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What Ancestry uses from the Hadoop ecosystem

● Hadoop, HDFS, and MapReduce

● HBase

● Columnar, NoSQL data store, unlimited rows and columns

● Azkaban

● Workflow
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What will this presentation cover?

● Describe the problem

● Discoveries with DNA

● Three key steps in the pipeline process

● Measure everything principle

● Three steps with Hadoop

● Hadoop as a job scheduler for the ethnicity step

● Scaling matching step

● MapReduce implementation of phasing

● Performance

● What comes next?
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Discoveries with DNA
● Autosomal DNA test that analyzes 700,000 SNPs 

● Over 400,000 DNA samples in our database

● Identified 30 million relationships that connect the genotyped members 
through shared ancestors
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Three key steps in the pipeline 

● What is a pipeline?

1. Ethnicity (AdMixture)

2. Matching (GERMLINE and Jermline)

3. Phasing (Beagle and Underdog)

● First pipeline executed on a single, beefy box.

● Only option is to scale vertically
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Measure everything principle

● Start time, end time, duration in seconds, and sample count for every step 
in the pipeline. Also the full end-to-end processing time.

● Put the data in pivot tables and graphed each step

● Normalize the data (sample size was changing)

● Use the data collected to predict future performance
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Challenges and pain points

Performance degrades when DNA pool grows

● Static (by batch size)

● Linear (by DNA pool size)

● Quadratic (matching related steps) – time bomb
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Ethnicity step on Hadoop
Using Hadoop as a job scheduler to scale AdMixture
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First step with Hadoop

● What was in place?

● Smart engineers with no Hadoop experience

● Pipeline running on a single computer that would not scale

● New business that needed a scalable solution to grow

First step using Hadoop

● Run AdMixture step in parallel on Hadoop

● Self contained program with set inputs and outputs

● Simple MapReduce implementation

● Experience running jobs on Hadoop

● Freed up CPU and memory on the single computer for the other steps
9



What did we do? (Don’t cringe…)

1. Mapper -> Key: User ID, Ethnicity Result

2. Reducer -> Key: User ID, Array [Ethnicity Result]
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DNA Hadoop Cluster
(40 nodes)

Pipeline Beefy Box
(Process Step Control)

For a batch of 1000
Submit 40 jobs with 
25 samples per job

AdMixture Job #1

AdMixture Job #2

AdMixture Job #40

...

Mapper that forks 
AdMixture 

sequentually for 
each sample Reducer #1

Reducer #2

Reducer #3

...

Results go to a 
simple reducer that 
merges them into a 

single results file

(Shuffle)



Performance results
● Went from processing 500 samples in 20 hours                                          

to processing 1,000 samples in 2 ½ hours

● Reduced Beagle phasing step by 4 hours
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GERMLINE to Jermline
Moving the matching step to MapReduce and HBase
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Introducing … GERMLINE!

● GERMLINE is an algorithm that finds hidden relationships within a pool of DNA

● Also refers to the reference implementation of that algorithm written in C++. You 
can find it here:

So what’s the problem?

● GERMLINE (the implementation) was not meant to be used in an industrial setting

● Stateless, single threaded, prone to swapping (heavy memory usage)

● GERMLINE performs poorly on large data sets

● Our metrics predicted exactly where the process would slow to a crawl

● Put simply: GERMLINE couldn't scale

13
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GERMLINE run times (in hours)
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Projected GERMLINE run times (in hours)
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DNA matching walkthrough
Simplified example of showing how the code works
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DNA matching : How it works
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Cersei : ACTGACCTAGTTGAC
Joffrey : TTAAGCCTAGTTGAC

The Input

Cersei Baratheon
• Former queen of 

Westeros

• Machiavellian 
manipulator

• Mostly evil, but 
occasionally 
sympathetic

Joffrey Baratheon
• Pretty much the human 

embodiment of evil

• Needlessly cruel 

• Kinda looks like Justin 
Bieber



DNA matching : How it works
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0 1 2
Cersei : ACTGA CCTAG TTGAC
Joffrey : TTAAG CCTAG TTGAC

Separate into words



DNA matching : How it works
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0 1 2
Cersei : ACTGA CCTAG TTGAC
Joffrey : TTAAG CCTAG TTGAC

ACTGA_0 : Cersei
TTAAG_0 : Joffrey
CCTAG_1 : Cersei, Joffrey
TTGAC_2 : Cersei, Joffrey

Build the hash table



DNA matching : How it works
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0 1 2
Cersei : ACTGA CCTAG TTGAC
Joffrey : TTAAG CCTAG TTGAC

ACTGA_0 : Cersei
TTAAG_0 : Joffrey
CCTAG_1 : Cersei, Joffrey
TTGAC_2 : Cersei, Joffrey

Iterate through genome and find matches

Cersei and Joffrey match from position 1 to position 2
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Does that mean they’re related?

...maybe



IBD to relationship estimation
● We use the total length of all shared 

segments to estimate the relationship 
between two genetic relatives

● This is basically a classification problem
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But wait...what about Jaime?
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Jaime : TTAAGCCTAGGGGCG 

Jaime Lannister
• Kind of a has-been

• Killed the Mad King

• Has the hots for his 
sister, Cersei



The               way
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Step one: Update the hash table

Cersei Joffrey

2_ACTGA_0 1

2_TTAAG_0 1

2_CCTAG_1 1 1

2_TTGAC_2 1 1

Already stored in HBase

Jaime : TTAAG CCTAG GGGCG New sample to add

Key : [CHROMOSOME]_[WORD]_[POSITION]
Qualifier : [USER ID]
Cell value : A byte set to 1, denoting that the user has that word at that position on that 
chromosome



The               way
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Step two: Find matches, update the results table

Already stored in HBase

Jaime and Joffrey match from position 0 to position 1
Jaime and Cersei match at position 1 New matches to add

Key : [CHROMOSOME]_[USER ID]
Qualifier : [CHROMOSOME]_[USER ID]
Cell value : A list of ranges where the two users match on a chromosome

2_Cersei 2_Joffrey

2_Cersei { (1, 2), ...}

2_Joffrey { (1, 2), ...}



The               way
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Results Table

2_Cersei 2_Joffrey 2_Jaime

2_Cersei { (1, 2), ...} { (1), ...}

2_Joffrey { (1, 2), ...} { (0,1), ...}

2_Jaime { (1), ...} { (0,1), ...}

Hash Table

Cersei Joffrey Jaime

2_ACTGA_0 1

2_TTAAG_0 1 1

2_CCTAG_1 1 1 1

2_TTGAC_2 1 1

2_GGGCG_2 1
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But wait...what about Daenerys, Tyrion, 
Arya, and Jon Snow?



Run them in parallel with Hadoop!
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Parallelism with Hadoop

● Batches are usually about a thousand people

● Each mapper takes a single chromosome for a single person

● MapReduce jobs:

● Job #1: Match words

- Updates the hash table

● Job #2: Match segments

- Identifies areas where the samples match

29



Matching steps on Hadoop

1. Hash Table Mapper -> Breaks input into words and fills the hash table (HBase Table #1)

2. Hash Table Reducer -> default reducer (does nothing)

3. Results Mapper -> For each new user, read hash table, fill in the results table (HBase
Table #2)

4. Results Reducer -> Key: Object(User ID #1, User ID #2), Array[Object(chrom + pos, 
Matching DNA Segment)] 30

DNA Hadoop Cluster
(40 nodes)

Pipeline Beefy Box
(Process Step Control)

Hash Table
Mapper #1

Hash Table
Mapper #2

Hash Table 
Mapper #N

...

Hash Table 
Reducer #1

Hash Table
Reducer #2

Hash Table 
Reducer #N

...

Results 
Mapper #1

Results
Mapper #2

Results
Mapper #N

...

Results
Reducer #1

Results
Reducer #2

Results
Reducer #N

...
1 2 3 4

Input:
User ID, Phased DNA



Run times for matching with 
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Run times for matching (in hours)
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performance 

● Science team is sure the Jermline algorithm is linear

● Improving the accuracy

● Found a bug in original C++ reference code

● Balancing false positives and false negatives

● Binary version of Jermline

● Use less memory and improve speed

● Paper submitted describing the implementation

● Releasing as an Open Source project soon
33



Beagle to Underdog
Moving phasing step from a single process to MapReduce

34



Phasing goes to the dogs

● Beagle

● Open source, freely available program

● Multi-threaded process that runs on one computer

● More accurate with a large sample set

● Underdog

● Does the same statistical calculations with a larger reference set, which increases accuracy

● Carefully split into a MapReduce implementation that allows parallel processing

● Collaboration between the DNA Science and Pipeline Developer Teams

35



What did we do?

1. Window Mapper -> Key: Window ID, Object(User ID, DNA)

2. Window Reducer -> Key: Window ID, Array[Object(User ID, DNA)]

3. Phase Mapper (loads window data) -> Key: User ID, Object(Window ID, Phased DNA)

4. Phase Reducer -> Key: User ID, Array[Object(Window ID, Phased DNA)] 36

DNA Hadoop Cluster
(40 nodes)

Pipeline Beefy Box
(Process Step Control)

Input is per User:

ATGCATCGTACGGACT...

Window 
Mapper #1

Window 
Mapper #2

Window 
Mapper #N

...

Window 
Reducer #1

Window 
Reducer #2

Window 
Reducer #N

...

Phase 
Mapper #1

Phase 
Mapper #2

Phase  
Mapper #N

...

Phase
Reducer #1

Phase
Reducer #2

Phase
Reducer #N

...
1 2 3 4

Load Window Reference 
Data Once



Underdog performance
● Went from 12 hours to process 1,000 samples 

to under 25 minutes with a MapReduce implementation

37With improved accuracy!

Underdog 
replaces Beagle
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Performance and next steps
Incremental change
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Pipeline steps and incremental change…
● Incremental change over time

● Supporting the business in a “just in time” Agile way 
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…while the business continues to grow rapidly
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What’s next? Building different pipelines

● Azkaban

● Allows us to easily tie together steps on Hadoop

● Drop different steps in/out and create different pipelines

● Significant improvement over a hand coded pipeline

● Cloud

● New algorithm changes will force a complete re-run of the entire DNA pool

● Best example: New matching or ethnicity algorithm will force us to reprocess 400K+ 
samples

● Solution: Use the cloud for this processing while the current pipeline keeps chugging along
41



What’s next? Other areas for improvement

● Admixture as a MapReduce implementation

● Last major algorithm that needs to be addressed

● Expect to get performance improvements similar to Underdog

● Matching growth will cause problems

● Matches per run increasing

● Change the handoff

42Keep measuring everything and adjust
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Questions?

Ancestry is hiring for the DNA Pipeline Team!

Tech Roots Blog: http://blogs.ancestry.com/techroots

byetman@ancestry.com

Special thanks to the DNA Science and Pipeline Development Teams at 
Ancestry


