
Address Book
Programming Guide for
iOS

Opperman et al v. Path, Inc. et al Doc. 1 Att. 2

Dockets.Justia.com

http://dockets.justia.com/docket/california/candce/4:2013cv00453/262965/
http://docs.justia.com/cases/federal/district-courts/california/candce/4:2013cv00453/262965/1/2.html
http://dockets.justia.com/

Contents

Introduction 4
Organization of This Document 4
See Also 5

Quick Start Tutorial 6
Create and Configure the Project 6
Create the UI and Header File 6
Write the Implementation File 8
Build and Run the Application 10

Building Blocks: Working with Records and Properties 11
Address Books 11
Records 12

Person Records 13
Group Records 13

Properties 13
Single-Value Properties 14
Multivalue Properties 14

User Interaction: Prompting for and Displaying Data 19
What’s Available 19
Prompting the User to Choose a Person Record 20
Displaying and Editing a Person Record 21
Prompting the User to Create a New Person Record 22
Prompting the User to Create a New Person Record from Existing Data 23

Direct Interaction: Programmatically Accessing the Database 25
Using Record Identifiers 25
Working with Person Records 26
Working with Group Records 27

Document Revision History 28

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

2

Figures and Listings

Quick Start Tutorial 6
Figure 1-1 Laying out the interface 7
Listing 1-1 The finished header file 7
Listing 1-2 Presenting the people picker 8
Listing 1-3 Responding to user actions in the people picker 9
Listing 1-4 Displaying a person’s information 9

Building Blocks: Working with Records and Properties 11
Figure 2-1 Multivalue properties 15

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

3

The Address Book technology for iOS provides a way to store people’s contact information and other personal
information in a centralized database, and to share this information between applications. The technology has
several parts:

 ● The Address Book framework provides access to the contact information.

 ● The Address Book UI framework provides the user interface to display the information.

 ● The Address Book database stores the information.

 ● The Contacts application provides a way for users to access their contact information.

This document covers the key concepts of the Address Book technology and explains the basic operations you
can perform. When you add this technology to your application, users will be able to use the contact information
that they use in other applications, such as Mail and Text, in your application. This document tells you how to
do the following:

 ● Access the user’s Address Book database

 ● Prompt the user for contact information

 ● Display contact information to the user

 ● Make changes to the user’s Address Book database

To get the most out of this document, you should already understand navigation controllers and view controllers,
and understand delegation and protocols.

Note Developers who have used the Address Book technology on Mac OS X should be aware that
the programming interface for this technology is different on iOS.

Organization of This Document
This document contains the following chapters:

 ● “Quick Start Tutorial” (page 6) gets you up and running by showing you how to create a simple application
that uses the Address Book technology.

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

4

Introduction

 ● “Building Blocks: Working with Records and Properties” (page 11) describes how to create an address
book object, how to create person and group records, and how to get and set properties.

 ● “User Interaction: Prompting for and Displaying Data” (page 19) describes how to use the views provided
by the Address Book UI framework to display a contact, let the user select a contact, create a new contact,
and edit a contact.

 ● “Direct Interaction: Programmatically Accessing the Database” (page 25) describes the ways your application
can read and write contact information directly.

See Also
The following documents discuss some of the fundamental concepts you should understand in order to get
the most out of this document:

 ● iOS App Programming Guide guides developers who are new to the iOS platform through the available
technologies and how to use them to build applications. It includes relevant discussion of windows, views,
and view controllers.

 ● Interface Builder User Guide explains how to use Interface Builder to create applications. It includes relevant
discussion of the user interface for an application and making connections from the interface to the code.

 ● Cocoa Fundamentals Guide and The Objective-C Programming Language discuss many basic concepts you
will need to write any application. It includes relevant discussion of delegation and protocols.

The following documents contain additional information about the Address Book frameworks:

 ● Address Book Framework Reference for iOS describes the API for direct interaction with records in the
Address Book database.

 ● Address Book UI Framework Reference for iOS describes the controllers that facilitate displaying, editing,
selecting, and creating records in the Address Book database, and their delegate protocols.

Introduction
See Also

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

5

In this tutorial, you will build a simple application that prompts the user to choose a person from his or her
contacts list and then shows the chosen person’s first name and phone number.

Create and Configure the Project
1. In Xcode, create a new project from the Single View Application template.

2. Link the Address Book UI and Address Book frameworks to your project.

Important The project will fail to build (with a linker error) if you do not link against both of these
framework.

Create the UI and Header File
While you are creating the user interface, you will take advantage of Xcode’s ability to declare the necessary
actions and properties, creating the majority of the header file for you.

1. Open the main storyboard file (MainStoryboard.storyboard).

2. Add a button and two labels to the view by dragging them in from the library panel. Arrange them as
shown in Figure 1-1.

3. Open the assistant editor.

4. Connect the button to a new action method called showPicker: on the view controller.

This sets the target and action of the button in the storyboard, adds a declaration of the method to the
header file, and adds a stub implementation of the method to the implementation file. You will fill in the
stub implementation later.

5. Connect the two labels to two new properties called firstName and phoneNumber of the view controller.

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

6

Quick Start Tutorial

This creates a connection in the storyboard, adds a declaration of the properties to the header file, and
adds the @synthesize line for the properties in the implementation file.

Figure 1-1 Laying out the interface

At this point ViewController.h, the header file for the view controller, is almost finished. At the end of the
@interface line, declare that the view controller class adopts the
ABPeoplePickerNavigationControllerDelegate protocol by adding the following:

<ABPeoplePickerNavigationControllerDelegate>

Listing 1-1 shows the finished header file.

Listing 1-1 The finished header file

#import <UIKit/UIKit.h>

#import <AddressBookUI/AddressBookUI.h>

@interface ViewController : UIViewController
<ABPeoplePickerNavigationControllerDelegate>

Quick Start Tutorial
Create the UI and Header File

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

7

@property (weak, nonatomic) IBOutlet UILabel *firstName;

@property (weak, nonatomic) IBOutlet UILabel *phoneNumber;

- (IBAction)showPicker:(id)sender;

@end

Write the Implementation File
In ViewController.m, the implementation file for the view controller, Xcode has already created a stub
implementation of the showPicker: method. Listing 1-2 shows the full implementation which creates a new
people picker, sets the view controller as its delegate, and presents the picker as a modal view controller.

Listing 1-2 Presenting the people picker

- (IBAction)showPicker:(id)sender

{

ABPeoplePickerNavigationController *picker =

[[ABPeoplePickerNavigationController alloc] init];

picker.peoplePickerDelegate = self;

[self presentModalViewController:picker animated:YES];

}

The people picker calls methods on its delegate in response to the user’s actions.Listing 1-3 shows the
implementation of these methods. If the user cancels, the first method is called to dismiss the people picker.
If the user selects a person, the second method is called to copy the first name and phone number of the
person into the labels and dismiss the people picker.

The people picker calls the third method when the user taps on a property of the selected person in the picker.
In this app, the people picker is always dismissed when the user selects a person, so there is no way for the
user to select a property of that person. This means that the method will never be called. However if it were
left out, the implementation of the protocol would be incomplete.

Quick Start Tutorial
Write the Implementation File

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

8

Listing 1-3 Responding to user actions in the people picker

- (void)peoplePickerNavigationControllerDidCancel:

(ABPeoplePickerNavigationController *)peoplePicker

{

[self dismissModalViewControllerAnimated:YES];

}

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person {

[self displayPerson:person];

[self dismissModalViewControllerAnimated:YES];

return NO;

}

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person

property:(ABPropertyID)property

identifier:(ABMultiValueIdentifier)identifier

{

return NO;

}

The last method to implement is shown in Listing 1-4, which displays the name and phone number. Note that
the code for the first name and the phone number is different. The first name is a string property—person
records have exactly one first name, which may be NULL. The phone number is a multivalue property—person
records have zero, one, or multiple phone numbers. In this example, the first phone number in the list is used.

Listing 1-4 Displaying a person’s information

- (void)displayPerson:(ABRecordRef)person

{

Quick Start Tutorial
Write the Implementation File

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

9

NSString* name = (__bridge_transfer NSString*)ABRecordCopyValue(person,

kABPersonFirstNameProperty);

self.firstName.text = name;

NSString* phone = nil;

ABMultiValueRef phoneNumbers = ABRecordCopyValue(person,

kABPersonPhoneProperty);

if (ABMultiValueGetCount(phoneNumbers) > 0) {

phone = (__bridge_transfer NSString*)

ABMultiValueCopyValueAtIndex(phoneNumbers, 0);

} else {

phone = @"[None]";

}

self.phoneNumber.text = phone;

}

Build and Run the Application
When you run the application, the first thing you see is a button and two empty text labels. Tapping the button
brings up the people picker. When you select a person, the people picker goes away and the first and last
name of the person you selected are displayed in the labels.

Quick Start Tutorial
Build and Run the Application

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

10

There are four basic kinds of objects that you need to understand in order to interact fully with the Address
Book database: address books, records, single-value properties, and multivalue properties. This chapter discusses
how data is stored in these objects and describes the functions used to interact with them.

For information on how to interact directly with the Address Book database (for example to add or remove
person records), see “Direct Interaction: Programmatically Accessing the Database” (page 25).

Address Books
Address books objects let you interact with the Address Book database. To use an address book, declare an
instance of ABAddressBookRef and set it to the value returned from the function ABAddressBookCreate.
You can create multiple address book objects, but they are all backed by the same shared database.

Important Instances of ABAddressBookRef cannot be used by multiple threads. Each thread must make
its own instance.

After you have created an address book reference, your application can read data from it and save changes to
it. To save the changes, use the function ABAddressBookSave; to abandon them, use the function
ABAddressBookRevert. To check whether there are unsaved changes, use the function
ABAddressBookHasUnsavedChanges.

The following code listing illustrates a common coding pattern for making and saving changes to the address
book database:

ABAddressBookRef addressBook;

bool wantToSaveChanges = YES;

bool didSave;

CFErrorRef error = NULL;

addressBook = ABAddressBookCreate();

/* ... Work with the address book. ... */

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

11

Building Blocks: Working with Records and
Properties

if (ABAddressBookHasUnsavedChanges(addressBook)) {

if (wantToSaveChanges) {

didSave = ABAddressBookSave(addressBook, &error);

if (!didSave) {/* Handle error here. */}

} else {

ABAddressBookRevert(addressBook);

}

}

CFRelease(addressBook);

Your application can request to receive a notification when another application (or another thread in the same
application) makes changes to the Address Book database. In general, you should register for a notification if
you are displaying existing contacts and you want to update the UI to reflect changes to the contacts that may
happen while your application is running.

Use the functionABAddressBookRegisterExternalChangeCallback to register a function of the prototype
ABExternalChangeCallback. You may register multiple change callbacks by calling
ABAddressBookRegisterExternalChangeCallback multiple times with different callbacks or contexts.
You can also unregister the function using ABAddressBookUnregisterExternalChangeCallback.

When you receive a change callback, there are two things you can do: If you have no unsaved changes, your
code should simply revert your address book to get the most up-to-date data. If you have unsaved changes,
you may not want to revert and lose those changes. If this is the case you should save, and the Address Book
database will do its best to merge your changes with the external changes. However, you should be prepared
to take other appropriate action if the changes cannot be merged and the save fails.

Records
In the Address Book database, information is stored in records, represented by ABRecordRef objects. Each
record represents a person or group. The function ABRecordGetRecordType returns kABPersonType if the
record is a person, and kABGroupType if it is a group. Developers familiar with the Address Book technology
on Mac OS should note that there are not separate classes for different types of records; both person objects
and group objects are instances of the same class.

Building Blocks: Working with Records and Properties
Records

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

12

Important Record objects cannot be passed across threads safely. Instead, you should pass the
corresponding record identifier. See “Using Record Identifiers” (page 25) for more information.

Even though records are usually part of the Address Book database, they can also exist outside of it. This makes
them a useful way to store contact information your application is working with.

Within a record, the data is stored as a collection of properties. The properties available for group and person
objects are different, but the functions used to access them are the same. The functions ABRecordCopyValue
and ABRecordSetValue get and set properties, respectively. Properties can also be removed completely,
using the function ABRecordRemoveValue.

Person Records
Person records are made up of both single-value and multivalue properties. Properties that a person can have
only one of, such as first name and last name, are stored as single-value properties. Other properties that a
person can have more that one of, such as street address and phone number, are multivalue properties. The
properties for person records are listed in several sections in “Constants” in ABPerson Reference .

For more information about functions related to directly editing the contents of person records, see “Working
with Person Records” (page 26).

Group Records
Users may organize their contacts into groups for a variety of reasons. For example, a user may create a group
containing coworkers involved in a project, or members of a sports team they play on. Your application can
use groups to allow the user to perform an action for several contacts in their address book at the same time.

Group records have only one property, kABGroupNameProperty, which is the name of the group. To get all
the people in a group, use the function ABGroupCopyArrayOfAllMembers or
ABGroupCopyArrayOfAllMembersWithSortOrdering, which return a CFArrayRef of ABRecordRef
objects.

For more information about functions related to directly editing the contents of group records, see “Working
with Group Records” (page 27).

Properties
There are two basic types of properties, single-value and multivalue. Single-value properties contain data that
can only have a single value, such as a person’s name. Multivalue properties contain data that can have multiple
values, such as a person’s phone number. Multivalue properties can be either mutable or immutable.

Building Blocks: Working with Records and Properties
Properties

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

13

For a list of the properties for person records, see many of the sections within “Constants” in ABPerson Reference .
For properties of group records, see “Group Properties” in ABGroup Reference .

Single-Value Properties
The following code listing illustrates getting and setting the value of a single-value property:

ABRecordRef aRecord = ABPersonCreate();

CFErrorRef anError = NULL;

bool didSet;

didSet = ABRecordSetValue(aRecord, kABPersonFirstNameProperty, CFSTR("Katie"),
&anError);

if (!didSet) {/* Handle error here. */}

didSet = ABRecordSetValue(aRecord, kABPersonLastNameProperty, CFSTR("Bell"),
&anError);

if (!didSet) {/* Handle error here. */}

CFStringRef firstName, lastName;

firstName = ABRecordCopyValue(aRecord, kABPersonFirstNameProperty);

lastName = ABRecordCopyValue(aRecord, kABPersonLastNameProperty);

/* ... Do something with firstName and lastName. ... */

CFRelease(aRecord);

CFRelease(firstName);

CFRelease(lastName);

Multivalue Properties
Multivalue properties consist of a list of values. Each value has a text label and an identifier associated with it.
There can be more than one value with the same label, but the identifier is always unique. There are constants
defined for some commonly used text labels—see "Generic Property Labels" in ABPerson Reference .

Building Blocks: Working with Records and Properties
Properties

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

14

For example, Figure 2-1 shows a phone number property. Here, a person has multiple phone numbers, each
of which has a text label, such as home or work, and an identifier. Note that there are two home phone numbers
in this example; they have the same label but different identifiers.

Figure 2-1 Multivalue properties

Label: kABHomeLabel
Value: (415) 555 2375
ID: 3

Label: kABHomeLabel
Value: (415) 555 1234
ID: 9

Label: kABWorkLabel
Value: (415) 555 2345
ID: 5

Property: kABPersonPhoneProperty
ABMultiValueRef

The individual values of a multivalue property are referred to by identifier or by index, depending on the
context. Use the functions ABMultiValueGetIndexForIdentifier and
ABMultiValueGetIdentifierAtIndex to convert between indices and multivalue identifiers.

To keep a reference to a particular value in the multivalue property, store its identifier. The index will change
if values are added or removed. The identifier is guaranteed not to change except across devices.

The following functions let you read the contents of an individual value, which you specify by its index:

 ● ABMultiValueCopyLabelAtIndex and ABMultiValueCopyValueAtIndex copy individual values.

 ● ABMultiValueCopyArrayOfAllValues copies all of the values into an array.

Mutable Multivalue Properties
Multivalue objects are immutable; to change one you need to make a mutable copy using the function
ABMultiValueCreateMutableCopy. You can also create a new mutable multivalue object using the function
ABMultiValueCreateMutable.

The following functions let you modify mutable multivalue properties:

 ● ABMultiValueAddValueAndLabel and ABMultiValueInsertValueAndLabelAtIndex add values.

 ● ABMultiValueReplaceValueAtIndex and ABMultiValueReplaceLabelAtIndex change values.

 ● ABMultiValueRemoveValueAndLabelAtIndex removes values.

The following code listing illustrates getting and setting a multivalue property:

Building Blocks: Working with Records and Properties
Properties

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

15

ABMutableMultiValueRef multi =

ABMultiValueCreateMutable(kABMultiStringPropertyType);

CFErrorRef anError = NULL;

ABMultiValueIdentifier multivalueIdentifier;

bool didAdd, didSet;

// Here, multivalueIdentifier is just for illustration purposes; it isn't

// used later in the listing. Real-world code can use this identifier to

// reference the newly-added value.

didAdd = ABMultiValueAddValueAndLabel(multi, @"(555) 555-1234",

kABPersonPhoneMobileLabel, &multivalueIdentifier);

if (!didAdd) {/* Handle error here. */}

didAdd = ABMultiValueAddValueAndLabel(multi, @"(555) 555-2345",

kABPersonPhoneMainLabel, &multivalueIdentifier);

if (!didAdd) {/* Handle error here. */}

ABRecordRef aRecord = ABPersonCreate();

didSet = ABRecordSetValue(aRecord, kABPersonPhoneProperty, multi, &anError);

if (!didSet) {/* Handle error here. */}

CFRelease(multi);

/* ... */

CFStringRef phoneNumber, phoneNumberLabel;

multi = ABRecordCopyValue(aRecord, kABPersonPhoneProperty);

for (CFIndex i = 0; i < ABMultiValueGetCount(multi); i++) {

phoneNumberLabel = ABMultiValueCopyLabelAtIndex(multi, i);

phoneNumber = ABMultiValueCopyValueAtIndex(multi, i);

/* ... Do something with phoneNumberLabel and phoneNumber. ... */

CFRelease(phoneNumberLabel);

Building Blocks: Working with Records and Properties
Properties

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

16

CFRelease(phoneNumber);

}

CFRelease(aRecord);

CFRelease(multi);

Street Addresses
Street addresses are represented as a multivalue of dictionaries. All of the above discussion of multivalues still
applies to street addresses. Each of the values has a label, such as home or work (see “Generic Property Labels”

in ABPerson Reference), and each value in the multivalue is a street address stored as a dictionary. Within the
value, the dictionary contains keys for the different parts of a street address, which are listed in “Address Property”

in ABPerson Reference .

The following code listing shows how to set and display a street address:

ABMutableMultiValueRef address =

ABMultiValueCreateMutable(kABDictionaryPropertyType);

// Set up keys and values for the dictionary.

CFStringRef keys[5];

CFStringRef values[5];

keys[0] = kABPersonAddressStreetKey;

keys[1] = kABPersonAddressCityKey;

keys[2] = kABPersonAddressStateKey;

keys[3] = kABPersonAddressZIPKey;

keys[4] = kABPersonAddressCountryKey;

values[0] = CFSTR("1234 Laurel Street");

values[1] = CFSTR("Atlanta");

values[2] = CFSTR("GA");

values[3] = CFSTR("30303");

values[4] = CFSTR("USA");

CFDictionaryRef aDict = CFDictionaryCreate(

kCFAllocatorDefault,

(void *)keys,

(void *)values,

Building Blocks: Working with Records and Properties
Properties

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

17

5,

&kCFCopyStringDictionaryKeyCallBacks,

&kCFTypeDictionaryValueCallBacks

);

// Add the street address to the multivalue.

ABMultiValueIdentifier identifier;

bool didAdd;

didAdd = ABMultiValueAddValueAndLabel(address, aDict, kABHomeLabel, &identifier);

if (!didAdd) {/* Handle error here. */}

CFRelease(aDict);

/* ... Do something with the multivalue, such as adding it to a person record.
...*/

CFRelease(address);

Building Blocks: Working with Records and Properties
Properties

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

18

The Address Book UI framework provides three view controllers and one navigation controller for common
tasks related to working with the Address Book database and contact information. By using these controllers
rather than creating your own, you reduce the amount of work you have to do and provide your users with a
more consistent experience.

This chapter includes some short code listings you can use as a starting point. For a fully worked example, see
QuickContacts .

What’s Available
The Address Book UI framework provides four controllers:

 ● ABPeoplePickerNavigationController prompts the user to select a person record from their address
book.

 ● ABPersonViewController displays a person record to the user and optionally allows editing.

 ● ABNewPersonViewController prompts the user create a new person record.

 ● ABUnknownPersonViewController prompts the user to complete a partial person record, optionally
allows them to add it to the address book.

People picker Person View Controller New-Person View Controller Unknown-Person View Controller

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

19

User Interaction: Prompting for and Displaying Data

To use these controllers, you must set a delegate for them which implements the appropriate delegate protocol.
You should not need to subclass these controllers; the expected way to modify their behavior is by your
implementation of their delegate. In this chapter, you will learn more about these controllers and how to use
them.

For more information about delegation, see "Delegates and Data Sources" in Cocoa Fundamentals Guide . For
more information about protocols, see Protocols in The Objective-C Programming Language .

Prompting the User to Choose a Person Record
The ABPeoplePickerNavigationController class allows users to browse their list of contacts and select
a person and, at your option, one of that person’s properties. To use a people picker, do the following:

1. Create and initialize an instance of the class.

2. Set the delegate, which must adopt the ABPeoplePickerNavigationControllerDelegate protocol.

3. Optionally, set displayedProperties to the array of properties you want displayed. The relevant
constants are defined as integers; wrap them in an NSNumber object using the numberWithInt:method
to get an object that can be put in an array.

4. Present the people picker as a modal view controller using the
presentModalViewController:animated: method. It is recommended that you present it using
animation.

The following code listing shows how a view controller which implements the
ABPeoplePickerNavigationControllerDelegate protocol can present a people picker:

ABPeoplePickerNavigationController *picker =

[[ABPeoplePickerNavigationController alloc] init];

picker.peoplePickerDelegate = self;

[self presentModalViewController:picker animated:YES];

The people picker calls one of its delegate’s methods depending on the user’s action:

 ● If the user cancels, the people picker calls the method
peoplePickerNavigationControllerDidCancel: of the delegate, which should dismiss the people
picker.

User Interaction: Prompting for and Displaying Data
Prompting the User to Choose a Person Record

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

20

 ● If the user selects a person, the people picker calls the method
peoplePickerNavigationController:shouldContinueAfterSelectingPerson:of the delegate
to determine if the people picker should continue. To prompt the user to choose a specific property of
the selected person, return YES. Otherwise return NO and dismiss the picker.

 ● If the user selects a property, the people picker calls the method
peoplePickerNavigationController:shouldContinueAfterSelectingPerson:property:identifier:
of the delegate to determine if it should continue. To perform the default action (dialing a phone number,
starting a new email, etc.) for the selected property, return YES. Otherwise return NO and dismiss the picker
using the dismissModalViewControllerAnimated: method. It is recommended that you dismiss it
using animation..

Displaying and Editing a Person Record
The ABPersonViewController class displays a record to the user. To use this controller, do the following:

1. Create and initialize an instance of the class.

2. Set the delegate, which must adopt the ABPersonViewControllerDelegate protocol. To allow the
user to edit the record, set allowsEditing to YES.

3. Set the displayedPerson property to the person record you want to display.

4. Optionally, set displayedProperties to the array of properties you want displayed. The relevant
constants are defined as integers; wrap them in an NSNumber object using the numberWithInt:method
to get an object that can be put in an array.

5. Display the person view controller using the pushViewController:animated: method of the current
navigation controller. It is recommended that you present it using animation.

Important Person view controllers must be used with a navigation controller in order to function properly.

The following code listing shows how a navigation controller can present a person view controller:

ABPersonViewController *view = [[ABPersonViewController alloc] init];

view.personViewDelegate = self;

view.displayedPerson = person; // Assume person is already defined.

[self.navigationController pushViewController:view animated:YES];

User Interaction: Prompting for and Displaying Data
Displaying and Editing a Person Record

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

21

If the user taps on a property in the view, the person view controller calls the
personViewController:shouldPerformDefaultActionForPerson:property:identifier:method
of the delegate to determine if the default action for that property should be taken. To perform the default
action for the selected property, such as dialing a phone number or composing a new email, return YES;
otherwise return NO.

Prompting the User to Create a New Person Record
The ABNewPersonViewController class allows users to create a new person. To use it, do the following:

1. Create and initialize an instance of the class.

2. Set the delegate, which must adopt the ABNewPersonViewControllerDelegateprotocol. To populate
fields, set the value of displayedPerson. To put the new person in a particular group, set parentGroup.

3. Create and initialize a new navigation controller, and set its root view controller to the new-person view
controller

4. Present the navigation controller as a modal view controller using the
presentModalViewController:animated: method. It is recommended that you present it using
animation.

Important New-person view controllers must be used with a navigation controller in order to function
properly. It is recommended that you present a new-person view controller modally.

The following code listing shows how a navigation controller can present a new person view controller:

ABNewPersonViewController *view = [[ABNewPersonViewController alloc] init];

view.newPersonViewDelegate = self;

UINavigationController *newNavigationController = [[UINavigationController alloc]

initWithRootViewController:view];

[self presentModalViewController:newNavigationController

animated:YES];

User Interaction: Prompting for and Displaying Data
Prompting the User to Create a New Person Record

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

22

When the user taps the Save or Cancel button, the new-person view controller calls the method
newPersonViewController:didCompleteWithNewPerson: of the delegate, with the resulting person
record. If the user saved, the new record is first added to the address book. If the user cancelled, the value of
person is NULL. The delegate must dismiss the new-person view controller using the navigation controller’s
dismissModalViewControllerAnimated:method. It is recommended that you dismiss it using animation.

Prompting the User to Create a New Person Record from Existing
Data
The ABUnknownPersonViewController class allows the user to add data to an existing person record or
to create a new person record for the data. To use it, do the following:

1. Create and initialize an instance of the class.

2. Create a new person record and populate the properties to be displayed.

3. Set displayedPerson to the new person record you created in the previous step.

4. Set the delegate, which must adopt the ABUnknownPersonViewControllerDelegate protocol.

5. To allow the user to add the information displayed by the unknown-person view controller to an existing
contact or to create a new contact with them, set allowsAddingToAddressBook to YES.

6. Display the unknown-person view controller using the pushViewController:animated: method of
the navigation controller. It is recommended that you present it using animation.

Important Unknown-person view controllers must be used with a navigation controller in order to function
properly.

The following code listing shows how you can present an unknown-person view controller:

ABUnknownPersonViewController *view = [[ABUnknownPersonViewController alloc] init];

view.unknownPersonViewDelegate = self;

view.displayedPerson = person; // Assume person is already defined.

view.allowsAddingToAddressBook = YES;

[self.navigationController pushViewController:view animated:YES];

User Interaction: Prompting for and Displaying Data
Prompting the User to Create a New Person Record from Existing Data

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

23

When the user finishes creating a new contact or adding the properties to an existing contact, the
unknown-person view controller calls the methodunknownPersonViewController:didResolveToPerson:
of the delegate with the resulting person record. If the user canceled, the value of person is NULL.

User Interaction: Prompting for and Displaying Data
Prompting the User to Create a New Person Record from Existing Data

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

24

Although many common Address Book database tasks depend on user interaction, in some cases appropriate
for the application needs to interact with the Address Book database directly. There are several functions in
the Address Book framework that provide this ability.

In order to provide a uniform user experience, it is important to use these functions only when they are
appropriate. Rather than using these functions to create new view or navigation controllers, your program
should call the provided view or navigation controllers whenever possible. For more information, see “User
Interaction: Prompting for and Displaying Data” (page 19).

Remember that the Address Book database is ultimately owned by the user, so applications must be careful
not to make unexpected changes to it. Generally, changes should be initiated or confirmed by the user. This
is especially true for groups, because there is no interface on the device for the user to manage groups and
undo your application’s changes.

Using Record Identifiers
Every record in the Address Book database has a unique record identifier. This identifier always refers to the
same record, unless that record is deleted or the MobileMe sync data is reset. Record identifiers can be safely
passed between threads. They are not guaranteed to remain the same across devices.

The recommended way to keep a long-term reference to a particular record is to store the first and last name,
or a hash of the first and last name, in addition to the identifier. When you look up a record by ID, compare
the record’s name to your stored name. If they don’t match, use the stored name to find the record, and store
the new ID for the record.

To get the record identifier of a record, use the function ABRecordGetRecordID. To find a person record by
identifier, use the function ABAddressBookGetPersonWithRecordID. To find a group by identifier, use the
function ABAddressBookGetGroupWithRecordID. To find a person record by name, use the function
ABAddressBookCopyPeopleWithName.

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

25

Direct Interaction: Programmatically Accessing the
Database

Working with Person Records
You can add and remove records from the Address Book database using the functions
ABAddressBookAddRecord and ABAddressBookRemoveRecord.

There are two ways to find a person record in the Address Book database: by name, using the function
ABAddressBookCopyPeopleWithName, and by record identifier, using the function
ABAddressBookGetPersonWithRecordID. To accomplish other kinds of searches, use the function
ABAddressBookCopyArrayOfAllPeople and then filter the results using the NSArray method
filteredArrayUsingPredicate:.

To sort an array of people, use the function CFArraySortValues with the function
ABPersonComparePeopleByName as the comparator and a context of the type ABPersonSortOrdering.
The user’s desired sort order, as returned by ABPersonGetSortOrdering, is generally the preferred context.

The following code listing shows an example of sorting the entire Address Book database:

ABAddressBookRef addressBook = ABAddressBookCreate();

CFArrayRef people = ABAddressBookCopyArrayOfAllPeople(addressBook);

CFMutableArrayRef peopleMutable = CFArrayCreateMutableCopy(

kCFAllocatorDefault,

CFArrayGetCount(people),

people

);

CFArraySortValues(

peopleMutable,

CFRangeMake(0, CFArrayGetCount(peopleMutable)),

(CFComparatorFunction) ABPersonComparePeopleByName,

(void*) ABPersonGetSortOrdering()

);

CFRelease(addressBook);

CFRelease(people);

CFRelease(peopleMutable);

Direct Interaction: Programmatically Accessing the Database
Working with Person Records

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

26

Working with Group Records
You can find a specific group by record identifier using the function ABAddressBookGetGroupWithRecordID.
You can also retrieve an array of all the groups in an address book using
ABAddressBookCopyArrayOfAllGroups, and get a count of how many groups there are in an address book
using the function ABAddressBookGetGroupCount.

You can modify the members of a group programatically. To add a person to a group, use the function
ABGroupAddMember; to remove a person from a group, use the function ABGroupRemoveMember. Before a
person record can be added to a group, it must already be in the Address Book database. If you need to add
a new person record to a group and to the database at the same time, you must first add it to the address
book database, save the database, and then add the person record to the group.

Direct Interaction: Programmatically Accessing the Database
Working with Group Records

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

27

This table describes the changes to Address Book Programming Guide for iOS .

NotesDate

Updated to use ARC and storyboards.2012-02-16

Corrected minor errors in code listings.2010-12-22

Corrected minor error in code listing. Other minor changes throughout.2010-11-15

Changed the title from "Address Book Programming Guide for iPhone
OS."

2010-07-08

Added example code to the Interacting Using UI Controllers section.2010-03-24

Minor changes to code listing.2009-10-05

Added discussion about the return value of
ABMultiValueCopyLabelAtIndex. Corrected notes about how to use
AddressBookUI view controllers.

2009-05-27

Made minor corrections to discussion of record identifiers. Small wording
changes for clarity throughout.

2009-05-06

Minor restructuring for better readability.2009-02-04

Added example code for working with street addresses. Other minor
changes throughout.

2008-10-15

Minor update for iOS 2.1.2008-09-09

Minor wording changes. Corrected typos. Reordered content in "Working
with Address Book Objects."

2008-07-31

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

28

Document Revision History

NotesDate

Updated example code. Made small editorial and structural changes
throughout.

2008-07-08

New document that explains how to work with Address Book records,
and use views to display and prompt for contact information.

2008-06-06

Document Revision History

2012-02-16 | © 2012 Apple Inc. All Rights Reserved.

29

Apple Inc.
© 2012 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

The Apple logo is a trademark of Apple Inc.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

MobileMe is a service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iPhone, Mac, Mac
OS, Numbers, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the United
States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	Address Book Programming Guide for iOS
	Contents
	Figures and Listings
	Introduction
	Quick Start Tutorial
	Create and Configure the Project
	Create the UI and Header File
	Write the Implementation File
	Build and Run the Application

	Building Blocks: Working with Records and Properties
	Address Books
	Records
	Person Records
	Group Records

	Properties
	Single-Value Properties
	Multivalue Properties
	Mutable Multivalue Properties
	Street Addresses

	User Interaction: Prompting for and Displaying Data
	What’s Available
	Prompting the User to Choose a Person Record
	Displaying and Editing a Person Record
	Prompting the User to Create a New Person Record
	Prompting the User to Create a New Person Record from Existing Data

	Direct Interaction: Programmatically Accessing the Database
	Using Record Identifiers
	Working with Person Records
	Working with Group Records

	Revision History

