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Chapter 8

Nonstandard Standard Error Issues

LINE IS E T ATV |M.IMnumnmm-.ulmnmmmnn.ummmlm.un

We have normality. I repeat, we have normality.

Anything you still can’t cope with is therefore your own

problem. .
Douglas Adams, The Hitchhiker’s Guide to the Galaxy

standard errors derived under weak assumptions about

the sampling process or underlying model. For example,
you get regression standard errors based on formula (3.1.7)
using the Stata option robust. Robust standard errors
improve on old-fashioned standard errors because the result-
ing inferences are asymptotically valid when the regression
residuals are heteroskedastic, as they almost certainly are when
regression approximates a nonlinear conditional expectation
function (CEF). In contrast, old-fashioned standard errors are
derived assuming homoskedasticity. The hangup here is that
estimates of robust standard errors can be misleading when
the asymptotic approximation that justifies these estimates is
not very good. The first part of this chapter looks at the failure
of asymptotic inference with robust standard error estimates
and some simple palliatives.

A pillar of traditional cross section inference—and the dis-
cussion in section 3.1.3—is the assumption that the data are
independent. Each observation is treated as a random draw
from the same population, uncorrelated with the observa-
tion before or after. We understand today that this sampling
model is unrealistic and potentially even foolhardy. Much
as in the time series studies common in macroeconomics,
Cross section analysts must worry about correlation between
observations. The most important form of dependence arises

T oday, software packages routinely compute asymptotic
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in data with a group structure—for example, the test scores
of children observed within classes or schools. Children in the
same school or class tend to have test scores that are corre-
lated, since they are subject to some of the same environmental
and family background influences. We call this correlation the
clustering problem, or the Moulton problem, after Moulton
(1986), who made it famous. A closely related problem is
correlation over time in the data sets commonly used to imple-
ment differences-in-differences (DD) estimation strategies. For
example, studies of state-level minimum wages must confront
the fact that state average employment rates are correlated over
time. We call this the serial correlation problem, to distinguish
it from the Moulton problem.

Researchers plagued by clustering and serial correlation also
have to confront the fact that the simplest fixups for these
problems, like Stata’s cluster option, may not be very good.
The asymptotic approximation relevant for clustered or seri-
ally correlated data relies on a large number of clusters or time
series observations. Alas, we are not always blessed with many
clusters or long time series. The resulting inference problems
are not always insurmountable, though often the best solu-
tion is to get more data. Econometric fixups for clustering
and serial correlation are discussed in the second part of this
chapter. Some of the material in this chapter is hard to work
through without matrix algebra, so we take the plunge and
switch to a mostly matrix motif.

8.1 The Bias of Robust Standard Error Estimates*

In matrix notation

-1
B= I:Z XiX{l ZXz‘Yi = (X'X)' Xy,

where X is the NxK matrix with rows X} and y is the
N x 1 vector of v;’s. We saw in section 3.1.3 that B has an
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asymptotically normal distribution. We can write:
VN(B - B) ~ N(0,9)

where Q is the asymptotic covariance matrix and B=
E[X X1 EX;v,]. Repeating (3.1.7), the formula for  in this
case is

Q, = E[X;X]] T E[X; X2 E[X:X) Y, (8.1.1)

where ¢; = v; — X|8. When residuals are homoskedastic, the
covariance matrix simplifies to Q, = o?E[X;X]1, where
o? = E[?].

We are concerned here with the bias of robust standard error
estimates in independent samples (i.e., no clustering or serial
correlation). To simplify the derivation of bias, we assume
that the regressor vector can be treated as fixed, as it would
be if we sampled stratifying on X;. Nonstochastic regressors
gives a benchmark sampling model that is often used to look
at finite-sample distributions. It turns out that we miss little
of theoretical importance by making this assumption, while
simplifying the derivations considerably.

With fixed regressors, we have

' XX\ /xwxN /xx\ !
Q= N N N) , (8.1.2)

where
V¥ = E[ee'] = diag(y;)

is the covariance matrix of residuals. Under homoskedasticity,
¥, = o2 for all 7 and we get

XX\ GE
Q=02 =) .
"(N)

Asymptotic standard errors are given by the square root of the
diagonal elements of , and Q,, after removing the asymptotic
normalization by dividing by N.

In practice, the pieces of the asymptotic covariance matrix
are estimated using sample moments. An old-fashioned or
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conventional covariance matrix estimator is
R &2
Q. = (X'X)"16% = (X'X)! (Z ﬁ) ,
where &; = v, — X| B is the estimated regression residual and

52
52=§:e_i
N

estimates the residual variance. The corresponding robust
covarlance matrix estimator is

52
Q, = N(X'X)! (Z X%) (X'x)71. (8.1.3)

We can think of the middle term as an estimator of the form
#, where V; = &2 estimates 1.

By the law of large numbers and Slutsky’s theorem, N,
converges in probability to ., while N, converges to .
But in finite samples, both variance estimators are biased. The
bias in . is well-known from classical least squares theory and
easy to correct. Less appreciated is the fact that if the resid-
uals are homoskedastic, the robust estimator is more biased
than the conventional estimator, perhaps a lot more. From
this we conclude that robust standard errors can be more mis-
leading than conventional standard errors in situations where
heteroskedasticity is modest. We also propose a rule of thumb
that uses the maximum of old-fashioned and robust standard
errors to avoid gross misjudgments of precision.

Our analysis begins with the bias of Q.. With nonstochastic
regressors, we have

A E(&})
Ql=(X'X)16? =(X'X)"! —1t ).
E[]<X>a<X>(ZN)
To analyze E[2?], start by expanding & = y — X B:

e=y-X(X'X)' X'y = [In - X(X'X)"'X")(XB + ) = Me,

where e is the vector of population residuals, M = Iy —
X(X'X)™1X’ is a nonstochastic residual-maker matrix with
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ithrowm/, and Iy isthe N x N identity matrix. Then é; = mle
and

>

E(e}) = E(mjee'm;)

7
= mi\I/mi.

To simplify further, write m; = £; — b;, where ¢; is the ith
column of Iy and b; = X(X’X)"1X;, the ith column of the
projection matrix H = X(X'X)~1X’. Then

E@}) = (& —h) W (L — b;)
= i — 2¥ib; + bUh;, (8.1.4)

where b;;, the ith diagonal element of H, satisfies
bii = blh; = XUX'X)'X;. (8.1.5)

Parenthetically, b, is called the leverage of the ith observa-
tion. Leverage tells us how much pull a particular value of X;
exerts on the regression line. Note that the ith fitted value (ith
element of Hy) is

¥ = h:y = hyY; + Zhi/Yl" (8.1.6)
i
A large b;; means that the th observation has a large impact on
the ith predicted value. In a bivariate regression with a single
regressor, x;,
PO G5
TN dox—x)2
This shows that leverage increases when x; is far the mean. In

addition to (8.1.6), we know that b is 2 number that lies in
N

the interval {0, 1] and that Z h; = X, the number of regressors

(8.1.7)

i=1
(see, e.g., Hoaglin and Welsch, 1978).1

N
IThe property Z hj; = X comes from the fact that H is idempotent, and so
i=1
has trace equal to rank. We can also use (8.1.7) to verify that in a bivariate
N

regression, Zhi,- =7k

i=1
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Suppose residuals are homoskedastic, so that i; = o'2. Then
(8.1.4) simplifies to
E(8}) = o2[1 ~2h; +B'hi] = 0X(1 — by) < o
So €. tends to be too small. Using the properties of b;;, we can
go one step further:

E(Azz) 1—-}),',' N-x
YAt T T = ()

Thus, the bias in €. can be fixed by a simple degrees-of-
freedom correction: divide by N—xk instead of N in the
formula for 2. This correction is used by default in most
regression software.

We now want to show that under homoskedasticity, the bias
in €, is likely to be worse than the bias in Q.. The expected
value of the robust covariance matrix estimator is

X'E(22
E[Q,] = N(X'X)™! (Z %) (X'X)"1, (8.1.8)

where E(2?) is given by (8.1.4). Under homoskedasticity,
¥; = o2 and we have E(2?) = 0%(1 —by) as in Q.. It’s clear,
therefore, that the bias in &2 tends to pull robust standard
errors down. The general expression, (8.1.8), is hard to evalu-
ate, however. Chesher and Jewitt (1987) show that as long as
there is not “too much” heteroskedasticity, robust standard
errors based on €, are indeed biased downvvau'_d.2

How do we know that €, is likely to be more biased
than .2 Partly this comes from Monte Carlo evidence (e.g.,
MacKinnon and White, 1985, and our own small study, dis-
cussed below). We also prove this here for a bivariate example,
where both the dependent variable and the single regressor,
x;, are assumed to be mean zero. (We’re assuming the vari-
ables here are naturally mean zero so as to avoid the need
for a degrees-of-freedom correction due to removal of sample
means.) In this case, the estimator of interest is f; = %

2In particular, as long as the ratio of the largest ¥; to the smallest ; is less
than 2, robust standard errors are biased downward.
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x2
and the leverage is b; = Z—’xlz (we lose the 731— term in (8.1.7)

2
by dropping the constant). Let s2 = 2% For the conventional

N
covariance estimator, we have
R o2 [ (1-hy) o? 1
ElQ]l=—|&=— 2|~ _11__—_
[€2] Ns%l: N ] N&? [1 N]’

so the bias here is small. A simple calculation using (8.1.8)
shows that under homoskedasticity, the robust estimator has
expectation:

: a? (1—hy) (x>
E[Q,] = — (=
%= 257 ()

o2

2
(o2
=Nz Do (1=hahi = o [1- 3 12].

The bias of Q, is therefore worse than the bias of Q, if
Yh> 1%1“’ as it is by Jensen’s inequality unless the regressor
has constant leverage, in which case b; = % for all 7.3

We can reduce the bias in Q, by trying to get a better estima-
tor of ;, say ¥;. The estimator &, sets Y = éiz, as proposed by
White (1980a) and our starting point in this section. The resid-
ual variance estimators discussed in MacKinnon and White
(1985) include this and three others:

HCo:y; =&

" N
HCp: ;= &2
Crevi= g8

3Think of b; as a random variable with a uniform distribution in the sample.
Then
by 1
Efh;] = % =3
and

b2 1\?
Eh] = %— > (Elha))* = (ﬁ)

by Jensen’s inequality unless hj; is constant. Therefore Zhﬁ > % The
constant leverage case occurs when x? is constant,
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A 1
Gyt AT 1 =5
3-¢z—mi-

HC; is a simple degrees of freedom correction as is used for ..
HC; uses the leverage to give an unbiased estimate of the vari-
ance of the 7th residual when the residuals are homoskedastic,
while HC3 approximates a jackknife estimator. In the appli-
cations we’ve seen, the estimated standard errors tend to get
larger as we go down the list from HCy to HC3, but this is not
a theorem.

Time-Out for the Bootstrap

Bootstrapping is a resampling scheme that offers an alterna-
tive to inference based on asymptotic formulas. A bootstrap
sample is a sample drawn from our own data. In other words,
if we have a sample of size N, we treat this sample as if it
were the population and draw repeatedly from it (with replace-
ment). The bootstrap sampling distribution is the distribution
of an estimator across many draws of this sort. Intuitively,
we expect the sampling distribution constructed by sampling
from our own data to provide a good approximation to the
sampling distribution we are after.

There are many ways to bootstrap regression estimates. The
simplest is to draw pairs of {y;, X;} values, sometimes called
the “pairs bootstrap” or a “nonparametric bootstrap.” Alter-
natively, we can keep the X; values fixed, draw from the
distribution of residuals (2;), and create a new estimate of the
dependent variable based on the predicted value and the resid-
ual draw for each observation. This procedure, which is a type
of parametric bootstrap, mimics a sample drawn with non-
stochastic regressors and ensures that X; and the regression

4A jackknife variance estimator estimates sampling variance from the
empirical distribution generated by omitting one observation at 2 time. Stata
computes HC1, HC;, and HC3. You can also use a trick suggested by Messer

and White (1984): divide v; and X, by \/Z and instrument the transformed
model by X;/ \/% for your preferred choice of ;.

b
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residuals are independent. On the other hand, we don’t want
independence if we’re interested in standard errors under het-
eroskedasticity. An alternative residual bootstrap, called the
wild bootstrap, draws X:,é +&; (which, of course, is just the
original v;) with probability 0.5, and X:,é — &; otherwise (see,
e.g., Mammen, 1993, and Horowitz, 1997). This preserves
the relationship between residual variances and X; observed
in the original sample, while imposing mean-independence of
residuals and regressors, a restriction that improves bootstrap
inference when true.

Bootstrapping is useful as a computer-intensive but other-
wise straightforward calculator for asymptotic standard
errors. The bootstrap calculator is especially useful when the
asymptotic distribution of an estimator is hard to compute
or involves a number of steps (e.g., the asymptotic distribu-
tions of the quantile regression and quantile treatment effects
estimates discussed in chapter 7 require the estimation of den-
sities). Typically, however, we have no problem deriving or
evaluating asymptotic formulas for the standard errors of OLS
estimates.

More relevant in this context is the use of the bootstrap
to improve inference. Improvements in inference potentially
come in two forms: (1) a reduction in finite-sample bias in esti-
mators that are consistent (for example, the bias in estimates
of robust standard errors) and (2) inference procedures which
make use of the fact that the bootstrap sampling distribution
of test statistics may be closer to the finite-sample distribu-
tion of interest than the relevant asymptotic approximation.
These two properties are called asymptotic refinements (see,
e.g., Horowitz, 2001).

Here we are mostly interested in use of the bootstrap for
asymptotic refinement. The asymptotic distribution of regres-
sion estimates is easy enough to compute, but we worry that
the traditional robust covariance estimator (HCyp) is biased.
The bootstrap can be used to estimate this bias, and then, by a
simple transformation, to construct standard error estimates
that are less biased. However, for now at least, bootstrap bias
correction of regression standard errors is not often used in
empirical practice, perhaps because the bias calculation is not
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automated and perhaps because bootstrap bias corrections
introduce extra variability. Also, for simple estimators like
regression coefficients, analytic bias corrections such as HC,
and HCj are readily available (e.g., in Stata).

An asymptotic refinement can also be obtained for hypoth-
esis tests (and confidence intervals) based on statistics that
are asymptotically pivotal. These are statistics that have
asymptotic distributions that do not depend on any unknown
parameters. An example is a ¢-statistic: this is asymptoti-
cally standard normal. Regression coefficients are not asymp-
totically pivotal; they have an asymptotic distribution that
depends on the unknown residual variance. To refine infer-
ence for regression coefficients, you calculate the z-statistic in
each bootstrap sample and compare the analogous #-statistic
from your original sample to this bootstrap “z-distribution.”
A hypothesis is rejected if the absolute value of the original z-
statistic is above, say, the 95th percentile of the absolute values
from the bootstrap distribution.

Theoretical appeal notwithstanding, as applied researchers,
we don’t like the idea of bootstrapping pivotal statics very
much. This is partly because we’re not only (or even primarily)
interested in formal hypothesis testing: we like to see the stan-
dard errors in parentheses under our regression coefficients.
These provide a summary measure of precision that can be
used to construct confidence intervals, compare estimators,
and test any hypothesis that strikes us, now or later. In our
view, therefore, practitioners worried about the finite-sample
behavior of robust standard errors should focus on bias cor-
rections like HC; and HCs. As we show below, for moderate
heteroskedasticity at least, an inference strategy that uses the
larger of conventional and bias-corrected standard errors often
seems to give us the best of both worlds: reduced bias with a
minimal loss of precision.

An Example

For further insight into the differences between robust covari-
ance estimators, we analyze a simple but important example
that has featured in earlier chapters in this book. Suppose you
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are interested in an estimate of ; in the model
Yi = Bo+ BiD; +¢;, (8.1.9)

Where D; is 2 dummy variable. The OLS estimate of B1 is the
difference in means between those with D; switched on and off.
Denoting these subsamples by the subscripts 1 and 0, we have

B1=Y1—¥,.

For the purposes of this derivation we think of D; as nonran-
dom, so that 3" p; = N; and 2 {1 -D;) = Nj are fixed. Let
7= N 1 / N.

We know something about the finite-sample behavior of j;
from statistical theory. If v; is normal with equal but unknown
variance in both the p; = 1 and p; = 0 populations, then the
conventional z-statistic for f; has a ¢-distribution. This is the
classic two-sample z-test. Heteroskedasticity in this context
means that the variances in the D; =1 and p; = 0 popula-
tions are different. In this case, the testing problem in small
samples becomes surprisingly difficult: the exact small-sample
distribution for even this simple problem is unknown.® The
robust variance estimators H. Co-HCj3 give asymptotic approx-
imations to the unknown finite-sample distribution for the case
of unequal variances.

The differences between H Co, HC1, HC;, and HC; are dif-
ferences in how the sample variances in the two groups defined
by D; are processed. Define 82 =3 p—i (Yi—%;)* forj = 0,1.
The leverage in this example is

1 : —
Na IfD,'—O

1

hi; = :
Ny ifD,'=1

Using this, it’s straightforward to show that the five variance
estimators we’ve been discussing are

2 2 2 2
Conventional : L(M) B (_SO 1S 1)
NoNi \ N -2 Nr(l—7)\ N-2

SThis is called the Behrens-Fisher problem (see, e.g., DeGroot and
Schervish, 2001, chap. 8).
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5 S
NG N
N Sz 82

HCi: +— <N0§+Xif)

$ s
No(No—1)  Ni{Ni—1)

55 i
(No—1)2 " (N; - 1>
The conventional estimator pools subsamples: this is efficient
when the two variances are the same. The White (1980a)

estimator, HCy, adds separate estimates of the sampling vari-
ances of the means, using the consistent (but biased) variance
2

HCy +

HC;:

HC;s: +

. S . . L
estimators, w-. The HC; estimator uses unbiased estimators

of the sample variance for each group, since it makes the
correct degrees-of-freedom correction. HC; makes a degrees-
of-freedom correction outside the sum, which will help but is
generally not quite correct. Since we know HC; to be the unbi-
ased estimate of the sampling variance under homoskedastic-
ity, HC3 must be too big.® Note that with 7 = 0.5, a case where
the regression design is said to be balanced, the conventional
estimator equals HC; and all five estimators differ little.

A small Monte Carlo study based on (8.1.9) illustrates the
pluses and minuses of alternative estimators and the extent to
which a simple rule of thumb goes a long way toward amelio-
rating the bias of the HC class. We choose N = 30 to highlight
small sample issues, and » = 0.10 (10 percent treated), which
implies b; = % ifp;=1andb; = %7 if p; = 0. This is a highly
unbalanced design. We draw residuals from the distributions:

. N(0,6%) ifp;=0
" IN(0,1) ifp;=1

and report results for three cases. The first has lots of het-
eroskedasticity, with o = 0.5, while the second has relatively

®In this simple example, HC; is unbiased whether or not residuals are
homoskedastic.

Al bR Ly o o

kit it
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little heteroskedasticity, with o = 0.85. No heteroskedasticity
is the benchmark case.

Table 8.1.1 displays the results. Columns 1 and 2 report
means and standard deviations of the various standard error
estimates across 25,000 replications of the sampling experi-
ment. The standard deviation of f; is the sampling variance
we are trying to measure. With lots of heteroskedasticity, as
in the upper panel of the table, conventional standard errors
are badly biased and, on average, only about half the size of
the Monte Carlo sampling variance that constitutes our target.
On the other hand, while the robust standard errors perform
better, except for HC3, they are still too small.’

The standard errors are themselves estimates and have con-
siderable sampling variability. Especially noteworthy is the
fact that the robust standard errors have much higher sam-
pling variability than the conventional standard errors, as can
be seen in column 2.8 The sampling variability of estimated
standard errors further increases when we attempt to reduce
bias by dividing the residuals by 1— b; (HC,) or (1 —hy)?
(HC3). The worst case is HC3, with a standard deviation about
50 percent above the standard deviation of the White (1980a)
standard error, HC,.

The last two columns in the table show empirical rejection
rates in a nominal 5 percent test for the hypothesis g; = 0,
the population parameter in this case. The test statistics are
compared with a normal distribution and to a ¢-distribution
with N — 2 degrees of freedom. Rejection rates are far too high
for all tests, even with HCj3. Using a ¢-distribution rather than
a normal distribution helps only marginally.

7Although HC; is an unbiased estimator of the sampling variance, the mean
of the HC, standard errors across sampling experiments (0.52) is still below
the standard deviation of f; (0.59). This comes from the fact that the standard
error is the square root of the sampling variance, the sampling variance is itself
estimated and hence has sampling variability, and the square root is a concave
function.

8The large sampling variance of robust standard error estimators is noted
by Chesher and Austin (1991). Kauermann and Carroll (2001) propose an
adjustment to confidence intervals to correct for this.
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TaBLE 8.1.1 ) The results with little heteroskedasticity, reported in the sec-
Monte Carlo results for robust standard error estimates i ond panel, show that conventional standard errors are still too
Empirical 5% Rejection Rates low; this bias is now on the order of 15 precent. HCy and HC,
are also too small, about as before in absolute terms, though
Mean Standard Normal t . 1
Peviation _ they now look worse relative to the conventional standard
Parameter Estimate (1) {2) (3) 4) ] errors. The HC, and HCs standard errors are still larger than
A. Lots of heteroskedasticity the conventional standard errors, on average, but empirical
B —.001 .586 rejection rates are higher for these two than for conventional
Standard Errors ‘ standa}rd errors. This means Fhe robust standard errors are
Conventional 331 .052 278 257 sometimes too small “by accident,” an event that happens
HCy 417 .203 247 231 ften en o i pE— th
e, g s L2 Bs _ often € _ouglll o 1nﬂate rejection rates so that they exceed the
HC, 523 260 177 164 _ conventional rejection rates. o
HC; 636 321 130 120 One lesson we can take away from this is that robust
max(HCy, Conventional) 448 172 188 171 standard errors are no panacea. They can be smaller than con-
max(HCy, Conventional) 473 .190 173 157 ol dard P £ i 4 M 1 1
max(HC;, Conventional) ‘54> 938 141 18 ventional standard errors for two reasons: the sma sample
max(HC3, Conventional) .649 .305 107 .097 1 bias we have discussed and their higher sampling variance.
B. Little heteroskedasticity : We therefore take empirical results where the robust standard
B 004 600 errors fall below the conventional standard errors as a red flag.
4 o 5 5 .
Standard Errors This is very likely dufe to blgs ora chapce occurrence that is bet-
Conventional .520 .070 .098 .084 ter discounted. In this spirit, the maximum of the conventional
HCy 441 193 217 -202 : standard error and a robust standard error may be the best
ggi ‘5122 %23 %?2 }2 J measure of precision. This rule of thumb helps on two counts:
HC; 657 312 114 104 1 it truncates low values of the robust estimators, reducing
maxgggo, gonvent}onag -g% gé -8% -82(7) . bias, and it reduces variability. Table 8.1.1 shows the empir-
max 1, Conventiona . ; K . . s e . . . .
max(HCy, Conventional) o7 ‘136 067 057 ; 1ca} rejection rates obtalped using max(HC;, Conventional).
max(HCj3, Conventional) 713 259 053 .045 : Rejection rates using this rule of thumb look pretty good
RN o o in panel B and are conmderably better than the rates using
B —.003 611 robust estimators alone, even with lots of heteroskedasticity,
as shown in panel A.°
Standard Errors ; . : . .
Convetional 604 081 061 050 Since there is no gain without pain, there must be some cost
HCy 453 190 209 193 ; to using max(HC;, Conventional). The cost is that the best
ggl ";gg '%2,3/ '%gg gé 1 standard error when there is no heteroskedasticity is the con-
HC§ 667 309 110 100 ] ventional estimate. This i§ documented in the bottom panel of
max(HCy, Conventional) .629 .109 .055 .045 F the table. Use of the maximum inflates standard errors unnec-
max(HC,, Conventional) .640 122 .053 .044 4 g A 2 St
max(FICy. Conventional) oot Wi o a5 | essarily under homoskedasticity, depre.ssm}% re]ectlon. rates.
max(HC;, Conventional) 754 237 039 031 3 Nevertheless, the table shows that even in this case, rejection
Notes: The table reports results from a sampling experiment with 25,000 replica-
tions. Columns 1 and 2 shows the mean and standard deviation of estimated standard 3 9Yang, Hsu, and Zhao (2005 ) formalize the notion of test procedures
errors, except for the first row in each panel which shows the mean and standard devi- based on the maximum of a set of test statistics with differing efficiency and
ation of B1. The model is as described by (8.1.9), with g1 =0, =1, N = 30, and 4 robustness properties.

heteroskedasticity as indicated in the panel headings.
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rates don’t go down all that much. We also view an un.deres-
timate of precision as being less costly than an overestimate.
Underestimating precision, we come away thinking the data
are not very informative and that we should try to collect more
or improve the research design, while in the latte'r case we may
mistakenly draw important substantive concluspns. '

A final comment on this Monte Carlo investigation con-
cerns the small sample size. Labor economists like us are used
to working with tens of thousands of observations or more.
But sometimes we don’t. In a study of the effects of busing on
public school students, Angrist and Lang (2004) worked with
samples of about 3,000 students grogped in '56 schools. The
regressor of interest in this study varied within grade only at
the school level, so some of the analysis uses 56 school means.
Not surprisingly, therefore, Angrist and Lang (2004) obtained
HCj standard errors below conventional OLS standard errors
when working with school-level data. As a rule, even if you
start with the microdata on individuals, when the regressor
of interest varies at a higher level of aggregation—a schgol,
state, or some other group or cluster—effective sample sizes
are much closer to the number of clusters than to the num-
ber of individuals. Inference procedures for clustered data are
discussed in detail in the next section.

8.2 Clustering and Serial Correlation in Panels

8.2.1 Clustering and the Moulton Factor

Heteroskedasticity rarely leads to dramatic changes in infer-
ence. In large samples where bias is not likely to be a problem,
we might see standard errors increase by about ;5 percent
when moving from the conventional to the HC; estimator. In
contrast, clustering can make all the difference. ' ‘

The clustering problem can be illustrated using a simple
bivariate model estimated in data with a group structure.
Suppose we’re interested in the bivariate regression,

Yig = Po+ Pi1xg + eig, (8=22l)

ey

Lhm o o
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where Y, is the dependent variable for individual 7 in cluster
or group g, with G groups. Importantly, the regressor of inter-
est, Xg, varies only at the group level. For example, data from
the STAR experiment analyzed by Krueger (1999) come in the
form of Yig, the test score of student ; in class g, and class
size, x,.

Although students were randomly assigned to classes in the
STAR experiment, the STAR data are unlikely to be inde-
pendent across observations. The test scores of students in
the same class tend to be correlated because students in the
same class share background characteristics and are exposed
to the same teacher and classroom environment. It’s therefore
prudent to assume that, for students i and j in the same class, g,

Elege] = ,oeag2 >0, (8.2.2)

where p, is the residual intraclass correlation coefficient and
o} is the residual variance.

Correlation within groups is often modeled using an addi-
tive random effects model. Specifically, we assume that the
residual; ey, has a group structure,

Cig = Ug + Ny, (8.2.3)

where v, is a random component specific to class g and Nigisa
mean-zero student-level error component that’s left over. We
focus here on the correlation problem, so both of these error
components are assumed to be homoskedastic. The group-
level error component is assumed to capture all within-group
correlation, so the Nig are uncorrelated.10

When the regressor of interest varies only at the group level,
an error structure like (8.2.3) can increase standard errors
sharply. This unfortunate fact is not news—Kloek (1981) and

10This sort of residual correlation structure is also a consequence of strat-
ified sampling (see, e.g., Wooldridge, 2003). Most of the samples that we
work with are close enough to random that we typically worry more about the
dependence due to a group structure than clustering due to stratification. Note
that there is no GLS estimator for equation 8.2.1 with error structure 8.2.3
because the regressor is fixed within groups. In any case, here as elsewhere we
prefer a “fix-the-standard-errors” approach to GLS.




310 Chapter 8 . Nonstandard Standard Error Issues 311
Moulton (1986.) botb rr,lade the point—but it seems fair‘to ] 'Even small intraclass correlation coeffici
say that clustering didn’t really become part of the applied big Moulton factor. In Angrist d eHicients can generate 2
econometrics zeitgeist until about 15 years ago. 4,000 students are groupe<gi in 28 IIIaVY (2008), for example,

Given the error structure, (8.2.3), the intraclass correlation 100. The regressor of interest | SChOOIS, so the average # is
coefficient becomes tus: all students in treated schosoisc v‘;:i‘levld geatment sta-

o sflassl; aéwar(iis for passing their matriculatl(fn ee)lcilmlse El%er T;‘;IVC
Pe = Zta’ formulzrr(g ztléc‘))n ltl}ll thli/sl study fluctuates around 1 Applylﬁlg
) ' x ' LI Iey r;: (; : 5 2 oulton factor is over 3, so the stan-
where o is the variance of vg and o} is the variance of . should b borted by default are only one-third what th
A word on terminology: p. is called the intraclass corre- E e <y
lation coefficient even when the groups of interest are not - regr;l:s?)t;szr(fﬁ:é COYTII.S an important special case where the
classrooms. ‘ ed within groups and groy ;

Let V,(B1) be the conventional OLS variance formula for the ‘ gf&fﬁgneﬁl formula allows the regress%)r > xi:ig ljacr(})’n:;at?lt
regression slope (a diagonal element of Q. in the previous sec- the M u}i S and.for different group sizes, #,. In this )
tion), while V(B1) denotes the correct sampling variance given oulton factor s the square root of _—
the error structure, (8.2.3). With nonstochastic regressors Vi)
fixed at the group level and groups of equal size, 7, we have el _ 4 [ Vin,)

. Ve(B1) 7 AT 1] PxPes (8.2.5)
V(B1) -
=14 (n—1 8.2.4 where 7 is ¢ :
VelB1) ( ie- P correlation o?fcg::verage group size, and p, is the intraclass
a formula derived in the appendix to this chapter. We call the -
square root of this ratio the Moulton factor, after Moulton’s ZZ Z (s — %) (x; — %)
(1986) influential study. Equation (8.2.4) tells us how much .' oy = &I i %
we overestimate precision by ignoring intraclass correlation. . T Vix,) Z
Conventional standard errors become increasingly misleading g ng(ng — 1)
as n and p, increase. Suppose, for example, that p, =1. In N d
this case, all the errors within a group are the same, so the l'kOte that p, does not Impose a variance o
Yig values are the same as well. Making a data set larger by - 1X€ (8.2.3); here, p, is 2 generic measure of 5’16 o ?tructure
copying a smaller one # times generates no new information. 1 regressors within groups, The general Moult cfo Mo o
The variance V,(B;) should therefore be scaled up from V(5 ] us that clustering has a bigger impact on stangéi1 dOI'mlﬂa tells
by a factor of 7. The Moulton factor increases with group size ::nable group sizes and when p, js large. The imrpaf::: . '“zth
because with a fixed overall sample size, larger groups mean 2en p; = 0. In other words, if the Xig values are uncorigllzt:s

fewer clusters, in which case there is less independent infor-
mation in the sample (because the data are independent across

why we worry m
e ost about ¢] i
clusters but not within).!! ustering

ups.

deszg:z € 3 ect because i teHs us hO W IHUCh to adJU"St standard €Irors in st[atlﬁed

11yyith nonstochastic regressors and homoscedastic residuals, the Moulton
sa 9 ;
mples for deviations from simple random sampling (Kish, 1945 )

factor is a finite-sample result. Survey statisticians call the Moulton factor the
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We illustrate formula (8.2.5) using the Tennessee STAR
example. A regression of kindergartners’ percentile score on
class size yields an estimate of —.62 with a robust (HCy) stan-
dard error of .09. In this case, px = 1 because class size is
fixed within classes, while V(r,) is positive because classes
vary in size (in this case, V{ng) = 17.1). The intraclass corre-
lation coefficient for residuals is .31 and the average class size
is 19.4. Plugging these numbers into (8.2.5) gives a value of

about 7 for VK(%)), so that conventional standard errors should
clPl

be multiplied by a factor of 2.65 = /7. The corrected standard
error is therefore about 0.24. .

The Moulton factor works similarly with 2SLS estimates. In
particular, we can use (8.2.5), replacing p, with pz, where pz
is the intraclass correlation coefficient of the first-stage fitted
values and p, is the intraclass correlation of the second-stage
residuals (Shore-Sheppard, 1996). To understand why this
works, recall that conventional standard errors for 2SLS are
derived from the residual variance of the second-stage equa-
tion divided by the variance of the first-stage fitted values.
This is the same asymptotic variance formula as for OLS, with
first-stage fitted values playing the role of the regressor.

To conclude, we list and compare solutions to the Moul-
ton problem, starting with the parametric approach described
above.

1. Parametric: Fix conventional standard errors using (8.2.5).

The intraclass correlations p, and px are easy to com-
pute and supplied as descriptive statistics in some software

packages.12
2. Cluster standard errors: Liang and Zeger (1986) general-

ize the White (1980a) robust covariance matrix to allow
for clustering as well as heteroskedasticity. The clustered

covariance matrix is

Q= (X,X)_l ZXé\i’ng (X/X)_1 , where
g
(8.2.6)

12(Jse Stata’s loneway command, for example.
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g g%2g C1glnge
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Here i i

degrge.:{iflzrzléz ;natr:; of regressors for groupgandaisa
e ;L a ]lustment faf:tor similar to that which
P vty i Jps ee; clustere'd estimator is consistent as the
T gi s large given any within-group correla-
: e ot just the parametric model in (8.2.3).
evz o no Whenst hent with a fixed number of groups, how-
b o }(13 glroup size tends to infinity. Consistency
s eterm v the law of large numbers, which says that
¥ on sample moments to converge to population

) But here the sums are at the group
uals. Clustered standard errors are

we return to below,

3. Use i
; group averages instead of microdata: let ¥, be th
OI'Y;e 1n group g. Estimate £ s

Yg = Bo+ Pixg +2

by WLS usi 1
toy i lzlsiilgg rtrlllie gro(;lp size as weights. This is equivalent
R reﬂecciroh ata but the grouped-equation stan-
the sapmamrclec the group structure, (8.2.3).13 Again
ere are based on the n ,
and not the group size. Importantly
group means are close to normally d’i
group sizes, we can expect the good
of regression with normal errors t
errors that come out of grouped
likely to be more reliable than cly
samples with few clusters.

umber of groups
however, because the
stributed with modest
finite-sample properties
o kick in. The standard
estimation are therefore
stered standard errors in

BTh

€ grouped residual

.. : s are hetero i

but this is less important t] skedastic unless group sizes are equal

. han th
the microdata. e fact that the error has 2 group structure in
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i i dels
Grouped-data estimation can be generalized toSmo :
i . Suppos
with microcovariates using a two-step procedure. Supp
the equation of interest is

) 8.2.7
Yig = Bo + B1xg + PoWig + €igs e

) e I
here w;, is a covariate that varies within groups
W K - .
step 1 cognstruct the covariate-adjusted group effects, jig,
b4
by estimating

Yig = tg + BaWig + nig-

The iz, called group effects, are coefficients on a full.set o;
group%’ummies. The estimated fig are group rglleans ad)lll\?:,t X
i i individual level variable, w;,.

for differences in the indivi e

i d (8.2.3), pg = Bo+ B1xg + vg-
that, by virtue of (8.2.7) an : :
Inastepy2 therefore, we regress the estimated group effects
on group-level variables:

fg = Bo + B1xg + {vg + (g — ugh (8.2.8)

o o th
The efficient GLS estimator for (8.2f.8})1 is \X/LS,1 1';\7361111;56 Sid?
i i the group-le
i al of the estimated variance o '
izlpz3c+ (fig — 1g)}, as weights. This can be a prgikfam,
sinée tl'gle variance of vg is not estimated very \.Nell wit ) te}\:z
groups. We might therefore weight by the reciprocal o e
. i ffects, the group size, oru
iance of the estimated group e 5 :
Vin\jfzights at all.1# In an effort to better approxnnatcz) (t)l;f;
n . :
relevant finite-sample distribution, Donal.d and. Lanég ;28) 7
suggest that inference for grouped equations hfkfe ( éo.m
istributi ith G — K degrees of freedom.
based on a #-distribution wi
Note that the grouping approach does n_ot f)vork \;VSI:ZE
xj, varies within groups. Averaging x;o }tlo g is aa\;eiation
H in chapter 4. So with micro-v:
of IV, as we saw In chap Ssct
i i uped estimation
n the regressor of interest, gro . =
;)arameters that differ from the target parameters in a mode
like (8.2.7).

ighting
14See Angrist and Lavy (2008) for an example of the latter two weigh
schemes.

b ataie
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4. Block bootstrap: In general, bootstrap inference uses the
empirical distribution of the data by resampling. But simple
random resampling won’t do in this case. The trick with
clustered data is to preserve the dependence structure in the
target population. We can do this by block bootstrapping,
that is, drawing blocks of dat.

a defined by the groups g.
In the Tennessee STAR data, for example, we’d block
bootstrap by resamplin;

g entire classes instead of individual
students.

- In some cases, you may be able to estimate a GLS or
maximum likelihood mode] based on a version of (8.2.1)
combined with a model for the error structure like (8.2.3).
This fixes the clustering problem but also changes the esti-
mand unless the CEF js linear, as detailed in section 3.4.1

for LDV models. We therefore prefer other approa
Table 8.2.1 com

example. The table
standard errors (

ches.

pares standard-error fixups in the STAR
TePOIts six estimates: conventional robust
using HCy); two versions of corrected stan-
dard errors using the Moulton formula (8.2.5), the first using
the formula for the intraclass correlation given by Moulton
and the second using Stata’s estimator fromthe 1 oneway com-
mand; clustered standard errors; block-bootstrapped standard
errors; and standard errors from weighted estimation at the

chapter.

8.2.2 Serigl Correlation in Panels
and Diﬁ‘erence-in-Diﬁ‘erence Models

one before—used to be Some-
body Else’s Problem, specifically, the unfortunate souls who

make their living out of time series data (macroeconornists, for
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TariE 8.2.1 .
Standard errors for class size effects in the STAR
data (318 clusters)

Variance Estimator Std. Err.

.090
Robust (HCq)
Parametric Moulton correction . 222
(using Moulton intraclass correlation)
Parametric Moulton correctiog .230
(using Stata intraclass correlation)

232
Clustered

231
Block bootstrap

226

Estimation using group means
(weighted by class size)

Notes: The table reports standard errors for the §lst1mates

from a regression of kindergartners” average pell;celtxtx e Ss;c:gs

i i lic use data set from Project .

on class size using the pub . -

The coefficient on class size is —.62. The group !evel .fo; c71‘11.13

tering is the classroom. The number of observations is 5,743.
The bootstrap estimate uses 1,000 replications.

example). Applied microeconometricians.han:1 ‘thereficc))rne l;r:)g

ignored it.!* But our data ofFen have a t{med 1rpelzlnzlust,eriné

especially in DD models. This fgct‘ corpbme wit

can have a major impact 021 ;tatlgtltcal éniiie?rclférested "
as in section 5.2, that w

effselétipgfs Z, state minimum wage. In this context, t?fe rtesgr‘f:;é

sion version of DD includes additive state and tlrélel e f.:C .

therefore get an equation like (5.2.2), repeated below:

Yist = Vs + At + 0D + Eists (8.2.9)

L. |
15The Somebody Else’s Problem (SEP) ﬁeld(,l grst 1er.1t1ﬁe.d zzcz:) rr(;ziirtllglrtao
1 ’s Li i thing, is,

n in Adams’s Life, the Universe, an veryt ek
%(I;ielgogzzo“a generated energy field that affects perception. . ... llinflt;erso vls)llle nir:
the ﬁfld wi’ll be perceived by an outside observer as ‘Somebody E! se’s edﬁcan,y
and will therefore be effectively invisible unless the observer is sp

looking for the entity.”
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As before, v, is the outcome for individual { in state s in year
tand D, is a dummy variable that indicates treatment states
in posttreatment periods.

The error term in (8.2.9) reflects the idiosyncratic variation
in potential outcomes across people, states, and time. Some
of this variation is likely to be common to individuals in the
same state and year, for example, a regional business cycle. We
can model this common component by thinking of ¢, as the
sum of a state-year shock, Ust, and an idiosyncratic individual
component, 7;;. So we have:

Yise = Y5 + Ar + 8Dst Vg + Nist -« (8-2~1O)
We assume that in repeated draws across states and over time,
Elv,;} = 0, while Elnis)s, 81 = 0 by definition.

State-year shocks are bad news for DD models. As with
the Moulton problem, state- and time-specific random effects
generate a clustering problem that affects statistical inference.
But that might be the least of our problems in this case. To see
why, suppose we have only two periods and two states, as in

the Card and Krueger (1994) New Jersey-Pennsylvania study.
The empirical DD estimator is

Sk = (YouNj r=Now — Ye=NJt=Feb) — (TonPa t=Now — Ys—PA t=Feb)-

This estimator is unbiased, since E[ve:] = Elnie] = 0. On the
other hand, assuming we think of probability limits as increas-
Ing group size while keeping the choice of states and periods
fixed, state-year shocks render dck inconsistent:

plzm SCK

=4 + {(v.S:N]:t:NOU . vs:N],t:Feb ) - (U5=PA’t=NOU e Us:PA,t:FEb)}‘

Averaging larger and larger samples within New Jersey and
Pennsylvania in a pair of periods does nothing to eliminate
the regional shocks specific to a given location and period.
With only two states and years, we have no way to dis-
tinguish the differences-in-differences generated by a policy
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change from the difference-in-differences due to the fact that,
say, the New Jersey economy was holding steady in 1992
while Pennsylvania was experiencing a cyclical downturn. The
presence of v;; amounts to a failure of the common trends
assumption discussed in section 5.2.

The solution to the inconsistency induced by random shocks
in differences in differences models is to analyze samples
including multiple time periods or many states (or both).
For example, Card (1992) uses 51 states to study minimum
wage changes, while Card and Krueger (2000) take another
look at the New Jersey-Pennsylvania experiment with a longer
monthly time series of payroll data. With multiple states or
periods, we can hope that the vy average out to zero. As in the
first part of this chapter on the Moulton problem, the inference
framework in this context relies on asymptotic distribution
theory with many groups and not on group size (or, at least,
not on group size alone). The most important inference issue
then becomes the behavior of v,. In particular, if we are pre-
pared to assume that shocks are independent across states and
over time—that is, that they are serially uncorrelated—we are
back to the plain vanilla Moulton problem in section 8.2.1, in
which case clustering standard errors by state x year should
generate valid inferences. But in most cases, the assumption
that v is serially uncorrelated is hard to defend. Almost

certainly, for example, regional shocks are highly serially cor-
related: if things are bad in Pennsylvania in one month, they
are likely to be about as bad in the next.

The consequences of serial correlation for clustered panels
are highlighted by Bertrand, Duflo, and Mullainathan (2004)
and Kézdi (2004). Any research design with a group structure
where the group means are correlated can be said to have the
serial correlation problem. The upshot of recent research on
serial correlation in data with a group structure is that, just as
we must adjust our standard errors for the correlation within
groups induced by the presence of v, we must further adjust
for serial correlation in the v, themselves. There are a number
of ways to do this, not all equally effective in all situations. It
seems fair to say that the question of how best to approach
the serial correlation problem is currently under study, and a
consensus has not yet emerged.

SYEES
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du"gileer lsrllr;liluesl’i and Ilnosg \}zlvidely applied approach is to pass the
ck one level higher. In the state-
: year example, we
;:taar; ;eirp;;)tl: Igax;gi) and Zeger (1986) standard errors clustfred by
¢ Of by state and year (e.g., using §
This mishe st . ‘8- USING Stata cluster).
at first blush, since th
for state effects. The s : A e
. tate effect, y,, in (8.2 10)
State mean of vy, which we denote bs, T e g
: Vse, W Yy Us. Nevertheless, v, — 5
1s probably still serjall i  erroms
y correlated. Clustering stand d
at the state levc?l takes account of this, sincegthe onzf by

e e L ) .

o nrglanon vzn:hm glqsters, including the time series correla-

; N v —~ ;. This is a quick and easy fix.'® The problem
ere is that passing the buck up one level reduce

een vy — v, and v 7,

- : s st—1 — Vs rea-
ably WelI.‘A paucity of clusters can lead to biased standard
errors and misleading inferences,

8.2.3 Fewer than 42 Clusters

Ble{s lfrom feW clusters is a risk in both the Moulton and the
slerla correlation contexts because in both cases
cluster-based. With few clusters, we tend to u;1

fnther the serial correlation in a random shock like v, or the
’ - st

inference is

ch;;tzfz afijustment derived from (8.2.6)?
. is enough for the standard cluster adj
reliable, and if less is too few, then what shoilzlu)sfglrlle;; \tthgs

16
Arellano (1987) appears to have been the

clustering for models with a panel structure. st 0 soggest Seselenl
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the cluster count is low? First-best is to get more clusters by
collecting more data. But sometimes we’re too lazy 'for that,
or the number of groups is naturally fixed, so other ideas are
detailed below. It’s worth noting at the outset that not all .of
these ideas are equally well-suited for the Moulton and serial

correlation problems.

1. Bias correction of clustered standard errors: ClusteredAs/tan—
dard errors are biased in small samples becau'se E(egeg) ,+—
E(ege"g) = Wg, just as with the residual covariance mat.nx
in section 8.1. Usually, E(égéé) is too smé_ill. Qne sollllmoz
is to inflate residuals in the hopes of reducing bias. Bell an
McCaffrey (2002) suggest a procedure (called bias-reduced
linearization, or BRL) that adjusts residuals by

~

~ =t
Ve = aege,
where Ag solves

-1
Ayag = (1-Hg) ™",
Hy = Xg(X'X)71 X,

and z is a degrees-of-freedom correction.

This is a version of HC, for the clustered case. BRL
works for the straight-up Moulton problem with few cl'us-
ters but for technical reasons cannot be used for the typical

DD serial correlation problem.1”

i i itions. Bell
17The matrix A, is not unique; there. are many suchfde;con;}x;illnoor;s
and McCaffrey (2002) use the symmetric square root of (I — Hg)™",

Ay =RAY2,

where R is the matrix of eigenvectors of (I — Hg) ! and AV 2‘15 t}: dgaﬁona;
matrix of the square roots of the eigenvalues. One problem with tdeh e eatx;1 ‘
McCaffrey adjustment is that (I — Hy) may not be of full rankl, an, % encne e
inverse may not exist for all designs. This happens, for examp e,f V&L en1 osterS
the regressors is a dummy variable that is one for exactly one o the clu = .
and zero otherwise. This scenario occurs in the panel DD model dlszuslse ' };
Bertrand et al. (2004), which includes a full set of state dummies and cluster

by state.

il Sl it ]

L
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2. Recognizing that the fundamental unit of observation is a

cluster and not an individual unit within clusters, Bell and
McCaffrey (2002) and Donald and Lang (2007) suggest that
inference be based on a ¢-distribution with G — X degrees of
freedom rather than on the standard normal distribution.
For small g, this makes a difference: confidence intervals
will be wider, thereby avoiding some mistakes. Cameron,
Gelbach, and Miller (2008) report Monte Carlo examples
where the combination of a BRL adjustment and the use of
t-tables works well,

- Donald and Lang (2007) argue that estimation using group

means works well with small ¢ in the Moulton problem,
and even better when inference is based on a t-distribution
with G — k degrees of freedom. But, as we discussed in sec-
tion 8.2.1, for grouped estimation the regressor should be
fixed within groups. The level of aggregation is the level
at which youwd like to cluster, such as schools in Angrist
and Lavy (2008). For serial correlation, this is the state, but
state averages cannot be used to estimate a model with a
full set of state effects. Also, since treatment status varies
within states, averaging up to the state level averages the
regressor of interest as well, changing the rules of the game
in a way we may not like {the estimator becomes IV using
group dummies as instruments). The group means approach
is therefore out of bounds for the serial correlation problem.
Note also that if the grouped residuals are heteroskedastic,
and you therefore use robust standard errors, you may have
to worry about bias of the form discussed in section 8.1.
In some cases, heteroskedasticity in the grouped residuals
can be fixed by weighting by the group size. But weight-
ing changes the estimand when the CEF is nonlinear, so the
case for weighting is not open and shut {(Angrist and Lavy,
1999, chose not to weight school-level averages because the
vartation in their study comes mostly from small schools).
Weighted or not, a conservative approach when working
with group-level averages is to use our rule of thumb from
section 8.1: take the larger of robust and conventional
standard errors as your measure of precision.
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4. Cameron, Gelbach, and Miller (2008) report that some
forms of a block bootstrap work well with small numbers
of groups, and that the block bootstrap typically outper-
forms Stata-clustered standard errors. This appears to be
true both for the Moulton and serial correlation problems.
But Cameron, Gelbach, and Miller (2008) focus on rejec-
tion rates using (pivotal) test statistics, while we like to see
standard errors.

5. Parametric corrections: For the Moulton problem, this
amounts to use of the Moulton factor. With serial cor-
relation, this means correcting your standard errors for
first-order serial correlation at the group level. Based on
our sampling experiments with the Moulton problem and a
reading of the literature, parametric approaches may work
well, and better than the nonparametric cluster estimator
(8.2.6), especially if the parametric model is not too far
off (see, e.g., Hansen, 2007b, which also proposes a bias
correction for estimates of serial correlation parameters).
Unfortunately, however, beyond the greenhouse world of
controlled Monte Carlo studies, we’re unlikely to know
whether parametric assumptions are a good fit.

Alas, the bottom line here is not entirely clear, nor is the
more basic question of when few clusters are fatal for infer-
ence. The severity of the resulting bias seems to depend on the
nature of your problem, in particular whether you confront
straight-up Moulton or serial correlation issues. Aggregation
to the group level as in Donald and Lang (2007) seems to
work well in the Moulton case as long as the regressor of
interest is fixed within groups and there is not too much
underlying heteroskedasticity. At a minimum, you’d like to
show that your conclusions are consistent with the inferences
that arise from an analysis of group averages, since this is
a conservative and transparent approach. Angrist and Lavy
(2008) use BRL standard errors to adjust for clustering at
the school level but validate this approach by showing that
key results come out the same using covariate-adjusted group
averages.

par
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As far as serial correlation goes, most of the evidence sug-
gests tha%t yvhen you are lucky enough to do research on U.S
states, giving 51 clusters, you are on reasonably safe grour.ld.
with a naive application of Stata’s cluster command at
the state level. But you might have to study Canada, which
offers only 10 clusters in the form of provinces weli below
42. Hansen (2007a) finds that Liang and Zeger (1,986) (Stata-
clusterf:d) standard errors are reasonably good at correctin
for serial correlation in panels, even in the Canadian sc:enarbiog
Hansen also recommends use of a t-distribution with G —K.
degrees of freedom for critical values,

' Clustering problems have forced applied microeconometri-
cians to eat a little humble pie. Proud of working with large
rn.lcrodata sets, we like to sneer at macroeconomists toyin
with small time series samples. But he who laughs last lau h%
best: if the regressor of interest varies only at a coarse gr(;gu
level, such as over time or across states or countries, then it’I;

Fhe macroeconomists who have had the most realistic mode of
inference all along.

8.3 Appendix: Derivation of the Simple
Moulton Factor

Write
Y1g elg
YZg €2g
yg = F eg =
Yngg_J e”gg
and
Y1 121 €
Y2 l2Xx2 e
y == X = e = 5
Yo _leXe €c
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i i mber of
where i, is a column vector of ng ones and G is the num
groups. Note that

“w 0 o 0
0 I
E(ed) =WV = ]
: -0
0 .. 0 W,
1 p - p.
: !
5 e Pe
po pe 1
o2
where p, = 03;’0772-
Now
X/X = anng/g
g
XWX — ngl,/g\IJngx‘lg.
g
But
1+(ng_1)pe
14+(n,—1)p /
sy gty = o7ty | 1 1|
1+ (ng —1)pe

= o2y [1+ (ng — 1)ee] X%
Let tp = 14 (ng — 1)p., so we get
! ’ 2 /
XglyWelgXy = 0. Mg TgXeX,

2 !
XWX = o} E RgUEvEX, .
g
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With this in hand, we can write

V(B) = (X'X) 1 X"wXx(X'x)-1
2 / . / / .
=0} (Z ngxgxg) Z Mg TgXg Xy (Z ngxgxg) .
g z g
We want to compare this with the standard OLS covariance

estimator ]
A 2 =
Ve(B) =0 (Z ngxgx;) .
E S

If the group sizes are equal, 7, = nand =t=1+(n-1)p,
so that

V(B) =627 (Z nxgx;) - Z nxgX, (Z nxgx;) o
g 4 g
= aezr (Z nxgxé) -
g

=T Vc (B\):
which implies ( 8.2.4).
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N

coefficient estimate and se(f3) is the standard error of the coefficient

estimate. This ratio is called a t-statistic.”®

If the hypothesis is correct and the true underlying coefficient is in
fact zero, then the t-statistic should not be very far from zero. If the t-
statistic turns out to be far from zero, it would cast doubt on the truth of
the hypothesis. How do we determine whether the t-statistic is “far”
from zero? We can calculate the probability that the t-statistic achieves a
certain value, if the hypothesis were true. For example, if the hypothesis
were true, there is about a 90 percent probability that the t-statistic will
fall between 1.7 and -1.7 and about a 95 percent probability that the t-
statistic will fall between 2 and -2. Thus, if the hypothesis were true,
there would be only a 5 percent probability that the t-statistic we observe
would be either greater than 2 or less than -2. Accordingly, if we
observe a t-statistic greater than 2 or less than -2, the data would appear
to be inconsistent with the hypothesis (because such an outcome is quite
unlikely if the hypothesis were in fact true).

Indeed, if the absolute value of the t-statistic that the economist
calculates exceeds two, then the hypothesis that the true underlying
coefficient equals zero typically would be said to be rejected at the
5 percent significance level and the result typically would be termed
statistically significant.”® This result often is also expressed by saying
that the coefficient is “statistically significantly different from zero (at
the 5 percent level of significance).” The 5 percent level of significance
(and the corresponding 95 percent confidence interval) is often used by
economists and statisticians when conducting hypothesis tests, but other
levels of significance, such as 1 percent or 10 percent, are also
sometimes used.

As an example of these techniques of statistical inference, suppose
that the coefficient estimate on the PERIOD variable in the price
regression was 0.50, which would imply that prices were $0.50 higher
during the alleged conspiracy period as compared to outside that period,
holding constant the variables COST and DEMAND (and assuming
correct model specification). Suppose further that the standard error of
the coefficient estimate on PERIOD is 0.20. In this case, the 95 percent
confidence interval would be approximately $0.10 to $0.90—one can be
95 percent confident that the true underlying coefficient on PERIOD lies

58.  See GREENE, supra note 16, at 249.
59. Id
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within this interval, assuming the validity and reliability of the
econometric model and approach.

Similarly, the standard error can be used to test the hypothesis that
the coefficient on the PERIOD value is zero, which implies that price
was not higher during the alleged conspiracy period (holding constant
COST and DEMAND). This test would be conducted by calculating the
t-statistic: 0.50/0.20 = 2.50. Since the calculated t-statistic of 2.50 is
greater than two, the coefficient on PERIOD would be said to be
statistically significantly different from zero at the 5 percent level of
significance, and the hypothesis that the price was no higher during the
alleged conspiracy period would be rejected.

4. Estimation of the Standard Errors

Correct statistical inference requires not only good estimates of the
coefficients of the model, but also good estimates of the standard errors
of these coefficient estimates.®® For example, a t-test of whether a

coefficient S is zero is conducted by forming the t-statistic “ S/ se(f),”

discussed in the last section. This t-statistic can be invalid and lead to
incorrect statistical inference if the standard error of the coefficient

T2y

estimate, se(3), is itself inconsistently estimated.

Consistent estimation of the standard errors requires that the
properties of the error term of the regression be properly taken into
account. For example, standard errors frequently are estimated assuming
the error term of the regression is independently and identically
distributed. That is, the error for each observation reflecting the impact
of unmeasured factors is assumed to be from the same distribution (or
pattern) of possible errors, and each error is statistically independent of
the others (they are not correlated to each other).’’ If in fact the error
terms are correlated with each other (i.e., not independent) or not
identically distributed, then the resulting standard error estimates
generally will be inconsistent.®

Correlation among the errors of different observations can arise in
various situations. For example, suppose the data sample is a time series,
i.e., the data were generated by observing the variables (e.g., price, cost,

60. See WOOLDRIDGE, supra note 3, at 57.
61. Id at54-57.
62. Id
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and demand) at various points over time (e.g., on a monthly basis).*® In
such a case, the error in one month might well be related to the errors in
adjacent months, since the unobserved economic factors that appear in
the error term might themselves exhibit correlation over time. This
correlation of errors over time is called serial correlation.®*

As another example, suppose the data sample is a cross-section/time
series, or panel data set, where the variables are observed at various
points of time separately for each of a number of units of observation
such as individual customers.”’ Each customer’s data are a time series.
Therefore, the error terms for a given customer may exhibit serial
correlation. In addition, each customer may have idiosyncratic factors
that affect the price it paid, but are unobserved in the data. These factors
would be present in all of the errors across time for that customer, which
would be a further cause of correlation among the errors for a given
customer. This effect is called an unobserved individual-specific effect
(where the “individual” refers to the unit of observation, e.g., a
customer).®®

Importantly, the correlation among errors need not be confined to
errors that pertain to the same customer. For example, the error terms for
all customers within the same time period also may be correlated.
Unobserved economic factors may affect all customers’ prices at a given
point in time and therefore these common factors will appear in the
errors of all of the customers in a given time period. Similarly, if these
unobserved factors are themselves serially correlated, then the error for
one customer in one month will be correlated with the error for another
customer in another month. Therefore, there may be correlation among
the 6e;lrrors both within and between units of observation in a panel data
set.

There can be substantial consequences from estimating the standard
errors for the coefficient estimates as if the errors were uncorrelated
when they are in fact correlated. With positive correlation between the
error terms, the incorrectly estimated standard errors generally will be

63.  See GREENE, supra note 16, at 97.

64. Id. at 525.

65. Id at98.

66. See WOOLDRIDGE, supra note 3, at 248.

67.  This problem is widely recognized in the econometrics literature. See
Brent R. Moulton, 4An lllustration of the Pitfall in Estimating the Effects
of Aggregate Variables on Micro Units, 72 REV. ECON. STAT. 334
(1990); Marianne Bertrand et al., How Much Should We Trust
Differences-in-Differences Estimates?, 119 Q. J. OF ECON. 249 (2004).
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biased downward, making the regression coefficients seem to be more
precisely estimated than they really are. As a result, a statistical test on
the coefficients may yield what appears to be a statistically significant
result but is not.*®

To see why this is so, suppose that the estimate of the coefficient on
a price-fixing conspiracy dummy variable is 0.15 and that the standard
error, estimated by incorrectly ignoring correlation among the errors, is
0.05. The (incorrect) t-statistic would then be 0.15/0.05 = 3 and the
hypothesis that the alleged conspiracy had no effect on prices would be
strongly rejected. But, the standard error is too low because it did not
account for correlation in the error terms. Suppose that the standard
error is re-estimated correctly to account for correlation in the error
terms, and this correct standard error is 0.15. Then, the correctly
calculated t-statistic is only 0.15/0.15 = 1. Because the correct t-statistic
is less than two, the hypothesis that the alleged conspiracy had no effect
would not be rejected at conventional levels of statistical significance. If
the standard error had not been corrected, the wrong inference would
have been made.

Econometricians have a variety of methods for consistently
estimating the standard errors when correlation among the errors exists.
In a time series context (discussed in more detail below), various non-
parametric procedures (procedures that do not impose any functional
form on the correlation) have become widely used.”” In a panel data
context (also discussed in more detail below) these procedures may be
used, and other methods have been proposed as well.”® Some of these
panel data procedures are easily implemented.”!

68. Id

69. See Donald W. Andrews, Aufocorrelation and Heteroskedasticity
Consistent Covariance Matrix Estimation, 59 ECONOMETRICA 817
(1991); Donald W. Andrews & J. Christopher Monahan, 4n Improved
Autocorrelation and Heteroskedasticity Consistent Covariance Matrix
Estimator, 60 ECONOMETRICA 953 (1992). The resulting standard errors
are also consistent in the presence of heteroskedasticity (the variance of
the error term differs across observations). Many statistical software
packages implement the Newey-West procedure, which is one example of
such a procedure to obtain autocorrelation and heteroskedasticity
consistent standard errors. See Whitney Newey & Kenneth West, A
Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix, 55 ECONOMETRICA 703 (1987).

70.  See Bertrand et al., supra note 67.

71.  For example, Stata, a popular econometrics software package, includes a
“cluster” option for calculating standard errors assuming unspecified
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These procedures produce consistent estimates of the standard errors
even when there is no correlation among the error terms. In other words,
they work well in both 31tuat10ns Thus, these procedures have become
used more generally in practice.”” When there is good reason to suspect
the existence of correlation among the errors, such procedures should be
used to avoid making incorrect statistical inferences.”

Finally, heteroskedasticity can also create problems in accurately
measuring standard errors. Heteroskedasticity occurs when the variance
of the error term varies across observations.” This condition is another
violation of the independent and identically distributed error term
assumption that can cause the traditional standard error calculation to be
inconsistent. Again a well-known and widely used technique exists for
calculating standard errors that are robust to heteroskedasticity (White
standard errors).” This technique is also easily implemented in many
econometric packages.”®

5. Choice of Explanatory Variables

As discussed above, the explanatory variables in an econometrlc
model represent economic factors that influence the dependent varjable.”’
An important question is which explanatory variables to include in the
model. Answering this question should begin with economic theory
combined with qualitative knowledge about the industry. For example, if
the dependent variable is price, economic theory suggests that demand
drivers, cost factors, and industry capacity, among other things, are
potential explanatory variables.”® Industry knowledge would suggest
specific variables that would appropriately represent these factors. If a

within-group (cluster) correlation between the error terms. See 3 STATA
PRESS, BASE REFERENCE MANUAL 81 (2007).

72.  See GREENE, supra note 16, at 465 (“The . . . Newey-West estimator [is]
becoming ubiquitous in the econometrics literature™).

73.  If one is not sure, there are various tests one can run to test the hypothesis
of no correlation in the error terms. See WOOLDRIDGE, supra note 3, at
130, 279, 420-449; GREENE, supra note 16, at 538-42.

74.  See GREENE, supra note 16, at 499.

75.  Hal White, A Heteroskedasticity-Consistent Covariance Matrix Estimator
and a Direct Test for Heteroskedasticity, 48 ECONOMETRICA 817, 838
(1980).

76. For example, Stata includes an option for calculating White standard
errors. See STATA, supra note 71, at 81.

77.  See part A of this chapter.

78.  See Baker & Rubinfeld, supra note 2, at 391.
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product is used as an input by downstream industries, the level of
productlon in those industries might drive the demand for the product.”
The prices of the inputs used tq produce the product could be important
to costs.

a. Too Many or Too Few Variables?

The number of explanatory variables suggested by economic theory
and industry knowledge often will be large. Is it best to include all of the
explanatory variables, or should one try to pare back the number of
variables in order to have a simpler model? The downside to including
extraneous explanatory variables in a regression is that the coefficients
may be less precisely estimated. However, these estimates will still be
unbiased.’® Moreover, the effect on precision of having additional
variables will often be small when the sample size is large.

Mistakenly excluding important explanatory variables in an attempt
at simplicity, on the other hand, can result in an omitted variable bias.
Omitted variable bias arises when important explanatory variables that
have been omitted from the regression model are correlated with
included explanatory variables. Because the omitted variables are in the
error term, the result will be a correlation between the included
explanatory variables and the error term.?’ This misspecification will
bias the resulting coefficient estimates, and make these estimates

79. Care needs to be taken that the explanatory variables used in a least
squares regression are exogenous, or uncorrelated with the error term, to
the extent possible. See WOOLDRIDGE, supra note 3, at 50-51. For
example, if the intermediate product in question represents a large share
of the downstream industry’s costs, the amount of downstream
production may be affected by the price of the intermediate good. If the
impact of the price of the intermediate good on the sales of the
downstream product is substantial, then downstream production could be
considered endogenous (correlated with the error term) rather than
exogenous. See Baker & Rubinfeld, supra note 2, at n.17. Methods of
detecting and dealing with endogeneity are discussed later in this chapter.

80. More specifically, ordinary least squares is still the best linear unbiased
estimator as demonstrated by the Gauss-Markov Theorem, one of the
more famous theorems in statistics. See GREENE, supra note 16, at 246.
This means that not only is least squares unbiased, but also it is the most
efficient (i.e., most precise) among linear unbiased estimators.

81. See WOOLDRIDGE, supra note 3, at 61-62.
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1 Introduction

In this survey we consider regression analysis when observations are grouped in clusters, with
independence across clusters but correlation within clusters. We consider this in settings
where estimators retain their consistency, but statistical inference based on the usual cross-
section assumption of independent observations is no longer appropriate.

Statistical inference must control for clustering, as failure to do so can lead to massively
under-estimated standard errors and consequent over-rejection using standard hypothesis
tests. Moulton (1986, 1990) demonstrated that this problem arises in a much wider range
of settings than had been appreciated by microeconometricians. More recently Bertrand,
Duflo and Mullainathan (2004) and Kézdi (2004) emphasized that with state-year panel or
repeated cross-section data, clustering can be present even after including state and year
effects and valid inference requires controlling for clustering within state. Wooldridge (2003,
2006) provides surveys.

A common solution is to use “cluster-robust” standard errors that rely on weak assump-
tions — errors are independent but not identically distributed across clusters and can have
quite general patterns of within-cluster correlation and heteroskedasticity — provided the
number of clusters is large. This correction generalizes that of White (1980) for indepen-
dent heteroskedastic errors. Additionally, more efficient estimation may be possible using
alternative estimators, such as feasible GLS, that explicitly model the error correlation.

The loss of estimator precision due to clustering is presented in section 2, while cluster-
robust inference is presented in section 3. The complications of inference given only a few
clusters, and inference when there is clustering in more than one direction, are considered in
sections 4 and 5. Section 6 presents more efficient feasible GLS estimation when structure
is placed on the within-cluster error correlation. In section 7 we consider adaptation to
nonlinear and instrumental variables estimators. An empirical example in section 8 illustrates
many of the methods discussed in this survey.

2 Clustering and its consequences

Clustering leads to less efficient estimation than if data are independent, and default OLS
standard errors need to be adjusted.
2.1 Clustered errors
The linear model with (one-way) clustering is
Yig = ngﬁ + Uig, (1)

where i denotes the i of N individuals in the sample, g denotes the ¢'* of G clusters,
Elu;4|x;4] = 0, and error independence across clusters is assumed so that for i # j

Eluigujg|Xig, X;r] = 0, unless g = ¢'. (2)

3



Errors for individuals belonging to the same group may be correlated, with quite general het-
eroskedasticity and correlation. Grouping observations by cluster the model can be written
as y, = X408 + u,, where y, and u, are N, x 1 vectors, X, is an N, X K matrix, and there
are IV, observations in cluster g. Further stacking over clusters yields y = X3 + u, where y
and u are N x 1 vectors, X is an N x K matrix, and N = Zg Ny. The OLS estimator is

B = (X'X)"' X'y. Given error independence across clusters, this estimator has asymptotic

variance matrix
G
V(8] = (EX'X])™ <Z E[X;ugu;Xg]> (BX'X]) ", (3)

rather than the default OLS variance o (E[X'X])"", where 02 = V[u,,).

u

2.2 Equicorrelated errors

One way that within-cluster correlation can arise is in the random effects model where the
eITor U, = 0y + €4, Where o is a cluster-specific error or common shock that is i.i.d.
(0,02), and &, is an idiosyncratic error that is i.i.d. (0,02). Then Var[u;,] = o2 + o2
and Covlu;g, ujy] = o2 for i # j. It follows that the intraclass correlation of the error
pu = Corlug, uj,] = 02 /(02 4+ 02). The correlation is constant across all pairs of errors in
a given cluster. This correlation pattern is suitable when observations can be viewed as
exchangeable, with ordering not mattering. Leading examples are individuals or households
within a village or other geographic unit (such as state), individuals within a household, and
students within a school.

If the primary source of clustering is due to such equicorrelated group-level common
shocks, a useful approximation is that for the j* regressor the default OLS variance estimate
based on s? (X' X)fl, where s is the standard error of the regression, should be inflated by

7= 1+ py pu(Ng — 1), (4)
where p, is a measure of the within-cluster correlation of x;, p, is the within-cluster error
correlation, and N, is the average cluster size. This result for equicorrelated errors is exact
if clusters are of equal size; see Kloek (1981) for the special case p, = 1, and Scott and
Holt (1982) and Greenwald (1983) for the general result. The efficiency loss, relative to
independent observations, is increasing in the within-cluster correlation of both the error
and the regressor and in the number of observations in each cluster.

To understand the loss of estimator precision given clustering, consider the sample mean
when observations are correlated. In this case the entire sample is viewed as a single cluster.

Then
Vigl = N7 {30 VIl + 0> Covlui )} (5)

Given equicorrelated errors with Cov[y,,, y;,] = po? for i # j, V[y] = N"2{No? + N(N —
1)po?} = N71o*{1 + p(N — 1)} compared to N~'c? in the i.i.d. case. At the extreme
V[y] = 0% as p — 1 and there is no benefit at all to increasing the sample size beyond N = 1.

4



Similar results are obtained when we generalize to several clusters of equal size (balanced
clusters) with regressors that are invariant within cluster, so y;, = x|, + u;; where 7 denotes
the i of N individuals in the sample and ¢ denotes the g'"* of G clusters, and there are
N, = N/G observations in each cluster. Then OLS estimation of y;, on x, is equivalent to
OLS estimation in the model , = x; 3 + 1,, where g, and @, are the within-cluster averages
of the dependent variable and error. If %, is independent and homoskedastic with variance

~

o2, then V(8] = o7 (2521 ng’g) 1, where the formula for o2 varies with the within-cluster
correlation of u;,. For equicorrelated errors 07 = N, '[1+p, (N, —1)]os, compared to N, "o
with independent errors, so the true variance of the OLS estimator is (1 + p, (V. — 1)) times
the default, as given in (4) with p, = 1.

In an influential paper Moulton (1990) pointed out that in many settings the adjustment
factor 7; can be large even if p, is small. He considered a log earnings regression using
March CPS data (N = 18,946), regressors aggregated at the state level (G = 49), and
errors correlated within state (p, = 0.032). The average group size was 18,946/49 = 387,
P, = 1 for a state-level regressor, so 7; >~ 1+ 1 x 0.032 x 386 = 13.3. The weak correlation
of errors within state was still enough to lead to cluster-corrected standard errors being
V/13.3 = 3.7 times larger than the (incorrect) default standard errors, and in this example
many researchers would not appreciate the need to make this correction.

2.3 Panel Data

A second way that clustering can arise is in panel data. We assume that observations are
independent across individuals in the panel, but the observations for any given individual
are correlated over time. Then each individual is viewed as a cluster. The usual notation
is to denote the data as y; where ¢ denotes the individual and ¢ the time period. But in
our framework (1) the data are denoted y;, where ¢ is the within-cluster subscript (for panel
data the time period) and ¢ is the cluster unit (for panel data the individual).

The assumption of equicorrelated errors is unlikely to be suitable for panel data. Instead
we expect that the within-cluster (individual) correlation decreases as the time separation
increases.

For example, we might consider an AR(1) model with u; = pu; 1+ i, where 0 < p < 1
and ¢, is i.i.d. (0,02). In terms of the notation in (1), wy, = pu;_14 + €. Then the
within-cluster error correlation Corfu;g, u;4] = pl"=7land the consequences of clustering are
less extreme than in the case of equicorrelated errors.

To see this, consider the variance of the sample mean § when Covly;,y;] = pllo?.
Then (5) yields V[g] = N7'[1 4+ 2NN " sp]o2. For example, if p = 0.5 and N =

10, then V[g] = 0.2600? compared to 0.5502 for equicorrelation, using V[g] = N~ 'o?{1 +
p(N — 1)}, and 0.102 when there is no correlation (p = 0.0). More generally with several
clusters of equal size and regressors invariant within cluster, OLS estimation of y;, on x, is
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equivalent to OLS estimation of g, on x4, see section 2.2, and with an AR(1) error V[3] =



NM142N, N spto? <Zg XgX;) 1, less than N '[1+4 p, (N, —1)]o2 (Zg ng’g> 1 with
an equicorrelated error.

For panel data in practice, while within-cluster correlations for errors are not constant,
they do not dampen as quickly as those for an AR(1) model. The variance inflation formula
(4) can still provide a reasonable guide in panels that are short and have high within-cluster
serial correlations of the regressor and of the error.

3 Cluster-robust inference for OLS

The most common approach in applied econometrics is to continue with OLS, and then
obtain correct standard errors that correct for within-cluster correlation.

3.1 Cluster-robust inference

Cluster-robust estimates for the variance matrix of an estimate are sandwich estimates that
are cluster adaptations of methods proposed originally for independent observations by White
(1980) for OLS with heteroskedastic errors, and by Huber (1967) and White (1982) for the
maximum likelihood estimator.
The cluster-robust estimate of the variance matrix of the OLS estimator, defined in (3),
is the sandwich estimate
VB = (X'X)'B(X'X) ", (6)

where

o

G [N
= (X x,ax,). (7)

and u, = yg—XgB. This provides a consistent estimate of the variance matrix if G~* Zngl X u,ug X, —
G 1YY EX uu X, 5 0as G — oo

The estimate of White (1980) for independent heteroskedastic errors is the special case
of (7) where each cluster has only one observation (so G = N and N, = 1 for all g). It relies
on the same intuition that G~* ZfilE[X;ugu’ng] is a finite-dimensional (K x K) matrix
of averages that can be be consistently estimated as G — oc.

White (1984, p.134-142) presented formal theorems that justify use of (7) for OLS with a
multivariate dependent variable, a result directly applicable to balanced clusters. Liang and
Zeger (1986) proposed this method for estimation for a range of models much wider than
OLS; see sections 6 and 7 of their paper for a range of extensions to (7). Arellano (1987)
considered the fixed effects estimator in linear panel models, and Rogers (1993) popularized
this method in applied econometrics by incorporating it in Stata. Note that (7) does not
require specification of a model for E[ugu].

Finite-sample modifications of (7) are typically used, since without modification the
cluster-robust standard errors are biased downwards. Stata uses y/cu, in (7) rather than u,,



with
G N-1 G

G_IN—-K _G-1 (8)

Some other packages such as SAS use ¢ = G/(G — 1). This simpler correction is also used

CcC =

by Stata for extensions to nonlinear models. Cameron, Gelbach, and Miller (2008) review
various finite-sample corrections that have been proposed in the literature, for both standard
errors and for inference using resultant Wald statistics; see also section 6.

The rank of V[3] in (7) can be shown to be at most G, so at most G restrictions on the
parameters can be tested if cluster-robust standard errors are used. In particular, in models
with cluster-specific effects it may not be possible to perform a test of overall significance of
the regression, even though it is possible to perform tests on smaller subsets of the regressors.

3.2 Specifying the clusters

It is not always obvious how to define the clusters.

As already noted in section 2.2, Moulton (1986, 1990) pointed out for statistical inference
on an aggregate-level regressor it may be necessary to cluster at that level. For example, with
individual cross-sectional data and a regressor defined at the state level one should cluster at
the state level if regression model errors are even very mildly correlated at the state level. In
other cases the key regressor may be correlated within group, though not perfectly so, such
as individuals within household. Other reasons for clustering include discrete regressors and
a clustered sample design.

In some applications there can be nested levels of clustering. For example, for a household-
based survey there may be error correlation for individuals within the same household, and
for individuals in the same state. In that case cluster-robust standard errors are computed
at the most aggregated level of clustering, in this example at the state level. Pepper (2002)
provides a detailed example.

Bertrand, Duflo and Mullainathan (2004) noted that with panel data or repeated cross-
section data, and regressors clustered at the state level, many researchers either failed to
account for clustering or mistakenly clustered at the state-year level rather than the state
level. Let v, denote the value of the dependent variable for the ¥ individual in the s
state in the t*" year, and let x, denote a state-level policy variable that in practice will be
quite highly correlated over time in a given state. The authors considered the difference-in-
differences (DiD) model ;s = 7, + ¢ + Bxs + 25,y + wir, though their result is relevant even
for OLS regression of y;;; on x4 alone. The same point applies if data were more simply
observed at only the state-year level (i.e. yg rather than y;q).

In general DiD models using state-year data will have high within-cluster correlation of
the key policy regressor. Furthermore there may be relatively few clusters; a complication
considered in section 4.



3.3 Cluster-specific fixed effects

A standard estimation method for clustered data is to additionally incorporate cluster-
specific fixed effects as regressors, estimating the model

Yig = g + x;g,B + Uig. (9)

This is similar to the equicorrelated error model, except that o, is treated as a (nuisance)
parameter to be estimated. Given NV, finite and G — oo the parameters oy, g = 1,..., G,
cannot be consistently estimated. The parameters 3 can still be consistently estimated, with
the important caveat that the coefficients of cluster-invariant regressors (x, rather than x;,)
are not identified. (In microeconometrics applications, fixed effects are typically included to
enable consistent estimation of a cluster-varying regressor while controlling for a limited form
of endogeneity — the regressor x;, may be correlated with the cluster-invariant component
a, of the error term o, + u;y).

Initial applications obtained default standard errors that assume w;, in (9) is i.i.d. (0,02),
assuming that cluster-specific fixed effects are sufficient to mop up any within-cluster error
correlation. More recently it has become more common to control for possible within-cluster
correlation of u;, by using (7), as suggested by Arellano (1987). Kézdi (2004) demonstrated
that cluster-robust estimates can perform well in typical-sized panels, despite the need to
first estimate the fixed effects, even when N, is large relative to G.

It is well-known that there are several alternative ways to obtain the OLS estimator of
B in (9). Less well-known is that these different ways can lead to different cluster-robust
estimates of V[B] We thank Arindrajit Dube and Jason Lindo for bringing this issue to our
attention.

The two main estimation methods we consider are the least squares dummy variables
(LSDV) estimator, which obtains the OLS estimator from regression of y;, on x;, and a set
of dummy variables for each cluster, and the mean-differenced estimator, which is the OLS
estimator from regression of (y;; — ¥,) on (x;; — Xg).

These two methods lead to the same cluster-robust standard errors if we apply formula
(7) to the respective regressions, or if we multiply this estimate by G/(G — 1). Differences
arise, however, if we multiply by the small-sample correction ¢ given in (8). Let K denote the
number of regressors including the intercept. Then the LSDV model views the total set of
regressors to be G cluster dummies and (K — 1) other regressors, while the mean-differenced
model considers there to be only (K — 1) regressors (this model is estimated without an
intercept). Then

Model Finite sample adjustment Balanced case
_ G N-1 ~ G N,

LSDV C= GaAN=G=(=1) C=e 1 X N1

Mean-differenced model ¢ = 7% iv(;il) e~ 22

In the balanced case N = N.G, leading to the approximation given above if additionally K
is small relative to N.



The difference can be very large for small N,. Thus if N, = 2 (or N, = 3) then the
cluster-robust variance matrix obtained using LSDV is essentially 2 times (or 3/2 times)
that obtained from estimating the mean-differenced model, and it is the mean-differenced
model that gives the correct finite-sample correction.

Note that if instead the error u;, is assumed to be i.i.d. (0,02), so that default standard
errors are used, then it is well-known that the appropriate small-sample correction is (N —
1)/N =G — (K —1),ie. we use s*(X'X)~" where s = (N =G — (K — 1))~ 37, 7. In that
case LSDV does give the correct adjustment, and estimation of the mean-differenced model
will give the wrong finite-sample correction.

An alternative variance estimator after estimation of (9) is a heteroskedastic-robust esti-
mator, which permits the error u;, in (9) to be heteroskedastic but uncorrelated across both
i and g. Stock and Watson (2008) show that applying the method of White (1980) after
mean-differenced estimation of (9) leads, surprisingly, to inconsistent estimates of V[B] if
the number of observations N, in each cluster is small (though it is correct if N, = 2). The
bias comes from estimating the cluster-specific means rather than being able to use the true
cluster-means. They derive a bias-corrected formula for heteroskedastic-robust standard er-
TOorS. i&lternatively, and more simply, the cluster-robust estimator gives a consistent estimate

of V[B] even if the errors are only heteroskedastic, though this estimator is more variable
than the bias-corrected estimator proposed by Stock and Watson.

3.4 Many observations per cluster

The preceding analysis assumes the number of observations within each cluster is fixed, while
the number of clusters goes to infinity.

This assumption may not be appropriate for clustering in long panels, where the number
of time periods goes to infinity. Hansen (2007a) derived asymptotic results for the standard
one-way cluster-robust variance matrix estimator for panel data under various assumptions.
We consider a balanced panel of N individuals over 1" periods, so there are NT observations
in N clusters with T" observations per cluster. When N — oo with T fixed (a short panel),
as we have assumed above, the rate of convergence for the OLS estimator B is v/N. When
both N — oo and T" — oo (a long panel with N, — o0), the rate of convergence of B is
V'N if there is no mixing (his Theorem 2) and +/NT if there is mixing (his Theorem 3). By
mixing we mean that the correlation becomes damped as observations become further apart
in time.

As illustrated in section 2.3, if the within-cluster error correlation of the error diminishes
as errors are further apart in time, then the data has greater informational content. This
is reflected in the rate of convergence increasing from v/N (determined by the number of
cross-sections) to v/ NT (determined by the total size of the panel). The latter rate is the
rate we expect if errors were independent within cluster.

While the rates of convergence differ in the two cases, Hansen (2007a) obtains the same
asymptotic variance for the OLS estimator, so (7) remains valid.



3.5 Survey design with clustering and stratification

Clustering routinely arises in complex survey data. Rather than randomly draw individuals
from the population, the survey may be restricted to a randomly-selected subset of pri-
mary sampling units (such as a geographic area) followed by selection of people within that
geographic area. A common approach in microeconometrics is to control for the resultant
clustering by computing cluster-robust standard errors that control for clustering at the level
of the primary sampling unit, or at a more aggregated level such as state.

The survey methods literature uses methods to control for clustering that predate the
references in this paper. The loss of estimator precision due to clustering is called the design
effect: “The design effect or Deff is the ratio of the actual variance of a sample to the variance
of a simple random sample of the same number of elements” (Kish (1965), p.258)). Kish
and Frankel (1974) give the variance inflation formula (4) assuming equicorrelated errors in
the non-regression case of estimation of the mean. Pfeffermann and Nathan (1981) consider
the more general regression case.

The survey methods literature additionally controls for another feature of survey data —
stratification. More precise statistical inference is possible after stratification. For the linear
regression model, survey methods that do so are well-established and are incorporated in
specialized software as well as in some broad-based packages such as Stata.

Bhattacharya (2005) provides a comprehensive treatment in a GMM framework. He
finds that accounting for stratification tends to reduce estimated standard errors, and that
this effect can be meaningfully large. In his empirical examples, the stratification effect is
largest when estimating (unconditional) means and Lorenz shares, and much smaller when
estimating conditional means via regression.

The current common approach of microeconometrics studies is to ignore the (beneficial)
effects of stratification. In so doing there will be some over-estimation of estimator standard
errors.

4 Inference with few clusters

Cluster-robust inference asymptotics are based on G — oco. Often, however, cluster-robust
inference is desired but there are only a few clusters. For example, clustering may be at the
regional level but there are few regions (e.g. Canada has only ten provinces). Then several
different finite-sample adjustments have been proposed.

4.1 Finite-sample adjusted standard errors

Finite-sample adjustments replace U, in (7) with a modified residual u,. The simplest is
u, = /G/(G — 1)uy, or the modification of this given in (8). Kauermann and Carroll (2001)
and Bell and McCaffrey (2002) use u}, = [Ly, —H, ] ~/*0,, where Hyy = X (X'X)'X/. This
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transformed residual leads to E[V[B]] = V(] in the special case that , = E[uju)] = o°L

10



Bell and McCaffrey (2002) also consider use of uf = /G/(G — 1)[Ly, — Hyy] 'U,, which
can shown to equal the (clustered) jackknife estimate of the variance of the OLS estimator.
These adjustments are analogs of the HC2 and HC3 measures of MacKinnon and White
(1985) proposed for heteroskedastic-robust standard errors in the nonclustered case.

Angrist and Lavy (2002) found that using u, rather than u, increased cluster-robust
standard errors by 10 — 50 percent in an application with G = 30 to 40.

Kauermann and Carroll (2001), Bell and McCaffrey (2002), Mancl and DeRouen (2001),
and McCaffrey, Bell and Botts (2001) also consider the case where ©, # ¢*I is of known
functional form, and present extension to generalized linear models.

4.2 Finite-sample Wald tests

For a two-sided test of Hy : 3, = B? against H, : 3; # Bg, where f3; is a scalar component of

B3, the standard procedure is to use Wald test statistic w = (B] — ﬁ?) / 53,1 where 53, is the
square root of the appropriate diagonal entry in \A/[B] This “t” test statistic is asymptotically
normal under Hy as G — oo, and we reject Hy at significance level 0.05 if |w| > 1.960.

With few clusters, however, the asymptotic normal distribution can provide a poor ap-
proximation, even if an unbiased variance matrix estimator is used in calculating 55 . The
situation is a little unusual. In a pure time series or pure cross-section setting Wlth few
observations, say N = 10, 3, is likely to be very imprecisely estimated so that statistical in-
ference is not worth pursuing. By contrast, in a clustered setting we may have N sufficiently
large that (3, is reasonably precisely estimated, but G is so small that the asymptotic normal
approximation is a very poor one.

We present two possible approaches: basing inference on the 7" distribution with degrees of
freedom determined by the cluster, and using a cluster bootstrap with asymptotic refinement.
Note that feasible GLS based on a correctly specified model of the clustering, see section 6,
will not suffer from this problem.

4.3 T-distribution for inference

The simplest small-sample correction for the Wald statistic is to use a T" distribution, rather
than the standard normal. As we outline below in some cases the T _;, distribution might be
used, where L is the number of regressors that are invariant within cluster. Some packages
for some commands do use the T distribution. For example, Stata uses G — 1 degrees of
freedom for ¢-tests and F'—tests based on cluster-robust standard errors.

Such adjustments can make quite a difference. For example with G = 10 for a two-sided
test at level 0.05 the critical value for Ty is 2.262 rather than 1.960, and if w = 1.960 the
p-value based on Ty is 0.082 rather than 0.05. In Monte Carlo simulations by Cameron,
Gelbach, and Miller (2008) this technique works reasonably well. At the minimum one
should use the T' distribution with G — 1 degrees of freedom, say, rather than the standard
normal.
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Donald and Lang (2007) provide a rationale for using the T distribution. If clusters
are balanced and all regressors are invariant within cluster then the OLS estimator in the
model y;; = x; 3 + u;, is equivalent to OLS estimation in the grouped model g, = x 8 + 1.
If 4, is i.i.d. normally distributed then the Wald statistic is T¢;_;, distributed, where V[,/B\] =
2 (X'X) " and 8* = (G- K)7' Y, ii,”. Note that @, is i.i.d. normal in the random effects
model if the error components are i.i.d. normal.

Donald and Lang (2007) extend this approach to additionally include regressors z;, that
vary within clusters, and allow for unbalanced clusters. They assume a random effects model
with normal i.i.d. errors. Then feasible GLS estimation of 8 in the model

Yig = X B + 2,7 + a5 + €, (10)

is equivalent to the following two-step procedure. First do OLS estimation in the model
Yig = 04 + 2}, ¥ + €ig, Where J, is treated as a cluster-specific fixed effect. Then do FGLS of
Yy — Z,Y on x,. Donald and Lang (2007) give various conditions under which the resulting
Wald statistic based on Ej is T;—r, distributed. These conditions require that if z;, is a
regressor then z, in the limit is constant over g, unless N, — 0o. Usually L = 2, as the only
regressors that do not vary within clusters are an intercept and a scalar regressor z,.

Wooldridge (2006) presents an expansive exposition of the Donald and Lang approach.
Additionally, Wooldridge proposes an alternative approach based on minimum distance es-
timation. He assumes that o, in y;, = 04 + 2], v + €4 can be adequately explained by x, and
at the second step uses minimum chi-square methods to estimate 3 in gg =a+ X’gﬁ. This
provides estimates of 3 that are asymptotically normal as N, — oo (rather than G — o0).
Wooldridge argues that this leads to less conservative statistical inference. The y? statistic
from the minimum distance method can be used as a test of the assumption that the J, do
not depend in part on cluster-specific random effects. If this test fails, the researcher can
then use the Donald and Lang approach, and use a T distribution for inference.

An alternate approach for correct inference with few clusters is presented by Ibragimov
and Muller (2010). Their method is best suited for settings where model identification,
and central limit theorems, can be applied separately to observations in each cluster. They
propose separate estimation of the key parameter within each group. Each group’s estimate
is then a draw from a normal distribution with mean around the truth, though perhaps
with separate variance for each group. The separate estimates are averaged, divided by
the sample standard deviation of these estimates, and the test statistic is compared against
critical values from a T distribution. This approach has the strength of offering correct
inference even with few clusters. A limitation is that it requires identification using only
within-group variation, so that the group estimates are independent of one another. For
example, if state-year data y, are used and the state is the cluster unit, then the regressors
cannot use any regressor z; such as a time dummy that varies over time but not states.
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4.4 Cluster bootstrap with asymptotic refinement

A cluster bootstrap with asymptotic refinement can lead to improved finite-sample inference.

For inference based on G — o0, a two-sided Wald test of nominal size a can be shown
to have true size a + O(G™') when the usual asymptotic normal approximation is used.
If instead an appropriate bootstrap with asymptotic refinement is used, the true size is
o + O(G73/?). This is closer to the desired « for large G, and hopefully also for small G.
For a one-sided test or a nonsymmetric two-sided test the rates are instead, respectively,
a+O0(G7?) and a + O(G™).

Such asymptotic refinement can be achieved by bootstrapping a statistic that is asymp-
totically pivotal, meaning the asymptotic distribution does not depend on any unknown
parameters. For this reason the Wald t-statistic w is bootstrapped, rather than the es-
timator Bj whose distribution depends on V[Bj] which needs to be estimated. The pairs
cluster bootstrap procedure does B iterations where at the b iteration: (1) form G clusters
{(y1,X3), .o, (¥5, XE)} by resampling with replacement G times from the original sample
of clusters; (2 ) do OLS estimation with this resample and calculate the Wald test statistic
wp = (ﬁ;b B;)/ S5, where S5, is the cluster-robust standard error of Bj p, and 5 is the
OLS estimate of B; from the orlgmal sample. Then reject Hy at level « if and only if the
original sample Wald statistic w is such that w < w[a Jo) OF W > w[l_a /9] where w[q} denotes
the ¢'* quantile of wi, ..., w}.

Cameron, Gelbach, and Miller (2008) provide an extensive discussion of this and related
bootstraps. If there are regressors which contain few values (such as dummy variables),
and if there are few clusters, then it is better to use an alternative design-based bootstrap
that additionally conditions on the regressors, such as a cluster Wild bootstrap. Even then
bootstrap methods, unlike the method of Donald and Lang, will not be appropriate when
there are very few groups, such as G' = 2.

4.5 Few treated groups

Even when G is sufficiently large, problems arise if most of the variation in the regressor
is concentrated in just a few clusters. This occurs if the key regressor is a cluster-specific
binary treatment dummy and there are few treated groups.

Conley and Taber (2010) examine a differences-in-differences (DiD) model in which there
are few treated groups and an increasing number of control groups. If there are group-time
random effects, then the DiD model is inconsistent because the treated groups random effects
are not averaged away. If the random effects are normally distributed, then the model of
Donald and Lang (2007) applies and inference can use a 7" distribution based on the number
of treated groups. If the group-time shocks are not random, then the 7" distribution may be
a poor approximation. Conley and Taber (2010) then propose a novel method that uses the
distribution of the untreated groups to perform inference on the treatment parameter.
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5 Multi-way clustering

Regression model errors can be clustered in more than way. For example, they might be
correlated across time within a state, and across states within a time period. When the
groups are nested (for example, households within states), one clusters on the more aggregate
group; see section 3.2. But when they are non-nested, traditional cluster inference can only
deal with one of the dimensions.

In some applications it is possible to include sufficient regressors to eliminate error cor-
relation in all but one dimension, and then do cluster-robust inference for that remaining
dimension. A leading example is that in a state-year panel of individuals (with dependent
variable y;5) there may be clustering both within years and within states. If the within-year
clustering is due to shocks that are the same across all individuals in a given year, then in-
cluding year fixed effects as regressors will absorb within-year clustering and inference then
need only control for clustering on state.

When this is not possible, the one-way cluster robust variance can be extended to multi-
way clustering.

5.1 Multi-way cluster-robust inference

-~

The cluster-robust estimate of V[3] defined in (6)-(7) can be generalized to clustering in mul-
tiple dimensions. Regular one-way clustering is based on the assumption that E[u,u;|x;, x,] =
0, unless observations i and j are in the same cluster. Then (7) sets B = SV Zjvzl X XUy 1[i, j
in same cluster|, where w; = y; — X;B and the indicator function 1[A] equals 1 if event A oc-
curs and 0 otherwise. In multi-way clustering, the key assumption is that Efu;u;|x;,x;] = 0,
unless observations ¢ and j share any cluster dimension. Then the multi-way cluster robust
estimate of V[8] replaces (7) with B = SV Z;Vﬂ x;Xu;u;1[i, j share any cluster].

For two-way clustering this robust variance estimator is easy to implement given software
that computes the usual one-way cluster-robust estimate. We obtain three different cluster-
robust “variance” matrices for the estimator by one-way clustering in, respectively, the first
dimension, the second dimension, and by the intersection of the first and second dimensions.
Then add the first two variance matrices and, to account for double-counting, subtract the
third. Thus

Viwo-way[B] = V1[B] + Va[B] — Vir2[B], (11)
where the three component variance estimates are computed using (6)-(7) for the three
different ways of clustering. Similar methods for additional dimensions, such as three-way
clustering, are detailed in Cameron, Gelbach, and Miller (2010).

This method relies on asymptotics that are in the number of clusters of the dimension
with the fewest number. This method is thus most appropriate when each dimension has
many clusters. Theory for two-way cluster robust estimates of the variance matrix is pre-
sented in Cameron, Gelbach, and Miller (2006, 2010), Miglioretti and Heagerty (2006), and
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Thompson (2006). Early empirical applications that independently proposed this method
include Acemoglu and Pischke (2003), and Fafchamps and Gubert (2007).

5.2 Spatial correlation

The multi-way robust clustering estimator is closely related to the field of time-series and
spatial heteroskedasticity and autocorrelation variance estimation.

In general B in (7) has the form > 2w (4, j) xixju;u;. For multi-way clustering the
weight w (i,j) = 1 for observations who share a cluster, and w(i,j) = 0 otherwise. In
White and Domowitz (1984), the weight w (i, j) = 1 for observations “close” in time to one
another, and w (i,j) = 0 for other observations. Conley (1999) considers the case where
observations have spatial locations, and has weights w (i, j) decaying to 0 as the distance
between observations grows.

A distinguishing feature between these papers and multi-way clustering is that White and
Domowitz (1984) and Conley (1999) use mixing conditions (to ensure decay of dependence) as
observations grow apart in time or distance. These conditions are not applicable to clustering
due to common shocks. Instead the multi-way robust estimator relies on independence of
observations that do not share any clusters in common.

There are several variations to the cluster-robust and spatial or time-series HAC estima-
tors, some of which can be thought of as hybrids of these concepts.

The spatial estimator of Driscoll and Kraay (1998) treats each time period as a cluster,
additionally allows observations in different time periods to be correlated for a finite time
difference, and assumes T — oo. The Driscoll-Kraay estimator can be thought of as us-
ing weight w (i,7) = 1 — D (4,7) /(Dmax + 1), where D (7, 7) is the time distance between
observations ¢ and j, and Dy, is the maximum time separation allowed to have correlation.

An estimator proposed by Thompson (2006) allows for across-cluster (in his example
firm) correlation for observations close in time in addition to within-cluster correlation at
any time separation. The Thompson estimator can be thought of as using w (i, ) = 1[i, j
share a firm, or D (i, j) < Dpay/. It seems that other variations are likely possible.

Foote (2007) contrasts the two-way cluster-robust and these other variance matrix es-
timators in the context of a macroeconomics example. Petersen (2009) contrasts various
methods for panel data on financial firms, where there is concern about both within firm
correlation (over time) and across firm correlation due to common shocks.

6 Feasible GLS

When clustering is present and a correct model for the error correlation is specified, the
feasible GLS estimator is more efficient than OLS. Furthermore, in many situations one
can obtain a cluster-robust version of the standard errors for the FGLS estimator, to guard
against misspecification of model for the error correlation. Many applied studies nonetheless
use the OLS estimator, despite the potential expense of efficiency loss in estimation.
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6.1 FGLS and cluster-robust inference

Suppose we specify a model for 2, = E[ugu;|X,], such as within-cluster equicorrelation.
Then the GLS estimator is (X'Q1X) "' X'Qly, where = Diag[€2,]. Given a consistent
estimate €2 of €2, the feasible GLS estimator of 3 is

BraLs = (Zg:1 X;Q;1X9> Z X;Q;1Yg- (12)

g=1

R ~1
The default estimate of the variance matrix of the FGLS estimator, (X’ Q_1X> , is correct

under the restrictive assumption that E[ugu|X,] = €2,.
The cluster-robust estimate of the asymptotic variance matrix of the FGLS estimator is

V[BraLs) = (X’ﬁ‘1X> - (Z; X/gfzg—lagﬁ;ﬁg—lxg) (Xﬁ‘lX)_l , (13)

where U, = Yg_XgBFGLs- This estimator requires that u, and u;, are uncorrelated, for g # h,
but permits E[ugu|X,] # Q. In that case the FGLS estimator is no longer guaranteed to
be more efficient than the OLS estimator, but it would be a poor choice of model for €,
that led to FGLS being less efficient.

Not all econometrics packages compute this cluster-robust estimate. In that case one
can use a pairs cluster bootstrap (without asymptotic refinement). Specifically B times
form G clusters {(y7, X)), ..., (¥&, X&)} by resampling with replacement G times from the
original sample of clusters, each time compute the FGLS estimator, and then compute the

variance of the B FGLS estimates Bl, o BB as Voot [B] =(B-1)"! Z{il(Bb —E)(,B’b — B)’
Care is needed, however, if the model includes cluster-specific fixed effects; see, for example,
Cameron and Trivedi (2009, p.421).

6.2 Efficiency gains of feasible GLS

Given a correct model for the within-cluster correlation of the error, such as equicorrelation,
the feasible GLS estimator is more efficient than OLS. The efficiency gains of FGLS need
not necessarily be great. For example, if the within-cluster correlation of all regressors is
unity (so x;, = x,) and 1, defined in section 2.3 is homoskedastic, then FGLS is equivalent
to OLS so there is no gain to FGLS.

For equicorrelated errors and general X, Scott and Holt (1982) provide an upper bound
to the maximum proportionate efficiency loss of OLS compared to the variance of the FGLS
estimator of 1/ [1 + 4(17’)“)[1“]\[““71)’)“} , Nmax = max{Ny, ..., Ng}. This upper bound is

(Nmax xp,,)?
increasing in the error correlation p, and the maximum cluster size Nya.x. For low p, the

maximal efficiency gain for can be low. For example, Scott and Holt (1982) note that for
P, = -05 and Ny = 20 there is at most a 12% efficiency loss of OLS compared to FGLS.
But for p, = 0.2 and Ny = 50 the efficiency loss could be as much as 74%, though this
depends on the nature of X.
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6.3 Random effects model

The one-way random effects (RE) model is given by (1) with u;, = a4+ ¢4, where oy and €
are i.i.d. error components; see section 2.2. Some algebra shows that the FGLS estimator
in (12) can be computed by OLS estimation of (y;, — ngz) on (x;; — AX;) where A = 1—
G /A5 + Ngﬁi. Applying the cluster-robust variance matrix formula (7) for OLS in this
transformed model yields (13) for the FGLS estimator.

The RE model can be extended to multi-way clustering, though FGLS estimation is then
more complicated. In the two-way case, yign = X;,;,8 + @y + 0p, + €ign. For example, Moulton
(1986) considered clustering due to grouping of regressors (schooling, age and weeks worked)
in a log earnings regression. In his model he allowed for a common random shock for each
year of schooling, for each year of age, and for each number of weeks worked. Davis (2002)
modelled film attendance data clustered by film, theater and time. Cameron and Golotvina
(2005) modelled trade between country-pairs. These multi-way papers compute the variance
matrix assuming 2 is correctly specified.

6.4 Hierarchical linear models

The one-way random effects model can be viewed as permitting the intercept to vary ran-
domly across clusters. The hierarchical linear model (HLM) additionally permits the slope
coefficients to vary. Specifically

Yig = ngﬁg + Uig, (14)
where the first component of x;, is an intercept. A concrete example is to consider data
on students within schools. Then y;, is an outcome measure such as test score for the i
student in the ¢! school. In a two-level model the k' component of B, is modelled as
Brg = w;g'yk + vig, Where wy, is a vector of school characteristics. Then stacking over all K

components of 3 we have
By = Wyy +v;, (15)

where W, = Diag[wy,] and usually the first component of wy, is an intercept.

The random effects model is the special case B, = (8,,, B,,) Where 3,, = 1 Xy, +v1, and
Brg = 7 +0 for k> 1, s0 vy, is the random effects model’s ;. The HLM model additionally
allows for random slopes B,, that may or may not vary with level-two observables wy,.
Further levels are possible, such as schools nested in school districts.

The HLM model can be re-expressed as a mixed linear model, since substituting (15)
into (14) yields

Yig = (XigWo)v + X}y vy + uig. (16)

The goal is to estimate the regression parameter v and the variances and covariances of
the errors u;, and v,. Estimation is by maximum likelihood assuming the errors v, and w;,
are normally distributed. Note that the pooled OLS estimator of « is consistent but is less
efficient.
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HLM programs assume that (15) correctly specifies the within-cluster correlation. One
can instead robustify the standard errors by using formulae analogous to (13), or by the
cluster bootstrap.

6.5 Serially correlated errors models for panel data

If N, is small, the clusters are balanced, and it is assumed that 2, is the same for all g, say
Q, = Q, then the FGLS estimator in (12) can be used without need to specify a model for
Q. Instead we can let € have ij* entry G~ chzl UigU;q, Where u;, are the residuals from
initial OLS estimation.

This procedure was proposed for short panels by Kiefer (1980). It is appropriate in this
context under the assumption that variances and autocovariances of the errors are constant
across individuals. While this assumption is restrictive, it is less restrictive than, for example,
the AR(1) error assumption given in section 2.3.

In practice two complications can arise with panel data. First, there are T (T — 1) /2
off-diagonal elements to estimate and this number can be large relative to the number of
observations NT'. Second, if an individual-specific fixed effects panel model is estimated,
then the fixed effects lead to an incidental parameters bias in estimating the off-diagonal
covariances. This is the case for differences-in-differences models, yet FGLS estimation is
desirable as it is more efficient than OLS. Hausman and Kuersteiner (2008) present fixes for
both complications, including adjustment to Wald test critical values by using a higher-order
Edgeworth expansion that takes account of the uncertainty in estimating the within-state
covariance of the errors.

A more commonly-used model specifies an AR(p) model for the errors. This has the
advantage over the preceding method of having many fewer parameters to estimate in €2,
though is a more restrictive model. Of course, one can robustify using (13). If fixed effects are
present, however, then there is again a bias (of order N, ') in estimation of the AR(p) coef-
ficients due to the presence of fixed effects. Hansen (2007b) obtains bias-corrected estimates
of the AR(p) coefficients and uses these in FGLS estimation.

Other models for the errors have also been proposed. For example if clusters are large,
we can allow correlation parameters to vary across clusters.

7 Nonlinear and instrumental variables estimators

Relatively few econometrics papers consider extension of the complications discussed in this
paper to nonlinear models; a notable exception is Wooldridge (2006).

7.1 Population-averaged models

The simplest approach to clustering in nonlinear models is to estimate the same model as
would be estimated in the absence of clustering, but then base inference on cluster-robust
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standard errors that control for any clustering. This approach requires the assumption that
the estimator remains consistent in the presence of clustering.

For commonly-used estimators that rely on correct specification of the conditional mean,
such as logit, probit and Poisson, one continues to assume that E[y;,|x;,] is correctly-specified.
The model is estimated ignoring any clustering, but then sandwich standard errors that
control for clustering are computed. This pooled approach is called a population-averaged
approach because rather than introduce a cluster effect o, and model E[y;,|x;,, o], see
section 7.2, we directly model Ely;g|x;4] = Eq, [E[yig|Xiq, )] so that o, has been averaged
out.

This essentially extends pooled OLS to, for example, pooled probit. Efficiency gains
analogous to feasible GLS are possible for nonlinear models if one additionally specifies a
reasonable model for the within-cluster correlation.

The generalized estimating equations (GEE) approach, due to Liang and Zeger (1986),
introduces within-cluster correlation into the class of generalized linear models (GLM). A
conditional mean function is specified, with E[y;g|x;s] = m(x],3), so that for the ¢"" cluster

Ely,|X,] = m,(B), (17)

where my(8) = [m(x},8), ..., m(x}y,,8)] and X, = [x1g, ..., Xn,¢]". A model for the variances
and covariances is also specified. First given the variance model V(y,|x;] = ¢h(m(x},3)
where ¢ is an additional scale parameter to estimate, we form H,(8) = Diag[ph(m(x;,8)], a
diagonal matrix with the variances as entries. Second a correlation matrix R(e) is specified
with 5 entry Cor[yiy, v;,/X,], where e are additional parameters to estimate. Then the

within-cluster covariance matrix is
Q, = V[YQ|X9] = Hg(ﬁ)1/2R(a)Hg(ﬁ)1/2 (18)

R(a) = I if there is no within-cluster correlation, and R(a) = R(p) has diagonal entries 1
and off diagonal entries p in the case of equicorrelation. The resulting GEE estimator Bqgg
solves

om’ ~
Z:l %Qﬂyg —my(3)) =0, (19)

where ﬁg equals €, in (18) with R(a) replaced by R(&x) where e is consistent for a. The
cluster-robust estimate of the asymptotic variance matrix of the GEE estimator is
T ~6-13) ! G ro-1a o O-1 1o-1 -1
VBagsl = (D Q D) (Zgzl D/ Q6,1 0; Dg> (D Q D> , (20)
where D, = am;(ﬁ)/ﬁﬁb, D = [Dy,...,Dg], 4, = y,~m,(B3), and now Q, = H,(3)/*R(a)H,(B)"/2.
The asymptotic theory requires that G — oo.
The result (20) is a direct analog of the cluster-robust estimate of the variance matrix for

FGLS. Consistency of the GEE estimator requires that (17) holds, i.e. correct specification
of the conditional mean (even in the presence of clustering). The variance matrix defined in
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(18) permits heteroskedasticity and correlation. It is called a “working” variance matrix as
subsequent inference based on (20) is robust to misspecification of (18). If (18) is assumed
to be correctly specified then the asymptotic variance matrix is more simply (]3’ (Al_lf))_1

For likelihood-based models outside the GLM class, a common procedure is to perform
ML estimation under the assumption of independence over ¢ and g, and then obtain cluster-
robust standard errors that control for within-cluster correlation. Let f(yi4|xiq,0) denote
the density, s,4,(0) = 0In f(yig|Xig,0)/00, and s,(0) = ). s;4(6). Then the MLE of 8 solves
> g 2-iSig(0) =3, 84(6) = 0. A cluster-robust estimate of the variance matrix is

VBl = (D, 9s,(0)/06 ) (D, s(@)s,8Y) (Y- 9s,(8)/08' ) - @)

This method generally requires that f(y;4|xig,0) is correctly specified even in the presence
of clustering.

In the case of a (mis)specified density that is in the linear exponential family, as in
GLM estimation, the MLE retains its consistency under the weaker assumption that the
conditional mean E[y;,|x;,, 6] is correctly specified. In that case the GEE estimator defined
n (19) additionally permits incorporation of a model for the correlation induced by the
clustering.

7.2 Cluster-specific effects models

An alternative approach to controlling for clustering is to introduce a group-specific effect.
For conditional mean models the population-averaged assumption that E[y;s|x;,] = m(x},0)
is replaced by

Elyiglxig, gl = 9(x},8 + ay), (22)
where o, is not observed. The presence of o, will induce correlation between y;, and y;g,
1 # j. Similarly, for parametric models the density specified for a single observation is
f(yig|Xig, B, rg) rather than the population-averaged f(yi4|%ig, 3).

In a fixed effects model the «, are parameters to be estimated. If asymptotics are that
N, is fixed while G — oo then there is an incidental parameters problem, as there are N,
parameters aq, ..., ag to estimate and G — oo. In general this contaminates estimation of 3
so that B is a inconsistent. Notable exceptions where it is still possible to consistently esti-
mate B are the linear regression model, the logit model, the Poisson model, and a nonlinear
regression model with additive error (so (22) is replaced by E[yis|xig, o] = g(x},8) + ay).
For these models, aside from the logit, one can additionally compute cluster-robust standard
errors after fixed effects estimation.

We focus on the more commonly-used random effects model that specifies o, to have
density h(a4|n) and consider estimation of likelihood-based models. Conditional on «ay, the
joint density for the ¢' cluster is f(yig, ..., |[Xn,qg, B, @g) = vazgl f(Yiglxig, B, g). We then
integrate out o, to obtain the likelihood function

2@ty %) =TI { [ (T b 8.00)) e i) | (23)
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In some special nonlinear models, such as a Poisson model with «, being gamma distributed,
it is possible to obtain a closed-form solution for the integral. More generally this is not the
case, but numerical methods work well as (23) is just a one-dimensional integral. The usual
assumption is that a, is distributed as N[0, 02]. The MLE is very fragile and failure of any
assumption in a nonlinear model leads to inconsistent estimation of 3.

The population-averaged and random effects models differ for nonlinear models, so that
B3 is not comparable across the models. But the resulting average marginal effects, that
integrate out ay in the case of a random effects model, may be similar. A leading exam-
ple is the probit model. Then Ely,|x, ay] = ®(x},8 + o), where ®(-) is the standard
normal c.d.f. Letting f(c,) denote the N[0,02] density for «,, we obtain Ely;,|x;] =
[ @(x},8 + ag) flag)day, = @(x;gﬁ/m% see Wooldridge (2002, p.470). This differs
from E[yi,|xiy] = ®(x},8) for the pooled or population-averaged probit model. The differ-
ence is the scale factor \/W . However, the marginal effects are similarly rescaled, since
O Pryiy = 1|x4]/Oxig = ¢(x},8//1 + 02) x B/+/1 + 02, so in this case PA probit and ran-
dom effects probit will yield similar estimates of the average marginal effects; see Wooldridge
(2002, 2006).

7.3 Instrumental variables

The cluster-robust formula is easily adapted to instrumental variables estimation. It is
assumed that there exist instruments z;, such that u;; = y;, — x| B satisfies E[u,|z;y] =
0. If there is within-cluster correlation we assume that this condition still holds, but now
Covluig, ujg|2ig, 2;4] 7 0.

Shore-Sheppard (1996) examines the impact of equicorrelated instruments and group-
specific shocks to the errors. Her model is similar to that of Moulton, applied to an IV
setting. She shows that IV estimation that does not model the correlation will understate
the standard errors, and proposes either cluster-robust standard errors or FGLS.

Hoxby and Paserman (1998) examine the validity of overidentification (OID) tests with
equicorrelated instruments. They show that not accounting for within-group correlation can
lead to mistaken OID tests, and they give a cluster-robust OID test statistic. This is the
GMM criterion function with a weighting matrix based on cluster summation.

A recent series of developments in applied econometrics deals with the complication of
weak instruments that lead to poor finite-sample performance of inference based on asymp-
totic theory, even when sample sizes are quite large; see for example the survey by Andrews
and Stock (2007), and Cameron and Trivedi (2005, 2009). The literature considers only the
non-clustered case, but the problem is clearly relevant also for cluster-robust inference. Most
papers consider only i.i.d. case errors. An exception is Chernozhukov and Hansen (2008)
who suggest a method based on testing the significance of the instruments in the reduced
form that is heteroskedastic-robust. Their tests are directly amenable to adjustments that
allow for clustering; see Finlay and Magnusson (2009).
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7.4 GMM

Finally we consider generalized methods of moments (GMM) estimation.
Suppose that we combine moment conditions for the g cluster, so E[h,(w,,6)] = 0
where w, denotes all variables in the cluster. Then the GMM estimator O gy with weighting

!/
matrix W minimizes (Zg hg> \4% <Zg hg>, where h, = hy(w,, 8). Using standard results
in, for example, Cameron and Trivedi (2005, p.175) or Wooldridge (2002, p.423), the variance
matrix estimate is

Vlbow] = (A'WA) " AWBWA (:ng)‘l

where A = >, 0h, /085 and a cluster-robust variance matrix estimate uses B= >y flgﬁ’g.
This assumes independence across clusters and G — oo. Bhattacharya (2005) considers
stratification in addition to clustering for the GMM estimator.

Again a key assumption is that the estimator remains consistent even in the presence for
clustering. For GMM this means that we need to assume that the moment condition holds
true even when there is within-cluster correlation. The reasonableness of this assumption
will vary with the particular model and application at hand.

8 Empirical Example

To illustrate some empirical issues related to clustering, we present an application based on
a simplified version of the model in Hersch (1998), who examined the relationship between
wages and job injury rates. We thank Joni Hersch for sharing her data with us. Job injury
rates are observed only at occupation levels and industry levels, inducing clustering at these
levels. In this application we have individual-level data from the Current Population Survey
on 5,960 male workers working in 362 occupations and 211 industries. For most of our
analysis we focus on the occupation injury rate coefficient.

In column 1 of Table 1, we present results from linear regression of log wages on oc-
cupation and industry injury rates, potential experience and its square, years of schooling,
and indicator variables for union, nonwhite, and 3 regions. The first three rows show that
standard errors of the OLS estimate increase as we move from default (row 1) to White
heteroskedastic-robust (row 2) to cluster-robust with clustering on occupation (row 3). A
priori heteroskedastic-robust standard errors may be larger or smaller than the default. The
clustered standard errors are expected to be larger. Using formula (4) yields inflation factor
V141 x0.207 x (5960/362 — 1) = 2.05, as the within-cluster correlation of model residuals
is 0.207, compared to an actual inflation of 0.516/0.188 = 2.74.

Column 2 of Table 1 illustrates analysis with few clusters, when analysis is restricted to

the 1,594 individuals who work in the ten most common occupations in the dataset. From
rows 1-3 the standard errors increase, due to fewer observations, and the variance inflation
factor is larger due to a larger average group size, as suggested by formula (4). Our concern
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is that with G = 10 the usual asymptotic theory requires some adjustment. The Wald two-
sided test statistic for a zero coefficient on occupation injury rate is —2.751/0.994 = 2.77.
Rows 4-6 of column 2 report the associated p-value computed in three ways. First, p = 0.006
using standard normal critical values (or the 7" with N — K = 1584 degrees of freedom).
Second, p = 0.022 using a T-distribution based on G — 1 = 9 degrees of freedom. Third,
when we perform a pairs cluster percentile-T bootstrap, the p-value increases to 0.110. These
changes illustrate the importance of adjusting for few clusters in conducting inference. The
large increase in p-value with the bootstrap may in part be because the first two p-values
are based on cluster-robust standard errors with finite-sample bias; see section 4.1.This may
also explain why the RE model standard errors in rows 8-10 of column 2 exceed the OLS
cluster-robust standard error in row 3 of column 2.

We next consider multi-way clustering. Since both occupation-level and industry-level
regressors are included we should compute two-way cluster-robust standard errors. Compar-
ing row 7 of column 1 to row 3, the standard error of the occupation injury rate coefficient
changes little from 0.516 to 0.515. But there is a big impact for the coefficient of the industry
injury rate. In results not reported in the table, the standard error of the industry injury
rate coefficient increases from 0.563 when we cluster on only occupation to 1.015 when we
cluster on both occupation and industry.

If the clustering within occupations is due to common occupation-specific shocks, then
a random effects (RE) model may provide more efficient parameter estimates. From row
8 of column 1 the default RE standard error is 0.308, but if we cluster on occupation this
increases to 0.536 (row 10). For these data there is apparently no gain compared to OLS
(see row 3).

Finally we consider a nonlinear example, probit regression with the same data and re-
gressors, except the dependent variable is now a binary outcome equal to one if the hourly
wage exceeds twelve dollars. The results given in column 3 are qualitatively similar to those
in column 1. Cluster-robust standard errors are 2-3 times larger, and two-way cluster robust
are slightly larger still. The parameters 3 of the random effects probit model are rescalings
of those of the standard probit model, as explained in section 7.2. The rescaled coefficient
is —5.119, as @, has estimated variance 0.279. This is smaller than the probit coefficient,
though this difference may just reflect noise in estimation.

9 Conclusion

Cluster-robust inference is possible in a wide range of settings. The basic methods were
proposed in the 1980’s, but are still not yet fully incorporated into applied econometrics,
especially for estimators other than OLS. Useful references on cluster-robust inference for the
practitioner include the surveys by Wooldridge (2003, 2006), the texts by Wooldridge (2002)
and Cameron and Trivedi (2005) and, for implementation in Stata, Nichols and Schaffer
(2007) and Cameron and Trivedi (2009).
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Table 1 - Occupation injury rate and Log Wages
Impacts of varying ways of dealing with clustering

1 2 3
10 Largest

Main Sample Occupations Main Sample

Linear Linear Probit

OLS (or Probit) coefficient on Occupation Injury Rate -2.158 -2.751 -6.978

1 Default (iid) std. error 0.188 0.308 0.626

2 White-robust std. error 0.243 0.320 1.008

3 Cluster-robust std. error (Clustering on Occupation) 0.516 0.994 1.454
4 P-value based on (3) and Standard Normal 0.006
5 P-value based on (3) and T(10-1) 0.022
6 P-value based on Percentile-T Pairs Bootstrap (999 replications) 0.110

7 Two-way (Occupation and Industry) robust std. error 0.515 1.516

Random effects Coefficient on Occupation Injury Rate -1.652 -2.669 -5.789

8 Default std. error 0.357 1.429 1.106
9 White-robust std. error 0.579 2.058
10 Cluster-robust std. error (Clustering on Occupation) 0.536 2.148

Number of observations (N) 5960 1594 5960

Number of Clusters (G) 362 10 362
Within-Cluster correlation of errors (rho) 0.207 0.211

Notes: Coefficients and standard errors multiplied by 100. Regression covariates include Occupation
Injurty rate, Industry Injury rate, Potential experience, Potential experience squared, Years of
schooling, and indicator variables for union, nonwhite, and three regions. Data from Current
Population Survey, as described in Hersch (1998). Std. errs. in rows 9 and 10 are from bootstraps with
400 replications. Probit outcome is wages >= $12/hour.
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Attorneys for Defendant Apple
BY: ORIN SNYDER
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(In open court)

THE DEPUTY CLERK: United States of America v. Apple
Inc. and others.

Counsel for the government, please state your name for
the record.

MR. RYAN: Mark Ryan for the United States, your
Honor. Good afternoon.

THE DEPUTY CLERK: For the plaintiff.

THE COURT: Excuse me one second. Anyone else for the
United States?

MR. BUTERMAN: Good afternoon, your Honor. Lawrence
Buterman.

MR. MCCUAIG: Daniel McCuaig, your Honor.

MS. SYME: Carrie Syme, your Honor.

THE COURT: For the plaintiff States. For Texas.

MR. LIPMAN: Good afternoon, your Honor. Eric Lipman.

MR. GERVEY: Good afternoon, your Honor. Gabriel
Gervey.

MR. ASHTON: David Ashton, your Honor.

THE COURT: For Connecticut.

MR. NIELSEN: Joe Nielsen, your Honor.

MR. BECKER: Gary Becker, your Honor.

THE COURT: Anyone else for the States?

MR. OLSZEWSKI: Yes. Edward Olszewski for Ohio,
Attorney General's Office.

SOUTHERN DISTRICT REPORTERS, P.C.
(212) 805-0300




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Case 1:12-cv-02826-DLC Document 265 Filed 05/31/13 Page 4 of 66 4
D5SNHUSAL

THE COURT: For Apple.

MR. SNYDER: Good afternoon. Orin Snyder for Apple.

MS. RUBIN: Good afternoon, your Honor. Lisa Rubin
for Apple.

MR. SWANSON: Good afternoon, your Honor. Dan Swanson
for Apple.

MS. RICHMAN: Good afternoon, your Honor. Cynthia
Richman for Apple.

MR. HEISS: Good afternoon, your Honor. Howard Heiss
for Apple.

MR. FLOYD: Good afternoon, your Honor. Daniel Floyd
for Apple.

THE COURT: Is there anyone else who needs to place
their appearance on the record?

MR. SNYDER: No, your Honor. Thank you.

THE COURT: Thank you, Mr. Snyder.

To assist our court reporter, and me, perhaps, I am
going to ask you if you speak please to identify yourself

briefly for the record before you speak.

Welcome, everyone. This is our final pretrial
conference. We have a long agenda today to get ourselves ready
for our trial which begins on June 3rd, as you know. I want to

address the following topics, and you may have some additional

issues as well. I want to talk about the schedule we will

follow during the trial and the procedures generally that will

SOUTHERN DISTRICT REPORTERS, P.C.
(212) 805-0300
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apply in this non-jury trial. I want to go through your
witness list, make sure we understand who is actually going to
be called to testify and clarify who is going to be in the
courtroom and subject to cross—-examination. I want to talk
about time limits and whether those are appropriate here. We
have motions in limine that I am prepared to address. I want
to talk about the state law claims and the extent to which they
will be litigated and under what standard. I want to talk
about the depositions and the way we are going to approach
deposition evidence that parties have offered as part of their
pretrial order. I want to deal with objections to exhibits,
including potentially authenticity objections. I want to talk
about third-party redactions. We have gotten some submissions
there and I want to make sure we know what procedure we are
going to follow with respect to those.

So then, of course, I won't end this conference
without -- and maybe I will just start this conference that
way. I am working hard. My staff is working hard on this
case. I am sure counsel is working hard on this case to be
prepared for our June 3rd trial. So if for any reason this
case settles and I can put down my pen and turn to something
else, I would like a call, night or day, at the chamber's
telephone number because it will affect how I spend my time.
So thank you so much for that.

So let's talk about our schedule. We will begin at

SOUTHERN DISTRICT REPORTERS, P.C.
(212) 805-0300






