
EXHIBIT 
8 

23andMe, Inc. v. Ancestry.com DNA, LLC et al Doc. 1 Att. 8

Dockets.Justia.com

https://dockets.justia.com/docket/california/candce/3:2018cv02791/326471/
https://docs.justia.com/cases/federal/district-courts/california/candce/3:2018cv02791/326471/1/8.html
https://dockets.justia.com/


Scaling AncestryDNA with the Hadoop 
Ecosystem
June 5, 2014



What Ancestry uses from the Hadoop ecosystem

● Hadoop, HDFS, and MapReduce

● HBase

● Columnar, NoSQL data store, unlimited rows and columns

● Azkaban

● Workflow

2



What will this presentation cover?

● Describe the problem

● Discoveries with DNA

● Three key steps in the pipeline process

● Measure everything principle

● Three steps with Hadoop

● Hadoop as a job scheduler for the ethnicity step

● Scaling matching step

● MapReduce implementation of phasing

● Performance

● What comes next?

3



Discoveries with DNA
● Autosomal DNA test that analyzes 700,000 SNPs 

● Over 400,000 DNA samples in our database

● Identified 30 million relationships that connect the genotyped members 
through shared ancestors

4
 -

 5,000,000

 10,000,000

 15,000,000

 20,000,000

 25,000,000

 30,000,000

 -

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

 450,000

Jan-12 Apr-12 Jul-12 Oct-12 Jan-13 Apr-13 Jul-13 Oct-13 Jan-14 Apr-14

C
o

u
si

n
 m

at
ch

e
s 

(4
th

 o
r 

cl
o

se
r)

D
at

ab
as

e
 S

iz
e

 (
# 

o
f 

sa
m

p
le

s)

DNA DB Size Cousin Matches



Three key steps in the pipeline 

● What is a pipeline?

1. Ethnicity (AdMixture)

2. Matching (GERMLINE and Jermline)

3. Phasing (Beagle and Underdog)

● First pipeline executed on a single, beefy box.

● Only option is to scale vertically

5

Init
Results 

Processing
Finalize

“Beefy Box”

24 cores, 
256G mem



Measure everything principle

● Start time, end time, duration in seconds, and sample count for every step 
in the pipeline. Also the full end-to-end processing time.

● Put the data in pivot tables and graphed each step

● Normalize the data (sample size was changing)

● Use the data collected to predict future performance

6



Challenges and pain points

Performance degrades when DNA pool grows

● Static (by batch size)

● Linear (by DNA pool size)

● Quadratic (matching related steps) – time bomb

7



Ethnicity step on Hadoop
Using Hadoop as a job scheduler to scale AdMixture

8



First step with Hadoop

● What was in place?

● Smart engineers with no Hadoop experience

● Pipeline running on a single computer that would not scale

● New business that needed a scalable solution to grow

First step using Hadoop

● Run AdMixture step in parallel on Hadoop

● Self contained program with set inputs and outputs

● Simple MapReduce implementation

● Experience running jobs on Hadoop

● Freed up CPU and memory on the single computer for the other steps
9



What did we do? (Don’t cringe…)

1. Mapper -> Key: User ID, Ethnicity Result

2. Reducer -> Key: User ID, Array [Ethnicity Result]

10

DNA Hadoop Cluster
(40 nodes)

Pipeline Beefy Box
(Process Step Control)

For a batch of 1000
Submit 40 jobs with 
25 samples per job

AdMixture Job #1

AdMixture Job #2

AdMixture Job #40

...

Mapper that forks 
AdMixture 

sequentually for 
each sample Reducer #1

Reducer #2

Reducer #3

...

Results go to a 
simple reducer that 
merges them into a 

single results file

(Shuffle)



Performance results
● Went from processing 500 samples in 20 hours                                          

to processing 1,000 samples in 2 ½ hours

● Reduced Beagle phasing step by 4 hours

11

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

AdMixture Time (sec)

Sum of Run Size Admixture Time

Provided valuable experience and bought us time

H1 Release
AdMixture on 

Hadoop



GERMLINE to Jermline
Moving the matching step to MapReduce and HBase

12



Introducing … GERMLINE!

● GERMLINE is an algorithm that finds hidden relationships within a pool of DNA

● Also refers to the reference implementation of that algorithm written in C++. You 
can find it here:

So what’s the problem?

● GERMLINE (the implementation) was not meant to be used in an industrial setting

● Stateless, single threaded, prone to swapping (heavy memory usage)

● GERMLINE performs poorly on large data sets

● Our metrics predicted exactly where the process would slow to a crawl

● Put simply: GERMLINE couldn't scale

13

http://www1.cs.columbia.edu/~gusev/germline/

http://www1.cs.columbia.edu/~gusev/germline/


GERMLINE run times (in hours)

14

0

5

10

15

20

25

2
,5

0
0

5
,0

0
0

7
,5

0
0

1
0

,0
0

0

1
2

,5
0

0

1
5

,0
0

0

1
7

,5
0

0

2
0

,0
0

0

2
2

,5
0

0

2
5

,0
0

0

2
7

,5
0

0

3
0

,0
0

0

3
2

,5
0

0

3
5

,0
0

0

3
7

,5
0

0

4
0

,0
0

0

4
2

,5
0

0

4
5

,0
0

0

4
7

,5
0

0

5
0

,0
0

0

5
2

,5
0

0

5
5

,0
0

0

5
7

,5
0

0

6
0

,0
0

0

H
o

u
rs

Samples



Projected GERMLINE run times (in hours)

15

H
o

u
rs

Samples

0

100

200

300

400

500

600

700

2
,5

0
0

1
2

,5
0

0

2
2

,5
0

0

3
2

,5
0

0

4
2

,5
0

0

5
2

,5
0

0

6
2

,5
0

0

7
2

,5
0

0

8
2

,5
0

0

9
2

,5
0

0

1
0

2
,5

0
0

1
1

2
,5

0
0

1
2

2
,5

0
0

GERMLINE run
times

Projected
GERMLINE run
times

700 hours = 29+ days



DNA matching walkthrough
Simplified example of showing how the code works

16



DNA matching : How it works

17

Cersei : ACTGACCTAGTTGAC
Joffrey : TTAAGCCTAGTTGAC

The Input

Cersei Baratheon
• Former queen of 

Westeros

• Machiavellian 
manipulator

• Mostly evil, but 
occasionally 
sympathetic

Joffrey Baratheon
• Pretty much the human 

embodiment of evil

• Needlessly cruel 

• Kinda looks like Justin 
Bieber



DNA matching : How it works

18

0 1 2
Cersei : ACTGA CCTAG TTGAC
Joffrey : TTAAG CCTAG TTGAC

Separate into words



DNA matching : How it works

19

0 1 2
Cersei : ACTGA CCTAG TTGAC
Joffrey : TTAAG CCTAG TTGAC

ACTGA_0 : Cersei
TTAAG_0 : Joffrey
CCTAG_1 : Cersei, Joffrey
TTGAC_2 : Cersei, Joffrey

Build the hash table



DNA matching : How it works

20

0 1 2
Cersei : ACTGA CCTAG TTGAC
Joffrey : TTAAG CCTAG TTGAC

ACTGA_0 : Cersei
TTAAG_0 : Joffrey
CCTAG_1 : Cersei, Joffrey
TTGAC_2 : Cersei, Joffrey

Iterate through genome and find matches

Cersei and Joffrey match from position 1 to position 2



21

Does that mean they’re related?

...maybe



IBD to relationship estimation
● We use the total length of all shared 

segments to estimate the relationship 
between two genetic relatives

● This is basically a classification problem

22

5 10 20 50 100 200 500 1000 5000

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

ERSA

total_IBD(cM)

p
ro

b
a
b

il
it
y

m1
m2
m3
m4
m5
m6
m7
m8
m9
m10
m11



But wait...what about Jaime?

23

Jaime : TTAAGCCTAGGGGCG 

Jaime Lannister
• Kind of a has-been

• Killed the Mad King

• Has the hots for his 
sister, Cersei



The               way

24

Step one: Update the hash table

Cersei Joffrey

2_ACTGA_0 1

2_TTAAG_0 1

2_CCTAG_1 1 1

2_TTGAC_2 1 1

Already stored in HBase

Jaime : TTAAG CCTAG GGGCG New sample to add

Key : [CHROMOSOME]_[WORD]_[POSITION]
Qualifier : [USER ID]
Cell value : A byte set to 1, denoting that the user has that word at that position on that 
chromosome



The               way

25

Step two: Find matches, update the results table

Already stored in HBase

Jaime and Joffrey match from position 0 to position 1
Jaime and Cersei match at position 1 New matches to add

Key : [CHROMOSOME]_[USER ID]
Qualifier : [CHROMOSOME]_[USER ID]
Cell value : A list of ranges where the two users match on a chromosome

2_Cersei 2_Joffrey

2_Cersei { (1, 2), ...}

2_Joffrey { (1, 2), ...}



The               way

26

Results Table

2_Cersei 2_Joffrey 2_Jaime

2_Cersei { (1, 2), ...} { (1), ...}

2_Joffrey { (1, 2), ...} { (0,1), ...}

2_Jaime { (1), ...} { (0,1), ...}

Hash Table

Cersei Joffrey Jaime

2_ACTGA_0 1

2_TTAAG_0 1 1

2_CCTAG_1 1 1 1

2_TTGAC_2 1 1

2_GGGCG_2 1



27

But wait...what about Daenerys, Tyrion, 
Arya, and Jon Snow?



Run them in parallel with Hadoop!

28



Parallelism with Hadoop

● Batches are usually about a thousand people

● Each mapper takes a single chromosome for a single person

● MapReduce jobs:

● Job #1: Match words

- Updates the hash table

● Job #2: Match segments

- Identifies areas where the samples match

29



Matching steps on Hadoop

1. Hash Table Mapper -> Breaks input into words and fills the hash table (HBase Table #1)

2. Hash Table Reducer -> default reducer (does nothing)

3. Results Mapper -> For each new user, read hash table, fill in the results table (HBase
Table #2)

4. Results Reducer -> Key: Object(User ID #1, User ID #2), Array[Object(chrom + pos, 
Matching DNA Segment)] 30

DNA Hadoop Cluster
(40 nodes)

Pipeline Beefy Box
(Process Step Control)

Hash Table
Mapper #1

Hash Table
Mapper #2

Hash Table 
Mapper #N

...

Hash Table 
Reducer #1

Hash Table
Reducer #2

Hash Table 
Reducer #N

...

Results 
Mapper #1

Results
Mapper #2

Results
Mapper #N

...

Results
Reducer #1

Results
Reducer #2

Results
Reducer #N

...
1 2 3 4

Input:
User ID, Phased DNA



Run times for matching with 

31

H
o

u
rs

Samples

A 1700% performance improvement 
over GERMLINE!

0

5

10

15

20

25

2
,5

0
0

7
,5

0
0

1
2

,5
0

0

1
7

,5
0

0

2
2

,5
0

0

2
7

,5
0

0

3
2

,5
0

0

3
7

,5
0

0

4
2

,5
0

0

4
7

,5
0

0

5
2

,5
0

0

5
7

,5
0

0

6
2

,5
0

0

6
7

,5
0

0

7
2

,5
0

0

7
7

,5
0

0

8
2

,5
0

0

8
7

,5
0

0

9
2

,5
0

0

9
7

,5
0

0

1
0

2
,5

0
0

1
0

7
,5

0
0

1
1

2
,5

0
0

1
1

7
,5

0
0



Run times for matching (in hours)

32

H
o

u
rs

Samples

0

20

40

60

80

100

120

140

160

180

2
,5

0
0

7
,5

0
0

1
2

,5
0

0

1
7

,5
0

0

2
2

,5
0

0

2
7

,5
0

0

3
2

,5
0

0

3
7

,5
0

0

4
2

,5
0

0

4
7

,5
0

0

5
2

,5
0

0

5
7

,5
0

0

6
2

,5
0

0

6
7

,5
0

0

7
2

,5
0

0

7
7

,5
0

0

8
2

,5
0

0

8
7

,5
0

0

9
2

,5
0

0

9
7

,5
0

0

1
0

2
,5

0
0

1
0

7
,5

0
0

1
1

2
,5

0
0

1
1

7
,5

0
0

GERMLINE run
times

Jermline run
times

Projected
GERMLINE run
times



performance 

● Science team is sure the Jermline algorithm is linear

● Improving the accuracy

● Found a bug in original C++ reference code

● Balancing false positives and false negatives

● Binary version of Jermline

● Use less memory and improve speed

● Paper submitted describing the implementation

● Releasing as an Open Source project soon
33



Beagle to Underdog
Moving phasing step from a single process to MapReduce

34



Phasing goes to the dogs

● Beagle

● Open source, freely available program

● Multi-threaded process that runs on one computer

● More accurate with a large sample set

● Underdog

● Does the same statistical calculations with a larger reference set, which increases accuracy

● Carefully split into a MapReduce implementation that allows parallel processing

● Collaboration between the DNA Science and Pipeline Developer Teams

35



What did we do?

1. Window Mapper -> Key: Window ID, Object(User ID, DNA)

2. Window Reducer -> Key: Window ID, Array[Object(User ID, DNA)]

3. Phase Mapper (loads window data) -> Key: User ID, Object(Window ID, Phased DNA)

4. Phase Reducer -> Key: User ID, Array[Object(Window ID, Phased DNA)] 36

DNA Hadoop Cluster
(40 nodes)

Pipeline Beefy Box
(Process Step Control)

Input is per User:

ATGCATCGTACGGACT...

Window 
Mapper #1

Window 
Mapper #2

Window 
Mapper #N

...

Window 
Reducer #1

Window 
Reducer #2

Window 
Reducer #N

...

Phase 
Mapper #1

Phase 
Mapper #2

Phase  
Mapper #N

...

Phase
Reducer #1

Phase
Reducer #2

Phase
Reducer #N

...
1 2 3 4

Load Window Reference 
Data Once



Underdog performance
● Went from 12 hours to process 1,000 samples 

to under 25 minutes with a MapReduce implementation

37With improved accuracy!

Underdog 
replaces Beagle

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

Total Run Size Total Beagle-Underdog Duration



Performance and next steps
Incremental change

38



Pipeline steps and incremental change…
● Incremental change over time

● Supporting the business in a “just in time” Agile way 

39

0

50000

100000

150000

200000

250000

5
0

0

5
6

1
8

9
6

1
5

1
4

4
4

6

1
9

5
2

2

2
4

8
2

0
3

1
1

7
2

3
8

3
0

7

4
5

2
5

2
5

2
2

3
2

6
1

6
7

5
7

3
4

0
7

8
4

3
3

7

9
3

9
3

7
1

0
4

6
8

4
1

1
5

7
5

8

1
2

7
1

9
4

1
3

8
6

0
1

1
4

9
9

8
8

1
6

1
6

1
6

1
7

3
7

1
9

1
8

5
7

0
1

1
9

7
8

5
3

2
0

9
5

7
5

2
2

1
2

9
0

2
3

2
6

7
3

2
4

3
5

5
0

2
5

5
1

1
1

2
6

7
2

6
6

2
7

9
2

1
0

2
9

1
0

1
7

3
0

2
6

5
8

3
1

4
6

6
2

3
2

6
7

0
4

3
3

8
8

1
3

3
5

0
8

5
4

3
6

2
9

5
4

3
7

5
1

6
1

3
8

7
3

3
4

3
9

9
5

1
2

Beagle-Underdog Phasing

Pipeline Finalize

Relationship Processing

Germline-Jermline Results Processing

Germline-Jermline Processing

Beagle Post Phasing

Admixture

Plink Prep

Pipeline Initialization

Jermline replaces 
Germline

Ethnicity V2 
Release

Underdog Replaces 
Beagle

AdMixture on 
Hadoop



…while the business continues to grow rapidly

40

 -

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

 450,000

Jan-12 Apr-12 Jul-12 Oct-12 Jan-13 Apr-13 Jul-13 Oct-13 Jan-14 Apr-14

# 
o

f 
p

ro
ce

ss
ed

 s
am

p
le

s)
DNA Database Size



What’s next? Building different pipelines

● Azkaban

● Allows us to easily tie together steps on Hadoop

● Drop different steps in/out and create different pipelines

● Significant improvement over a hand coded pipeline

● Cloud

● New algorithm changes will force a complete re-run of the entire DNA pool

● Best example: New matching or ethnicity algorithm will force us to reprocess 400K+ 
samples

● Solution: Use the cloud for this processing while the current pipeline keeps chugging along
41



What’s next? Other areas for improvement

● Admixture as a MapReduce implementation

● Last major algorithm that needs to be addressed

● Expect to get performance improvements similar to Underdog

● Matching growth will cause problems

● Matches per run increasing

● Change the handoff

42Keep measuring everything and adjust

0
1,000,000
2,000,000
3,000,000
4,000,000
5,000,000
6,000,000
7,000,000
8,000,000
9,000,000

8
4

3
3

7

9
2

1
3

0

1
0

1
1

4
3

1
0

9
8

8
7

1
1

9
6

6
9

1
2

9
1

7
0

1
3

8
6

0
1

1
4

8
1

6
6

1
5

7
7

1
0

1
6

7
5

5
1

1
7

7
6

5
4

1
8

7
7

4
5

1
9

7
8

5
3

2
0

7
7

9
9

2
1

7
5

1
6

2
2

6
9

5
8

2
3

6
5

1
6

2
4

5
5

4
8

2
5

5
1

1
1

2
6

5
2

8
4

2
7

5
3

3
5

2
8

5
1

4
9

2
9

5
0

2
0

3
1

2
6

1
7

3
2

2
6

5
5

3
3

2
7

7
7

3
4

2
8

5
4

3
5

2
9

0
4

3
6

2
9

5
4

3
7

3
1

0
9

3
8

3
3

1
2

3
9

3
3

9
4

Jermline Processing Duration Batch Run Size Total Matches Per Run



Questions?

Ancestry is hiring for the DNA Pipeline Team!

Tech Roots Blog: http://blogs.ancestry.com/techroots

byetman@ancestry.com

Special thanks to the DNA Science and Pipeline Development Teams at 
Ancestry


