Name entry in the True File registry
126. If there is no entry for this True Name, this
mechanism’s task is complete.

(B) Remove the identity of the requesting processor from
the list of dependent processors, if it appears.

(O) If the list of dependent processors becomes zero and
the use count is also zero, delete the True File.

6. Acquire True File

This mechanism allows a remote processor to insist that
a local processor make a copy of a specified True File. It is
used, for example, when a cache client wants to write
through a new version of a file. The Acquire True File
mechanism begins with a data item and an optional True
Name for the data item and proceeds as follows:
(A) Confirm that the requesting processor has the right to
require the local processor to acquire data items. If not,
send a negative reply.
(B) Make a local copy of the data item transmitted by the
remote Processor.
(C) Assimilate the data item into the True File registry of
the local processor.
(D) If a True Name was provided with the file, the True
Name calculation can be avoided, or the mechanism
can verify that the file received matches the True Name
sent.
(E) Add an entry in the dependent processor list of the true
file registry record indicating that the requesting pro-
cessor depends an this copy of the given True File.
(F) Send a positive reply.
7. Lock Cache

This mechanism allows a remote cache client to lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The
mechanism begins with a pathname and proceeds as follows:

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists,
reply negatively.

w

10

15

20

25

30

35

40

45

50

55

60

65

26

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the
file is already locked.

(C) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply posi-
tively.

8. Update Cache

This mechanism allows a remote cache client to unlock a
local file and update it with new contents. It begins with a
pathname and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding to the given pathname. Reply negatively
if no such entry exists or if the entry is not locked.

Link the given pathname to the given True Name using
the Link Path to True Name primitive mechanism.

Unlock the local directory extensions table entry record
138 and return positively.
9. Check Expiration Date
Return current or new expiration date and possible alter-
native source to caller.
Background Processes and Mechanisms
The background processes and mechanisms provided by
the present invention are now described. Recall that back-
ground mechanisms are intended to run occasionally and at
a low priority to provide automated management capabilities
with respect to the present invention.
The following background mechanisms are described:
1. Mirror True File;
2. Groom Region;
3. Check for Expired Links;
4. Verity Region; and
5. Groom Source List.
1. Mirror True File

This mechanism is used to ensure that files are available
in alternate locations in mirror groups or archived on archi-
val servers. The mechanism depends on application-specific
migration/archival criteria (size, time since last access, num-
ber of copies required, number of existing alternative
sources) which determine under what conditions a file
should be moved. The Mirror True File mechanism operates
as follows, using the True File specified, perform the fol-
lowing steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the True File
registry entry record 140 for the True File. This step
determines how many copies of the True File are
available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file
should be sent. Use the Acquire True File remote
mechanism to copy the True File to the selected mirror
group server. Add the identity of the selected system to
the source list for the True File.

2. Groom Region

This mechanism is used to automatically free up space in
a processor by deleting data items that may be available
elsewhere. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if
there is an alternate online source for it, it has not been
accessed in a given number of days, and it is larger than a
given size). This mechanism operates as follows:

Repeat the following steps (i) to (iii) with more aggressive
grooming criteria until sufficient space is freed or until

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 49 of 63 PagelD #: 176

US 6,928,442 B2

27

all grooming criteria have been exercised. Use groom-
ing information to determine how much space has been
freed. Recall that, while grooming is in effect, groom-
ing information includes a table of pathnames selected
for deletion, and keeps track of the amount of space that
would be freed if all of the files were deleted.

(1) Begin Grooming (using the primitive mechanism).

(ii) For each pathname in the specified region, for the True
File corresponding to the pathname, if the True File is
present, has at least one alternative source, and meets
application specific grooming criteria for the region,
select the file for removal (using the primitive
mechanism).

(iii) End Grooming (using the primitive mechanism).

If the region is used as a cache, no other processors are
dependent an True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming
criteria would ordinarily eliminate the least recently
accessed True Files first. This is best done by sorting the
True Files in the region by the most recent access time
before performing step (ii) above. The application specific
criteria would thus be to select for removal every True File
encountered (beginning with the least recently used) until
the required amount of free space is reached.

3. Check for Expired Links

This mechanism is used to determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corresponding to the pathname, perform the following
step:

If the True File registry entry record 140 corresponding to
the True File contains at least one source which is a
publishing server, and if the expiration date on the depen-
dency is past or close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate
source is suggested, add the source to the True File
registry entry record 140.

(O) If no acceptable alternate source was found in steps
(A) or (B) above, make a local copy of the True File.

(D) Remove the expired source.

4. Verify Region

This mechanism can be used to ensure that the data items
in the True File registry 126 have not been damaged acci-
dentally or maliciously. The operation of this mechanism is
described by the following steps:

(A) Search the local directory extensions table 124 for
each pathname in the specified region and then perform
the following steps:

(1) Get the True File name corresponding to the path-
name;

(ii) If the True File registry entry 140 for the True File
does not have a True File ID or compressed file ID,
ignore it.

(iii) Use the Verify True File mechanism (see extended
mechanisms below) to confirm that the True File
specified is correct.

5. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or
its mirror criteria are changed, it may be necessary to inspect

w

15

20

25

30

35

40

45

50

55

60

65

28

the affected True Files to determine whether there are too
many mirror copies. This can be done with the following
steps:

For each affected True File,

(A) Search the local directory extensions table to find

each region that refers to the True File.

(B) Create a set of “required sources”, initially empty.

(C) For each region found,

(a) determine the mirroring criteria for that region,

(b) determine which sources for the True File satisfy
the mirroring criteria, and

(c) add these sources to the set of required sources.

(D) For each source in the True File registry entry, if the

source identifies a remote processor (as opposed to

removable media), and if the source is not a publisher,

and if the source is not in the set of required sources,

then eliminate the source, and use the Cancel Reser-

vation remote mechanism to eliminate the given pro-

cessor from the list of dependent processors recorded at

the remote processor identified by the source.
Extended Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms
run within application programs over the operating system
to provide solutions to specific problems and applications.

The following extended mechanisms are described:

. Inventory Existing Directory;
. Inventory Removable, Read-only Files;
. Synchronize Directories;
. Publish Region;
. Retire Directory;
. Realize Directory at Location;
. Verify True File;
. Track for Accounting Purposes; and
9. Track for Licensing Purposes.
1. Inventory Existing Directory

This mechanism determines the True Names of files in an
existing on-line directory in the underlying operating sys-
tem. One purpose of this mechanism is to install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-
ately all duplicate files from the file system being traversed.
If several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

(A) Traverse the underlying file system in the operating

system. For each file encountered, excluding

directories, perform the following:

(1) Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes
its True Name and moves its data into the True File
registry 126.

(i) Create a pathname consisting of the path to the
volume directory and the relative path of the file on
the media. Link this path to the computed True Name
using the Link Path to True Name primitive mecha-
nism.

2. Inventory Removable, Read-only Files

A system with access to removable, read-only media
volumes (such as WORM disks and CD-ROMS) can create
a usable inventory of the files on these disks without having
to make online copies. These objects can then be used for
archival purposes, directory overlays, or other needs. An
operator must request that an inventory be created for such
a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as

—

o BN e R e ¥

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 50 of 63 PagelD #: 177

US 6,928,442 B2

29

diskettes and CD-ROMs, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to iden-
tify each file, providing a way to locate the data independent
of its name, date of creation, or location.

The inventory can be used for archival of data (making it
possible to avoid archiving data when that data is already on
a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved
from removable volumes), for version control (making it
possible to generate a new version of a CD-ROM without
having to copy the old version), and for other purposes.

The inventory is made by creating a volume directory in
the media inventory in which each file named identifies the
data item on the volume being inventoried. Data items are
not copied from the removable volume during the inventory
process.

An operator must request that an inventory be created for
a specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism
which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an inventory the following steps are taken:

(A) A volume directory in the media inventory is created
to correspond to the volume being inventoried. Its
contextual name identifies the specific volume.

(B) A source table entry 144 for the volume is created in
the source table 130. This entry 144 identifies the
physical source volume and the volume directory cre-
ated in step (A).

(C) The filesystem on the volume is traversed. For each
file encountered, excluding directories, the following
steps are taken:

(1) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primitive mecha-
nism. The source field of the True Name registry
entry 140 identifies the source table entry 144.

(i) A pathname is created consisting of the path to the
volume directory and the relative path of the file on
the media. This path is linked to the computed True
Name using Link Path to True Name primitive
mechanism.

(D) After all files have been inventoried, the volume
directory is frozen. The volume directory serves as a
table of contents for the volume. It can be copied using
the Copy File or Directory primitive mechanism to
create an “overlay” directory which can then be
modified, making it possible to edit a virtual copy of a
read-only medium.

3. Synchronize Directories

Given two versions of a directory derived from the same
starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file
is changed in both versions, this mechanism provides a user
exit for handling the discrepancy. By using True Names,
comparisons are instantaneous, and no copies of files are
necessary.

This mechanism lets a local processor synchronize a
directory to account for changes made at a remote processor.
Its purpose is to bring a local copy of a directory up to date

10

15

20

30

35

40

45

50

55

60

65

30

after a period of no communication between the local and
remote processor. Such a period might occur if the local
processor were a mobile processor detached from its server,
or if two distant processors were run independently and
updated nightly.

An advantage of the described synchronization process is
that it does not depend on synchronizing the clocks of the
local and remote processors. However, it does require that
the local processor track its position in the remote proces-
sor’s audit file.

This mechanism does not resolve changes made simulta-
neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, opera-
tor intervention, is required.

The mechanism takes as input a start time, a local
directory pathname, a remote processor name, and a remote
directory pathname name, and it operates by the following
steps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mecha-
nism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the
remote directory, perform the following steps:

(1) Compute the pathname of the corresponding file in
the local directory. Determine the True Name of the
corresponding file.

(ii) If the True Name of the local file is the same as the
old True Name in the audit file, or if there is no local
file and the audit entry indicates a new file is being
created, link the new True Name in the audit file to
the local pathname using the Link Path to True Name
primitive mechanism.

(iii) Otherwise, note that there is a problem with the
synchronization by sending a message to the opera-
tor or to a problem resolution program, indicating the
local pathname, remote pathname, remote processor,
and time of change.

(C) After synchronization is complete, record the time of
the final change. This time is to be used as the new start
time the next time this directory is synchronized with
the same remote processor.

4. Publish Region

The publish region mechanism allows a processor to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor to service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the pub-
lishing system’s True File registry entry record 140 for each
file.

When a remote file is copied, for instance using the Copy
File operating system mechanism, the expiration date is
copied into the source field of the client’s True File registry
entry record 140. When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in
background, check for expired links, to make sure it still has
access to these files. This is described in the background
mechanism Check for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 51 of 63 PagelD #: 178

US 6,928,442 B2

31

files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred alternate
source processor for clients to use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(1) Get the True Name of the file from its path and find
the True File registry entry 140 associated with the
True Name.

(i) Determine an alternate source for the True File. If
the source IDs field of the TFR entry includes the
preferred alternate source, that is the alternate
source. If it does not, but includes some other source,
that is the alternate source. If it contains no alternate
sources, there is no alternate source.

(iii) For each dependent processor in the True File
registry entry 140, ask that processor to retire the
True File, specifying an alternate source if one was
determined, using the remote mechanism.

6. Realize Directory at Location

This mechanism allows the user or operating system to
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,
or if the source is being retired.

This mechanism is provided in the following steps for
each file in the given directory, with the exception of
subdirectories:

(A) Get the-local directory extensions table entry record
138 given the pathname of the file. Get the True Name
of the local directory extensions table entry record 138.
This service assimilates the file if it has not already
been assimilated.

(B) Realize the corresponding True File at the given
location. This service causes it to be copied to the given
location from a remote system or removable media.

7. Verify True File

This mechanism is used to verify that the data item in a
True File registry 126 is indeed the correct data item given
its True Name. Its purpose is to guard against device errors,
malicious changes, or other problems.

If an error is found, the system has the ability to “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated to other systems, and to log the problem
or indicate it to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Calculate True Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and
operates in the following steps:

(A) Find the True File registry entry record 140 corre-

sponding to the given True Name.

(B) If there is a True File ID for the True File registry
entry record 140 then use it. Otherwise, indicate that no
file exists to verify.

(C) Calculate the True Name of the data item given the file
ID of the data item.

10

15

20

25

30

35

40

45

50

55

60

32

(D) Confirm that the calculated True Name is equal to the
given True Name.

(E) If the True Names are not equal, there is an error in
the True File registry 126. Remove the True File ID
from the True File registry entry record 140 and place
it somewhere else. Indicate that the True File registry
entry record 140 contained an error.

8. Track for Accounting Purposes

This mechanism provides a way to know reliably which
files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to content by owner, indepen-
dent of the name, date, or other properties of the data item,
and tracks the uses of specific data items and files by content
for accounting purposes. True names make it possible to
identify each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for accounting or
billing purposes. The mechanism operates in the following
steps:

(A) Note every time a file is created or deleted, for
instance by monitoring audit entries in the Process
Audit File Entry primitive mechanism. When such an
event is encountered, create an entry 148 in the
accounting log 134 that shows the responsible party
and the identity of the file created or deleted.

(B) Every time a file is transmitted, for instance when a
file is copied with a Request True File remote mecha-
nism or an Acquire True File remote mechanism, create
an entry in the accounting log 134 that shows the
responsible party, the identity of the file, and the source
and destination processors.

(C) Occasionally run an accounting program to process
the accounting log 134, distributing the events to the
account records of each responsible party. The account
records can eventually be summarized for billing pur-
poses.

9. Track for Licensing Purposes

This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a safe way to
identify licensed material. This service allows proof of
possession of specific files according to their contents with-
out disclosing their contents.

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by creating a report of users who do
not have proper authorization).

One possible way to perform license validation is to
perform occasional audits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is,
files which are required in order to use the product, and
which do not occur in other products) Typically, for a
software product, this would include the main execut-
able image and perhaps other major files such as
clip-art, scripts, or online help. Also record the identity
of each system which is authorized to have a copy of
the file.

(B) Occasionally, compare the contents of each user
processor against the license table 136. For each True
Name in the license table do the following:

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 52 of 63 PagelD #: 179

US 6,928,442 B2

33

(1) Unless the user processor is authorized to have a
copy of the file, confirm that the user processor does
not have a copy of the file using the Locate True File
mechanism.

(ii) If the user processor is found to have a file that it
is not authorized to have, record the user processor
and True Name in a license violation table.

The System in Operation

Given the mechanisms described above, the operation of
a typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan-
tially unique identifiers (True Names), the identifiers
depending on all of the data in the data items and only on the
data in the data items. The primitive mechanisms Calculate
True Name and Assimilate Data Item support this property.
For any given data item, using the Calculate True Name
primitive mechanism, a substantially unique identifier or
True Name for that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
(unless they are required for some reason such as backups or
mirror copies in a fault-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to
the same data item. The primitive mechanisms Assimilate
Data Items and New True File support this property. Using
the Assimilate Data [tem primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example,
if a data file is being copied onto a system from a floppy
disk, if, based on the True Name of the data file, it is
determined that the data file already exists in the system (by
the same or some other name), then the duplicate copy will
not be installed. If the data item was being installed on the
system by some name other than its current name, then,
using the Link Path to True Name primitive mechanism, the
other (or new) name can be linked to the already existing
data item.

In general, the mechanisms of the present invention
operate in such a way as to avoid recreating an actual data
item at a location when a copy of that data item is already
present at that location. In the case of a copy from a floppy
disk, the data item (file) may have to be copied (into a
scratch file) before it can be determined that it is a duplicate.
This is because only one processor is involved. On the other
hand, in a multiprocessor environment or DP system, each
processor has a record of the True Names of the data items
on that processor. When a data item is to be copied to
another location (another processor) in the DP system, all
that is necessary is to examine the True Name of the data
item prior to the copying. If a data item with the same True
Name already exists at the destination location (processor),
then there is no need to copy the data item. Note that if a data
item which already exists locally at a destination location is
still copied to the destination location (for example, because
the remote system did not have a True Name for the data
item or because it arrives as a stream of un-named data), the
Assimilate Data Item primitive mechanism will prevent
multiple copies of the data item from being created.

Since the True Name of a large data item (a compound
data item) is derived from and based on the True Names of

10

15

20

25

30

35

40

45

50

55

60

65

34

components of the data item, copying of an entire data item
can be avoided. Since some (or all) of the components of a
large data item may already be present at a destination
location, only those components which are not present there
need be copied. This property derives from the manner in
which True Names are determined.

When a file is copied by the Copy File or Directory
operating system mechanism, only the True Name of the file
is actually replicated.

When a file is opened (using the Open File operating
system mechanism), it uses the Make True File Local
primitive mechanism (either directly or indirectly through
the Create Scratch File primitive mechanism) to create a
local copy of the file. The Open File operating system
mechanism uses the Make True File Local primitive
mechanism, which uses the Realize True File from Location
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

The Request True File remote mechanism copies only a
single data item from one processor to another. If the data
item is a compound file, its component segments are not
copied, only the indirect block is copied. The segments are
copied only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from
Location primitive mechanism to make sure that component
segments are locally available, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote
system, only its True Name is copied. When it is opened,
only its indirect block is copied. When the corresponding file
is read, the required component segments are realized and
therefore copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to
a given data identifier or True Name may reside anywhere in
the system (that is, locally, remotely, offline, etc). If a
required True File is present locally, then the data in the file
can be accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of the True
File registry table, the location(s) of copies of the True File
corresponding to a given True Name can be determined. The
Realize True File from Location primitive mechanism tries
to make a local copy of a True File, given its True Name and
the name of a source location (processor or media) that may
contain the True File. If, on the other hand, for some reason
it is not known where there is a copy of the True File, or if
the processors identified in the source IDs field do not
respond with the required True File, the processor requiring
the data item can make a general request for the data item
using the Request True File remote mechanism from all
processors in the system that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent
of its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in
which True Names are determined. This can be used for
security purposes, for instance, to check for viruses and to
verify that data retrieved from another location is the desired
and requested data. For example, the system might store the
True Names of all executable applications on the system and
then periodically redetermine the True Names of each of
these applications to ensure that they match the stored True

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 53 of 63 PagelD #: 180

US 6,928,442 B2

35

Names. Any change in a True Name potentially signals
corruption in the system and can be further investigated. The
Verify Region background mechanism and the Verify True
File extended mechanisms provide direct support for this
mode of operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have not
been damaged accidentally or maliciously. The Verify True
File mechanism verifies that a data item in a True File
registry is indeed the correct data item given its True Name.

Once a processor has determined where (that is, at which
other processor or location) a copy of a data item is in the
DP system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely
on retrieving the data from somewhere else when needed. To
this end the system allows a processor to Reserve (and
cancel the reservation of) True Files at remote locations
(using the remote mechanism). In this way the remote
locations are put on notice that another location is relying on
the presence of the True File at their location.

A DP system employing the present invention can be
made into a fault-tolerant system by providing a certain
amount of redundancy of data items at multiple locations in
the system. Using the Acquire True File and Reserve True
File remote mechanisms, a particular processor can imple-
ment its own form of fault-tolerance by copying data items
to other processors and then reserving them there. However,
the system also provides the Mirror True File background
mechanism to mirror (make copies) of the True File avail-
able elsewhere in the system. Any degree of redundancy
(limited by the number of processors or locations in the
system) can be implemented. As a result, this invention
maintains a desired degree or level of redundancy in a
network of processors, to protect against failure of any
particular processor by ensuring that multiple copies of data
items exist at different locations.

The data structures used to implement various features
and mechanisms of this invention store a variety of useful
information which can be used, in conjunction with the
various mechanisms, to implement storage schemes and
policies in a DP system employing the invention. For
example, the size, age and location of a data item (or of
groups of data items) is provided. This information can be
used to decide how the data items should be treated. For
example, a processor may implement a policy of deleting
local copies of all data items over a certain age if other
copies of those data items are present elsewhere in the
system. The age (or variations on the age) can be determined
using the time of last access or modification in the local
directory extensions table, and the presence of other copies
of the data item can be determined either from the Safe Flag
or the source IDs, or by checking which other processors in
the system have copies of the data item and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users (or
regardless of whether the data items even have names). The
system can also track data items that have different names
(in different or the same location) as well as different data
items that have the same name. Since a data item is identified
by the data in the item, without regard for the context of the
data, the problems of inconsistent naming in a DP system are
overcome.

In operation, the system can publish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of

10

15

20

25

30

35

40

45

50

55

60

65

36

these data items. True Names are globally unique identifiers
which can be published simply by copying them. For
example, a user might create a textual representation of a file
on system A with True Name N (for instance as a hexadeci-
mal string), and post it on a computer bulletin board.
Another user on system B could create a directory entry F
for this True Name N by using the Link Path to True Name
primitive mechanism. (Alternatively, an application could
be developed which hides the True Name from the users, but
provides the same public transfer service.)

When a program on system B attempts to open pathname
P linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True
File remote mechanism to search for True Name N on one
or more remote processors, such as system A. If system B
has access to system A, it would be able to realize the True
File (using the Realize True File from Location primitive
mechanism) and use it locally. Alternatively, system B could
find True Name N by accessing any publicly available True
Name server, if the server could eventually forward the
request to system A.

Clients of a local server can indicate that they depend on
a given True File (using the Reserve True File remote
mechanism) so that the True File is not deleted from the
server registry as long as some client requires access to it.
(The Retire True File remote mechanism is used to indicate
that a client no longer needs a given True File.)

A publishing server, on the other hand, may want to
provide access to many clients, and possibly anonymous
ones, without incurring the overhead of tracking dependen-
cies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows
client systems to safely maintain references to a True File on
the public server. The Check For Expired Links background
mechanism allows the client of a publishing server to
occasionally confirm that its dependencies on the publishing
server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or of
needed) data in the system by requesting it from a server
processor. Any such processor can send a request to update
or resynchronize all of its directories (starting at a root
directory), simply by using the Synchronize Directories
extended mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) a list
of all True Names in the system on a given day (or at some
given time), a user can later refer back to that list to show
that a particular data item was present in the system at the
time that list was published. Such a mechanism is useful in
tracking, for example, laboratory notebooks or the like to
prove dates of conception of inventions. Such a mechanism
also permits proof of possession of a data item at a particular
date and time.

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted
through its computer systems, and use these identities to
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the
information utility and/or its data suppliers; this information
would be joined periodically with the information in the
accounting log file to produce customer statements.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 54 of 63 PagelD #: 181

US 6,928,442 B2

37

Backing up data items in a DP system employing the
present invention can be done based on the True Names of
the data items. By tracking backups using True Names,
duplication in the backups is prevented. In operation, the
system maintains a backup record of data identifiers of data
items already backed up, and invokes the Copy File or
Directory operating system mechanism to copy only those
data items whose data identifiers are not recorded in the
backup record. Once a data item has been backed up, it can
be restored by retrieving it from its backup location, based
on the identifier of the data item. Using the backup record
produced by the backup to identify the data item, the data
item can be obtained using, for example, the Make True File
Local primitive mechanism.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local registry (its cache) with a
remote Local Directory Extensions table (from the cache
server). Whenever a file is opened (or read), the Local
Directory Extensions table is Used to identify the True
Name, and the Make True File Local primitive mechanism
inspects the local registry. When the local registry already
has a copy, the file is already cached. Otherwise, the Locate
True File remote mechanism is used to get a copy of the file.
This mechanism consults the cache server and uses the
Request True File remote mechanism to make a local copy,
effectively loading the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client’s True File registry. While a file is being modified on
a cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

In operation, when the system is being used to cache data
items, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname
of a file). If the data associated with such a key is changed,
the client’s cache becomes inconsistent; when the cache
client refers to that name, it will retrieve the wrong data. In
order to maintain cache consistency it is necessary to notify
every client immediately whenever a change occurs on the
server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When
the data associated with a name changes, the key itself
changes. Thus, when a cache client wishes to access the
modified data associated with a given file name, it will use
anew key (the True Name of the new file) rather than the key
to the old file contents in its cache. The client will always
request the correct data, and the old data in its cache will be
eventually aged and flushed by the Groom Cache back-
ground mechanism.

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present inven-
tion makes it possible for a single server to support a much
larger number of clients than is otherwise possible.

In operation, the system automatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism cre-
ates an audit file record, which is eventually processed by
the Process Audit File Entry primitive mechanism. This
mechanism uses the New True File primitive mechanism for
any file which is newly created, which in turn uses the

10

15

20

25

30

35

40

45

50

55

60

65

38

Mirror True File background mechanism if the True File is
in a mirrored or archived region. This mechanism causes one
or more copies of the new file to be made on remote
processors.

In operation, the system can efficiently record and pre-
serve any collection of data items. The Freeze Directory
primitive mechanism creates a True File which identifies all
of the files in the directory and its subordinates. Because this
True File includes the True Names of its constituents, it
represents the exact contents of the directory tree at the time
it was frozen. The frozen directory can be copied with its
components preserved.

The Acquire True File remote mechanism (used in mir-
roring and archiving) preserves the directory tree structure
by ensuring that all of the component segments and True
Files in a compound data item are actually copied to a
remote system. Of course, no transfer is necessary for data
items already in the registry of the remote system.

In operation, the system can efficiently make a copy of
any collection of data items, to support a version control
mechanism for groups of the data items.

The Freeze Directory primitive mechanism is used to
create a collection of data items. The constituent files and
segments referred to by the frozen directory are maintained
in the registry, without any need to make copies of the
constituents each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in
Directory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be copied from one pathname to
another efficiently, merely by copying its True Name. The
Copy File operating system mechanism is used to copy a
frozen directory.

Thus it is possible to efficiently create copies of different
versions of a directory, thereby creating a record of its
history (hence a version control system).

In operation, the system can maintain a local inventory of
all the data items located on a given removable medium,
such as a diskette or CD-ROM. The inventory is indepen-
dent of other properties of the data items such as their name,
location, and date of creation.

The Inventory Existing Directory extended mechanism
provides a way to create True File Registry entries for all of
the files in a directory. One use of this inventory is as a way
to pre-load a True File registry with backup record infor-
mation. Those files in the registry (such as previously
installed software) which are on the volumes inventoried
need not be backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each
file in a frozen directory structure. By copying and modi-
fying this directory, it is possible to create an on line patch,
or small modification of an existing read-only file. For
example, it is possible to create an online representation of
a modified CD-ROM, such that the unmodified files are
actually on the CD-ROM, and only the modified files are
online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and tracks
the uses of specific data items and files by content for
accounting purposes. Using the Track for Accounting Pur-
poses extended mechanism provides a way to know reliably
which files have been stored on a system or transmitted from
one system to another.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 55 of 63 PagelD #: 182

US 6,928,442 B2

39

True Names in Relational and Object-Oriented Databases

Although the preferred embodiment of this invention has
been presented in the context of a file system, the invention
of True Names would be equally valuable in a relational or
object-oriented database. A relational or object-oriented
database system using True Names would have similar
benefits to those of the file system employing the invention.
For instance, such a database would permit efficient elimi-
nation of duplicate records, support a cache for records,
simplify the process of maintaining cache consistency, pro-
vide location-independent access to records, maintain
archives and histories of records, and synchronize with
distant or disconnected systems or databases.

The mechanisms described above can be easily modified
to serve in such a database environment. The True Name
registry would be used as a repository of database records.
All references to records would be via the True Name of the
record. (The Local Directory Extensions table is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
lating records into the registry, and then updating a primary
key index to map the key of the record to its contents by
using the True Name as a pointer to the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be employed in such a
system. These mechanisms could include, for example, the
mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copying, and moving True
Files, for mirroring True Files, for maintaining a cache of
True Files, for grooming True Files, and other mechanisms
based on the use of substantially unique identifiers.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiments, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed is:

1. In a system in which a plurality of files are distributed
across a plurality of computers, a method comprising:

obtaining a name for a data file, the name being based at
least in part on a given function of the data, wherein the
data used by the given function to determine the name
comprises the contents of the data file; and

in response to a request for the a data file, the request
including at least the name of the particular file, causing
a copy of the file to be provided from a given one of the
plurality of computers, wherein a copy of the requested
file is only provided to licensed parties.
2. A method as in claim 1 further comprising:
determining, using at least the name, whether a copy of
the data file is present on a particular one of said
computers.
3. A method as in claim 1 further comprising:
determining, using at least the name, whether an unau-
thorized or unlicensed copy of the data file is present on
a particular one of said computers.
4. A method as in claim 1, further comprising:
maintaining accounting information relating to the data
files.
5. A method as in claim 4, wherein the maintaining of
accounting information includes at least some of activities
selected from:

w

10

15

20

30

35

40

45

50

55

60

40

(a) tracking which files have been stored on a computer;
and

(b) tracking which files have been transmitted from a

computer.

6. A method, in a system in which a plurality of files are
distributed across a plurality of computers, wherein data in
a file in the system may represent a digital message, a digital
image, a video signal or an audio signal, the method com-
prising:

obtaining a name for a data file, the name having been

determined using an MD5 function of the data, wherein
the data used by the MDS5 function comprises the
contents of the data file; and

in response to a request for the data file, the request
including at least the name of the data file, providing a
copy of the data file from a given one of the plurality
of computers, said providing being based at least in part
on the obtained name, and wherein a copy of the
requested file is only provided to licensed parties.

7. A method, in a system in which a plurality of files are
distributed across a plurality of computers, wherein some of
the computers communicate with each other using a TCP/IP
communication protocol, the method comprising:

obtaining a name for a data file, the contents of said data

file representing a digital image, the name having been
determined using at least a given function of the data in
the data file, wherein the data used by the given
function to determine the name comprises the contents
of the data file; and

in response to a request for the data file, the request

including at least the name of the data file, providing a
copy of the file from a given one of the plurality of
computers, wherein a copy of the requested file is not
provided to unlicensed parties or to unauthorized par-
ties.

8. A method, in a network comprising a plurality of
computers, some of the computers functioning as servers
and some of the computers functioning as clients, wherein
some computers in the network communicate with each
other using a TCP/IP communication protocol, wherein a
key is required to identify a file on the network, the method
comprising:

storing some files on a first computer in the network and

storing copies of some of the files from the first
computer on a set of computers distinct from the first
computer;
for a particular file, determining a different cache key
from an ordinarily used key for the file, the different
key being determined at least in part using a message
function MD5 of the data, wherein the data used by the
function to determine the name comprises the contents
of the particular file; and
responsive to a request for the particular file, the request
including the different key for the file, causing a copy
of the particular file to be provided to the requester,

wherein the requested file is not provided to unlicensed
parties, and

wherein the contents of the file may represent: a page in

memory, a digital message, a digital image, a video
signal or an audio signal.

9. A content delivery method, comprising:

distributing files across a network of servers;

for a particular file having a contextual name specifying

locations in the network at which the file may be
located, determining another name for the particular

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 56 of 63 PagelD #: 183

US 6,928,442 B2

41

file, the other name including at least a data identifier
determined using a given function of the data, where
said data used by the given function to determine the
other name comprises the contents of the particular file;

obtaining a request for the particular file, the request
including the contextual name and the other name of
the particular file; and

responsive to the request, providing a copy of the par-

ticular file from one of the servers of the network of
servers, said providing being based, at least in part, on
the other name of the particular item, wherein the
requested file is not provided to unlicensed parties.

10. A method, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the
data used by the function comprises the contents of the
particular file;

determining, using at least the name, whether a copy of

the data file is present on at least one of said computers;
and

determining whether a copy of the data file that is present

on a at least one of said computers is an unauthorized
copy or an unlicensed copy of the data file.

11. A method as in claim 10 further comprising:

allowing the file to be provided from one of the computers

having an authorized or licensed copy of the file.
12. A method as in claim 10 wherein at least some of the
plurality of computers comprise a peer-to-peer network.
13. A method, in a system in which a plurality of files are
distributed across a plurality of computers which form a
peer-to-peer network, the method comprising:
obtaining a True Name for a data file, the True Name
being based at least in part on a given function of the
data, wherein the data used by the given function
comprises the contents of the particular file; and

determining, using at least the name, whether an unli-
censed or unauthorized copy of the data file is present
on a particular computer.

14. A method comprising:

obtaining a name for a data file, the name being based at

least in part on a function of the data, wherein the data
used by the function comprise at least the contents of
the file; and

in response to a request for the data file, the request

including at least the obtained name of the data file,
causing the contents of the data file to be provided from
a computer having a licensed copy of the data file.

15. A method as in claim 14 wherein the function is a
message digest function or a hash function.

16. A method as in claim 14 wherein the function is
selected from the functions: MD4, MD5, and SHA.

17. A method as in claim 14 wherein the given function
randomly distributes its outputs.

18. A method as in claim 14 wherein the function pro-
duces a substantially unique value based on the data com-
prising the data file.

19. A method as in claim 14 wherein a data file may
comprise a file, a portion of a file, a page in memory, a digital
message, a digital image, a video signal or an audio signal.

20. A method as in claim 14 wherein certain processors in
the network communicate with each other using a TCP/IP
communication protocol.

21. A method as in claim 14 wherein said name for said
data file, as determined using said function, will change
when the data file is modified.

42

22. Amethod, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

obtaining a name for a data file, the name being based at

5 least in part on an MD5 function of the data which
comprises the contents of the particular file; and

determining, using at least the obtained name, whether an
unauthorized or unlicensed copy of the data file is
present on a at least one of said computers.

10 23, A method comprising:

obtaining a list of file names, at least one file name for
each of a plurality of files, each of said file names
having been determined, at least in part, by applying a

15 function to the contents of the corresponding file; and

using at least said list to determine whether unauthorized
or unlicensed copies of some of the plurality of data
files are present on a particular computer.

24. A method as in claim 23 further comprising:

20 inresponse to a request for a particular data file, allowing
the contents of the data file to be provided from a
computer determined to have a licensed or authorized
copy of the data file.

25. A method as in claim 23 wherein the particular
computer is part of a peer-to-peer network of computers.

26. A method as in claim 23 further comprising:

25

if the computer is found to have a file that it is not
authorized or licensed to have, recording information
about the computer and about the file.

27. A method as in claim 23 wherein the function is a
message digest function or a hash function.

28. A method as in claim 23 wherein the function is
selected from the functions: MD4, MD5, and SHA.

29. A method as in claim 23 wherein the given function
randomly distributes its outputs.

30. A method as in claim 23 wherein the function pro-
duces a substantially unique value based on the data com-
prising the data file.

31. A method comprising:

30

35

obtaining a list of True Names, one for each of a plurality
of files, wherein, for each of the files, the True Name for
that file is determined using a function of the contents
of the file;
for at least some computers that make up part of a
peer-to-peer network of computers, comparing at least
some of the contents of the computers to the list of True
Names to determine whether unauthorized or unli-
censed copies of some of the plurality of data files are
present on those computers; and
based at least in part on said comparing, if a computer is
found to have content that it is not authorized or
licensed to have, recording information about the com-
puter and about the unauthorized or unlicensed content.
32. A method as in claim 31 wherein the True Names are
determined using a message digest function or a hash
function.
33. A method as in claim 31 wherein the function is
selected from the functions: MD4, MD5, and SHA.
34. A method as in claim 31, further comprising:

45

50

60
in response to a request for the data file, allowing a copy
of the file to be provided from a given one of the
plurality of computers having an authorized or licensed
copy of the file.
65 35. A method comprising:

obtaining a list of True Names, one for each of a plurality
of files, wherein, for each of the files, the True Name for

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 57 of 63 PagelD #: 184

US 6,928,442 B2

43

that file is determined using an MD5 function of the
contents of the file;

comparing the True Names of at least some of the contents

of a computer to the list of True Names to determine
whether unauthorized or unlicensed copies of some of
the plurality of data files are present on that computer;
and

based at least in part on said comparing, if a computer is

found to have content that it is not authorized or
licensed to have, recording information about the com-
puter and about the unauthorized or unlicensed content.

36. In a system in which a data file is distributed across
a plurality of computers, a method comprising:

obtaining a name for the data file, the name being based

at least in part on a given function of the data, wherein
the data used by the function which comprise the
contents of the data file; and

determining, using at least the name, whether an unau-

thorized or unlicensed copy of the data file is present on
a particular one of said computers.

37. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a name for a data file, the name being based at least

in part on a given function of the data, wherein the data
used by the function comprises the contents of the data
file; and

in response to a request for the a data file, the request

including at least the name of the particular file, cause
a copy of the file to be provided from a given one of the
plurality of computers, wherein the copy is only pro-
vided to licensed parties.

38. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a True Name for a data file, the True Name being

based at least in part on a given function of the data,
wherein the data used by the function comprises the
contents of the particular file; and

determine, using at least the name, whether an unautho-

rized or unlicensed copy of the data file is present on a
particular computer.

39. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a list of file names, one for each of a plurality of

files, each of said file names having been determined,
at least in part, by applying a function to the contents
of the corresponding file; and

determine, using at least said list, whether unauthorized or

unlicensed copies of some of the plurality of data files
are present on a particular computer.

40. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a name for the data file, the name being based at

least in part on a given function of the data which
comprise the contents of the data file; and

determine, using at least the name, whether an unautho-

rized or unlicensed copy of the data file is present on a
particular one of said computers.

41. Media as in claim 40 wherein the given function is a
message digest function or a hash function.

42. A computer system programmed to:

obtain a list of file names for a plurality of files, each of

said file names having been determined, at least in part,

10

15

25

30

50

55

60

65

44

by applying a function to the contents of the corre-
sponding file; and

determine, using at least said list, whether unauthorized or

unlicensed copies of some of the plurality of data files
are present on a particular computer.

43. A computer system as in claim 42 wherein the
function is a message digest function or a hash function.

44. A computer system as in claim 42 wherein the
function is an MD5 function.

45. In a system in which a plurality of files are distributed
across a plurality of computers, at least some of the com-
puters forming a peer-to-peer network, a method compris-
ing:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the
data used by the given function comprises the contents
of the data file; and

in response to a request for the a data file, the request

including at least the name of the particular file,
attempting to cause a copy of the file to be provided
from a given one of the plurality of computers, wherein
the requested file is only provided to authorized or
licensed parties.

46. A method, in a system in which a plurality of files are
distributed across a plurality of computers, at least some of
the computers forming a peer-to-peer network, the method
comprising:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the
data used by the function comprises the contents of the
data file;
determining whether a copy of the data file is present on
a at least one of said computers; and

determining, using at least the name, whether a copy of
the data file that is present on a at least one of said
computers is an unlicensed copy of the file.

47. A method, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

determining whether a copy of a data file is present on a

at least one of said computers;

obtaining a name for a data file, the name being based at

least in part on a given function of the data which
comprises the contents of the data file; and,

using at least the name, attempting to determine whether

a copy of the data file that is present on the at least one
of said computers is an unlicensed copy of the file.

48. A method as in claim 47 wherein the given function
comprises a message digest or a hash function.

49. A method as in claim 48 wherein the given function
is selected from the functions: MD4, MD5 and SHA.

50. A method as in claim 47 further comprising:

if a computer is found to have a file that it is not licensed

to have, recording information about the computer.

51. A method as in claim 47, further comprising:

maintaining accounting information relating to data files

in the system.

52. A method as in any one of claims 4 and 51, further
comprising:

using the accounting information as a basis for a system

in which charges are based on an identity of the data
files.

53. A method as in claim 47, further comprising, for at
least one computer in the system:

(a) tracking which data files have been stored on a

computer; and

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 58 of 63 PagelD #: 185

US 6,928,442 B2

45

(b) tracking which data files have been transmitted from
a computer.
54. A method, in network in which a plurality of files are
distributed across a plurality of computers of the network,
the method comprising:

determining whether a copy of a data file is present on a
at least one of said computers, said data file represent-
ing one or more of a digital image, a video signal or an
audio signal;

obtaining a name for the data file, the name being based
at least in part on an MDS5 function of the data which
comprises the contents of the data file; and,

when a copy of the data file is found to be present on one
of the computers, determining, using at least the name,
whether the copy of the data file is an authorized or
licensed copy of the data file; and

if a computer is found to have a file that it is not

authorized or licensed to have, recording information
about the computer or the data file.

55. In network in which a plurality of files arc distributed
across a plurality of computers of the network, a method
comprising:

for each file of a plurality of data files,

(2) determining whether a copy of the file data file is
present on a at least one of said computers;

10

15

20

25

46

(b) obtaining a name for the data file, the name being
based at least in part on an MD5 function of the data
which comprises the contents of the data file;

(c) when a copy of the data file is found to be present
on one of the computers, determining, using at least
the name, whether the copy of the data file-is an
authorized or licensed copy of the data file; and,

(d) if a computer is found to have a file that it is not
authorized or licensed to have, recording information
about the computer or the data file.

56. A method, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the

data used by the given function comprises the contents
of the data file; and

determining, based at least in part on the obtained name,
whether a copy of the data file that is present on a at
least one of said computers is an unauthorized or
unlicensed copy of the file.

#* #* #* #* #*

Case 6:11-cv-00656 Document 1-4 F'||||||Mﬂ|ﬂﬁﬂm|||ﬂﬂgﬂ!9ﬂiﬂﬁfﬂ|ﬂmm|W|||||“|||F

12y EX PARTE REEXAMINATION CERTIFICATE (7609th)

United States Patent

Farber et al.

US 6,928,442 C1
Jul. 13, 2010

(10) Number:
45) Certificate Issued:

(54) ENFORCEMENT AND POLICING OF
LICENSE CONTENT USING
CONTENT-BASED IDENTIFIERS

(75) lanventors: David A. Farber, Ojai, CA (US);
Ronald D. Lachman, Northbrook, 1L
(US)

(73) Assignee: Level 3 Communications, LL.C,
Broomfield, CO (US)

Reexamination Request:
No. 90/010,260, Aug. 29, 2008

Reexamination Certificate for:

Patent No.: 6,928,442
Issued: Aug. 9, 2005
Appl. No.: 09/987,723
Filed: Nov. 15, 2001

Related U.S. Application Data
(63) Continuation of application No. 09/283,160, filed on Apr. 1,
1999, now Pat. No. 6,415,280, which is a division of appli-
cation No. 08/960,079, filed on Oct. 24, 1997, now Pat. No.
5,978,791, which is a continuation of application No.
08/425,160, filed on Apr. 11, 1995, now abandoned.

Int. Cl1.
GO6F 17/30

(5D
(2006.01)
(52) US.CL ... 707/10; 707/999.01; 707/E17.01;
709/203; 709/219; 709/229
Field of Classification Search 705/52,
705/59; 707/2; 713/168, 180

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

3,835,260 A 9/1974 Prescher et al.

4,096,568 A 6/1978 Bennett et al.

4,221,003 A 9/1980 Chang et al.

4,558413 A 12/1985 Schmidt et al.

4,658,093 A * 4/1987 Hellmancccouueen... 705/52
4,821,184 A 4/1989 Clancy et al.

SIMPL

DATA ITEM

4,914,586 A 4/1990 Swinehart et al.
4949302 A 8/1990 Arnold et al.
5,007,658 A 4/1991 Blechschmidt et al.
5,014,192 A 5/1991 Mansfield et al.
5047918 A 9/1991 Schwartz et al.
5,084,815 A 1/1992 Mazzario
5,117,351 A 5/1992 Miller
5,163,147 A 11/1992 Orita
5,182,799 A 1/1993 Tamura et al.
5,199,073 A 3/1993 Scott
5,202,982 A * 4/1993 Gramlich etal. 707/2
5,204,897 A 4/1993 Wyman
(Continued)
FOREIGN PATENT DOCUMENTS
EP 0268069 A2 5/1988
EP 0315425 5/1989
EP 0558945 A2 9/1993
(Continued)
OTHER PUBLICATIONS

David R. Cheriton and Timothy P. Mann “Decentralizing a
Global Naming Service for Improved Performance and Fault
Tolerance,” published by ACM Transactions on Computer
Systems, vol. 7, No. 2 (1989).*

(Continued)

Primary Examiner—Christopher E Lee
57 ABSTRACT

Data files are distributed across a plurality of computers. The
computers may form a network such as a content delivery
network (CDN) or a peer-to-peer network. The network may
operate as a TCP/1P network such as the Internet. Data files
may represent may represent digital messages, images, vid-
eos or audio signals. For content—data items or files in the
system—a name is obtained (or determined), where the
name is based, at least in part, on a given function of the data
in a data item or file. The given function may be a message
digest or hash function, and it may be MD4, MD5, and SHA.
A cony of a requested file is only provided to licensed (or
authorized) parties. The system may check one or more
computers for unauthorized or unlicensed content. Content
is served based on a measure of availability of servers.

. COMPUTE MD FUNCTION ON
DATA ITEM

5212

Y

H APPEND LENGTH MODULO 32 OF

8214

: DATA ITEM i

TRUE NAME

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 60 of 63 PagelD #: 187

US 6,928,442 C1
Page 2

5,204,958
5,204,966
5,247,620
5,260,999
5,276,869
5,287,514
5,297,279
5,317,693
5,347,653
5,351,302
5,357,440
5,359,523
5,361,356
5,371,897
5,394,555
5,403,639
5,438,508
5,442,343
5,448,718
5,454,039
5,465,365
5,467,471
5,475,826
5,491,817
5,499,294
5,504,879
5,537,585
5,553,143
5,581,615
5,581,764
5,588,147
5,600,834
5,604,803
5,604,892
5,630,067
5,632,031
5,649,196
5,677,952
5,678,038
5,694,596
5,701,316
5,710,922
5,724,425
5,724,552
5,742,807
5,745,879
5,757,913
5,757,915
5,826,049
5,864,683
5,907,619
5,940,504
5,978,791
5,991,414
6,135,646
6,415,280
6,732,180
6,928,442
2002/0052884
2002/0082999
2003/0078888
2003/0078889
2003/0095660
2004/0139097
2005/0010792
2005/0114296
2007/0185848
2008/0065635
2008/0066191
2008/0071855

U.S. PATENT DOCUMENTS

B 3 2 B B B B B B 2 D B B B B D 0 0 B 0 D 0 D 0 0 B B B 0 B 0 0 B B B D

4/1993
4/1993
9/1993
11/1993
1/1994
2/1994
3/1994
5/1994
9/1994
9/1994
10/1994
10/1994
11/1994
12/1994
2/1995
4/1995
8/1995
8/1995
9/1995
9/1995
11/1995
11/1995
12/1995
2/1996
3/1996
4/1996
7/1996
9/1996
12/1996
12/1996
12/1996
2/1997
2/1997
2/1997
5/1997
5/1997
7/1997
10/1997
10/1997
12/1997
12/1997
1/1998
3/1998
3/1998
4/1998
4/1998
5/1998
5/1998
10/1998
1/1999
5/1999
8/1999
11/1999
11/1999
10/2000
7/2002
5/2004
8/2005
5/2002
6/2002
4/2003
4/2003
5/2003
7/2004
1/2005
5/2005
8/2007
3/2008
3/2008
3/2008

Cheng et al.
Wittenberg et al.
Fukuzawa et al.
Wyman

Forrest et al.

Gram

Bannon et al.

Cuenod et al.

Flynn et al.

Leighton et al.
Talbott et al.

Talbott et al.

Clark et al.

Brown et al.

Hunter et al.

Belsan et al.

Wyman

Cato et al.

Cohn et al.
Coppersmith et al.
Winterbottom

Bader

Fischer

Gopal et al.
Friedman

Eisenberg et al.
Blickenstaff et al.
Rossetal. .ccooevveerreennnes 705/59
Stern ...ceeveerereereerieennens 713/180
Fitzgerald et al.
Neeman et al.
Howard

Aziz

Nuttall et al.

Kindell et al.
Velissaropoulos et al.
Woodhill et al.
Blakley, III et al.
Dockter et al.
Campbell

Alferness et al.

Alley et al.

Chang et al.

Taoda

Masinter

Wyman

Bellare et al. 713/168
Aucsmith et al.
Ogata et al.
Boebert et al.
Davis
Griswoldoevvveeueennnnns
Farber et al.
Garay et al.
Kahn et al.
Farber et al.
Hale et al.
Farber et al.
Farber et al.
Lee et al.
Lee et al.
Lee et al.
Lee et al.
Farber et al.
Carpentier et al.
Farber et al.
Farber et al.
Farber et al.
Farber et al.
Farber et al.

705/59

2008/0082551 Al 4/2008 Farber et al.

FOREIGN PATENT DOCUMENTS

EP 0566967 A2 10/1993
EP 0631226 Al 12/1994
EP 0654920 A2 5/1995
EP 0658022 A2 6/1995
GB 2294132 A 4/1996
JP 59058564 4/1984
JP 63-106048 5/1988
JP 63-273961 11/1988
JP 2-127755 5/1990
JP 05162529 6/1993
JP 06187384 A2 7/1994
JP 06348558 A 12/1994
WO WO 92/20021 11/1992
WO WO 94/06087 3/1994
WO WO 94/20913 9/1994
WO WO 95/01599 1/1995
WO WO 97/43717 11/1997
OTHER PUBLICATIONS

Berners—Lee, T. et al., RFC 1738, “Uniform Resource Loca-
tors (URL),” pp. 1-25, The Internet Engineering Task Force
(IETF), Network Working Group, Dec. 1994.

Berners—Lee, T. et al., RFC 1945, “Hypertext Transfer Pro-
tocol—HTTP/1.0,” The Internet Engineering Task Force
(IETF), Network Working Group, May 1996, pp. 1-60.
Berners—Lee, T., RFC 1630 “Universal Resource ldentifiers
in WWW,.” The Internet Engineering Task Force (IETF),
Network Working Group, Jun. 1994, pp. 1-28.

Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable
Discovery and Access System,” Tech. Report
CU-CS-732-94, Dept. Comp. Sci., U. of. Colorado—Boul-
der, original date Aug. 1994, revised Mar. 1995, pp. 1-29.
Browne, Shirley et al., “Location—Independent Naming for
Virtual Distributed Software Repositories,” Univ. of Tennes-
see, Dept. Comp. Sci., Feb. 1995, also In ACM-SIGSOFT
1995 Symp. on Software Reusability, Seattle, Wash. Apr.
1995, 7 pages.

Falstrom, P. et al., RFC 1914, “How to Interact with a
Whois++ Mesh,” The Internet Engineering Task Force
(1ETF), Network Working Group, Feb. 1996, pp. 1-10.
Fielding, R. et al., RFC 2068, “Hypertext Transfer Proto-
col—HTTP/1.1,” The Internet Engineering Task Force
(1IETF), Network Working Group, Jan. 1997, pp. 1-163.
Fielding, R. et al., RFC 2616, “Hypertext Transfer Proto-
col—HTTP/1.1,” The Internet Engineering Task Force
(IETF), Network Working Group, Jun. 1999, pp. 1-176.
Moats, R., RFC 2141, “URN Syntax,” The Internet Engi-
neering Task Force (1IETF), Network Working Group, May
1997, pp. 1-8.

Vincenzetti, D. et al., “Anti Tampering Program,” Proc.
Fourth {USENIX} Security Symp. , Santa Clara, (USENIX
Association) CA, Oct. 1993, 11 pages.

Vincenzetti, D. et al., “Anti Tampering Program,” Proc.
Fourth {USENIX} Security Symp., Santa Clara, CA, Oct.
1993, printed from http://www.ja.net/CER]/Vincenzetti__
and_ Cotrozzi/ATP__Anti_ Tamp on Mar. 22, 2006,
(USENIX Association), 8 pgs.

Fowler, et al. “A User—Level Replicated File System,” AT&T
Bell Laboratories Technical Memorandum
0112670-930414-05, Apr. 1993, and USENIX 1993 Sum-
mer Conference Proceedings, Cincinnati, OH, Jun. 1993.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 61 of 63 PagelD #: 188

US 6,928,442 C1
Page 3

Greene, D., et al., “Multi-Index Hashing for Information
Retrieval”, Nov. 20-22, 1994, Proceedings, 35th Annual
Symp on Foundations of Computer Science, 1EEE, pp.
722-731.

Hirano, et al, “Extendible hashing for concurrent insertions
and retrievals,” in Proc 4th Euromicro Workshop on Parallel
and Distributed Processing, 1996 (PDP *96), Jan. 24, 1996 to
Jan. 26, 1996, pp. 235-242, Braga, Portugal.

Prencel et al., “The Cryptographic Hash Function RIP-
EMD-160", appeared in CryptoBytes RSA Laboratories,
vol. 3, No. 2, pp. 9-14, Fall, 1997 (also Bosselaers et al.,
“The RIPEMD-160 Cryptographic Hash Function”, Jan.
1997, Dr. Dobb’s Journal, pp. 24-28).

Prusker et al., “The Siphon: Managing Distant Replicated
Repositories” Nov. 8-9, 1990, Proc. Management of Repli-
cated Data 1EEE.

Reply to Examination Report, Munich, Nov. 18, 2009, in
Application No. EP 96 910 762.2 19 pgs.].

Rich, K. et al, “Hobgoblin: A File and Directory Auditor”,
Sep. 30-Oct. 3, 1991, Lisa V., San Diego, CA.

Barbara, D., et al., “Exploiting symmetries for low—cost
comparison of file copies,” 8th 1nt’l Conf. on Distributed
Computing Systems, Jun. 1988, pp. 471-479, San Jose, CA.
Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable
Discovery and Access System,” Aug. 4, 1994, pp. 1-27.
Brisco, T., “DNS Support for Load Balancing,” IETF RFC
1794, Apr. 1995, pp. 1-7.

Browne, Shirley et al., “Location—Independent Naming for
Virtual Distributed Software Repositories,” Nov. 11, 1994,
printed from http:/www.netlib.org/utk/papers/lifn/main.html
on Mar. 22, 2006, 18 pages.

Campbell, M., “The Design of Text Signatures for Text
Retrieval Systems,” Tech. Report, Sep. 5, 1994, Deakin Uni-
versity, School of Computing & Math., Geelong, Australia.
Chang, W. W. et al., “A signature access method for the
Starburst database system,” in Proc. 15th Int’1 Conf. on Very
Large Data Bases (Amsterdam), The Netherlands), pp.
145-153.

Danzig, PB., et al., “Distributed Indexing: A Scalable
Mechanism For Distributed Information Retrieval,” Proc.
14th Annual Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval, pp. 220-229, Oct.
13-16, 1991.

Faloutsos, C. “Access methods for text,” ACM Comput.
Surv. 17, 1 (Mar. 1985), 49-74.

Faloutsos, C. et al., “Description and performance analysis
of signature file methods for office filing,” ACM Trans. Inf.
Syst. 5,3 (Jul. 1987), 237-257.

Faloutsos, C. et al., “Signature files: an access method for
documents and its analytical performance evaluation,” ACM
Trans. Inf. Syst. 2, 4 (Oct. 1984), 267-288.

Federal Information Processing Standards (FIPS) Publica-
tion 180-1; Secure Hash Standard, Apr. 17, 1995 [17 pgs.]
Feigenbaum, J. et al., “Cryptographic protection of data-
bases and software,” in Distributed Computing and Cryptog-
raphy: Proc. DIMACS Workshop, Apr. 1991, pp. 161-172,
American Mathematical Society, Boston, Mass.

Harrison, M. C., “Implementation of the substring test by
hashing,” Commun. ACM 14, 12 (Dec. 1971), 777-779.
Hauzeur, B. M., “A Model For Naming, Addressing, And
Routing,” ACM Trans. Inf. Syst. 4, Oct. 4, 1986), 293-311.
IEEE, The Authoritative Dictionary of 1EEE Standards
Terms, 7th ed., Copyright 2000, pp. 107, 176, 209, 240, 241,
432, 468, 505, 506, 682, 1016, 1113, 1266, and 1267.

International Search Report dated Jun. 24, 1996 in interna-
tional application PCT/US1996/004733.

Ishikawa, Y., et al., “Evaluation of signature files as set
access facilities in OODBSs,” In Proc. of the 1993 ACM S1G-
MOD Inter. Conf. on Management of Data (Washington,
D.C., U.S., May 1993). P. Buneman & S. Jajodia, Eds. SI1G-
MOD ’93. ACM, NY, NY, 247-256.

Karp, R. M. and Rabin, M. O., “Efficient randomized pat-
tern—matching algorithms,” 1BM J. Res. Dev. 31, 2 (Mar.
1987), 249-260.

Khare, R. and Lawrence, S., RFC 2817, “Upgrading to TL.S
Within HTTP/1.1,” May 2000, pp. 1-12.

Khoshafian, S. N. et al. 1986. Object identity. In Conf. Proc.
on Object-Oriented Programming Systems, Languages and
Applications (Portland, Oregon, United States, Sep. 29-Oct.
2,1986), N. Meyrowitz, Ed. OOPLSA *86. ACM Press, New
York, NY, 406-416.

Kim et al. “The Design and Ilmplementation of Tripwire: A
file System Integrity Checker”, COAST Labs. Dept. of
Computer Sciences Purdue University, Feb. 23, 1995, pp.
1-18.

Kim, Gene H., and Spafford, Eugene H., “Writing, Support-
ing, and Evaluating Tripwire: A Publicly Available Security
Tool” COAST Labs. Dept. of Computer Sciences Purdue
University, Mar. 12, 1994, pp. 1-23.

Knuth, D. E., “The Art of Computer Programming,” 1973,
vol. 3 “Sorting and Searching,” Ch. 6.4 “Hashing,” pp.
506-549.

Kumar, Vijay, A Concurrency Control Mechanism Based on
Extendible Hashing for Main Memory Database Systems,
ACM, vol. 3, 1989, pp. 109-113.

Lantz, K. A., et al., “Towards a universal directory service.”
In Proc. 4th Annual ACM Symp. on Principles of Distributed
Computing (Minaki, Ontario, Canada). PODC ’85. ACM
Press, New York, NY, 250-260.

Leach, P. I., et al. The file system of an integrated local
network. In Proc. 1985 ACM 13th Annual Conf. on Comp.
Sci. CSC *85. ACM Press, NY, NY, 309-324.

Leach, P.J., et al., “UlDs as Internal Names in a Distributed
File System,” In Proc. 1st ACM SIGACT-SIGOPS Symp.
on Principles of Distributed Computing (Ottawa, Canada,
Aug. 18-20, 1982). PODC ’82. ACM Press, New York, NY,
34-41.

Ma, C. 1992. On building very large naming systems. In
Proc. 5th Workshop on ACM SIGOPS European Workshop:
Models and Paradigms For Distributed Systems Structuring
(France, Sep. 21-23, 1992). EW 5. ACM Press, New York,
NY, 1-5L

Myers, J. and Rose, M., RFC 1864, “The Content-MDS5
Header Field,” Oct. 1995, pp. 1-4.

Panagopoulos, G., et al., “Bit-sliced signature files for very
large text databases on a parallel machine architecture,” In
Proc. of the 4th Inter. Conf. on Extending Database Technol-
ogy (EDBT), Cambridge, U.K., Mar. 1994, pp. 379-392
(Proc. LNCS 779 Springer 1994, 1SBN 3-540-57818-8)
[14 pgs.]

Patent Abstract, “Management System for Plural Versions,”
Pub. No. 63273961 A, published Nov. 11, 1988, NEC Corp.
Patent Abstracts of Japan, “Data Processor,” Appln. No.
05135620, filed Jun. 7, 1993, Toshiba Corp.

Patent Abstracts of Japan, “Device for Generating Database
and Method for the Same,” Application No. 03—080504, Sun
Microsyst. 1nc., published Jun. 1993, 38 pages.

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 62 of 63 PagelD #: 189

US 6,928,442 C1
Page 4

Patent Abstracts of Japan, “Method for Registering and
Retrieving Data Base,” Application No. 03—187303, Nippon
Telegr. & Teleph. Corp., published Feb. 1993, 11 pages.

Peterson, L. L.. 1988. A yellow—pages service for a loca-
l-area network. In Proc. ACM Workshop on Frontiers in
Computer Communications Technology (Vermont, 1987). J.
J. Garcia-Luna—Aceves, Ed. SIGCOMM ’87. ACM Press,
New York, NY, 235-242.

Ravindran, K. and Ramakrishnan, K. K. 1991. A naming
system for feature—based service specification in distributed
operating systems. SIGSMALL/PC Notes 17, 3-4 (Sep.
1991), 12-21.

Reed Wade (wade@cs.utk.edu), “re: Dienst and BFD/LIFN
emails,” Aug. 8, 1994, printed from http://www.webhistory.
org/www.lists/www—talk1994q3/0416.html on Mar. 22,
2006, (7 pages).

Rivest, R., RFC 1320, “The MD4 Message—Digest Algo-
rithm,” Apr. 1992.

Rivest, R., RFC 1321, “The MD5 Message—Digest Algo-
rithm,” Apr. 1992, pp. 1-19 and errata sheet (1 page).

Rose, M., RFC 1544, “The Content-MD5 Header Field,”
Nov. 1993, pp. 1-3.

Ross, K., “Hash—Routing for Collections of Shared Web
Caches,” IEEE Network Magazine, pp. 37-44, Nov.—Dec.
1997.

Sacks—Davis, R., et al., “Multikey access methods based on
superimposed coding technmiques,” ACM Trans. Database
Syst. 12, 4 (Nov. 1987), 655-696.

Schneier, B., “One-Way Hash Functions, Using Crypo-
graphic Algorithms for Hashing,” 1991, printed from http://
202.179135.4/data/DDJ/articles/1991/9109/91909¢g/
9109g.htm on Mar. 22, 2006 [9 pgs.]

Schwartz, M., et al. 1987. A name service for evolving het-
erogeneous systems. In Proc. 11th ACM Symp. on OS Prin-
ciples (Texas, Nov. 8-11, 1987). SOSP *87. ACM Press, NY,
NY, 52-62.

Shaheen—Gouda, A. and Loucks, L. 1992. Name borders. In
Proc. 5th Workshop on ACM SIGOPS European Workshop:
Models and Paradigms For Distributed Systems Structuring
(Mont Saint-Michel, France, Sep. 21-23, 1992). EW 5.
ACM Press, NY, NY, 1-6.

Siegel, A., et al., “Deceit: a Flexible Distributed File Sys-
tem,” Proc. Workshop on the Management of Replicated
Data, Houston, TX, pp. 15-17, Nov. 8-9, 1990.

Siegel, A., et al., “Deceit: a Flexible Distributed File Sys-
tem,” Technical Report, TR89-1042, Cornell University,
Nov. 1989.

Sun Microsystems, Inc., RFC 1094, “NFS: Network File
System Protocol Specification,” Mar. 1989, pp. 1-27.

Terry, D. B. 1984. An analysis of naming conventions for
distributed computer systems. In Proc. ACM SIGCOMM
Symp. on Communications Architectures and Protocols:
Tutorials & Symp. SIGCOMM ’84. ACM Press, NY, NY,
218-224.

Vincenzetti, David and Cotrrozzi, Massimo, “Anti Tamper-
ing Program,” Proceedings of the Fourth {USENIX} Secu-
rity Symposium, Santa Clara, CA, 1993, 11 pages.

* cited by examiner

Case 6:11-cv-00656 Document 1-4 Filed 12/08/11 Page 63 of 63 PagelD #: 190

US 6,928,442 C1

! 2
EX PARTE AS A RESULT OF REEXAMINATION, IT HAS BEEN
REEXAMINATION CERTIFICATE DETERMINED THAT:
ISSUED UNDER 35 U.S.C. 307 The patentability of claims 1-12, 14-21, 23-35, 37, 39 and

5 42-55 is confirmed.

Claims 13, 22, 36, 38, 40, 41 and 56 are cancelled.
THE PATENT IS HEREBY AMENDED AS

INDICATED BELOW. I T S

