EXHIBIT F

http://dockets.justia.com/docket/california/candce/3:2013cv04113/269829/
http://docs.justia.com/cases/federal/district-courts/california/candce/3:2013cv04113/269829/1/7.html
http://dockets.justia.com/

US007945544B2

a2z United States Patent (10) Patent No.: US 7,945,544 B2
Farber et al. (45) Date of Patent: May 17, 2011
(54) SIMILARITY-BASED ACCESS CONTROL OF (51) Imnt.ClL
DATA IN A DATA PROCESSING SYSTEM GO6F 17/00 (2006.01)
(52) US.ClL . 707/698; 707/821; 707/822
(75) Inventors: David A. Farber, Ojai, CA (US); (58) TField of Classification Search 707/609,
Ronald D. Lachman, Northbrook, IL 707/821-828, 697698
(as) See application file for complete search history.
(73) Assignees: Kinetech, Inc., Studio City, CA (US); (56) References Cited
Level 3 Communications, LLC,
Broomfield, CO (US) U.S. PATENT DOCUMENTS
3,668,647 A 6/1972 Evangelisti et al.
(*) Notice: Subject to any disclaimer, the term of this 3,835,260 A 9/1974 Prescher et al.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 624 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 11/980,688 EP 0268069 A2 5/1988
(22) Filed: Oct. 31,2007 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2008/0065635 Al Mar. 13. 2008 Fowler, et al. “A User-Level Replicated File System,” AT&T Bell
T Laboratories Technical Memorandum 0112670-930414-05, Apr.
Related U.S. Application Data 1993, and USENIX 1993 Summer Conference Proceedings, Cincin-
nati, OH, Jun. 1993.
(60) Continuation of application No. 11/724,232, filed on

Mar. 15, 2007, which is a continuation of application
No. 11/017,650, filed on Dec. 22, 2004, which is a
continuation of application No. 09/987,723, filed on
Nov. 15, 2001, now Pat. No. 6,928,442, which is a
continuation of application No. 09/283,160, filed on
Apr. 1, 1999, now Pat. No. 6,415,280, which is a
division of application No. 08/960,079, filed on Oct.
24, 1997, now Pat. No. 5,978,791, which is a
continuation of application No. 08/425,160, filed on
Apr. 11, 1995, now abandoned, application No.
11/980,688, which is a continuation of application No.
10/742,972, filed on Dec. 23, 2003, which is a division
of application No. 09/987,723, which is a continuation
of application No. 09/283,160, which is a division of
application No. 08/960,079, which is a continuation of
application No. 08/425,160.

8216

~YES, DATA ITEM
SIMPLE?

ASSIMILATE EACH SEGMENT
(COMPUTING T8 TRUE NAME)

CREATE INDIRECT BLOCK OF

ASSIMILATE INDIRECT BLOCK
(COMPUTING TS TRUE NAME)

(Continued)

Primary Examiner — Khanh B Pham
(74) Attorney, Agent, or Firm — Davidson Berquist Jackson
& Gowdey, LLP; Brian Siritzky

(57) ABSTRACT

Similarity of data items is determined by analyzing corre-
sponding segments of the data items. A function is applied to
each segment of a data item and the output of that function is
compared to the output of the same function applied to a
corresponding segment of another data item. A function may
be applied to the output of the functions. The functions may
be hash or message digest functions.

56 Claims, 31 Drawing Sheets

s220
PARTITION DATA ITEM INTO
SEGMENTS

s222

8224

SEGMENT TRUE NAMES

8228
REPLAGE FINAL 32 BITS OF TRUE
| NAME WITH LENGHT MOD 32 OF DATA|
TEM

1

US 7,945,544 B2

Page 2

U.S. PATENT DOCUMENTS 5,361,356 A 11/1994 Clark et al.
4.096.568 A 6/1978 Bennett et al 5,371,897 A 12/1994 Brown et al.
4215402 A 7/1980 Mitchell ef al. o320 A 121099 Hunter et al
4,221,003 A 9/1980 Chang et al. 5394555 A 2/1995 Hunter ct al
4,290,105 A 9/1981 Cichelli et al. o :
4376200 A 31983 Rhoe 5,403,639 A 4/1995 Belsan et al.
4205820 A o/1983 Rl.z:ztetal 5,404,508 A 4/1995 Konrad et al.
4412285 A 10/1983 Neches et al. g’ﬁg’;% i g;}ggg glyt;nz?al
aoutezd & 111083 Summer I etal 5448668 A * /1995 Perelson etal. ... 714/21
4464713 A /1984 Benhase ctal. 3448718 A 9/1995 Cohnetal.
4400780 A 12/1984 Di ¢ al 5,452,447 A 9/1995 Nelson et al.
4558413 A 12/1985 séﬁﬁﬁfr jt'al 5,454,000 A 9/1995 Dorfmancc........ 714/54
4’571’700 A 2/1986 Emry, Jr etai 5,454,039 A 9/1995 Coppersmith et al.
4,577,293 A 3/1986 Matick et al. 2’322’522 i }%ggg VB\}?“;“{) "
4,642,764 A 2/1987 Auslander Ppss terbottom
4ed 103 A 51087 Mo 5467471 A 11/1995 Bader
4055.093 A 1087 H:ﬁlnf;‘n 5,475,826 A 12/1995 Fischer
4675810 A /1987 Granor et al 5,479,654 A * 12/1995 Squibb ..ooccooornnrnnnnnn. 707/695
4691299 A 9/1987 Rivestetal. SAILSIT A~ 211996 Gopal et al.
4725945 A 2/1988 Kronstadt et al. g"s‘gi%%i fﬁggg Er.‘edg‘a“ |
4773039 A 9/1988 Zamora Peet 1senberg et al.
4821184 A 4/1989 Cl ¢ al 5,530,757 A 6/1996 Krawczyk 713/188
4887235 A 12/1989 Hoﬁfllg‘?{v:y;al 5,537,585 A 7/1996 Blickenstaff et al.
4888681 A 12/1989 Barnes et al. 5,542,087 A 7/1996 Neimat et al.
4914571 A 4/1990 Barats et al 5,548,724 A 8/1996 Akizawa et al.
4914586 A 4/1990 Swinchart et al. ggg;}gi lgf}ggg gossetal'd .
4922414 A 5/1990 Holloway et al. Jee1615 A 12/1996 Sreen‘”"" etal.
4922417 A 5/1990 Churm et al. Jeel758 A 12/1996 Bf;‘en
4,937,863 A 6/1990 Robert et al. Sisl7ea A 1199 F Id et al
4949302 A 81990 Arnold et al. Ti309s A 1a/l9o G‘tzgzra t‘;tla'
4,953,209 A 8/1990 Ryder, Sr. et al. o ardner et a’.
4972367 A 11/1990 Burke 5,588,147 A 12/1996 Neeman et al.
5014192 A 5/1991 Mansfield et al. 5,596,744 A 1/1997 Dao etal
S025 421 A S1991 Clo 5,600,834 A 2/1997 Howard
WE A I i & Doy dme
5,047918 A 9/1991 Schwartz et al. 5’630’067 A 5/1997 Kindell 1
5,050,074 A 9/1991 Marca D indell et al.
5’050’212 A 9/1991 Dyson 5,632,031 A 5/1997 Velissaropoulos et al.
5,057,837 A 10/1991 Colwell et al. g’gig"s‘gii gf}gg; Isfeﬁlfletal' |
5.077.658 A 12/1991 Bendert et al 040, amilton et al.
2084815 A 1997 Mawar sta 5,649,196 A 7/1997 Woodhill et al.
2117351 A 571992 Mfﬁ:f“" 5,677,952 A 10/1997 Blakley, III et al.
5.129.081 A 7/1992 Kobayashi et al. 2’232’83‘2 ﬁ }gf}gg; leﬁfertetlal'
5,129,082 A 7/1992 Tirfing et al. IS heta.
42667 A /199> P T al 5,694,472 A * 12/1997 Johnsonetal. 713/189
S163147 A 11/1992 O"%“e’ I etal 5,694,596 A 12/1997 Campbell
2179680 A 11993 C(r)ll\fzelletal 5,701,316 A 12/1997 Alferness et al.
2182700 A 11993 Tomee oo 5,710,922 A 1/1998 Alley et al.
2109073 A 371993 Somtt ' 5,724,425 A 3/1998 Chang et al.
5202082 A 4/1993 Gramlich et al. g;iggg% i fﬁggg Efll"c.la
5,204,897 A 4/1993 Wyman S745870 A 4/1998 Wasmter
3,204.958 A 471993 Cheng et al. 3757013 A §/1998 Bellare et al
5,204,966 A 4/1993 Wittenberg et al. 5’757’915 A 5/1998 A ith '1
5208.858 A 5/1993 Vollert et al 157, ucsmith ef al.
o134 A 511903 Wil ot 5,781,629 A 7/1998 Haber et al.
2330051 A /1993 QS;:G : 5,802,291 A 9/1998 Balick et al.
5230648 A 81993 Nukui 3.809.494 A~ 971998 Nguyen
S51L671 A /1993 Rood of al 5,826,049 A 10/1998 Ogata et al.
5,247,620 A 9/1993 Fukuzawa et al. ggg}ggi lif}ggg }Blerietal' |
5260999 A 11/1993 Wyman 2007515 A 3199 D"e.e“eta'

A K avis

g%;g’gg? ﬁ }j}ggj gorresﬁettall' 5007704 A 5/1999 Gudmundson et al.
2387499 A 2/1994 Ngr‘:’lz ctal 5,940,504 A 8/1999 Griswold
2597514 A 51004 Coanss 5978791 A 11/1999 Farber et al.
2507979 A 51904 Ba etal 5991414 A 11/1999 Garay et al.
5301286 A 4/1994 Rajani ’ 6,006,018 A 12/1999 Burnett et al.
5301316 A 4/1994 Hamilton et al. g’g‘s"ggg i }8@888 %";}fjg :11'
5,317,693 A 5/1994 Cuenod et al. 6’415,280 Bl 7/2002 Farb '1
5321,841 A 6/1994 East et al. 2 arber et al.
$330°403 A 9/1994 Parker 6,732,180 Bl 5/2004 Hale etal.
5’341’477 A 8/1994 Pitkin et al. 6,816,872 Bl1* 11/2004 Squibb 1/1
5:343:527 A 8/1994 Moore 6,928,442 B2 8/2005 Farber et al.
5,347,653 A 9/1994 Flynn et al. 2002/0052884 Al 6/2002 Farber et al.
5,351,302 A 9/1994 Leighton et al. 2002/0082999 Al 6/2002 Leeetal.
5357440 A 10/1994 Talbott et al. 2003/0078888 Al 4/2003 Leeetal.
5357623 A 10/1994 Megory-Cohen 2003/0078889 Al 4/2003 Leeetal.
5357630 A 10/1994 Oprescu et al. 2003/0095660 Al 5/2003 Leeetal.
5359,523 A 10/1994 Talbott et al. 2004/0139097 Al 7/2004 Farber et al.

US 7,945,544 B2
Page 3

2005/0010792 Al
2005/0114296 Al
2007/0185848 Al
2008/0065635 Al
2008/0066191 Al
2008/0071855 Al
2008/0082551 Al

FOREIGN PATENT DOCUMENTS

1/2005 Carpentier et al.
5/2005 Farber et al.
8/2007 Farber et al.
3/2008 Farber et al.
3/2008 Farber et al.
3/2008 Farber et al.
3/2008 Farber et al.

EP 0315425 5/1989
EP 0558945 A2 9/1993
EP 0566 967 A2 10/1993
EP 0592045 4/1994
EP 0631226 Al 12/1994
EP 0654920 A2 5/1995
EP 0658022 A2 6/1995
GB 2294132 A 4/1996
JP 59058564 4/1984
JP 63-106048 5/1988
JP 63-273961 11/1988
JP 2-127755 5/1990
JP 05162529 6/1993
JP 06187384 A2 7/1994
JP 06348558 A 12/1994
WO WO 92/20021 11/1992
WO WO 94/06087 3/1994
WO WO 94/20913 9/1994
WO WO 95/01599 1/1995
WO WO 97/43717 11/1997
OTHER PUBLICATIONS

Greene, D, et al., “Multi-Index Hashing for Information Retrieval”,
Nov.20-22, 1994, Proceedings, 3 5th Annual Symp on Foundations of
Computer Science, IEEE, pp. 722-731.

Hirano, et al, “Extendible hashing for concurrent insertions and
retrievals,” in Proc 4th Euromicro Workshop on Parallel and Distrib-
uted Processing, 1996 (PDP *96), Jan. 24, 1996 to Jan. 26, 1996, pp.
235-242, Braga , Portugal.

Preneel et al., “The Cryptographic Hash Function RIPEMD-160",
appeared in CryptoBytes RSA Laboratories, vol. 3, No. 2, pp. 9-14,
Fall, 1997 (also Bosselaers et al., “The RIPEMD-160 Cryptographic
Hash Function”, Jan. 1997, Dr. Dobb’s Journal, pp. 24-28).

Prusker et al., “The Siphon: Managing Distant Replicated Reposito-
ries” Nov. 8-9, 1990, Proc. Management of Replicated Data IEEE.
Reply to Examination Report, Munich, Nov. 18, 2009, in Application
No. EP 96 910 762.2 [19 pgs.].

Rich, K. et al, “Hobgoblin: A File and Directory Auditor”, Sep.
30-Oct. 3, 1991, Lisa V., San Diego, CA.

USPTO Final Office Action in U.S. Appl. No. 10/742,972, Dec. 22,
2009.

USPTO, Advisory Action, Mar. 23, 2010, in U.S. Appl. No.
11/980,679.

USPTO, Final Office Action in U.S. Reexam Control No.
90/010,260, Jan. 29, 2010.

USPTO, Final Office Action mailed Jan. 12, 2010 in U.S. Appl. No.
11/980,679.

USPTO, Final Office Action mailed Aug. 18,2009 in U.S. Appl. No.
11/017,650.

USPTO, Final Office Action mailed Sep. 30, 2009 in U.S. Appl. No.
11/724,232.

USPTO, Final Office Action, Mar. 5, 2010 in U.S. Appl. No.
11/980,687.

Cheriton, David R. and Mann, Timothy P., “Decentralizing a global
naming service for improved performance and fault tolerance”, ACM
Transactions on Computer Systems, vol. 7, No. 2, May 1989, pp.
147-183.

Request for Reexamination of U.S. Patent No. 6,928,442: Reexam
Control No. 90/010,260, filed on Aug. 29, 2008.

[Proposed] Order Regarding Construction of Terms, filed Mar. 29,
2007 in C.D. Cal. case no. CV 06-5086 SJO (Ex) [9 pgs.].

Analysis of Plaintiffs” Claim Chart for the '280 Patent As Against
Defendant Media Sentry, Inc. 11 pages.

Analysis of Plaintiffs” Claim Chart for the '791 Patent As Against
Defendant Media Sentry, Inc. (11916.001.0150.A) pp. 1-48.

Analysis of Plaintiffs” Claim Chart for the '791 Patent As Against
Defendant Overpeer pp. 1-40.

Barbara, D, et al., “Exploiting symmetries for low-cost comparison
of file copies,” 8th Int’l Conf. on Distributed Computing Systems,
Jun. 1988, pp. 471-479, San Jose, CA.

Campbell, M., “The Design of Text Signatures for Text Retrieval
Systems,” Tech. Report, Sep. 5, 1994, Deakin University, School of
Computing & Math., Geelong, Australia.

Chang, W. W. et al., “A signature access method for the Starburst
database system,” in Proc. 15th Int’l Conf. on Very Large Data Bases
(Amsterdam, The Netherlands), pp. 145-153.

Changes to Mar. 23, 2007 Deposition of Robert B. K. Dewar, in C.D.
Cal. case No. CV 06-5086 SJO (Ex) [3 pgs + cover letter.].
Communication from EPO in European Application No. 96 910
762.2—1225 dated May 8, 2009 [4 pgs.].

Communication pursuant to Article 96(2) EPC from EPO (Examina-
tion Report), Jan. 17,2007, in Application No. EP96 910 762.2-1225
[1 pg. with 5 pg. annex].

Complaint for Patent Infringement, Permanent Injunction and Dam-
ages, Aug. 8, 2006, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [11
pgs.].

Complaint for Patent Infringement, Permanent Injunction and Dam-
ages, filed Sep. 21, 2007 in C.D. Cal. Case No. CV 07-06161 VBF
(PLAX) [10 pgs.].

Declaration of Charles S. Baker in Support of Defendant Lime Wire’s
Motion to Stay Pending Reexamination of Patent and Request for
Extension of Deadlines, Aug. 29, 2008, in C.D. Cal. Case No. CV
07-06161 VBF (PLAX) [2 pgs.].

Defendant Lime Wire, LLC’s First Amended Answer, Affirmative
Defenses and Counterclaims, Oct. 2, 2008, C.D. Cal. case No.
07-06161 VBF (PLAx) [13 pgs.].

Defendant Lime Wire, LLC’s Second Amended Answer, Affirmative
Defenses and Counterclaims, Oct. 27, 2008, from C.D. Cal. case No.
07-06161 VBF (PLAx) [13 pgs.].

Defendant Michael Weiss’s Answer to Plaintiffs Complaint for
Patent Infringement, Permanent Injunction and Damages, Demand
for Jury Trial, Sep. 15, 2006, case No. CV 06-5086 SJO (Ex) [10
pgs.].

Defendant Recording Industry Association of America’s Amended
Notice of Motion and Motion for Partial Summary Judgment on
Plaintiffs’ Claims for Patent Infringement and Inducing Patent
Infringement; Memorandum of Points and Authorities, May 22,
2006, redacted, original confidential, filed under seal, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [19 pgs.].

Defendant Recording Industry Association of America’s and
Mediasentry, Inc.’s Notice of Motion and Motion for Partial Sum-
mary Judgment Based on Implied License or, in the Alternative,
Based on Patent Misuse and Unclean Hands, May 22, 2006,
Redacted, in C.D. Cal. case No. CV 04-7456 JFW (CTx) [21 pgs.].
Defendant Recording Industry Association of America’s and
Mediasentry, Inc’s Notice of Motion and Motion for Partial Sum-
mary Judgment Based on Implied License or, in the Alternative,
Based on Patent Misuse and Unclean Hands, May 8, 2006, in C.D.
Cal. case No. CV 04-7456 JFW (CTx) [20 pgs.].

Defendant StreamCast Networks Inc.’s Answer to Plaintiff’s Com-
plaint for Patent Infringement, Permanent Injunction and Damages;
Demand for Jury Trial, Sep. S, 2006, C.D. Cal. case No. CV 065086
SJO (Ex) [10 pgs.].

Defendants” Amended Preliminary Claim Constructions [Patent
Rule 4-2], filed Feb. 7, 2007 in C.D. Cal. case No. CV 06-5086 SJO
(Ex) [10 pgs.].

Defendant’s Second Amended Preliminary Claim Constructions
[Patent Rule 4-2], filed Feb. 9, 2007 in C.D. Cal. case No. CV
06-5086 SJO (Ex) [10 pgs.].

Dewar, Rebuttal Expert Report of Robert B.K. Dewar, in C.D. Cal.
case No. CV 04-7456 JFW (CTx), Apr. 10, 2006 [87 pgs].
Faloutsos, C. “Access methods for text,” ACM Comput. Surv. 17, 1
(Mar. 1985), 49-74.

Faloutsos, C. et al., “Description and performance analysis of signa-
ture file methods for office filing,” ACM Trans. Inf. Syst. 5, 3 (Jul.
1987), 237-257.

US 7,945,544 B2
Page 4

Faloutsos, C. et al., “Signature files: an access method for documents
and its analytical performance evaluation,” ACM Trans. Inf. Syst. 2,
4 (Oct. 1984), 267-288.

Federal Information Processing Standards (FIPS) Publication 180-1;
Secure Hash Standard, Apr. 17, 1995 [17 pgs.].

Feigenbaum, J. et al., “Cryptographic protection of databases and
software,” in Distributed Computing and Cryptography: Proc.
DIMACS Workshop, Apr. 1991, pp. 161-172, American Mathemati-
cal Society, Boston, Mass.

First Amended Answer of Defendant Mediasentry to Second
Amended Complaint and Counterclaim, Apr. 24, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [29 pgs.].

First Amended Answer of Defendant RIAA to Second Amended
Complaint and Counterclaim, Apr. 24, 2006, in C.D. Cal. Case No.
CV 04-7456 JFW (CTx) [27 pgs.].

First Amended Complaint for Patent Infringement, Permanent
Injunction and Damages, filed Sep. 8, 2008 in C.D. Cal. Case No.CV
07-06161 VBF (PLAx) [10 pgs.].

Harrison, M. C., “Implementation of the substring test by hashing,”
Commun. ACM 14, 12 (Dec. 1971), 777-779.

IEEE, The Authoritative Dictionary of IEEE Standards Terms, 7th
ed., Copyright 2000, pp. 107, 176, 209, 240, 241,432, 468, 505, 506,
682, 1016, 1113, 1266, and 1267.

Ishikawa, Y., et al., “Evaluation of signature files as set access facili-
ties in OODBSs,” In Proc. of the 1993 ACM SIGMOD Inter. Conf. on
Management of Data (Washington, D.C., U.S., May 1993). P. Bune-
man & S. Jajodia, Eds. SIGMOD ’93. ACM, NY, NY, 247-256.
Joint Claim Construction and Prehearing Statement, N.D. Cal. Rule
4-3, Feb. 12, 2007, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [20
pgs.].

Karp, R. M. and Rabin, M. O., “Efficient randomized pattern-match-
ing algorithms,” IBM J. Res. Dev. 31, 2 (Mar. 1987), 249-260.

List of Asserted Claims and Infringement Chart for Each Asserted
Claim, Jul. 28, 2008, in C.D. Cal. Case No. CV 07-06161 VBF
(PLAX) [31 pgs.].

McGregor D. R. And Mariani, J. A. “Fingerprinting—A technique
for file identification and maintenance,” Software: Practice and Expe-
rience, vol. 12, No. 12, Dec. 1982, pp. 1165-1166.

Notice of Interested Parties, filed Sep. 21, 2007 in C.D. Cal. Case No.
CV 07-06161 VBF (PLAX) [2 pgs.].

Notice of Motion and Motion of Defendant Lime Wire to Stay Liti-
gation Pending Reexamination of Patent and Request for Extension
of Deadlines, Sep. 22, 2008, C.D. Cal. Case No. CV 07-06161 VBF
(PLAX) [11 pgs.].

Notice of Related Cases, filed Sep. 21,2007 in C.D. Cal. Case No.CV
07-06161 VBF (PLAX) [2 pgs.].

Panagopoulos, G., et al., “Bit-sliced signature files for very large text
databases on a parallel machine architecture,” In Proc. of the 4th Inter.
Conf. on Extending Database Technology (EDBT), Cambridge,
U XK., Mar. 1994, pp. 379-392 (Proc. LNCS 779 Springer 1994, ISBN
3-540-57818-8) [14 pgs.].

Patent Abstract, “Management System for Plural Versions,” Pub. No.
63273961 A, published Nov. 11, 1988, NEC Corp.

Patent Abstracts of Japan, “Data Processor,” Appln. No. 05135620,
filed Jun. 7, 1993, Toshiba Corp.

Plaintiff Kinetech, Inc.’s Responses to Defendant Mediasentry’s
First set of Interrogatories, May 1, 2006, in C.D. Cal. Case No. CV
04-7456 JFW (CTx) [14 pgs.].

Plaintiff-Counterclaim Defendant Altnet, Inc.’s Supplemental
Responses to Defendant-Counterclaim Plaintiff Overpeer Inc.’s First
Set of Interrogatories, Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.].

Plaintiff-Counterclaim Defendant Brilliant Digital Entertainment,
Inc.’s Supplemental Responses to Defendant-Counterclaim Plaintiff
Overpeer Inc.’s First Set of Interrogatories, Mar. 8, 2006, redacted, in
C.D. Cal. case No. CV 04-7456 JFW (CTx) [24 pgs.].
Plaintiff-Counterclaim Defendant Kinetech, Inc.’s Supplemental
Responses to Defendant-Counterclaim Plaintiff Overpeer Inc.’s First
Set of Interrogatories Mar. 8, 2006, redacted, in C.D. Cal. case No.
CV 04-7456 JFW (CTx) [24 pgs.].

Plaintiffs Altnet, Inc., Brilliant Digital, Inc., and Kinetech, Inc.’s
Responses to Defendant Recording Industry Association of Ameri-

ca’s First Set of Requests for Admissions, Jan. 6, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [26 pgs.].

Plaintiffs” Claim Construction Opening Brief and Exhibits A-D, F, G;
May 7, 2007, in C.D. Cal. case No. CV 06-5086 SJO (Ex) [112 pgs.].
Plaintiffs” Preliminary Claim Constructions and Extrinsic Evidence,
Feb. 6, 2006, in case CV 06-5086 SJO (Ex) [20 pgs.].

Plaintiff’s Reply to Defendant Mediasentry’s Counterclaims in its
Answer to the Second Amended Complaint, May 1, 2006, in C.D.
Cal. Case No. CV 04-7456 JFW (CTx) [11 pgs.].

Plaintiff’s Reply to Defendant RIAA’s Counterclaims in its Answer
to the Second Amended Complaint, May 1, 2006, in C.D. Cal. case
No. CV 04-7456 JFW (CTx) [11 pgs.].

Plaintiffs” Reply to Defendants’ Claim Construction Brief, filed Apr.
23,2007 in C.D. Cal. case No. CV 06-5086 ODW (Ex) [15 pgs.].
Reply to Examination Report, Jul. 19, 2007, in Application No. EP 96
910 762.2-1225 [7 pgs.].

Response to Non-Final Office Action filed May 19, 2009 in U.S.
Appl. No. 11/017,650 [19 pgs.].

Rivest, R., RFC 1320, “The MD4 Message-Digest Algorithm,” The
Internet Engineering Task Force (IETF), Apr. 1992.

Sacks-Davis, R., et al., “Multikey access methods based on superim-
posed coding techniques,” ACM Trans. Database Syst. 12, 4 (Nov.
1987), 655-696.

Siegel, A., et al., “Deceit: a Flexible Distributed File System,” Proc.
Workshop on the Management of Replicated Data, Houston, TX, pp.
15-17, Nov. 8-9, 1990.

Siegel, A., et al., “Deceit: a Flexible Distributed File System,” Tech-
nical Report, TR89-1042, Cornell University, Nov. 1989.
Stipulation and Proposed order to (1) Amend the Complaint, (2)
Amend pretrial Schedule, and (3) Withdraw Motion to Stay, filed Sep.
8,2008 in C.D. Cal. Case No. CV 07-06161 VBF(PLAX) [6 pgs.].
Streamcast Networks Inc.’s Supplemental Responses to Certain of
Plaintiffs’ First Set of Interrogatories, Apr. 16,2007, in C.D. Cal. case
No. CV 06-5086 SJO (Ex) [61 pgs.].

StreamCast’s Brief Re Claim Construction, Apr. 12, 2007, in C.D.
Cal. case No. CV 06-5086 SJO (Ex) [11 pgs.].

Transcript of Deposition of David Farber, Feb. 16, 2006, in C.D. Cal.
case No. CV 04-7456 JFW (CTx) [94 pgs.].

Transcript of Deposition of Robert B. K. Dewar, Mar. 23, 2007, in
C.D. Cal. case No. CV 06-5086 SJO (Ex) [61 pgs.].

Transcript of Deposition of Ronald Lachman, Feb. 1, 2006, C.D. Cal.
case No. CV 04-7456 JFW (CTx) [96 pgs.].

USPTO, Non-Final Office Action mailed May 6, 2009 in U.S. Appl.
No. 11/980,679.

USPTO, Non-Final Office action mailed Jun. 15,2009 in U.S. Appl.
No. 11/980,687.

USPTO, Non-Final Office action mailed Jun. 18, 2009 in Reexam
No. 90/010,260.

Advances in Cryptology-AUSCRYPT ’92—Workshop on the
Theory and Application of Cryptographic Techniques Gold Coast,
Queensland, Australia Dec. 13-16, 1992 Proceedings.

Advances in Cryptology-EUROCRYPT ’93, Workshop on the
Theory and Application of Cryptographic Techniques Lofthus, Nor-
way, May 23-27, 1993 Proceedings.

Affidavit of Timothy P. Walker in Support of CWIS’ Opening Mark-
man Brief Construing the Terms at Issue in U.S. Patent No.
6,415,280, dated Jul. 25, 2003, from Civil Action No. 02-11430
RWZ.

Akamai and MIT’s Memorandum in Support of Their Claim Con-
struction of USPAT 5,978,791, dated Aug. 31, 2001, from Civil
Action No. 00-cv-11851RWZ.

Akamai’s Answer, Affirmative Defenses and Counterclaims to
Amended Complaint, filed Dec. 6, 2002, in Civil Action No. 02-CV-
11430RWZ.

Akamai’s Brief on Claim Construction, dated Aug. 8, 2003, from
Civil Action No. 02-11430 RWZ.

Albert Langer (cmf851@anu.oz.au), http://groups.google.com/
groups?selm=1991Aug7.225159.786%40newshost.anu. edu.au
&oe=UTF-8&output=gplain, Aug. 7, 1991.

Alexander Dupuy (dupuy@smarts.com), “MDS5 and LIFNs (was:
Misc Comments)”, www.acl.lanl.gov/URI/archive/uri-94q2.mes-
sages/0081.html, Apr. 17, 1994.

US 7,945,544 B2
Page 5

Alexander Dupuy (dupuy@smarts.com), “Re: MDS and LIFNs (was:
Misc Comments)”’, www.acl.lanl.gov/URT/archive/uri-94q2.mes-
sages/0113.html, Apr. 26, 1994.

Answer of Defendant RTAA to First Amended Complaint and Coun-
terclaim, dated Feb. 8, 2005, from Civil Action No. CV04-7456 JFW
(CTx).

Berners-Lee, T. et al., “Hypertext Transfer Protocol—HTTP/1.0,”
May 1996, pp. 1-54.

Berners-Lee, T. et al., “Uniform Resource Locators (URL),” pp. 1-25,
Dec. 1994.

Berners-Lee, T., “Universal Resource Identifiers in WWW,” Jun.
1994, pp. 1-25.

Bert dem Boer, et al., Collisions for the compression function of
MD.sub.5 pp. 292-304, 1994.

Birgit Pfitzman, Sorting Out Signature Schemes, Nov. 1993, 1.sup.st
Conf. Computer & Comm. Security *93, p. 74-85.

Birgit Pfitzmann, Sorting Out Signature Schemes, Nov. 1993, 1st
Conf. Computer & Comm. Security *93 pp. 74-85.

Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable Discov-
ery and Access System,” Aug. 4, 1994, pp. 1-27.

Bowman, C. Mic, et al., “Harvest: A Scalable, Customizable Discov-
ery and Access System,” Mar. 12, 1995, pp. 1-29.

Brisco, T., “DNS Support for Load Balancing,” Apr. 1995, pp. 1-7.
Browne, Shirley et al., “Location-Independent Naming for Virtual
Distributed Software Repositories,” 1995, 7 pages.

Browne, Shirley et al., “Location-Independent Naming for Virtual
Distributed Software Repositories,” 1995, printed from http:/www.
netlib.org/utk/papers/lifn/main.html on Mar. 22, 2006, 18 pages.
Carter, J. Lawrence, et al. “Universal Classes of Hash Functions.”
Journal of Computer and System Sciences, vol. 18, No. 2, Apr. 1979,
pp. 143-154.

Chris Charnes and Josef Pieprzky, Linear Nonequivalence versus
Nonlinearity, Pieprzky, pp. 156-164, 1993.

Civil Minutes General dated Jan. 25, 2005, from Civil Action No. CV
04-7456-JFW (CTx).

Clifford Lynch (Calur@uccmvsa.bitnet), “ietf url/uri overview draft
paper (long)”, www.acl.lanl.gov/URI/archive/uri-93ql.messages/
0015.html, Mar. 25, 1993.

Complaint for Patent Infringement, Permanent Injunction, and Dam-
ages, dated Sep. 8, 2004, from Civil Action No. CV 04-7456 JFW
(ATWX).

Cormen, Thomas H., et al. Introduction to Algorithms, The MIT
Press, Cambridge, Massachusetts, 1994, pp. 219-243, 991-993.
CWIS’ Opening Markman Brief Construing the Terms at Issue in
U.S. Patent No. 6,415,280, dated Jul. 25, 2003, from Civil Action No.
02-11430 RWZ.

CWIS’ Reply Markman Brief Construing the Terms at Issue in U.S.
Patent No. 6,415,280, dated Aug. 15, 2003, from Civil Action No.
02-11430 RWZ.

Danzig, P.B,, et al., ““Distributed Indexing: A Scalable Mechanism
for Distributed Information Retrieval,”” Proceedings of the 14th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 220-229, Oct. 13-16,
1991.

Davis, James R., “A Server for a Distributed Digital Technical Report
Library,” Jan. 15, 1994, pp. 1-8.

Declaration of Robert B.K. Dewar in Support of CWIS’ Construction
of the Terms at Issue in U.S. Patent No. 6,415,280, dated Jul. 25,
2003, from Civil Action No. 02-CV-11430RWZ.

Deering, Stephen, et al. “Multicast Routing in Datagram
Internetworks and Extended LANs.” ACM Transactions on Com-
puter Systems, vol. 8, No. 2, May 1990, pp. 85-110.

Defendant Digital Island’s Opening Brief on Claim Construction
Issues dated Aug. 17, 2001, from Civil Action No. 00-cv-11851-
RWZ.

Defendant Lime Wire, LLC’s Answer, Affirmative Defenses and
Counterclaims dated Nov. 15, 2007, from Civil Action No. 07-06161
VBF (PLAXx).

Defendant Media Sentry, Inc.’s Reply Memorandum of Points and
Authorities in Further Support of Its Motion to Dismiss, dated Nov.
15, 2004, from Civil Action No. CV04-7456 JFW (CTx).

Defendant MediaSentry Inc.’s Notice of Motion and Motion to Dis-
miss First Amended Complaint; Memorandum of Points and
Authorities in Support Thereof, dated Dec. 13, 2004, from Civil
Action No. CV04-7456 JFW.

Defendant MediaSentry, Inc.”s Answer to Plaintiffs” First Amended
Complaint and Counterclaims, dated Feb. 8, 2005, from Civil Action
No. CV04-7456 JFW (CTx).

Defendant RIAA’s Notice of Motion and Motion to Dismiss First
Amended Complaint; Memorandum of Points and Authorities in
Support Thereof, dated Dec. 13, 2004, from Civil Action No. CV04-
7456 JFW (CTx).

Defendants Loudeye Corp.’s and Overpeer, Inc.’s Answer to Plain-
tiffs” First Amended Complaint and Counterclaim, dated Feb. 8,
2005, from Civil Action No. 04-7456 JFW (AJWX).

Defendants’ Preliminary Invalidity Contentions dated Dec. 14, 2006,
from Civil Action No. CV 06-5086 SJO (Ex).

Devine, Robert. “Design and Implementation of DDH: A Distributed
Dynamic Hashing Algorithm.” In Proc. of 4th International Confer-
ence on Foundations of Data Organizations and Algorithms, 1993,
pp. 101-114.

European Search Report issued Dec. 23, 2004 in correpsonding
European Application No. 96910762.2-2201.

Expert Report of Professor Ellis Horowitz, dated Mar. 6, 2006, from
Civil Action No. 04-7456 JFW (CTx).

Expert Report of the Honorable Gerald J. Mossinghoff, dated Mar.
13, 2006, from Civil Action No. 04-7456 JFW (CTx).

Faltstrom, P. et al., “How to Interact with a Whois++ Mesh,” Feb.
1996, pp. 1-9.

Feeley, Michael, et al. “Implementing Global Memory Management
in a Workstation Cluster.” In Proc. of the 15th ACM Symp. on Oper-
ating Systems Principles, 1995, pp. 201-212.

Fielding, R. et al., “Hypertext Transfer Protocol—HTTP/1.1,” Jan.
1997, pp. 1-163.

Fielding, R. et al., “Hypertext Transfer Protocol—HTTP/1.1,” Jun.
1999, pp. 1-157.

First Amended Complaint for Patent Infringement, Permanent
Injunction and Damages, dated Nov. 24, 2004, from Civil Action No.
CV 04-7456 JFW (CTx).

Floyd, Sally, et al. “A reliable Multicast Framework for Light-Weight
Sessions and Application Level Framing” In Proceeding of ACM
SIGCOMM 95, pp. 342-356.

Fredman, Michael, et al. “Storing a Sparse Table with 0(1) Worst
Case Access Time” Journal of the Association for Computing
Machinery, vol. 31, No. 3, Jul. 1984, pp. 538-544.

G. L. Friedman, Digital Camera With Apparatus For Authentication
of Images Produced From an Image File, NASA Case No. NPO-
19108-1-CU, U.S. Appl. No. 08/159,980, Nov. 24, 1993.

Grigni, Michelangelo, et al. “Tight Bounds on Minimum Broadcasts
Networks.” SIAM Journal of Discrete Mathematics, vol. 4, No. 2,
May 1991, pp. 207-222.

Gwertzman, James, et al. “The Case for Geographical Push-Cach-
ing.” Technical Report HU TR 34-94 (excerpt), Harvard University,
DAS, Cambridge, MA 02138, 1994, 2 pgs.

Goodman, Ada, Object-Oriented Techniques, and Concurrency in
Teaching Data Structures and File Management Report Documenta-
tion p. AD-A275 385-94-04277.

H. Goodman, Feb. 9, 1994 Ada, Object-Oriented Techniques, and
Concurrency in Teaching Data Sructures and File Management
Report Documentation P. AD-A275 385—94-04277.

Hauzeur, B. M., “A Model for Naming, Addressing, and Routing,”
ACM Trans. Inf. Syst. 4, Oct. 4, 1986), 293-311.

International Search Report dated Jun. 24, 1996 in corresponding
international application PCT/US1996/004733.

K. Sollins and L. Masinter, “Functional Requirements for Uniform
Resource Names”, www.w3.org/Addressing/rfc 1737 .txt, Dec. 1994,
pp. 1-7.

Khare, R. and Lawrence, S., “Upgrading to TLS Within HTTP/1.1,”
May 2000, pp. 1-12.

Khoshafian, S. N. et al. 1986. Object identity. In Conf. Proc. on
Object-Oriented Programming Systems, Languages and Applica-
tions (Portland, Oregon, United States, Sep. 29-Oct. 2, 1986). N.
Meyrowitz, Ed. OOPLSA *86. ACM Press, New York, NY, 406-416.

US 7,945,544 B2
Page 6

Kim et al., “Experiences with Tripwire: Using Integrity Checkers for
Intrusion Detection”, COAST Labs. Dept. of Computer Sciences
Purdue University, Feb. 22, 1995, pp. 1-12.

Kim et al., “The Design and Implementation of Tripwire: A file
System Integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Feb. 23, 1995, pp. 1-18.

Kim et al., “The Design and Implementation of Tripwire: A file
System Integrity Checker”, COAST Labs. Dept. of Computer Sci-
ences Purdue University, Nov. 19, 1993, pp. 1-21.

Kim, Gene H., and Spafford, Eugene H., “Writing, Supporting, and
Evaluating Tripwire: A Publicly Available Security Tool” Coast
Labs. Dept. of Computer Sciences Purdue University, Mar. 12, 1994,
pp. 1-23.

Knuth, Donald E., “The Art of Computer Programming,” 1973, vol.
3, Ch. 6.4, pp. 506-549.

Lantz, K. A., et al., “Towards a universal directory service.” In Proc.
4th Annual ACM Symp. on Principles of Distributed Computing
(Minaki, Ontario, Canada). PODC ’85. ACM Press, New York, NY,
250-260.

Leach, P. J,, et al.. The file system of an integrated local network. In
Proc. 1985 ACM 13th Annual Conf. on Comp. Sci. CSC ’85. ACM
Press, NY, NY, 309-324.

Leach, PJ., et al., “UlDs as Internal Names in a Distributed File
System,” In Proc. 1st ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing (Ottawa, Canada, Aug. 18-20, 1982). PODC
’82. ACM Press, New York, NY, 34-41.

Ma, C. 1992. On building very large naming systems. In Proc. 5th
Workshop on ACM SIGOPS European Workshop: Models and Para-
digms for Distributed Systems Structuring (France, Sep. 21-23,
1992). EW 5. ACM Press, New York, NY, 1-5.

Memorandum of Points and Authorities in Support of Loudeye’s and
Overpeer’s Motion to Dismiss the First Amended Complaint for
Failure to State a Claim or, in the Alternative, for a More Definitive
Statement, dated Dec. 13, 2004, from Civil Action No. CV-04-7456
JFW (AJWX).

Ming-Ling Lo et al., On Optimal Processor Allocation to Support
Pipelined Hash Joins, ACM SIGMOD, pp. 69-78, May 1993.
Moats, R., “URN Syntax,” May 1997, pp. 1-8.

Murlidhar Koushik, Dynamic Hashing With Distributed Overflow
Space: A File Organization With Good Insertion Performance, 1993,
Info. Sys., vol. 18, No. 5, pp. 299-317.

Myers, J. and Rose, M., “The Content-MD5 Header Field,” Oct.
1995, pp. 1-4.

Naor, Moni, et al. “The Load, Capacity and Availability of Quorum
Systems.” In Proceedings of the 35th IEEE Symposium on Founda-
tions of Computer Science, Nov. 1994, pp. 214-225.

Nisan, Noam. “Psuedorandom Generators for Space-Bounded Com-
putation.” In Proceedings of the Twenty-Second Annual ACM Sym-
posium on Theory of Computing, May 1990, pp. 204-212.

Office Action in corresponding Japanese Application No. 531,073/
1996 mailed on Apr. 25, 2006.

Office Communication in corresponding European Application No.
96910762.2-1225 dated Jan. 17, 2007.

Order Re Claim Construction dated Nov. 8, 2001, from Civil Action
No. 00-11851-RWZ.

Palmer, Mark, et al. “Fido: A Cache that Learns to Fetch.” In Pro-
ceedings of the 17th International Conference on Very Large Data
Bases, Sep. 1991, pp. 255-264.

Patent Abstracts of Japan, “Device for Generating Database and
Method for the Same,” Application No. 03-080504, Sun Microsyst.
Inc., published Jun. 1993, 38 pages.

Patent Abstracts of Japan, “Electronic Mail Multiplexing System and
Communication Control Method in the System.” Jun. 30, 1993, JP
051625293.

Patent Abstracts of Japan, “Method for Registering and Retrieving
Data Base,” Application No. 03-187303, Nippon Telegr. & Teleph.
Corp., published Feb. 1993, 11 pages.

Peleg, David, et al. “The Availability of Quorum Systems.” Informa-
tion and Computation 123, 1995, 210-223.

Peter Deutsch (peterd@bunyip.com), “Re: MDS and LiFNs (was:
Misc Comments)”’, www.acl.lanl.gov/URT/archive/uri-94q2.mes-
sages/0106.html, Apr. 26, 1994.

Peterson, L. L. 1988. A yellow-pages service for a local-area net-
work. In Proc. ACM Workshop on Frontiers in Computer Commu-
nications Technology (Vermont, 1987). J. J. Garcia-Luna-Aceves,
Ed. SIGCOMM ’87. ACM Press, New York, NY, 235-242.
Plaintiffs’ Memorandum of Points and Authorities in Opposition to
Loudeye Defendants” Motion to Dismiss, dated Nov. 8, 2004, from
Civil Action No. CV-04-7456 JEW (AJWX).

Plaintiffs” Opposition to Media Sentry’s Motion to Dismiss; Memo-
randum of Points and Authorities in Support Thereof, dated Nov. 8,
2004, from Civil Action No. CV 04-7456 JFW (CTx).

Plaintiff’s Opposition to Recording Industry Association of Ameri-
ca’s Motion to Dismiss; Memorandum of Points and Authorities in
Support Thereof, dated Nov. 8, 2004, from Civil Action No. CV-04-
7456 JFW (CTx).

Plaintiff’s Reply to Defendant Loudeye Corp.’s and Overpeer, Inc.’s
Counterclaims, dated Mar. 3, 2005, from Civil Action No. CV
04-7456 JFW (CTx).

Plaintiff’s Reply to Defendant MediaSentry’s Counterclaims, dated
Mar. 3, 2005, from Civil Action No. CV 04-7456 JFW (CTx).
Plaintiff’s Reply to Defendant RTAA’s Counterclaims, dated Mar. 3,
2005, from Civil Action No. 04-7456 JEW (CTx).

Proceedings ofthe 1993 ACM SIGMOD International Conference on
Management of Data, vol. 22, Issue 2, Jun. 1993.

Rabin, Michael. “Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance.” Journal of the ACM, vol. 36,
No. 2, Apr. 1989, pp. 335-348.

Ravi, R, “Rapid Rumor Ramification: Approximating the Minimum
Broadcast Time.” in Proc. of the 35th IEEE Symp. on Foundation of
Computer Science, Nov. 1994, pp. 202-213.

Ravindran, K. and Ramakrishnan, K. K. 1991. A naming system for
feature-based service specification in distributed operating systems.
SIGSMALL/PC Notes 17, 3-4 (Sep. 1991), 12-21.

Reed Wade (wade@cs.utk.edu), “re: Dienst and BFD/LIFN docu-
ment,” Aug. 8, 1994, printed from http://www.webhistory.org/www.
lists/www-talk1994q3/0416.html on Mar. 22, 2006, (7 pages).
Rivest, R., “The MD5 Message-Digest Algorithm,” Apr. 1992, pp.
1-19 and errata sheet (1 page).

Rose, M., “The Content-MDS5 Header Field,” Nov. 1993, pp. 1-3.
Ross, K., “Hash-Routing for Collections of Shared Web Caches,”
IEEE Network Magazine, pp. 37-44, Nov.-Dec. 1997.

Sakti Pramanik et al., Multi-Directory Hasing, 1993, Info. Sys., vol.
18, No. 1, pp. 63-74.

Schmidt, Jeanette, et al. “Chernoff-Hoeffding Bounds for Applica-
tions with Limited Independence.” In Proceedings of the 4th ASC-
SIAM Symposium on Discrete Algorithms, 1993, pp. 331-340.
Schneier, Bruce, “One-Way Hash Functions, Using Crypographic
Algorithms for Hashing,” 1991, printed from http://202.179135.4/
data/DDJ/articles/1991/9109/91909g/9109g.htm on Mar. 22, 2006.
Schwartz, M., etal. 1987. A name service for evolving heterogeneous
systems. In Proc. 11th ACM Symp. on OS Principles (Texas, Nov.
8-11, 1987). SOSP *87. ACM Press, NY, NY, 52-62.

Search Report dated Jun. 24, 1996.

Shaheen-Gouda, A. and Loucks, L. 1992. Name borders. In Proc. 5th
Workshop on ACM SIGOPS European Workshop: Models and Para-
digms for Distributed Systems Structuring (Mont Saint-Michel,
France, Sep. 21-23, 1992). EW 5. ACM Press, NY, NY, 1-6.

Sun Microsystems, Inc., “NFS: Network File System Protocol Speci-
fication,” Mar. 1989, pp. 1-25.

Tarjan, Robert Endre, et al. “Storing a Sparse Table.” Communica-
tions of the ACM, vol. 22, No. 11, Nov. 1979, pp. 606-611.

Terry, D. B. 1984. An analysis of naming conventions for distributed
computer systems. In Proc. ACM SIGCOMM Symp. on Communi-
cations Architectures and Protocols: Tutorials & Symp. SIGCOMM
’84. ACM Press, NY, NY, 218-224.

Thomas A. Berson, Differential Cryptanalysis Mod 2.sup.32 with
Applications to MDS5, pp. 69-81, 1992.

Vijay Kumar, A Concurrency Control Mechanism Based on Extend-
ible Hashing for Main Memory Database Systems, ACM, vol. 3,
1989, pp. 109-113.

Vijay Kumar, A concurrency Control Mechanism based on Extend-
ible Hashing for Main Memory Database Systems, pp. 109-113,
ACM, vol. 3, 1989.

US 7,945,544 B2
Page 7

Vincenzetti, David and Cotrrozzi, Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth JUSENIX} Security Symposium,
Santa Clara, CA, 1993, 11 pages.

Vincenzetti, David and Cotrrozzi, Massimo, “Anti Tampering Pro-
gram,” Proceedings of the Fourth {USENIX} Security Symposium,
Santa Clara, CA, undated, printed from http://www janet/CERI/
Vincenzetti__and_ Cotrozzi/ATP__Anti_ Tamp on Mar. 22, 2006, 8
pages.

Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data Compres-
sion.” In Proceedings of 32nd IEEE Symposium on Foundations of
Computer Science, Nov. 1991, pp. 121-130.

W3C:ID, HTTP: A protocol for networked information, “Basic
HTTP as defined in 19927, www.w3.org/Protocols/HTTP2 html,
1992.

Wegman, Mark, et al. “New Hash Functions and Their Use in Authen-
tication and Set Equality.” Journal of Computer and System Sciences
vol. 22, Jun. 1981, pp. 265-279.

William Perrizo, et al., Distributed Join Processing Performance
Evaluation, 1994. Twenty-Seventh Hawaii International Conference
on System Sciences, vol. II, pp. 236-244.

Witold Litwin et al., LH.sup.*-Linear Hashing for Distributed Files,
HP Labs Tech. Report No. HPL.-93-21, Jun. 1993, pp. 1-22.

Witold Litwin et al., Linear Hashing for Distributed Files, ACM
SIGMOD, May 1993, pp. 327-336.

Witold Litwin, et al., LH*-Linear Hashing for Distributed Files, HP
Labs Tech. Report No. HPL.-93-21 Jun. 1993 pp. 1-22.

Yao, Andrew Chi-Chih. “Should Tables be Sorted?” Journal of the
Association for Computing Machinery, vol. 28, No. 3, Jul. 1981, pp.
615-628.

Yuliang Zheng et al., HAVAL—A One-Way Hashing Algorithm with
Variable Length of Output (Extended Abstract), pp. 83-105.
Yuliang Zheng, et al., HAVAL—A One-Way Hashing Algorithm
with Variable Length of Output (Extended Abstract), pp. 83-105,
Advances in Cryptology, AUSCRIPT ’92, 1992.

Zhiyu Tian, et al., A New Hashing Function: Statistical Behaviour
and Algorithm, pp. 3-13, SIGIR Forum, 1993.

Zhiyu Tian, et al., A New Hashing Function: Statistical Behaviour
and Algorithm, pp. 3-13, SIGIR Forum, Spring 1993.

USPTO, U.S. Reexam Control No. 90/010,260, Notice of Intent to
Issue Ex Parte Reexamination Certificate, Apr. 8, 2010.

WIPO, International Preliminary Examination Report (IPER), Jul.
1997, PCT/US96/04733 [5 pgs.].

Birrell et al.,, A Universal File Server, IEEE Trans. on Software
Engineering, vol. SE-6, No. 5, Sep. 1980.

Filing in EPO in related application (EP1996910762), Amended
claims with annotations [10 pgs.], Annex [12 pgs.], Letter filed in
EPO [2 pgs.], claims [9 pgs.], Nov. 29, 2010.

Guy, R. G., Ficus: A Very Large Scale Reliable Distributed File
System, Jun. 3, 1991, Technical Report CSD-910018, Computer
Science Department, University of California Los Angeles, CA.
Guy, R.G. et al, Implementation of the Ficus Replicated File System,
Proc. of the Summer USENIX Conference, Anaheim, CA, Jun. 1990,
pp. 63-71.

Heidemann, J.S., “Stackable Layers: An Architecture for File System
Development,” UCLA, Aug. 1991 (available as Technical Report
CSD-910056 of the UCLA Computer Science Department).
Needham, R.M,, et al., The Cap Filing System, Proc. Sixth ACM
Symp. on Operating System Principles, Nov. 1977, 11-16.

Page, Thomas W. Jr,, et al., Management of Replicated Volume Loca-
tion Data in the Ficus Replicated File System, Proc. of the Summer
USENIX Conference, Jun. 1991, pp. 17-29.

Popek, Gerald J. et al., Replication in Ficus Distributed File Systems,
Proc. of the Workshop on Management of Replicated Data, Nov.
1990, pp. 20-25.

Reiher, P. et al., Resolving File Conflicts in the Ficus File System, in
Proc. of the Summer USENIX Conference, Jun. 1994, pp. 183-195.
Sturgis, H. et al, Issues in the design and use of a distributed file
system, SIGOPS Oper. Syst. Rev., vol. 14, No. 3. (1980), pp. 55-69.
Swinehart, D., et al, WFS: A Simple Shared File System for a Dis-
tributed Environment, XEROX, Palo Alto Research Center, Palo
Alto, CA, CSL-79-13, Oct. 1979.

Bowman, C.M,, et al,, “Scalable Internet Resource Discovery:
Research Problems and Approaches,” University of Colorado, Dept.
of Comp. Sci. Technical Report# CU-CS-679-93 (Oct. 1993).
Bowman, C.M., et al., “Research Problems for Scalable Internet
Resource Discovery,” CU-CS-643-93, Mar. 1993, University of
Colorado at Boulder, Dept. of Comp. Sci.

Cate, V., “Alex—a Global Filesystem,” Proceedings of the Usenix
File Systems Workshop, pp. 1-11, May 1992.

Dewitt, et al. (Jun. 1984). “Implementation techniques for main
memory database systems”. Proc. ACM SIGMOD Conf 14 (4): 1-8.
Fagin, R., et al. Extendible hashing—a fast access method for
dynamic files. ACM Trans. Database Syst. 4, 3 (Sep. 1979), 315-344.
Griswold, William G.; Townsend, Gregg M. (Apr. 1993), “The
Design and Implementation of Dynamic Hashing for Sets and Tables
in Icon”, Software—Practice and Experience 23 (4): 351-367 (Apr.
1993).

Hardy D. R., et al., “Essence: A resource discovery system based on
semantic file indexing,” USENIX Winter 1993 Technical Conf., San
Diego, CA (Jan. 1993), pp. 361-374.

Kahn, R.E., “Deposit, Registration and Recordation in an Electronic
Copyright Management System,” Tech. Report, Corporation for
National Research Initiatives, Reston, Virginia, Aug. 1992 (down-
loaded from http://archive.ifla.org/documents/infopol/copyright/
kahn.txt on Nov. 10, 2010).

Kitsuregawa, M.; Tanaka, H.; Moto-Oka, T. (Mar. 1983). “Applica-
tion of Hash to Data Base Machine and Its Architecture”. New Gen-
eration Computing 1 (1): 63-74, OHMSHA, Ltd. and Springer-
Verlag.

Litwin, W., “Linear Hashing: a New Tool for File and Table Address-
ing,” Proc. 6th Int. Conf. on Very Large Databases, IEEE 1980,
212-223.

Manber, U., Finding similar files in a large file system, Dept. of
Computer Science TR 93-33, Oct. 1993., U. of Arizona, Tucson, AZ.
Manber, U., Finding similar files in a large file system, USENIX, pp.
1-10, San Francisco, CA, Jan. 1994. (WTEC’94, Proc. USENIX
Winter 1994 Technical Conf.).

USPTO, Non-Final Office Action in U.S. Appl. No. 11/980,677, Jun.
4,2010.

USPTO, Notice of Allowance mailed Apr. 30, 2010 in U.S. Appl. No.
11/980,687.

USPTO, Notice of Allowance mailed Jun. 24, 2010 in U.S. Appl. No.
11/980,687.

USPTO, Supplemental Notice of Allowability mailed May 27, 2010
in U.S. Appl. No. 11/980,687.

* cited by examiner

US 7,945,544 B2

Sheet 1 of 31

May 17, 2011

U.S. Patent

001
M0SSI20d ¥0SSI0Yd ¥OSSIo0Nd
201 20} 201
90}
gomnaa |, .. | 3om3a
¥0SSII0Ud ¥0SSI00Ud Tl AovdOLS
201 201 vor C_po D
(0)I 'Oid

US 7,945,544 B2

Sheet 2 of 31

May 17, 2011

U.S. Patent

' 1

m avs a5l

: ¥S1

, 11

" A

n 18

__ ans 0EL

" a1

m FhY|

! v 8zl

' pEl

m Y4l

' av ozl

" zel

” a7

m AUONIN ret

“ oLl

| 204
IO

1427

0IA3a

IOVNAO0LS

ndo

801

d08s300Ud

T T T A T T e e M e e e e e o ar —t — — —— —— —

- e o e W o
I - " D L S e A m e WS EmEEm e W .-
- -

(d)1 914

US 7,945,544 B2

Sheet 3 of 31

May 17, 2011

U.S. Patent

ANINO3S

(44"

._.zms_wmm

3Nd

@

INIWNO3S

w._E

‘g

0z1
ANOLOFUIQ ANOLOINIG AMOLOTNIG
811 8L} 8Ll
NOIO3Y NOIDIY - .- NoIoay NOIOTY
L Ly oy ZLl
WILSAS 2 9l4

U.S. Patent May 17, 2011 Sheet 4 of 31 US 7,945,544 B2

FIG.3

Region ID
Pathname

True Name
Type

File ID

138-

Time of last access
Time of last modification

Safe flag
Lock flag
Size
owner

FIG. 4

True Name

140

File ID

Compressed File ID

Source IDs

Dependent processors

Use count

Time of last access

Expiration

Grooming delete count

142

Region ID

Region file system

Region pathnane

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG. 5

US 7,945,544 B2

Sheet 5 of 31

May 17, 2011

U.S. Patent

938ULDTT

sweN Snag

014

omeN onxyg

Axqjue jo 8dXjy

AIJUD JO 93P

8vl

ey aniy,

smweuyjeq

duejsamyy,

axr x0883d0xg

9dAL,

uot3exado

eweN ITeuyTbyxo

)|

UoY3vOOT vdXNOS

AJTITqRIIRAY 90Inos

g3UbTI °oIMOSB

adA)} d0anos

QI sodxnos

a4

6 914

8014

4 914

9914

U.S. Patent May 17, 2011 Sheet 6 of 31 US 7,945,544 B2

FIG. 10(a)

s S G el G S s e e A S G W o T e e e e e e e e A R TP w e ey,

-

COMPUTE MD FUNCTION ON
DATA ITEM

Y
S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

e Em m e e~ e n EE .~ ——-————- -
- - "
et e e ek S S N e S S e e e A b B ke 8

-”
-

T ar W v an s e A Sw ws e e an W - Eas an Ov En s o s e G e wr an e

U.S. Patent May 17, 2011 Sheet 7 of 31 US 7,945,544 B2

$216

DATA ITEM
SIMPLE?

YES.

°—l FIG. 10(b)

PARTITION DATA ITEM INTO
SEGMENTS

§222

ASSIMILATE EACH SEGMENT
(COMPUTING (TS TRUE NAME)

..............

: COMPUTE TRUE |
' NAME OF SIMPLE !
1 \

\ DATAITEM | =51

............... CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

$226

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

S228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

]

US 7,945,544 B2

Sheet 8 of 31

May 17, 2011

U.S. Patent

$

ar 374 34ols
6€2S

)

¢a1 A4 SAVH
AY1N3 S300

t

ai 34 31373q
8ECS

S3FA

2ANLSIOAY
304 3MAL NI LSIX3

S3IA

JAVN IMNAL s3040

WVYN aNdL
aNIN3L13a

0Ees

*

*

SQMNFAAIHIO 1TS -
ai 3714 3HoLS,

} OL1INNOD 38N 138,
AYINI M3IN 3LVID,

gecs

11914

U.S. Patent May 17, 2011 Sheet 9 of 31 US 7,945,544 B2

FIG.12

S240

$238
YES
FILE > UPDATE

DEPENDENCY
LOCKED? LIST
NO l

5242
SEND MESSAGE TO
v& CACHE SERVER TO
244 UPDATE CACHE
COMPRESS
(IF DESIRED)
246
MIRROR

(IF DESIRED)

U.S. Patent May 17, 2011

!

5250

THE
PATHNAME

SEARCH FOR |

LDE INCLUDES
JRUE NAME?

Sheet 10 of 31

US 7,945,544 B2

» FAIL

NO

—

$258

ASSIMILATE
FILEID

LDE IDENTIFIES
DIRECTORY?

FREEZE

DIRECTORY

U.S. Patent May 17, 2011 Sheet 11 of 31 US 7,945,544 B2

S260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

v FIG.14

SEARCH FOR
PATHNAME IN
LDE TABLE

$264

CONFIRM THAT
DIRECTORY
EXISTS

266

S268
NAMED FILE YES DELETE
EXISTS? TRUE FILE

§270
CREATE
ENTRY IN LDE
& UPDATE

US 7,945,544 B2

Sheet 12 of 31

May 17, 2011

U.S. Patent

(aavisaa
p| MU g
L ANYUL AJRNAA
Y4l 28¢S
OINI gINUNL3Y 374 aNid
314 INUL ¥ILNT 0828
925 A
Tvd
ASNOJSTY
JALLISOd
ISNOJSTY
O LIVM INNOW
9 J9VSSIW 1s3noay
414 aN3s
225 3SNOdJS3Y 8.2S
JALLYO3N
240SS390Y
Y NOLLY2O1 S}

S3A

ON

US 7,945,544 B2

Sheet 13 of 31

May 17, 2011

U.S. Patent

(D)9l 914

..... ——

JsSNods3y
3AljIsod

SLIVM

8828

4

S18VvOavoud
INZITO

98¢s

S3A

Tivd

aaLo313
SHO0SS300Ud
ANV

g8¢s

(sl30ss290ud
$10313s
iN3MO
B82S

Tlll

IN3INO _

LNQINIL
¥yo
JSNOJSTY
JAILYOIN

US 7,945,544 B2

Sheet 14 of 31

May 17, 2011

U.S. Patent

N\

pm_._ohan<az< \ss_mp?m
mEnzo:.S__n_xm A.mm>|A cz_zm_._m?_
ENICETE . S130¥NOS

00625

PL6CS %

ANYN INYL
Y04 Sa1 30UNOS OL
@l NOLLYDO01 3UNO0S
aav 3 IAVN 3Nl
04 ¥4l dN YOO

oNP

g062S

A

SFA

LNOILVYNILS3a
WOY S¥34410 SWVN
3Nl 40 IJUNCS

UO0SS300Ud
3oUNOS NO
371d INYL IAUISTY
Ol 39VSSIN AN3S

316¢S

al ¥08S300¥Ud
FHOILS

082S

T

(4)91 914

US 7,945,544 B2

Sheet 15 of 31

May 17, 2011

U.S. Patent

—y—

<0 3714
Q3SSTU4IN0D

SSNUJNODO3A

88¢S S3A 962S

JAULNG SIHL
d04 a1 34

¢INWVYN
INUL UOL W4l NI
AYLINT 3714 3Ny

Yo

(D)Ll "9l

US 7,945,544 B2

Sheet 16 of 31

May 17, 2011

U.S. Patent

(9)L1'914

(s)3nunos
Woud 3114
INYL IZITVaY

90€s

* =< le)

$Ai 304N0s
1037138

—Sal 3JUN0S_y,|
FHOW ON

Y0ES

diayols
00€s

A

¥3IsN
AdILON
¢0ES

1

3114 31O
ALVI01

80es

US 7,945,544 B2

Sheet 17 of 31

May 17, 2011

U.S. Patent

3INOa S

(D)8l 'Ol

R

w0013
aANYL INVIN

[44 %3]

*

o)

¢34 INYL
ol aianid

aNOa

A

T4 HOLVMOS
MN FLVRIO

0ces

JNA3INAL
313734

8LES

L.

43

3MNYL 40 Ad0D 39
JTNOHS HOLYYO

+

0,

¢ad
INYL ONLLSIXT
SAIAILNIAI 307

9les

US 7,945,544 B2

Sheet 18 of 31

May 17, 2011

U.S. Patent

AYLN3
dL IAONIY
'® Gl 3714 3AVS
8CES

A

| S3A

INNOD
2SN IN3IWIYD3IA
‘II9VLIATNI
Qi 3714 YOLS ‘Td
M3N 01 314 AdOD
0£eS

b=

A

INNOD ASn

ON

(d)81 914

US 7,945,544 B2

Sheet 19 of 31

May 17, 2011

U.S. Patent

34

AMOLO3HIa
QILVTINISSYNN g |
ALVTIINISSY 4 meE <
9e€S
}
(D)6l 9|14

4

W31l viva
M3N 3LVYIUO
LEES

$

ao.romm_a zmamy
dHL NI AHOLOon1a
aNVv 3Id

ALVNIGHOENS
HOVY3 HOd

_ y,

A007 23344
LINIWITHONI

CEES

I

US 7,945,544 B2

Sheet 20 of 31

May 17, 2011

U.S. Patent

I

AD0T
2334 FHL
LNIWINO3A

yyeES

W31l VLvQa MdN
3HL 31VIINISSVY

[4 445

H

.

(9)6l 'Old
NOILYIN¥ON
gausaa | |, Lva aN - |
o | OL AMLNZ A0V
orss gees

oA kit el zmamu/

JHL NI AMO10341a

aNv 374
d1LVNIGHO8NS
HOV3 ¥O4

1

US 7,945,544 B2

Sheet 21 of 31

May 17, 2011

U.S. Patent

JAVN 3nHL
OL HLVd NI
Nm+8
FWYNHLYd
TInd ILVIND
0ses
4 v
AHOL0T¥Ia AdliNa
——SININT | A¥OLOFMIQ
avay JYOW | HOVIHO4
8ves £SES
19013714
aANYL INVIN
9pES

I

FUON O

S3NINT
N

0¢ 9ld

U.S. Patent May 17, 2011 Sheet 22 of 31 US 7,945,544 B2

y

5354
WAIT FOR
FREEZE LOCK
TO TURN OFF

5356
FIND TFR FIG. 21

ENTRY

5358
DECREMENT
REFERENCE

COUNT

REFERENCE COUNT IS YES DSES-?E
ZERO & NO DEPENDENT P CUEFILE
SYSTEMS IN TFR?
NO
\ 4
5364
REMOVE FILE ID
< AND COMPRESSED
| FILE ID

U.S. Patent May 17, 2011 Sheet 23 of 31 US 7,945,544 B2

.

$365
GET
OPERATION
$366 <55
CREATE OR: YES >
MODIFY? ASSIMILATE
S369
NEW TRUE
COPY OR DELETE YES. FILE
COMPOUND? l
$§378 S370
MODIFY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
<& l
A 4
$379
FOR EACH PARENT
DIRECTORY OR FILE,
UPDATE USE COUNT,
LAST ACCESS AND
MODIFY TIMES

!

U.S. Patent

FIG. 23

May 17, 2011

Sheet 24 of 31

US 7,945,544 B2

v

S382
VERIFY
GROOMING
LOCK OFF

S384
SET
GROOMING
LOCK

v

S386

SET GROOM
COUNTS

U.S. Patent May 17, 2011 Sheet 25 of 31 US 7,945,544 B2

l

5388

FIND LDE
RECORD

FIG. 24

S390

FIND TFR
RECORD

8392

INCREMENT
GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

U.S. Patent May 17, 2011 Sheet 26 of 31 US 7,945,544 B2

FIG. 25

S398
UNLOCK
GROOMING

LOCK

L:l

US 7,945,544 B2

Sheet 27 of 31

May 17, 2011

U.S. Patent

2374
HJOLVHOS N3ado
8is LIgIHO¥d
(443

ZATINO
S3A ava
0ivsS
NOoI9IY N3do
ELH P EEE] l1giHoud
20vS ¥ovS
LATIVOOT
. 3A sisn@E Fd
(D)oe 914

US 7,945,544 B2

Sheet 28 of 31

May 17, 2011

U.S. Patent

!

¥41 Woud
Q1 374 NuNL3y
2 NOISH3A
TY207 anvin
oeys

A

(4)92 9Id

I

AdOD
HOLVOS
31vayo

_LIS

L

ON

aaxool
LON dIM007

al
T4 HOLVHOS |
NYNLIY |
yersS
314 HOLVHOS
31VIHD
90bS
A
Fuaasvua|

NILLMIY
AT3LITdWOD
ONI=Eg

8irs

US 7,945,544 B2

Sheet 29 of 31

May 17, 2011

U.S. Patent

(0)22 9l

NOIL313a
118I1HOYd

—r—

JNVN
ANYL WO 3114
3MYL AJLLNZQI
vers

F
0

AYOLOTUIa
AINO-QVzY
NI ¥0 aaMo01 314
SO Q¥OJ3Y 347 O)

gevs

374
404 SQAOo3Y
AYINS 1Y
? 307 aINIWNI130
[44 2%

I

US 7,945,544 B2

Sheet 30 of 31

May 17, 2011

U.S. Patent

*

ad Lanv

Ol AMIN3 aQv
8¢vs

»

34 40
AdOD HOLVHOS
313730

LeVS

(9)22 91d
3NO A LNROD
asn 3onaTy
LEbS
374 3L
a13713q
oevs

CE PN

¢INVN INYL
ON SVH 3114

daNO
S1INNOD 38N
S.3714 AL

S3A

US 7,945,544 B2

Sheet 31 of 31

May 17, 2011

U.S. Patent

ASNO4STY
FALLVOIN

8EYS

»

<AaqUVMOAL

39 01 1s3anvay SIA— P

1s3anoay
QuvmuOd [€¢—q
S

ON

<aNNO4

ISNOJSaY
AALLISOd

(el f=piE|
a3aSSRAdNOD HO
al 374 S3anToN

obys

yevs

8¢ 9Old

ANVYN INAL
dNXM001

Zeys

1

S3A

US 7,945,544 B2

1
SIMILARITY-BASED ACCESS CONTROL OF
DATA IN A DATA PROCESSING SYSTEM

RELATED APPLICATIONS

This application is a continuation of and claims priority to
co-pending U.S. patent application Ser. No. 11/724,232 filed
Mar. 15, 2007, which is a continuation of co-pending appli-
cation Ser. No. 11/017,650, filed Dec. 22, 2004, which is a
continuation of pending application Ser. No. 10/742,972,
filed Dec. 23, 2003, which is a continuation of Ser. No.
09/987,723, filed Nov. 15, 2001, patented as U.S. Pat. No.
6,928,442; which is a which is a continuation of application
Ser. No. 09/283,160, filed Apr. 1, 1999, now U.S. Pat. No.
6,415,280, which is a division of application Ser. No. 08/960,
079, filed Oct. 24, 1997, now U.S. Pat. No. 5,978,791, which
is a continuation of Ser. No. 08/425,160, filed Apr. 11, 1995,
now abandoned, the contents of which each of these applica-
tions are hereby incorporated herein by reference. This appli-
cation is a continuation of and claims priority to co-pending
application Ser. No. 11/017,650, filed Dec. 22, 2004, which is
a continuation of application Ser. No. 09/987,723, filed Nov.
15, 2001, now U.S. Pat. No. 6,928,442, which is a continua-
tion of application Ser. No. 09/283,160, filed Apr. 1, 1999,
now U.S. Pat. No. 6,415,280, which is a division of applica-
tion Ser. No. 08/960,079, filed Oct. 24, 1997, now U.S. Pat.
No. 5,978,791, which is a continuation of Ser. No. 08/425,
160, filed Apr. 11, 1995, now abandoned, the contents of
which each of these applications are hereby incorporated
herein by reference. This is also a continuation of and claims
priority to co-pending application Ser. No. 10/742,972, filed
Dec. 23, 2003, which is a division of application Ser. No.
09/987,723, filed Nov. 15, 2001, now U.S. Pat. No. 6,928,
442, which is a continuation of application Ser. No. 09/283,
160, filed Apr. 1, 1999, now U.S. Pat. No. 6,415,280, which is
a division of application Ser. No. 08/960,079, filed Oct. 24,
1997, now U.S. Pat. No. 5,978,791, which is a continuation of
Ser. No. 08/425,160, filed Apr. 11, 1995, now abandoned, the
contents of which each of these applications are hereby incor-
porated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and, more
particularly, to data processing systems wherein data items
are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the data
in the data items.

2. Background of the Invention

Data processing (DP) systems, computers, networks of
computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a typical
operating system (OS) on a computer provides a file system in
which data items are named by alphanumeric identifiers. Pro-
grams typically identify data in the data processing system
using a location or address. For example, a program may
identify a record in a file or database by using a record number
which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able to create and use collections of named data
items, these collections themselves being named by identifi-
ers. These named collections can then, themselves, be made
part of other named collections. For example, an OS may
provide mechanisms to group files (data items) into directo-

20

25

30

35

40

45

50

55

60

65

2

ries (collections). These directories can then, themselves be
made part of other directories. A data item may thus be
identified relative to these nested directories using a sequence
of names, or a so-called pathname, which defines a path
through the directories to a particular data item (file or direc-
tory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item” as used herein
refer to sequences of bits. Thus a data item may be the con-
tents of a file, a portion of a file, a page in memory, an object
in an object-oriented program, a digital message, a digital
scanned image, a part of a video or audio signal, or any other
entity which can be represented by a sequence of bits. The
term “data processing” herein refers to the processing of data
items, and is sometimes dependent on the type of data item
being processed. For example, a data processor for a digital
image may differ from a data processor for an audio signal.

In all of the prior data processing systems the names or
identifiers provided to identify data items (the data items
being files, directories, records in the database, objects in
object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a particu-
lar file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
(context) is known. Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are mean-
ingful only because they are specified relative to a context.

In prior art systems for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the same
context may refer to the same data item.

In addition, because there is no correlation between a data
name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a
data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in general,
verify that the data delivered is the correct data (given only the
name). Therefore it may require further processing, typically
on the part of the requestor, to verify that the data item it has
obtained is, in fact, the item it requested.

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi-pro-
cessing system when data items are created and identified at
separate processors in distinct locations, and in which there is
no other need for communication when data items are added.

In many data processing systems or environments, data
items are transferred between different locations in the sys-
tem. These locations may be processors in the data processing
system, storage devices, memory, or the like. For example,

US 7,945,544 B2

3

one processor may obtain a data item from another processor
or from an external storage device, such as a floppy disk, and
may incorporate that data item into its system (using the name
provided with that data item).

However, when a processor (or some location) obtains a
data item from another location in the DP system, it is pos-
sible that this obtained data item is already present in the
system (either at the location of the processor or at some other
location accessible by the processor) and therefore a dupli-
cate of the data item is created. This situation is common in a
network data processing environment where proprietary soft-
ware products are installed from floppy disks onto several
processors sharing a common file server. In these systems, it
is often the case that the same product will be installed on
several systems, so that several copies of each file will reside
on the common file server.

In some data processing systems in which several proces-
sors are connected in a network, one system is designated as
a cache server to maintain master copies of data items, and
other systems are designated as cache clients to copy local
copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache client
must either reload the cached item, be informed of changes to
the cached item, or confirm that the master item correspond-
ing to the cached item has not changed. In other words, a
cache client must synchronize its data items with those on the
cache server. This synchronization may involve reloading
data items onto the cache client. The need to keep the cache
synchronized or reload it adds significant overhead to existing
caching mechanisms.

In view of the above and other problems with prior art
systems, it is therefore desirable to have a mechanism which
allows each processor in a multiprocessor system to deter-
mine a common and substantially unique identifier for a data
item, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification of iden-
tical data items so as to reduce multiple copies. It is further
desirable to determine whether two instances of a data item
are in fact the same data item, and to perform various other
systems’ functions and applications on data items without
relying on any context information or properties of the data
item.

It is also desirable to provide such a mechanism in such a
way as to make it transparent to users of the data processing
system, and it is desirable that a single mechanism be used to
address each of the problems described above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing system, a
method and apparatus for identifying a data item in the sys-
tem, where the identity of the data item depends on all of the
data in the data item and only on the data in the data item. Thus
the identity of a data item is independent of its name, origin,
location, address, or other information not derivable directly
from the data, and depends only on the data itself.

This invention further provides an apparatus and a method
for determining whether a particular data item is present in the
system or at a location in the system, by examining only the
data identities of a plurality of data items.

Using the method or apparatus of the present invention, the
efficiency and integrity of a data processing system can be
improved. The present invention improves the design and
operation of a data storage system, file system, relational

20

25

30

35

40

45

50

55

60

65

4

database, object-oriented database, or the like that stores a
plurality of data items, by making possible or improving the
design and operation of at least some or all of the following
features:

the system stores at most one copy of any data item at a
given location, even when multiple data names in the system
refer to the same contents;

the system avoids copying data from source to destination
locations when the destination locations already have the
data;

the system provides transparent access to any data item by
reference only to its identity and independent of its present
location, whether it be local, remote, or offline;

the system caches data items from a server, so that only the
most recently accessed data items need be retained;

when the system is being used to cache data items, prob-
lems of maintaining cache consistency are avoided;

the system maintains a desired level of redundancy of data
items in a network of servers, to protect against failure by
ensuring that multiple copies of the data items are present at
different locations in the system;

the system automatically archives data items as they are
created or modified;

the system provides the size, age, and location of groups of
data items in order to decide whether they can be safely
removed from a local file system;

the system can efficiently record and preserve any collec-
tion of data items;

the system can efficiently make a copy of any collection of
data items, to support a version control mechanism for groups
of the data items;

the system can publish data items, allowing other, possibly
anonymous, systems in a network to gain access to the data
items and to rely on the availability of the data items;

the system can maintain a local inventory of all the data
items located on a given removable medium, such as a dis-
kette or CD-ROM, the inventory is independent of other
properties of the data items such as their name, location, and
date of creation;

the system allows closely related sets of data items, such as
matching or corresponding directories on disconnected com-
puters, to be periodically resynchronized with one another;

the system can verify that data retrieved from another loca-
tion is the desired or requested data, using only the data
identifier used to retrieve the data;

the system can prove possession of specific data items by
content without disclosing the content of the data items, for
purposes of later legal verification and to provide anonymity;

the system tracks possession of specific data items accord-
ing to content by owner, independent of the name, date, or
other properties of the data item, and tracks the uses of spe-
cific data items and files by content for accounting purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions of
the related elements of structure, and the combination of parts
and economies of manufacture, will become more apparent
upon consideration of the following description and the
appended claims with reference to the accompanying draw-
ings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a) and 1(5) depict atypical data processing system
in which a preferred embodiment of the present invention
operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

US 7,945,544 B2

5

FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(a)-28 are flow charts depicting operation of vari-
ous aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY
PREFERRED EXEMPLARY EMBODIMENTS

An embodiment of the present invention is now described
with reference to a typical data processing system 100, which,
with reference to FIGS. 1(a) and 1(b), includes one or more
processors (or computers) 102 and various storage devices
104 connected in some way, for example by a bus 106.

Each processor 102 includes a CPU 108, a memory 110
and one or more local storage devices 112. The CPU 108,
memory 110, and local storage device 112 may be internally
connected, for example by abus 114. Each processor 102 may
also include other devices (not shown), such as a keyboard, a
display, a printer, and the like.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server, client/
client, or a server/server relationship. These inter-processor
relationships may be dynamic, changing depending on par-
ticular situations and functions. Thus, a particular processor
102 may change its relationship to other processors as
needed, essentially setting up a peer-to-peer relationship with
other processors. In a peer-to-peer relationship, sometimes a
particular processor 102 acts as a client processor, whereas at
other times the same processor acts as a server processor. In
other words, there is no hierarchy imposed on or required of
processors 102.

In a multiprocessor system, the processors 102 may be
homogeneous or heterogeneous. Further, in a multiprocessor
data processing system 100, some or all of the processors 102
may be disconnected from the network of processors for
periods oftime. Such disconnection may be part of the normal
operation of the system 100 or it may be because a particular
processor 102 is in need of repair.

Within a data processing system 100, the data may be
organized to form a hierarchy of data storage elements,
wherein lower level data storage elements are combined to
form higher level elements. This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, segments, and the like. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system 116 which comprises
regions 117, each of which comprises directories 118, each of
which can contain other directories 118 or files 120. Each file
120 being made up of one or more data segments 122.

In a typical data processing system, some or all of these
elements can be named by users given certain implementation
specific naming conventions, the name (or pathname) of an
element being relative to a context. In the context of a data
processing system 100, a pathname is fully specified by a
processor name, a file system name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this case
segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of directo-
ries 118. A directory 118 is a collection of named files 120—
both data files 120 and other directory files 118. A file 120 is
a named data item which is either a data file (which may be
simple or compound) or a directory file 118. A simple file 120
consists of a single data segment 122. A compound file 120
consists of a sequence of data segments 122. A data segment

20

25

30

35

40

45

50

55

60

65

6

122 is afixed sequence of bytes. An important property of any
data segment is its size, the number of bytes in the sequence.

A single processor 102 may access one or more file systems
116, and a single storage device 104 may contain one or more
file systems 116, or portions of a file system 116. For instance,
a file system 116 may span several storage devices 104.

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region is
aunitof management and control. A region consists ofa given
directory 118 and is identified by the pathname (user defined)
of' the directory.

In the following, the term “location”, with respect to a data
processing system 100, refers to any of a particular processor
102 in the system, a memory of a particular processor, a
storage device, a removable storage medium (such as a floppy
disk or compact disk), or any other physical location in the
system. The term “local” with respect to a particular proces-
sor 102 refers to the memory and storage devices of that
particular processor.

In the following, the terms “True Name”, “data identity”
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by a
True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing operat-
ing system by augmenting some of the operating system’s file
management system codes. The embodiment provided relies
on the standard file management primitives for actually stor-
ing to and retrieving data items from disk, but uses the mecha-
nisms of the present invention to reference and access those
data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories: primi-
tive mechanisms, operating system mechanisms, remote
mechanisms, background mechanisms, and extended mecha-
nisms.

Primitive mechanisms provide fundamental capabilities
used to support other mechanisms. The following primitive
mechanisms are described:

. Calculate True Name;

. Assimilate Data Item;

. New True File;

Get True Name from Path;

. Link path to True Name;

. Realize True File from Location;
Locate Remote File;

. Make True File Local;

. Create Scratch File;

10. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

Operating system mechanisms provide typical familiar file
system mechanisms, while maintaining the data structures
required to offer the mechanisms of the, present invention.
Operating system mechanisms are designed to augment exist-
ing operating systems, and in this way to make the present
invention compatible with, and generally transparent to,
existing applications. The following operating system
mechanisms are described:

1. Open File;

2. Close File;

3. Read File;

el e I N N

US 7,945,544 B2

7

4. Write File;

5. Delete File or Directory;

6. Copy File or Directory;

7. Move File or Directory;

8. Get File Status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating system in
responding to requests from other processors. These mecha-
nisms enable the capabilities of the present invention in a
peer-to-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run occasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The follow-
ing background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu-
tions to specific problems and applications. The following
extended mechanisms are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize directories;

4. Publish Region;

5. Retire Directory;

6. Realize Directory at location;

7. Verify True File;

8. Track for accounting purposes; and

9. Track for licensing purposes.

The file system herein described maintains sufficient infor-
mation to provide a variety of mechanisms not ordinarily
offered by an operating system, some of which are listed and
described here. Various processing performed by this
embodiment of the present invention will now be described in
greater detail.

In some embodiments, some files 120 in a data processing
system 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not yet been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have a user
provided name.

Some of the processing performed by the present invention
can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to deter-
mine information that is not immediately required by the
system or which may never be required. As an example, in
some cases a scratch file is being changed at a rate greater than
the rate at which it is useful to determine its True Name. In
these cases, determining the True Name of the file can be
postponed or performed in the background.

20

25

30

35

40

45

50

55

60

65

8

Data Structures

The following data structures, stored in memory 110 ofone
of more processors 102 are used to implement the mecha-
nisms described herein. The data structures can be local to
each processor 102 of the system 100, or they can reside on
only some of the processors 102.

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system
100. However, they can also be shared by placing them on a
remote, shared file server (for instance, ina local area network
of machines). In order to accommodate sharing data struc-
tures, it is necessary that the processors accessing the shared
database use the appropriate locking techniques to ensure that
changes to the shared database do not interfere with one
another but are appropriately serialized. These locking tech-
niques are well understood by ordinarily skilled programmers
of distributed applications.

It is sometimes desirable to allow some regions to be local
to a particular processor 102 and other regions to be shared
among processors 102. (Recall that a region is a unit of file
system management and control consisting of a given direc-
tory identified by the pathname of the directory.) In the case of
local and shared regions, there would be both local and shared
versions of each data structure. Simple changes to the pro-
cesses described below must be made to ensure that appro-
priate data structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100. The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in
local directory extension table 124 is in addition to that pro-
vided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for listing
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File
registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores loca-
tion, dependency, and migration information about True
Files.

The region table (RT) 128 defines areas in the network
storage which are to be managed separately. Region table 128
defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The source
table 130 includes removable volumes and remote proces-
SOrS.

The audit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, these changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name or location.

The license table (LT) 136 is a table identifying files, which
may only be used by licensed users, in a manner independent
of their name or location, and the users licensed to use them.
Detailed Descriptions of the Data Structures

The following table summarizes the fields of an local direc-
tory extensions table entry, as illustrated by record 138 in
FIG. 3.

US 7,945,544 B2

10

Field Description

Region ID identifies the region in which this file is contained.

Pathname the user provided name or contextual name of the file or 5
directory, relative to the region in which it occurs.

True Name the computed True Name or identity of the file or directory.
This True Name is not always up to date, and it is set to a
special value when a file is modified and is later
recomputed in the background. 10

Type indicates whether the file is a data file or a directory.

Scratch File
1D

Time of last
access
Time of last

modification
Safe flag

Lock flag

Size

Owner

the physical location of the file in the file system, when no

True Name has been calculated for the file. As noted

above, such a file is called a scratch file.

the last access time to this file. If this file is a directory, this

is the last access time to any file in the directory. 5
the time of last change of this file. If this file is a directory,
this is the last modification time of any file in the directory.
indicates that this file (and, if this file is a directory, all of
its subordinate files) have been backed up on some other
system, and it is therefore safe to remove them.

indicates whether a file is locked, that is, it is being
modified by the local processor or a remote processor.
Only one processor may modify a file at a time.

the full size of this directory (including all subordinate
files), if all files in it were fully expanded and duplicated.
For a file that is not a directory this is the size of the actual
True File. 25
the identity of the user who owns this file, for accounting

and license tracking purposes.

20

Each record of the True File registry 126 has the fields

. . . . 30
shown in the True File registry record 140 in FIG. 4. The True
File registry 126 consists of the database described in the
table below as well as the actual True Files identified by the
True File IDs below.

35
Field Description
True Name computed True Name or identity of the file.
Compressed compressed version of the True File may be stored instead 4
File ID of, or in addition to, an uncompressed version. This field
provides the identity of the actual representation of the
compressed version of the file.
Grooming tentative count of how many references have been selected

delete count
Time of last
access
Expiration
Dependent
processors

Source IDs

True File ID

Use count

for deletion during a grooming operation.

most recent date and time the content of this file was

accessed.

date and time after which this file may be deleted by this

server.

processor IDs of other processors which contain references

to this True File.

source ID(s) of zero or more sources from which this file or
data item may be retrieved. 0
identity or disk location of the actual physical

representation of the file or file segment. It is sufficient to

use a filename in the registration directory of the

underlying operating system. The True File ID is absent if

cthe actual file is not currently present at the urrent

location. 55
number of other records on this processor which identify

this True File.

45

A region table 128, specified by a directory pathname,

records storage policies which allow files in the file system to

[
<

be stored, accessed and migrated in different ways. Storage
policies are programmed in a configurable way using a set of
rules described below.

Each region table record 142 of region table 128 includes ¢s
the fields described in the following table (with reference to

FIG. 5):

Field Description

Region ID internally used identifier for this region.

Region file file system on the local processor of which this region

system is a part.

Region a pathname relative to the region file system which

pathname defines the location of this region. The region consists
of all files and directories subordinate to this
pathname, except those in a region subordinate to this
region.

Mirror zero or more identifiers of processors which are to

processor(s) keep mirror or archival copies of all files in the current
region. Multiple mirror processors can be defined to
form a mirror group.

Mirror number of copies of each file in this region that should

duplication count
Region
status

Policy

be retained in a mirror group.

specifies whether this region is local to a single
processor 102, shared by several processors 102 (if,
for instance, it resides on a shared file server), or
managed by a remote processor.

the migration policy to apply to this region. A single
region might participate in several policies. The
policies are as follows (parameters in brackets are
specified as part of the policy):

region is a cached version from [processor ID];
region is a member of a mirror set defined by
[processor ID].

region is to be archived on [processor ID].

region is to be backed up locally, by placing new
copies in [region ID].

region is read only and may not be changed.

region is published and expires on [date].

Files in this region should be compressed.

A source table 130 identifies a source location for True
Files. The source table 130 is also used to identify client
processors making reservations on the current processor.
Each source record 144 of the source table 130 includes the
fields summarized in the following table, with reference to

FIG. 6:

Field Description

source ID internal identifier used to identify a particular source.
source type type of source location:

source rights

Removable Storage Volume

Local Region

Cache Server

Mirror Group Server

Cooperative Server

Publishing Server

Client

includes information about the rights of this processor,
such as whether it can ask the local processor to store data
items for it.

source measurement of the bandwidth, cost, and reliability of the

availability connection to this source of True Files. The availability is
used to select from among several possible sources.

source information on how the local processor is to access the

location source. This may be, for example, the name of a removable
storage volume, or the processor ID and region path of a
region ol a remote Processor.

The audit file 132 is a table of events ordered by timestamp,

each record 146 in audit file 132 including the fields summa-
rized in the following table (with reference to FIG. 7):

US 7,945,544 B2

11

Field Description

Original path of the file in question.

Name

Operation whether the file was created, read, written, copied or
deleted.

Type specifies whether the source is a file or a directory.

Processor ID of the remote processor generating this event

D (if not local).

Timestamp time and date file was closed (required only for accessed/
modified files).

Pathname Name of the file (required only for rename).

True Name computed True Name of the file. This is used by remote

systems to mirror changes to the directory and is filled
in during background processing.

Each record 148 of the accounting log 134 records an event
which may later be used to provide information for billing
mechanisms. Each accounting log entry record 148 includes
at least the information summarized in the following table,
with reference to FIG. 8:

Field Description

date of entry date and time of this log entry.

type of entry Entry types include create file, delete file, and transmit file.
True Name True Name of data item in question.

owner identity of the user responsible for this action.

Each record 150 of the license table 136 records a relation-
ship between a licensable data item and the user licensed to
have access to it. Each license table record 150 includes the
information summarized in the following table, with refer-
ence to FIG. 9:

Field Description

True Name
licensee

True Name of a data item subject to license validation.
identity of a user authorized to have access to this object.

Various other data structures are employed on some or all
of'the processors 102 in the data processing system 100. Each
processor 102 has a global freeze lock (GFL) 152 (FIG. 1),
which is used to prevent synchronization errors when a direc-
tory is frozen or copied. Any processor 102 may include a
special archive directory (SAD) 154 into which directories
may be copied for the purposes of archival. Any processor
102 may include a special media directory (SMD) 156, into
which the directories of removable volumes are stored to form
a media inventory. Each processor has a grooming lock 158,
which is set during a grooming operation. During this period
the grooming delete count of True File registry entries 140 is
active, and no True Files should be deleted until grooming is
complete. While grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

Primitive Mechanisms

The first of the mechanisms provided by the present inven-
tion, primitive mechanisms, are now described. The mecha-
nisms described here depend on underlying data management
mechanisms to create, copy, read, and delete data items in the
True File registry 126, as identified by a True File ID. This
support may be provided by an underlying operating system
or disk storage manager.

10

20

25

30

35

40

45

50

55

60

65

12

The following primitive mechanisms are described:
. Calculate True Name;
. Assimilate Data Item;
. New True File;
. Get True Name from Path;
. Link Path to True Name;
. Realize True File from Location;
. Locate Remote File;
. Make True File Local;
9. Create Scratch File;
. Freeze Directory;
. Expand Frozen Directory;
. Delete True File;
. Process Audit File Entry;
. Begin Grooming;
. Select For Removal; and
16. End Grooming.
1. Calculate True Name

A True Name is computed using a function, MD, which
reduces a data block B of arbitrary length to a relatively small,
fixed size identifier, the True Name of the data block, such that
the True Name of the data block is virtually guaranteed to
represent the data block B and only data block B.

The function MD must have the following properties:

1. The domain of the function MD is the set of all data
items. The range of the function MD is the set of True
Names.

2. The function MD must take a data item of arbitrary
length and reduce it to an integer value in the range O to
N-1, where N is the cardinality ofthe set of True Names.
That is, for an arbitrary length data block B, 0=MD(B)
<N.

3. The results of MD(B) must be evenly and randomly
distributed over the range of N, in such a way that simple
or regular changes to B are virtually guaranteed to pro-
duce a different value of MD(B).

4. It must be computationally difficult to find a different
value B' such that MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.

A family of functions with the above properties are the
so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MD4, MDS5, and
SHA.

In the presently preferred embodiments, either MDS5 or
SHA is employed as the basis for the computation of True
Names. Whichever of these two message digest functions is
employed, that same function must be employed on a system-
wide basis.

It is impossible to define a function having a unique output
for each possible input when the number of elements in the
range of the function is smaller than the number of elements
inits domain. However, a crucial observation is that the actual
data items that will be encountered in the operation of any
system embodying this invention form a very sparse subset of
all the possible inputs.

A colliding set of data items is defined as a set wherein, for
one or more pairs X and y in the set, MD(x)=MD(y). Since a
function conforming to the requirements for MD must evenly
and randomly distribute its outputs, it is possible, by making
the range of the function large enough, to make the probabil-
ity arbitrarily small that actual inputs encountered in the
operation of an embodiment of this invention will form a
colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 2°° storage devices in the world,
and that each storage device has an average of at most 22°

O~ OV W=

US 7,945,544 B2

13

different data items. Then there are at most 2°° data items in
the world. If the outputs of MD range between 0 and 222, it
can be demonstrated that the probability of a collision is
approximately 1 in 22°. Details on the derivation of these
probability values are found, for example, in P. Flajolet and A.
M. Odlyzko, “Random Mapping Statistics,” Lecture Notes in
Computer Science 434: Advances in Cryptology—Eurocrypt
’89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be useful
to have more than one level of True Names, with some of the
True Names having different degrees of uniqueness. If such a
scheme is implemented, it is necessary to ensure that less
unique True Names are not propagated in the system.

While the invention is described herein using only the True
Name of a data item as the identifier for the data item, other
preferred embodiments use tagged, typed, categorized or
classified data items and use a combination of both the True
Name and the tag, type, category or class of the data item as
an identifier. Examples of such categorizations are files,
directories, and segments; executable files and data files, and
the like. Examples of classes are classes of objects in an
object-oriented system. In such a system, a lower degree of
True Name uniqueness is acceptable over the entire universe
of'data items, as long as sufficient uniqueness. is provided per
category of data items. This is because the tags provide an
additional level of uniqueness.

A mechanism for calculating a True Name given a data
item is now described, with reference to FIGS. 10(a) and
10(5).

A simple data item is a data item whose size is less than a
particular given size (which must be defined in each particular
implementation of the invention). To determine the True
Name ofa simple data item, with reference to FIG. 10(a), first
compute the MD function (described above) on the given
simple data item (Step S212). Then append to the resulting
128 bits, the byte length modulo 32 of the data item (Step
S214). The resulting 160-bit value is the True Name of the
simple data item.

A compound data item is one whose size is greater than the
particular given size of a simple data item. To determine the
True Name of an arbitrary (simple or compound) data item,
with reference to FIG. 10(b), first determine if the data item is
a simple or a compound data item (Step S216). If the data item
is a simple data item, then compute its True Name in step
S218 (using steps S212 and S214 described above), otherwise
partition the data item into segments (Step S220) and assimi-
late each segment (Step S222) (the primitive mechanism,
Assimilate a Data Item, is described below), computing the
True Name of the segment. Then create an indirect block
consisting of the computed segment True Names (Step S224).
An indirect block is a data item which consists of the
sequence of True Names of the segments. Then, in step S226,
assimilate the indirect block and compute its True Name.
Finally, replace the final thirty-two (32) bits of the resulting
True Name (that is, the length of the indirect block) by the
length modulo 32 of the compound data item (Step S228).
The result is the True Name of the compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Both the use of segments and the attachment of a length to
the True Name are not strictly required in a system using the

20

25

30

35

40

45

50

55

60

65

14

present invention, but are currently considered desirable fea-
tures in the preferred embodiment.
2. Assimilate Data Item

A mechanism for assimilating a data item (scratch file or
segment) into a file system, given the scratch file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used during
this process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of any data
item or file by content, even when multiple names refer to the
same content.

First, determine the True Name of the data item corre-
sponding to the given scratch File ID using the Calculate True
Name primitive mechanism (Step S230). Next, look for an
entry for the True Name in the True File registry 126 (Step
S232) and determine whether a True Name entry, record 140,
exists in the True File registry 126. If the entry record includes
a corresponding True File ID or compressed File ID (Step
S237), delete the file with the scratch File ID (Step S238).
Otherwise store the given True File ID in the entry record
(step S239).

If it is determined (in step S232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
a new entry in the True File registry 126 for this True Name.
Set the True Name of the entry to the calculated True Name,
set the use count for the new entry to one, store the given True
File ID in the entry and set the other fields of the entry as
appropriate.

Because this procedure may take some time to compute, it
is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

The New True File process is invoked when processing the
audit file 132, some time after a True File has been assimilated
(using the Assimilate Data Item primitive mechanism). Given
alocal directory extensions table entry record 138 in the local
directory extensions table 124, the New True File process can
provide the following steps (with reference to FIG. 12),
depending on how the local processor is configured:

First, in step S238, examine the local directory extensions
table entry record 138 to determine whether the file is locked
by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache server
to update the cache of the current processor using the Update
Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File back-
ground mechanism (Step S248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents, or
to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for the
entry record 138 with the given pathname (Step S250). If the
pathname is not found, this process fails and no True Name
corresponding to the given pathname exists. Next, determine
whether the local directory extensions table entry record 138
includes a True Name (Step S252), and if so, the mechanism’s
task is complete. Otherwise, determine whether the local
directory extensions table entry record 138 identifies a direc-

US 7,945,544 B2

15
tory (Step S254), and if so, freeze the directory (Step S256)
(the primitive mechanism Freeze Directory is described
below).

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the
File ID field to generate its True Name and store its True
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory exten-
sions table 124.

5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used to
copy, move, and rename files without a need to copy their
contents. The mechanism to link a path to a True Name is now
described with reference to FIG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local directory
extensions table 135 (Step S260). Most uses of this mecha-
nism will require this form of validation. Next, search for the
path in the local directory extensions table 135 (Step S262).
Confirm that the directory containing the file named in the
path already exists (Step S264). If the named file itself exists,
delete the File using the Delete True File operating system
mechanism (see below) (Step S268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step S270) and update the entry
record and other data structures as follows: fill in the True
Name field of the entry with the specified True Name; incre-
ment the use count for the True File registry entry record 140
of the corresponding True Name; note whether the entry is a
directory by reading the True File to see if it contains a tag
(magic number) indicating that it represents a frozen direc-
tory (see also the description of the Freeze Directory primi-
tive mechanism regarding the tag); and compute and set the
other fields of the local directory extensions appropriately.
For instance, search the region table 128 to identify the region
of the path, and set the time of last access and time of last
modification to the current time.

6. Realize True File from Location

This mechanism is used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference to FIG. 15.

First, in step S272, determine whether the location speci-
fied is a processor. If it is determined that the location speci-
fied is a processor, then send a Request True File message
(using the Request True File remote mechanism) to the
remote processor and wait for a response (Step S274). If a
negative response is received or no response is received after
a timeout period, this mechanism fails. If a positive response
is received, enter the True File returned in the True File
registry 126 (Step S276). (Ifthe file received was compressed,
enter the True File ID in the compressed File ID field.)

If, on the other hand, it is determined in step S272 that the
location specified is not a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the
given volume and assimilate the file using the Assimilate Data
Item primitive mechanism. If the volume does not contain a
True File registry 126, search the media inventory to find the
path of the file on the volume. If no such file can be found, this
mechanism fails.

At this point, whether or not the location is determined (in
step S272) to be a processor, if desired, verify the True File (in
step S282).

20

25

30

35

40

45

50

55

60

65

16

7. Locate Remote File

This mechanism allows a processor to locate a file or data
item from a remote source of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can supply
a data object with a given True Name. The steps to perform
this mechanism are as follows (with reference to FIGS. 16(a)
and 16(b)).

The client processor 102 uses the source table 145 to select
one or more source processors (Step S284). If no source
processor can be found, the mechanism fails. Next, the client
processor 102 broadcasts to the selected sources a request to
locate the file with the given True Name using the Locate True
File remote mechanism (Step S286). The request to locate
may be augmented by asking to propagate this request to
distant servers. The client processor then waits for one or
more servers to respond positively (Step S288). After all
servers respond negatively, or after a timeout period with no
positive response, the mechanism repeats selection (Step
S284) to attempt to identify alternative sources. If any
selected source processor responds, its processor ID is the
result of this mechanism. Store the processor ID in the source
field of the True File registry entry record 140 of the given
True Name (Step S290).

If the source location of the True Name is a different
processor or medium than the destination (Step S290a), per-
form the following steps:

(1) Look up the True File registry entry record 140 for the
corresponding True Name, and add the source location
1D to the list of sources for the True Name (Step S2905);
and

(i) If the source is a publishing system, determine the
expiration date on the publishing system for the True
Name and add that to the list of sources. If the source is
not a publishing system, send a message to reserve the
True File on the source processor (Step S290c¢).

Source selection in step S284 may be based on optimiza-
tions involving general availability of the source, access time,
bandwidth, and transmission cost, and ignoring previously
selected processors which did not respond in step S288.

8. Make True File Local

This mechanism is used when a True Name is known and a
locally accessible copy of the corresponding file or data item
is required. This mechanism makes it possible to actually read
the data in a True File. The mechanism takes a True Name and
returns when there is a local, accessible copy of the True File
in the True File registry 126. This mechanism is described
here with reference to the flow chart of FIGS. 17(a) and 17(5).

First, look in the True File registry 126 for a True File entry
record 140 for the corresponding True Name (Step S292). If
no such entry is found this mechanism fails. If there is already
a True File ID for the entry (Step S294), this mechanism’s
task is complete. If there is a compressed file ID for the entry
(Step S296), decompress the file corresponding to the file ID
(Step S298) and store the decompressed file ID in the entry
(Step S300). This mechanism is then complete.

If there is no True File ID for the entry (Step S294) and
there is no compressed file ID for the entry (Step S296), then
continue searching for the requested file. At this time it may
be necessary to notify the user that the system is searching for
the requested file.

If there are one or more source IDs, then select an order in
which to attempt to realize the source ID (Step S304). The
order may be based on optimizations involving general avail-
ability of the source, access time, bandwidth, and transmis-
sion cost. For each source in the order chosen, realize the True
File from the source location (using the Realize True File

US 7,945,544 B2

17

from Location primitive mechanism), until the True File is
realized (Step S306). If it is realized, continue with step S294.
If no known source can realize the True File, use the Locate
Remote File primitive mechanism to attempt to find the True
File (Step S308). If this succeeds, realize the True File from
the identified source location and continue with step S296.
9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The
scratch copy is eventually assimilated when the audit file
record entry 146 is processed by the Process Audit File Entry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of a scratch file that is
not contained in the True File registry 126 and that may be
modified. This mechanism is now described with reference to
FIGS. 18(a) and 18(5).

First determine whether the scratch file should be a copy of
the existing True File (Step S310). If so, continue with step
S312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True
File (Step S316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scratch file and store its scratch file ID in
the local directory extensions table entry record 138 (step
S320). This mechanism is then complete.

If the local directory extensions table entry record 138
identifies a scratch file ID (Step S312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File (8316), and there is no True File ID for
the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step S322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. If the use count
in the corresponding True File registry entry record 140 is one
(Step S326), save the True File ID in the scratch file ID of the
local directory extensions table entry record 138, and remove
the True File registry entry record 140 (Step S328). (This step
makes the True File into a scratch file.) This mechanism’s task
is complete.

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step S326), copy the
file with the given True File ID to a new scratch file, using the
Read File OS mechanism and store its file ID in the local
directory extensions table entry record 138 (Step S330), and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.

10. Freeze Directory

This mechanism freezes a directory in order to calculate its
True Name. Since the True Name of a directory is a function
of'the files within the directory, they must not change during
the computation of the True Name of the directory. This
mechanism requires the pathname of a directory to freeze.
This mechanism is described with reference to FIGS. 19(a)
and 19(b).

In step S332, add one to the global freeze lock. Then search
the local directory extensions table 124 to find each subordi-
nate data file and directory of the given directory, and freeze
each subordinate directory found using the Freeze Directory
primitive mechanism (Step S334). Assimilate each unassimi-
lated data file in the directory using the Assimilate Data [tem
primitive mechanism (Step S336). Then create a data item
which begins with a tag or marker (a “magic number”) being
a unique data item indicating that this data item is a frozen

20

25

30

35

40

45

50

55

60

65

18

directory (Step S337). Then list the file name and True Name
for each file in the current directory (Step S338). Record any
additional information required, such as the type, time of last
access and modification, and size (Step S340). Next, in step
S342, using the Assimilate Data Item primitive mechanism,
assimilate the data item created in step S338. The resulting
True Name is the True Name of the frozen directory. Finally,
subtract one from the global freeze lock (Step S344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
location. It requires a given pathname into which to expand
the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step S346, make the True File with the given True
Name local using the Make True File Local primitive mecha-
nism. Then read each directory entry in the local file created
in step S346 (Step S348). For each such directory entry, do the
following:

Create a full pathname using the given pathname and the
file name of the entry (Step S350); and

link the created path to the True Name (Step S352) using
the Link Path to True Name primitive mechanism.

12. Delete True File

This mechanism deletes a reference to a True Name. The
underlying True File is not removed from the True File reg-
istry 126 unless there are no additional references to the file.
With reference to FIG. 21, this mechanism is performed as
follows:

If the global freeze lock is on, wait until the global freeze
lock is turned off (Step S354). This prevents deleting a True
File while a directory which might refer to it is being frozen.
Next, find the True File registry entry record 140 given the
True Name (Step S356). If the reference count field of the
True File registry 126 is greater than zero, subtract one from
the reference count field (Step S358). If it is determined (in
step S360) that the reference count field of the True File
registry entry record 140 is zero, and if there are no dependent
systems listed in the True File registry entry record 140, then
perform the following steps:

(1) If the True File is a simple data item, then delete the True
File, otherwise,

(ii) (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File corre-
sponding to the True Name (Step S362).

(ii1) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and
remove the True File registry entry record 140 (Step S364).
13. Process Audit File Entry

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
Entries 142 in the audit file 132 should be processed at a
background priority as long as there are entries to be pro-
cessed. With reference to FIG. 22, the steps for processing an
entry are as follows:

Determine the operation in the entry 142 currently being
processed (Step S365). If the operation indicates that a file
was created or written (Step S366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
S368), use the New True File primitive mechanism to do
additional desired processing (such as cache update, com-
pression, and mirroring) (Step S369), and record the newly
computed True Name for the file in the audit file record entry
(Step S370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)

US 7,945,544 B2

19

(Step S376), then for each component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre-
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, time of last access, and time of last modifi-
cation, according to the operation in the audit record (Step
S379).

Note that the audit record is not removed after processing,
but is retained for some reasonable period so that it may be
used by the Synchronize Directory extended mechanism to
allow a disconnected remote processor to update its represen-
tation of the local system.

14. Begin Grooming

This mechanism makes it possible to select a set of files for
removal and determine the overall amount of space to be
recovered. With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of
space freed during grooming to zero and empty the list of files
selected for deletion (Step S384). For each True File in the
True File registry 126, set the delete count to zero (Step
S386).

15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its corresponding True File to be removed. With
reference to FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
(Step S388). Then find the True File registry entry record 140
corresponding to the True File name in the local directory
extensions table entry record 138 (Step S390). Add one to the
grooming delete count in the True File registry entry record
140 and add the pathname to a list of files selected for deletion
(Step S392). If the grooming delete count of the True File
registry entry record 140 is equal to the use count of the True
File registry entry record 140, and if the there are no entries in
the dependency list of the True File registry entry record 140,
then add the size of the file indicated by the True File ID and
or compressed file ID to the total amount of space freed
during grooming (Step S394).

16. End Grooming

This grooming mechanism ends the grooming phase and
removes all files selected for removal. With reference to FIG.
25, for each file in the list of files selected for deletion, delete
the file (Step S396) and then unlock the global grooming lock
(Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the present inven-
tion, operating system mechanisms, are now described.

The following operating system mechanisms
described:

1. Open File;

. Close File;
. Read File;
. Write File;
. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and
9. Get Files in Directory.
1. Open File

A mechanism to open a file is described with reference to
FIGS. 26(a) and 26(5). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, write, read/write, create, etc.) and produces
either the File ID of the file to be opened or an indication that
no file should be opened. The local directory extensions table

are

O~ OV BN

20

25

30

35

40

45

50

55

60

65

20

record 138 and region table record 142 associated with the
opened file are associated with the open file for later use in
other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists locally
by examining the local directory extensions table 124 to
determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type, deter-
mine whether or not the file is being created by this opening
process (Step S402). If the file is not being created, prohibit
the open (Step S404). If the file is being created, create a
zero-length scratch file using an entry in local directory exten-
sions table 124 and produce the scratch file ID of this scratch
file as the result (Step S406).

If, on the other hand, it is determined in step S400 that the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to
find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identifies
the region of the specified file.

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only
for reading (Step S410). If the file is being opened for reading
only, then, if the file is a scratch file (Step S419), return the
scratch File ID of'the file (Step S424). Otherwise get the True
Name from the local directory extensions table 124 and make
alocal version of the True File associated with the True Name
using the Make True File Local primitive mechanism, and
then return the True File ID associated with the True Name
(Step S420).

Ifthe file is not being opened for reading only (Step S410),
then, if it is determined by inspecting the region table entry
record 142 that the file is in a read-only directory (Step S416),
then prohibit the opening (Step S422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the return message says
the file is already locked, prohibit the opening.

If the access type indicates that the file being modified is
being rewritten completely (Step S419), so that the original
data will not be required, then Delete the File using the Delete
File OS mechanism (Step S421) and perform step S406.
Otherwise, make a scratch copy of the file (Step S417) and
produce the scratch file ID of the scratch file as the result (Step
S424).

2. Close File

This mechanism takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to the
audit file indicating the time and operation (create, read or
write). The audit file processing (using the Process Audit File
Entry primitive mechanism) will take care of assimilating the
file and thereby updating the other records.

3. Read File

To read a file, a program must provide the offset and length
of the data to be read, and the location of a buffer into which
to copy the data read.

The file to be read from is identified by an open file descrip-
tor which includes a File ID as computed by the Open File
operating system mechanism defined above. The File ID may
identify either a scratch file or a True File (or True File
segment). [f the File ID identifies a True File, it may be either
a simple or a compound True File. Reading a file is accom-
plished by the following steps:

US 7,945,544 B2

21

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the underlying
operating system.

In the case where the File ID identifies a compound file,
break the read operation into one or more read operations on
component segments as follows:

A. Identity the segment(s) to be read by dividing the speci-
fied file offset and length each by the fixed size of a segment
(a system dependent parameter), to determine the segment
number and number of segments that must be read.

B. For each segment number computed above, do the fol-
lowing:

i. Read the compound True File index block to determine

the True Name of the segment to be read.

ii. Use the Realize True File from Location primitive
mechanism to make the True File segment available
locally. (If that mechanism fails, the Read File mecha-
nism fails).

iii. Determine the File ID of the True File specified by the
True Name corresponding to this segment.

iv. Use the Read File mechanism (recursively) to read from
this segment into the corresponding location in the
specified buffer.

4. Write File

File writing uses the file ID and data management capa-
bilities of the underlying operating system. File access (Make
File Local described above) can be deferred until the first read
or write.

5. Delete File or Directory

The process of deleting a file, for a given pathname, is
described here with reference to FIGS. 27(a) and 27(b).

First, determine the local directory extensions table entry
record 138 and region table entry record 142 for the file (Step
S422). If the file has no local directory extensions table entry
record 138 or is locked or is in a read-only region, prohibit the
deletion.

Identify the corresponding True File given the True Name
of'the file being deleted using the True File registry 126 (Step
S424). If the file has no True Name, (Step S426) then delete
the scratch copy of the file based on its scratch file ID in the
local directory extensions table 124 (Step S427), and con-
tinue with step S428.

If the file has a True Name and the True File’s use count is
one (Step S429), then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File’s use count is
greater than one, reduce its use count by one (Step S431).
Then proceed with step S428.

In Step S428, delete the local directory extensions table
entry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the
path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link the
destination path to the True Name.

(C) If the source and destination processors have different
True File registries, find (or, if necessary, create) an entry for
the True Name in the True File registry table 126 of the
destination processor. Enter into the source ID field of this
new entry the source processor identity.

20

25

30

35

40

45

50

55

60

65

22

(D) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In addi-
tion, because of the ability to freeze a directory, this mecha-
nism also addresses capability of the system immediately to
make a copy of any collection of files, thereby to support an
efficient version control mechanisms for groups of files.

7. Move File or Directory

A mechanism is described which moves (or renames) a file
from a source path to a destination path. The move operation,
like the copy operation, requires no actual transfer of data,
and is performed as follows:

(A) Copy the file from the source path to the destination
path.

(B) If the source path is different from the destination path,
delete the source path.

8. Get File Status

This mechanism takes a file pathname and provides infor-
mation about the pathname. First the local directory exten-
sions table entry record 138 corresponding to the pathname
given is found. If no such entry exists, then this mechanism
fails, otherwise, gather information about the file and its
corresponding True File from the local directory extensions
table 124. The information can include any information
shown in the data structures, including the size, type, owner,
True Name, sources, time of last access, time of last modifi-
cation, state (local or not, assimilated or not, compressed or
not), use count, expiration date, and reservations.

9. Get Files in Directory

This mechanism enumerates the files in a directory. It is
used (implicitly) whenever it is necessary to determine
whether a file exists (is present) in a directory. For instance, it
is implicitly used in the Open File, Delete File, Copy File or
Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. If no such entry
is found, or if the entry found is not a directory, then this
mechanism fails.

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
True File represents a frozen directory. The Expand Frozen
Directory primitive mechanism is used to expand the existing
True File into directory entries in the local directory exten-
sions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.
Remote Mechanisms

The remote mechanisms provided by the present invention
are now described. Recall that remote mechanisms are used
by the operating system in responding to requests from other
processors. These mechanisms enable the capabilities of the
present invention in a peer-to-peer network mode of opera-
tion.

In a presently preferred embodiment, processors commu-
nicate with each other using a remote procedure call (RPC)
style interface, running over one of any number of commu-
nication protocols such as IPX/SPX or TCP/IP. Each peer
processor which provides access to its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by its
peers.

US 7,945,544 B2

23

The following remote mechanisms are described:

1. Locate True File;

2. Reserve True File;

3. Request True File;

4. Retire True File;

5. Cancel Reservation;

6. Acquire True File;

7. Lock Cache;

8. Update Cache; and

9. Check Expiration Date.

1. Locate True File

This mechanism allows a remote processor to determine
whether the local processor contains a copy of a specific True
File. The mechanism begins with a True Name and a flag
indicating whether to forward requests for this file to other
servers. This mechanism is now described with reference to
FIG. 28.

First determine if the True File is available locally or if
there is some indication of where the True File is located (for
example, in the Source IDs field). Look up the requested True
Name in the True File registry 126 (Step S432).

If'a True File registry entry record 140 is not found for this
True Name (Step S434), and the flag indicates that the request
is not to be forwarded (Step S436), respond negatively (Step
S438). That is, respond to the eftect that the True File is not
available.

One the other hand, if a True File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436), then
forward a request for this True File to some other processors
in the system (Step S442). If the source table for the current
processor identifies one or more publishing servers which
should have a copy of this True File, then forward the request
to each of those publishing servers (Step S436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a
True File ID or Compressed File ID (Step S440), respond
positively (Step S444). If the entry includes a True File ID
then this provides the identity or disk location of the actual
physical representation of the file or file segment required. If
the entry include a Compressed File 1D, then a compressed
version of the True File may be stored instead of; or in addi-
tion to, an uncompressed version. This field provides the
identity of the actual representation of the compressed ver-
sion of the file.

If the True File registry entry record 140 is found (Step
S434) but does notinclude a True File ID (the File ID is absent
if the actual file is not currently present at the current location)
(Step S440), and if the True File registry entry record 140
includes one or more source processors, and if the request can
be forwarded, then forward the request for this True File to
one or more of the source processors (Step S444).

2. Reserve True File

This mechanism allows a remote processor to indicate that
it depends on the local processor for access to a specific True
File. It takes a True Name as input. This mechanism is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the True
File registry entry record 140 includes no source IDs for
removable storage volumes, then this processor does not have
access to a copy of the given file. Reply negatively.

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry record

20

25

30

35

40

45

50

55

60

65

24

140. Reply positively, with an indication of whether the
reserved True File is on line or off line.
3. Request True File

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a True
Name and responds positively by sending a True File back to
the requesting processor. The mechanism operates as follows:

(A) Find the True File registry entry record 140 associated
with the given True Name. If there is no such True File
registry entry record 140, reply negatively.

(B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism also fails.

(C) Send the local True File in either it is uncompressed or
compressed form to the requesting remote processor. Note
that if the True File is a compound file, the components are not
sent.

(D) If the remote file is listed in the dependent process list
of'the True File registry entry record 140, remove it.

4. Retire True File

This mechanism allows a remote processor to indicate that
it no longer plans to maintain a copy of a given True File. An
alternate source of the True File can be specified, if, for
instance, the True File is being moved from one server to
another. It begins with a True Name, a requesting processor
1D, and an optional alternate source. This mechanism oper-
ates as follows:

(A) Find a True Name entry in the True File registry 126. If
there is no entry for this True Name, this mechanism’s task is
complete.

(B) Find the requesting processor on the source list and, if
it is there, remove it.

(C) If an alternate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File primitive
mechanism to search for another copy of the file. If it fails,
raise a serious error.

5. Cancel Reservation

This mechanism allows a remote processor to indicate that
it no longer requires access to a True File stored on the local
processor. It begins with a True Name and a requesting pro-
cessor ID and proceeds as follows:

(A) Find the True Name entry in the True File registry 126.
If there is no entry for this True Name, this mechanism’s task
is complete.

(B) Remove the identity of the requesting processor from
the list of dependent processors, if it appears.

(C) Ifthe list of dependent processors becomes zero and the
use count is also zero, delete the True File.

6. Acquire True File

This mechanism allows a remote processor to insist that a
local processor make a copy of a specified True File. Itisused,
for example, when a cache client wants to write through a new
version of a file. The Acquire True File mechanism begins
with a data item and an optional True Name for the data item
and proceeds as follows:

(A) Confirm that the requesting processor has the right to
require the local processor to acquire data items. If not, send
a negative reply.

(B) Make a local copy of the data item transmitted by the
remote processor.

(C) Assimilate the data item into the True File registry of
the local processor.

(D) If a True Name was provided with the file, the True
Name calculation can be avoided, or the mechanism can
verify that the file received matches the True Name sent.

US 7,945,544 B2

25

(E) Add an entry in the dependent processor list of the true
file registry record indicating that the requesting processor
depends on this copy of the given True File.

(F) Send a positive reply.

7. Lock Cache

This mechanism allows a remote cache client to lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The mecha-
nism begins with a pathname and proceeds as follows:

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists, reply
negatively.

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the file is
already locked.

(C) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply positively.

8. Update Cache

This mechanism allows a remote cache client to unlock a
local file and update it with new contents. It begins with a
pathname and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding to the given pathname. Reply negatively if no
such entry exists or if the entry is not locked.

Link the given pathname to the given True Name using the
Link Path to True Name primitive mechanism.

Unlock the local directory extensions table entry record
138 and return positively.

9. Check Expiration Date

Return current or new expiration date and possible alter-
native source to caller.

Background Processes and Mechanisms

The background processes and mechanisms provided by
the present invention are now described. Recall that back-
ground mechanisms are intended to run occasionally and at a
low priority to provide automated management capabilities
with respect to the present invention.

The following background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links;

4. Verify Region; and

5. Groom Source List.

1. Mirror True File

This mechanism is used to ensure that files are available in
alternate locations in mirror groups or archived on archival
servers. The mechanism depends on application-specific
migration/archival criteria (size, time since last access, num-
ber of copies required, number of existing alternative sources)
which determine under what conditions a file should be
moved. The Mirror True File mechanism operates as follows,
using the True File specified, perform the following steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the True File registry entry
record 140 for the True File. This step determines how many
copies of the True. File are available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file should
be sent. Use the Acquire True File remote mechanism to copy
the True File to the selected mirror group server. Add the
identity of the selected system to the source list for the True
File.

2. Groom Region

This mechanism is used to automatically free up spacein a

processor by deleting data items that may be available else-

10

20

25

30

35

40

45

50

55

60

26

where. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if there
is an alternate online source for it, it has not been accessed in
a given number of days, and it is larger than a given size). This
mechanism operates as follows:

Repeat the following steps (i) to (iii) with more aggressive
grooming criteria until sufficient space is freed or until all
grooming criteria have been exercised. Use grooming infor-
mation to determine how much space has been freed. Recall
that, while grooming is in effect, grooming information
includes a table of pathnames selected for deletion, and keeps
track of the amount of space that would be freed if all of the
files were deleted.

(1) Begin Grooming (using the primitive mechanism).

(i) For each pathname in the specified region, for the True
File corresponding to the pathname, ifthe True File is present,
has at least one alternative source, and meets application
specific grooming criteria for the region, select the file for
removal (using the primitive mechanism).

(ii1) End Grooming (using the primitive mechanism).

If the region is used as a cache, no other processors are
dependent on True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming
criteria would ordinarily eliminate the least recently accessed
True Files first. This is best done by sorting the True Files in
the region by the most recent access time before performing
step (i1) above. The application specific criteria would thus be
to select for removal every True File encountered (beginning
with the least recently used) until the required amount of free
space is reached.

3. Check for Expired Links

This mechanism is used to determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corresponding to the pathname, perform the following
step:

If the True File registry entry record 140 corresponding to
the True File contains at least one source which is a publishing
server, and if the expiration date on the dependency is past or
close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate source is
suggested, add the source to the True File registry entry
record 140.

(C) It no acceptable alternate source was found in steps (A)
or (B) above, make a local copy of the True File.

(D) Remove the expired source.

4. Verify Region

This mechanism can be used to ensure that the data items in
the True File registry 126 have not been damaged accidentally
or maliciously. The operation of this mechanism is described
by the following steps:

(A) Search the local directory extensions table 124 for each
pathname in the specified region and then perform the fol-
lowing steps:

(1) Get the True File name corresponding to the pathname;

(ii) If the True File registry entry 140 for the True File does

not have a True File ID or compressed file ID, ignore it.

(ii1) Use the Verify True File mechanism (see extended

mechanisms below) to confirm that the True File speci-
fied is correct.

US 7,945,544 B2

27

5. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or its
mirror criteria are changed, it may be necessary to inspect the
affected True Files to determine whether there are too many
mirror copies. This can be done with the following steps:

For each affected True File,

(A) Search the local directory extensions table to find each
region that refers to the True File.

(B) Create a set of “required sources”, initially empty.

(C) For each region found,

(a) determine the mirroring criteria for that region,

(b) determine which sources for the True File satisfy the
mirroring criteria, and

(c) add these sources to the set of required sources.

(D) For each source in the True File registry entry, if the
source identifies a remote processor (as opposed to removable
media), and if the source is not a publisher, and if the source
is not in the set of required sources, then eliminate the source,
and use the Cancel Reservation remote mechanism to elimi-
nate the given processor from the list of dependent processors
recorded at the remote processor identified by the source.
Extended Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms run
within application programs over the operating system to
provide solutions to specific problems and applications.

The following extended mechanisms are described:

1. Inventory Existing Directory;

2. Inventory Removable, Read-only Files;

3. Synchronize Directories;

4. Publish Region;

5. Retire Directory;

6. Realize Directory at Location;

7. Verify True File;

8. Track for Accounting Purposes; and

9. Track for Licensing Purposes.

1. Inventory Existing Directory

This mechanism determines the True Names of files in an
existing on-line directory in the underlying operating system.
One purpose of this mechanism is to install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-
ately all duplicate files from the file system being traversed. If
several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

(A) Traverse the underlying file system in the operating
system. For each file encountered, excluding directories, per-
form the following:

(1) Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes its
True Name and moves its data into the True File registry
126.

(ii) Create a pathname consisting of the path to the volume
directory and the relative path of the file on the media.
Link this path to the computed True Name using the Link
Path to True Name primitive mechanism.

2. Inventory Removable, Read-Only Files

A system with access to removable, read-only media vol-
umes (such as WORM disks and CD-ROMs) can create a
usable inventory of the files on these disks without having to
make online copies. These objects can then be used for archi-
val purposes, directory overlays, or other needs. An operator
must request that an inventory be created for such a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as

20

25

30

35

40

45

50

55

60

65

28
diskettes and CD-ROMs, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to identify
each file, providing a way to locate the data independent of its
name, date of creation, or location.

The inventory can be used for archival of data (making it
possible to avoid archiving data when those data are already
on a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved from
removable volumes), for version control (making it possible
to generate a new version of a CD-ROM without having to
copy the old version), and for other purposes.

The inventory is made by creating a volume directory in the
media inventory in which each file named identifies the data
item on the volume being inventoried. Data items are not
copied from the removable volume during the inventory pro-
cess.

An operator must request that an inventory be created for a
specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism
which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an inventory the following steps are taken:

(A) A volume directory in the media inventory is created to
correspond to the volume being inventoried. Its contextual
name identifies the specific volume.

(B) A sourcetable entry 144 for the volume is created in the
source table 130. This entry 144 identifies the physical source
volume and the volume directory created in step (A).

(C) The file system on the volume is traversed. For each file
encountered, excluding directories, the following steps are
taken:

(1) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primitive mechanism.
The source field of the True Name registry entry 140
identifies the source table entry 144.

(i1) A pathname is created consisting of the path to the
volume directory and the relative path of the file on the
media. This path is linked to the computed True Name
using Link Path to True Name primitive mechanism.

(D) After all files have been inventoried, the volume direc-
tory is frozen. The volume directory serves as a table of
contents for the volume. It can be copied using the Copy File
or Directory primitive mechanism to create an “overlay”
directory which can then be modified, making it possible to
edit a virtual copy of a read-only medium.

3. Synchronize Directories

Given two versions of a directory derived from the same
starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file is
changed in both versions, this mechanism provides a user exit
for handling the discrepancy. By using True Names, compari-
sons are instantaneous, and no copies of files are necessary.

This mechanism lets a local processor synchronize a direc-
tory to account for changes made at a remote processor. Its
purpose is to bring a local copy of a directory up to date after
a period of no communication between the local and remote
processor. Such a period might occur if the local processor

US 7,945,544 B2

29

were a mobile processor detached from its server, or if two
distant processors were run independently and updated
nightly.

An advantage of the described synchronization process is
that it does not depend on synchronizing the clocks of the
local and remote processors. However, it does require that the
local processor track its position in the remote processor’s
audit file.

This mechanism does not resolve changes made simulta-
neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, operator
intervention, is required.

The mechanism takes as input a start time, a local directory
pathname, a remote processor name, and a remote directory
pathname name, and it operates by the following steps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mechanism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the remote
directory, perform the following steps:

(1) Compute the pathname of the corresponding file in the
local directory. Determine the True Name of the corre-
sponding file.

(ii) If the True Name of the local file is the same as the old
True Name in the audit file, or if there is no local file and
the audit entry indicates a new file is being created, link
the new True Name in the audit file to the local pathname
using the Link Path to True Name primitive mechanism.

(iii) Otherwise, note that there is a problem with the syn-
chronization by sending a message to the operator or to
aproblem resolution program, indicating the local path-
name, remote pathname, remote processor, and time of
change.

(C) After synchronization is complete, record the time of
the final change. This time is to be used as the new start time
the next time this directory is synchronized with the same
remote processor.

4. Publish Region

The publish region mechanism allows a processor to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor to service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the publishing
system’s True File registry entry record 140 for each file.

When a remote file is copied, for instance using the Copy
File operating system mechanism, the expiration date is cop-
ied into the source field of the client’s True File registry entry
record 140. When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in background,
check for expired links, to make sure it still has access to these
files. This is described in the background mechanism Check
for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those
files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

20

25

30

35

40

45

50

55

60

65

30

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred alternate
source processor for clients to use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(1) Get the True Name of the file from its path and find the
True File registry entry 140 associated with the True
Name.

(i1) Determine an alternate source for the True File. If the
source IDs field of the TFR entry includes the preferred
alternate source, that is the alternate source. If it does
not, but includes some other source, that is the alternate
source. If it contains no alternate sources, there is no
alternate source.

(iii) For each dependent processor in the True File registry
entry 140, ask that processor to retire the True File,
specifying an alternate source if one was determined,
using the remote mechanism.

6. Realize Directory at Location

This mechanism allows the user or operating system to
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,
or if the source is being retired.

This mechanism is provided in the following steps for each
file in the given directory, with the exception of subdirecto-
ries:

(A) Get the local directory extensions table entry record
138 given the pathname of the file. Get the True Name of the
local directory extensions table entry record 138. This service
assimilates the file if it has not already been assimilated.

(B) Realize the corresponding True File at the given loca-
tion. This service causes it to be copied to the given location
from a remote system or removable media.

7. Verify True File

This mechanism is used to verity that the data item ina True
File registry 126 is indeed the correct data item given its True
Name. Its purpose is to guard against device errors, malicious
changes, or other problems.

If an error is found, the system has the ability to “heal”
itself by finding another source for the True File with the
given name. [t may also be desirable to verify that the error
has not propagated to other systems, and to log the problem or
indicate it to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Calculate True Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and oper-
ates in the following steps:

(A) Find the True File registry entry record 140 corre-
sponding to the given True Name.

(B) If there is a True File ID for the True File registry entry
record 140 then use it. Otherwise, indicate that no file exists to
verify.

(C) Calculate the True Name of the data item given the file
ID of the data item.

(D) Confirm that the calculated True Name is equal to the
given True Name.

(E) If the True Names are not equal, there is an error in the
True File registry 126. Remove the True File ID from the True

US 7,945,544 B2

31

File registry entry record 140 and place it somewhere else.
Indicate that the True File registry entry record 140 contained
an error.

8. Track for Accounting Purposes

This mechanism provides a way to know reliably which
files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to content by owner, indepen-
dent of the name, date, or other properties of the data item, and
tracks the uses of specific data items and files by content for
accounting purposes. True names make it possible to identify
each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for accounting or billing
purposes. The mechanism operates in the following steps:

(A) Note every time a file is created or deleted, for instance
by monitoring audit entries in the Process Audit File Entry
primitive mechanism. When such an event is encountered,
create an entry 148 in the accounting log 134 that shows the
responsible party and the identity of the file created or
deleted.

(B) Every time a file is transmitted, for instance when a file
is copied with a Request True File remote mechanism or an
Acquire True File remote mechanism, create an entry in the
accounting log 134 that shows the responsible party, the iden-
tity of the file, and the source and destination processors.

(C) Occasionally run an accounting program to process the
accounting log 134, distributing the events to the account
records of each responsible party. The account records can
eventually be summarized for billing purposes.

9. Track for Licensing Purposes

This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a safe way to
identify licensed material. This service allows proof of pos-
session of specific files according to their contents without
disclosing their contents.

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by creating a report of users who do
not have proper authorization).

One possible way to perform license validation is to per-
form occasional audits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is, files
which are required in order to use the product, and which do
not occur in other products) Typically, for a software product,
this would include the main executable image and perhaps
other major files such as clip-art, scripts, or online help. Also
record the identity of each system which is authorized to have
a copy of the file.

(B) Occasionally, compare the contents of each user pro-
cessor against the license table 136. For each True Name in
the license table do the following:

(1) Unless the user processor is authorized to have a copy of
the file, confirm that the user processor does not have a
copy of the file using the Locate True File mechanism.

(ii) If the user processor is found to have a file that it is not
authorized to have, record the user processor and True
Name in a license violation table.

20

25

30

35

40

45

50

55

60

65

32

The System in Operation

Given the mechanisms described above, the operation of a
typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan-
tially unique identifiers (True Names), the identifiers depend-
ing on all of the data in the data items and only on the data in
the data items. The primitive mechanisms Calculate True
Name and Assimilate Data [tem support this property. For any
given data item, using the Calculate True Name primitive
mechanism, a substantially unique identifier or True Name
for that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
(unless they are required for some reason such as backups or
mirror copies in a fault-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to the
same data item. The primitive mechanisms Assimilate Data
Items and New True File support this property. Using the
Assimilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example, if
adata file is being copied onto a system from a floppy disk, if,
based on the True Name of the data file, it is determined that
the data file already exists in the system (by the same or some
other name), then the duplicate copy will not be installed. If
the data item was being installed on the system by some name
other than its current name, then, using the Link Path to True
Name primitive mechanism, the other (or new) name can be
linked to the already existing data item.

In general, the mechanisms of the present invention operate
in such a way as to avoid recreating an actual data item at a
location when a copy of that data item is already present at
that location. In the case of a copy from a floppy disk, the data
item (file) may have to be copied (into a scratch file) before it
can be determined that it is a duplicate. This is because only
one processor is involved. On the other hand, in a multipro-
cessor environment or DP system, each processor has a record
of'the True Names of the data items on that processor. When
a data item is to be copied to another location (another pro-
cessor) in the DP system, all that is necessary is to examine
the True Name of the data item prior to the copying. If a data
item with the same True Name already exists at the destina-
tion location (processor), then there is no need to copy the
data item. Note that if a data item which already exists locally
at a destination location is still copied to the destination
location (for example, because the remote system did not
have a True Name for the data item or because it arrives as a
stream of un-named data), the Assimilate Data Item primitive
mechanism will prevent multiple copies of the data item from
being created.

Since the True Name of a large data item (a compound data
item) is derived from and based on the True Names of com-
ponents of the data item, copying of an entire data item can be
avoided. Since some (or all) of the components of a large data
item may already be present at a destination location, only
those components which are not present there need be copied.
This property derives from the manner in which True Names
are determined.

US 7,945,544 B2

33

When a file is copied by the Copy File or Directory oper-
ating system mechanism, only the True Name of the file is
actually replicated.

When a file is opened (using the Open File operating sys-
tem mechanism), it uses the Make True File Local primitive
mechanism (either directly or indirectly through the Create
Scratch File primitive mechanism) to create a local copy of
the file. The Open File operating system mechanism uses the
Make True File Local primitive mechanism, which uses the
Realize True File from Location primitive mechanism,
which, in turn uses the Request True File remote mechanism.

The Request True File remote mechanism copies only a
single data item from one processor to another. If the data item
is a compound file, its component segments are not copied,
only the indirect block is copied. The segments are copied
only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from
Location primitive mechanism to make sure that component
segments are locally available, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote sys-
tem, only its True Name is copied. When it is opened, only its
indirect block is copied. When the corresponding file is read,
the required component segments are realized and therefore
copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to a
given data identifier or True Name may reside anywhere in the
system (that is, locally, remotely, offline, etc). If a required
True File is present locally, then the data in the file can be
accessed. If the data item is not present locally, there are a
number of ways in which it can be obtained from wherever it
is present. Using the source IDs field of the True File registry
table, the location(s) of copies of the True File corresponding
to a given True Name can be determined. The Realize True
File from Location primitive mechanism tries to make a local
copy of a True File, given its True Name and the name of a
source location (processor or media) that may contain the
True File. If, on the other hand, for some reason it is not
known where there is a copy of the True File, or if the pro-
cessors identified in the source IDs field do not respond with
the required True File, the processor requiring the data item
can make a general request for the data item using the Request
True File remote mechanism from all processors in the sys-
tem that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent of
its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in which
True Names are determined. This can be used for security
purposes, for instance, to check for viruses and to verify that
data retrieved from another location is the desired, and
requested data. For example, the system might store the True
Names of all executable applications on the system and then
periodically redetermine the True Names of each of these
applications to ensure that they match the stored True Names.
Any change in a True Name potentially signals corruption in
the system and can be further investigated. The Verify Region
background mechanism and the Verify True File extended
mechanisms provide direct support for this mode of opera-
tion. The Verify Region mechanism is used to ensure that the
data items in the True File registry have not been damaged
accidentally or maliciously. The Verify True File mechanism

20

25

30

35

40

45

50

55

60

65

34

verifies that a data item in a True File registry is indeed the
correct data item given its True Name.

Once a processor has determined where (that is, at which
other processor or location) a copy of a data item is in the DP
system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely on
retrieving the data from somewhere else when needed. To this
end the system allows a processor to Reserve (and cancel the
reservation of) True Files at remote locations (using the
remote mechanism). In this way the remote locations are put
on notice that another location is relying on the presence of
the True File at their location.

A DP system employing the present invention can be made
into a fault-tolerant system by providing a certain amount of
redundancy of data items at multiple locations in the system.
Using the Acquire True File and Reserve True File remote
mechanisms, a particular processor can implement its own
form of fault-tolerance by copying data items to other pro-
cessors and then reserving them there. However, the system
also provides the Mirror True File background mechanism to
mirror (make copies) of the True File available elsewhere in
the system. Any degree of redundancy (limited by the number
of'processors or locations in the system) can be implemented.
As a result, this invention maintains a desired degree or level
of redundancy in a network of processors, to protect against
failure of any particular processor by ensuring that multiple
copies of data items exist at different locations.

The data structures used to implement various features and
mechanisms of this invention store a variety of useful infor-
mation which can be used, in conjunction with the various
mechanisms, to implement storage schemes and policies in a
DP system employing the invention. For example, the size,
age and location of a data item (or of groups of data items) is
provided. This information can be used to decide how the data
items should be treated. For example, a processor may imple-
ment a policy of deleting local copies of all data items over a
certain age if other copies of those data items are present
elsewhere in the system. The age (or variations on the age) can
be determined using the time of last access or modification in
the local directory extensions table, and the presence of other
copies of the data item can be determined either from the Safe
Flag orthe source IDs, or by checking which other processors
in the system have copies of the data item and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users (or regard-
less of whether the data items even have names). The system
can also track data items that have different names (in difter-
ent or the same location) as well as different data items that
have the same name. Since a data item is identified by the data
in the item, without regard for the context of the data, the
problems of inconsistent naming in a DP system are over-
come.

In operation, the system can publish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of these
data items. True Names are globally unique identifiers which
can be published simply by copying them. For example, a
user might create a textual representation of a file on system
A with True Name N (for instance as a hexadecimal string),
and post it on a computer bulletin board. Another user on
system B could create a directory entry F for this True Name
N by using the Link Path to True Name primitive mechanism.

US 7,945,544 B2

35

(Alternatively, an application could be developed which hides
the True Name from the users, but provides the same public
transfer service.)

When a program on system B attempts to open pathname F
linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True
File remote mechanism to search for True Name N on one or
more remote processors, such as system A. If system B has
access to system A, it would be able to realize the True File
(using the Realize True File from Location primitive mecha-
nism) and use it locally. Alternatively, system B could find
True Name N by accessing any publicly available True Name
server, if the server could eventually forward the request to
system A.

Clients of a local server can indicate that they depend on a
given True File (using the Reserve True File remote mecha-
nism) so that the True File is not deleted from the server
registry as long as some client requires access to it. (The
Retire True File remote mechanism is used to indicate that a
client no longer needs a given True File.)

A publishing server, on the other hand, may want to pro-
vide access to many clients, and possibly anonymous ones,
without incurring the overhead of tracking dependencies for
each client. Therefore, a public server can provide expiration
dates for True Files in its registry. This allows client systems
to safely maintain references to a True File on the public
server. The Check For Expired Links background mechanism
allows the client of a publishing server to occasionally con-
firm that its dependencies on the publishing server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or of needed)
data in the system by requesting it from a server processor.
Any such processor can send a request to update or resyn-
chronize all of its directories (starting at a root directory),
simply by using the Synchronize Directories extended
mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) a list
of all True Names in the system on a given day (or at some
given time), a user can later refer back to that list to show that
aparticular data item was present in the system at the time that
list was published. Such a mechanism is useful in tracking, for
example, laboratory notebooks or the like to prove dates of
conception of inventions. Such a mechanism also permits
proofofpossession of a data item at a particular date and time.

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted
through its computer systems, and use these identities to
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the infor-
mation utility and/or its data suppliers; this information
would be joined periodically with the information in the
accounting log file to produce customer statements.

Backing up data items in a DP system employing the
present invention can be done based on the True Names of the
data items. By tracking backups using True Names, duplica-
tion in the backups is prevented. In operation, the system
maintains a backup record of data identifiers of data items
already backed up, and invokes the Copy File or Directory
operating system mechanism to copy only those data items
whose data identifiers are not recorded in the backup record.

20

25

30

35

40

45

50

55

60

65

36

Once a data item has been backed up, it can be restored by
retrieving it from its backup location, based on the identifier
of the data item. Using the backup record produced by the
backup to identify the data item, the data item can be obtained
using, for example, the Make True File Local primitive
mechanism.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local registry (its cache) with a remote
Local Directory Extensions table (from the cache server).
Whenever a file is opened (or read), the Local Directory
Extensions table is used to identify the True Name, and the
Make True File Local primitive mechanism inspects the local
registry. When the local registry already has a copy, the file is
already cached. Otherwise, the Locate True File remote
mechanism is used to get a copy of the file. This mechanism
consults the cache server and uses the Request True File
remote mechanism to make a local copy, effectively loading
the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client’s True File registry. While a file is being modified on a
cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

In operation, when the system is being used to cache data
items, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname of
a file). If the data associated with such a key is changed, the
client’s cache becomes inconsistent; when the cache client
refers to that name, it will retrieve the wrong data. In order to
maintain cache consistency it is necessary to notify every
client immediately whenever a change occurs on the server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When the
data associated with a name changes, the key itself changes.
Thus, when a cache client wishes to access the modified data
associated with a given file name, it will use a new key (the
True Name of the new file) rather than the key to the old file
contents in its cache. The client will always request the cor-
rect data, and the old data in its cache will be eventually aged
and flushed by the Groom Cache background mechanism.

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present invention
makes it possible for a single server to support a much larger
number of clients than is otherwise possible.

In operation, the system automatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism creates
an audit file record, which is eventually processed by the
Process Audit File Entry primitive mechanism. This mecha-
nism uses the New True File primitive mechanism for any file
which is newly created, which in turn uses the Mirror True
File background mechanism if the True File is in a mirrored or
archived region. This mechanism causes one or more copies
of the new file to be made on remote processors.

In operation, the system can efficiently record and preserve
any collection of data items. The Freeze Directory primitive
mechanism creates a True File which identifies all of the files
in the directory and its subordinates. Because this True File
includes the True Names of its constituents, it represents the

US 7,945,544 B2

37

exact contents of the directory tree at the time it was frozen.
The frozen directory can be copied with its components pre-
served.

The Acquire True File remote mechanism (used in mirror-
ing and archiving) preserves the directory tree structure by
ensuring that all of the component segments and True Files in
acompound data item are actually copied to a remote system.
Of course, no transfer is necessary for data items already in
the registry of the remote system.

In operation, the system can efficiently make a copy of any
collection of data items, to support a version control mecha-
nism for groups of the data items.

The Freeze Directory primitive mechanism is used to cre-
ate a collection of data items. The constituent files and seg-
ments referred to by the frozen directory are maintained in the
registry, without any need to make copies of the constituents
each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in Direc-
tory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be copied from one pathname to
another efficiently, merely by copying its True Name. The
Copy File operating system mechanism is used to copy a
frozen directory.

Thus it is possible to efficiently create copies of different
versions of a directory, thereby creating a record of its history
(hence a version control system).

In operation, the system can maintain a local inventory of
all the data items located on a given removable medium, such
as a diskette or CD-ROM. The inventory is independent of
other properties of the data items such as their name, location,
and date of creation.

The Inventory Existing Directory extended mechanism
provides a way to create True File Registry entries for all of
the files in a directory. One use of this inventory is as a way to
pre-load a True File registry with backup record information.
Those files in the registry (such as previously installed soft-
ware) which are on the volumes inventoried need not be
backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each file
in a frozen directory structure. By copying and modifying this
directory, it is possible to create an on line patch, or small
modification of an existing read-only file. For example, it is
possible to create an online representation of a modified CD-
ROM, such that the unmodified files are actually on the CD-
ROM, and only the modified files are online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and tracks the
uses of specific data items and files by content for accounting
purposes. Using the Track for Accounting Purposes extended
mechanism provides a way to know reliably which files have
been stored on a system or transmitted from one system to
another.

True Names in Relational and Object-Oriented Databases

Although the preferred embodiment of this invention has
been presented in the context of a file system, the invention of
True Names would be equally valuable in a relational or
object-oriented database. A relational or object-oriented data-
base system using True Names would have similar benefits to
those of the file system employing the invention. For instance,
such a database would permit efficient elimination of dupli-
cate records, support a cache for records, simplify the process
of maintaining cache consistency, provide location-indepen-

20

25

30

35

40

45

50

55

60

65

38

dent access to records, maintain archives and histories of
records, and synchronize with distant or disconnected sys-
tems or databases.

The mechanisms described above can be easily modified to
serve in such a database environment. The True Name regis-
try would be used as a repository of database records. All
references to records would be via the True Name of the
record. (The Local Directory Extensions table is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
lating records into the registry, and then updating a primary
key index to map the key of the record to its contents by using
the True Name as a pointer to the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be employed in such a system.
These mechanisms could include, for example, the mecha-
nisms for calculating true names, assimilating, locating, real-
izing, deleting, copying, and moving True Files, for mirroring
True Files, for maintaining a cache of True Files, for groom-
ing True Files, and other mechanisms based on the use of
substantially unique identifiers.

While the invention has been described in connection with
what is presently considered to be the most practical and
preferred embodiments, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of'the appended claims.

We claim:

1. A computer-implemented method, the method compris-
ing:

(A) for a first data item comprising a first plurality of parts,

(al) applying a first function to each part of said first
plurality of parts to obtain a corresponding part value
for each part of said first plurality of parts, wherein
each part of said first plurality of parts comprises a
corresponding sequence of bits, and wherein the part
value for each particular part of said first plurality of
parts is based, at least in part, on the corresponding
bits in the particular part, and wherein two identical
parts will have the same part value as determined
using said first function, wherein said first function
comprises a first hash function; and

(a2) obtaining a first value for the first data item, said first
value obtained by applying a second function to the
part values of said first plurality of parts of said first
data item, said second function comprising a second
hash function;

(B) for a second data item comprising a second plurality of
parts,

(b1) applying said first function to each part of said
second plurality of parts to obtain a corresponding
part value for each part of said second plurality of
parts, wherein each part of said second plurality of
parts consists of a corresponding sequence of bits, and
wherein the part value for each particular part of said
second plurality of parts is based, at least in part, on
the corresponding bits in the particular part of the
second plurality of parts; and

(b2) obtaining a second value for the second data item by
applying said second function to the part values of
said second plurality of parts of said second data item;
and

US 7,945,544 B2

39

(C) ascertaining whether or not said first data item corre-
sponds to said second data item based, at least in part, on
said first value and said second value.

2. The method of claim 1 wherein said first data item
corresponds to said second data item when said first value is
identical to said second value.

3. The method of claim 1 wherein said ascertaining in (C)
is used to determine whether the first data item matches the
second data item.

4. The method of claim 1 wherein said ascertaining in (C)
is used to determine whether the first data item is a copy of the
second data item.

5. The method of claim 1 wherein the first function is the
same as the second function.

6. The method of claim 1 wherein the first plurality of parts
of the first data item are non-overlapping, and wherein the
second plurality of parts of the second data item are non-
overlapping.

7. The method of claim 1 wherein each of the parts in the
first plurality of parts and each of the parts in the second
plurality of parts is the same size.

8. A computer-implemented method comprising:

(A) maintaining a database of values, at least one value for

each data item of a plurality of data items,

wherein each data item of the plurality of data items
comprises a corresponding one or more parts, and

wherein each of the one or more parts of each data item
comprises a corresponding sequence of bits, and

wherein each of the one or more parts of each data item
has a corresponding part value, the part value for each
particular part being based on a first given function of
the corresponding sequence bits for that particular
part,

wherein two identical parts will have the same part value
as determined using the first given function, and

the value for each particular data item being based, at
least in part, on a second given function of the part
values of the one or more parts of that particular data
item, and

wherein the first given function comprises a first hash
function, and the second given function comprises a
second hash function;
(B) obtaining a second value, the second value correspond-
ing to a second data item, the second data item compris-
ing a corresponding one or more parts,
each of the one or more parts of the second data item
comprising a corresponding sequence of bits,

each of the one or more parts of the second data item
having a corresponding part value,

wherein the part value for each particular part of the
second data item is based on the first given function of
the corresponding sequence of bits in that particular
part of the second data item; and

wherein the second value is based on the second function
of'the one or more part values of the second data item;
and

(C) ascertaining whether or not the second data item cor-
responds to any of the plurality of data items, based, at
least in part, on whether or not the second value corre-
sponds to any value in the database of values.

9. The method of claim 8 wherein the second value corre-
sponds to a particular value in the database of values when the
second value is equal to the particular value in the database of
values.

10. The method of claim 8 wherein the first hash function
is selected from the functions MD5 and SHA.

20

25

30

35

40

45

50

55

60

65

40

11. The method of claim 10 wherein the second hash func-
tion is selected from the functions MD5 and SHA.

12. The method of claim 8 wherein the first given function
is the same as the second given function.

13. The method of claim 8 wherein the database comprises
amapping from data item values to corresponding data items.

14. The method of claim 8 wherein the second value is
obtained as part of a search for the second data item.

15. The method of claim 8 wherein the second value is
obtained as part of a search for data items matching the
second data item.

16. The method of claim 8 further comprising:

(D) when the second value corresponds to a particular
value in the database, providing information about a
particular data item corresponding to the particular
entry.

17. The method of claim 8 wherein the step (B) of obtaining

the second value comprises calculating the second value.

18. The method of claim 8 wherein at least some of the data
items are files.

19. The method of claim 8 wherein the database comprises
a mapping from values to corresponding data items, and
wherein, when the second value corresponds to the first value,
information about the corresponding data item is provided.

20. The method of claim 8 wherein the parts are segments.

21. The method of claim 8 further comprising:

(D) adding a new value to the database, wherein the new
value corresponds to a new data item distinct from the
plurality of data items.

22. A computer-implemented method comprising:

(A) obtaining a particular data item value corresponding to
a particular data item, the particular data item compris-
ing a corresponding one or more parts,

each of the one or more parts of the particular data item
comprising a corresponding sequence of bits,

each of the one or more parts of the particular data item
having a corresponding part value,

wherein the part value for each specific part of the one or
more parts of the particular data item is based, at least in
part, on a first given function of the corresponding
sequence of bits in that specific part of the particular data
item;

wherein two identical parts will have the same part value as
determined using the first given function, and

wherein the particular data item value is based, at least in
part, on a second given function of the one or more part
values of the particular data item,

wherein the first given function comprises a first hash func-
tion, and the second given function comprises a second
hash function; and

(B) ascertaining whether or not the particular data item
corresponds to any of a plurality of data items, based, at
least in part, on whether or not the particular data item
value corresponds to any value in a database of data item
values,

wherein the database of data item values comprises at least
one data item value for each data item of the plurality of
data items,

wherein each data item of the plurality of data items com-
prises a corresponding one or more parts, and

wherein each of the one or more parts of each data item of
the plurality of data items comprises a corresponding
sequence of bits, and

wherein each of the one or more parts of each data item of
the plurality of data items has a corresponding part
value, the part value for each particular part of the one or

US 7,945,544 B2

41

more parts of each data item being based on the first
given function of the corresponding sequence bits for
that particular part,

the data item value for each particular data item being
based, at leastin part, on the second given function of the
part values of the one or more parts of that particular data
item.

23. The method of claim 22 wherein step (D) of adding is

a background process.

24. The method of claim 22 wherein the first given function
is selected from the functions MD5 and SHA.

25. The method of claim 22 wherein the second given
function is selected from the functions MDS5 and SHA.

26. The method of claim 22 wherein the database com-
prises a mapping from data item values to corresponding data
items.

27. The method of claim 22 wherein the particular data
item value is obtained as part of a search for the particular data
item.

28. The method of claim 22 wherein the particular data
item value is obtained as part of a search for data items
matching the particular data item.

29. The method of claim 22 wherein the particular data
item value corresponds to a value in the database when the
particular data item value is equal to the value in the database.

30. The method of claim 22 wherein the data items are files.

31. The method of claim 22 wherein the first given function
is the same as the second given function.

32. A computer-implemented method comprising:

(A) maintaining a database comprising a mapping of data
item keys to corresponding data item information for
each of a plurality of data items, wherein each data item
of the plurality of data items has at least one data item
key,

wherein each data item of the plurality of data items com-
prises a corresponding one or more portions, and

wherein each of the one or more portions of each data item
comprises a corresponding sequence of bits, and

wherein each of the one or more portions of each data item
has a corresponding portion value, the portion value for
each particular portion being based on a first given func-
tion of the corresponding sequence bits for that particu-
lar portion, wherein the first given function comprises a
first hash function, and wherein two identical portions
will have the same portion value as determined using the
first given function,

the particular data item key for each particular data item
being based on a second given function of the portion
values of the one or more portions of that particular data
item, wherein the second given function comprises a
second hash function;

(B) obtaining a particular value, the particular value having
been determined from a corresponding one or more par-
ticular portions,

each of the one or more particular portions comprising a
corresponding sequence of bits,

each ofthe one or more particular portions having a corre-
sponding portion value, wherein the portion value for
each specific portion of the one or more particular por-
tions is based on the first given function of the corre-
sponding bits in that specific portion; and

wherein the particular value is based on the second func-
tion of the portion values of the one or more particular
portions; and

(C) using the particular value and the database to ascertain
whether or not the one or more particular portions cor-
respond to any of the plurality of data items.

10

20

25

30

35

40

45

50

55

60

42

33. The method of claim 32 wherein the one or more
particular portions are obtained as part of a search.

34. The method of claim 32 further comprising:

(D) when the one or more particular portions correspond to

a specific data item, providing information about that
specific data item.

35. The method of claim 34 wherein the information pro-
vided in (D) includes information about a location of a copy
of the specific data item.

36. A computer-implemented method comprising:

(A) for each particular data item of a plurality of data items:

(al) determining a corresponding particular data item
key; and

(a2) adding an entry to a database to map said particular
data item key to information about the particular data
item,

wherein each data item of the plurality of data items com-

prises a corresponding one or more parts, and
wherein each of the one or more parts of each data item
comprises a corresponding sequence of bits, and

wherein each of the one or more parts of each data item has
a corresponding part value, the part value for each par-
ticular part being based on a first given function of the
corresponding sequence bits for that particular part,
wherein the first given function comprises a first hash
function, wherein two identical parts will have the same
part value as determined using the first given function,

the data item key for each particular data item being based
on a second given function of the part values of the one
or more parts of that data item, wherein the second given
function comprises a second hash function;

(B) determining a second key value, the second key value

being based on one or more particular parts,

each of the one or more particular parts comprising a cor-

responding sequence of bits,

each of the one or more particular parts having a corre-

sponding part value, wherein the part value for each
specific part of the one or more particular parts is based
on the first given function of the corresponding bits in
that specific part; and

wherein the second key value is based on the second func-

tion of the part values of the one or more particular parts;
and

(C)using the second key value and the database to ascertain

whether or not the one or more particular parts corre-
spond to any of the plurality of data items.

37. The method of claim 36 wherein the one or more
particular parts are obtained as part of a search.

38. The method of claim 36 wherein the one or more
particular parts are obtained as part of a search for data items
comprising the one or more particular parts.

39. The method of claim 36 wherein the one or more
particular parts correspond to a specific data item of the
plurality of data items when the second key value is equal to
a data item key of the specific data item.

40. The method of claim 36 wherein the parts are segments.

41. The method of claim 36 wherein the step (C) of using
comprises:

looking up the second key value in the database.

42. The method of claim 36 wherein step (A) is a back-
ground process.

43. The method of claim 36 wherein the information about
a particular data item in the database includes location infor-
mation about the particular data item.

44. The method of claim 43 wherein the location informa-
tion includes a list of one or more locations of the particular
data item.

US 7,945,544 B2

43

45. The method of claim 36 wherein the information about
a particular data item in the database includes a copy of the
data item.

46. A computer-implemented method comprising:

(A) for each particular file of a plurality of files:

(a2) determining a particular digital key for the particu-
lar file, wherein the particular file comprises a first one
or more parts,

each part of said first one or more parts having a corre-
sponding part value,

the part value of each specific part of said first one or
more parts being based on a first function of the con-
tents of the specific part,

wherein two identical parts will have the same part value
as determined by the first function, and

wherein the particular digital key for the particular file is
determined using a second function ofthe one or more
of part values of said first one or more parts; and

(a2) adding the particular digital key of the particular file
to a database, the database including a mapping from
digital keys of files to information about the corre-
sponding files;

(B) determining a search key based on search criteria,

wherein the search criteria comprise a second one or
more parts, each of said second one or more parts of
said search criteria having a corresponding part value,
the part value of each specific part of said second one
or more parts being based on the first function of the
contents of the specific part, and wherein the search
key is determined using the second function of the one
or more of part values of said second one or more
parts;

(C) attempting to match the search key with a digital key in

the database; and

(D) if the search key matches a particular digital key in the

database, providing information about the file corre-

sponding to the particular digital key.

47. The method of claim 46 wherein step (A) is a back-
ground process.

48. The method of claim 46 wherein the plurality of files
are files located in a network of computers.

49. The method of claim 46 wherein the information pro-
vided in (D) includes location information about the file cor-
responding to the particular digital key.

50. The method of claim 49 wherein the location informa-
tion includes a list of one or more locations of the file corre-
sponding to the particular digital key.

20

25

30

35

40

45

44

51. The method of claim 46 wherein the information pro-
vided in (D) includes a copy of the file corresponding to the
particular digital key.

52. A computer-implemented method comprising:

(A) for each particular file of a plurality of files:

(al) determining a corresponding particular file key; and

(a2) adding an entry to a database to map said particular
file key to information about the particular file, the
information about the particular file including one or
more locations of the particular file,

wherein each file of the plurality of files comprises a cor-
responding one or more parts, and

wherein each of the one or more parts of each file has a
corresponding part value, the part value for each particu-
lar part being based on a first hash function of that
particular part, wherein two identical parts will have the
same part value as determined using the first hash func-
tion,

the file key for each particular file being based on a second
hash function of the part values of the one or more parts
of that file;

(B) determining a second key value, the second key value
being based on one or more particular parts,

each of the one or more particular parts having a corre-
sponding part value, wherein the part value for each
specific part of the one or more particular parts is based
on the first hash function of that specific part; and

wherein the second key value is based on the second hash
function of the part values of the one or more particular
parts; and

(C) comparing the second key value to key values in the
database to ascertain whether or not the one or more
particular parts correspond to any of the plurality of files.

53. The method of claim 52 wherein step (A) is a back-
ground process.

54. The method of claim 52 wherein the information about
a particular file in the database includes a copy of the file.

55. The method of claim 52 further comprising:

(D) when the second key value corresponds to a certain key
value in the database, providing information from the
database corresponding to the certain key value.

56. The method of claim 55 wherein the certain key value
was determined from a certain file, and wherein the informa-
tion provided in (D) includes one or more locations of the
certain file.

