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Abstract

I consider the asymptotic properties of a commonly advocated covariance matrix estimator for

panel data. Under asymptotics where the cross-section dimension, n, grows large with the time

dimension, T, fixed, the estimator is consistent while allowing essentially arbitrary correlation within

each individual. However, many panel data sets have a non-negligible time dimension. I extend the

usual analysis to cases where n and T go to infinity jointly and where T !1 with n fixed. I provide

conditions under which t and F statistics based on the covariance matrix estimator provide valid

inference and illustrate the properties of the estimator in a simulation study.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The use of heteroskedasticity robust covariance matrix estimators, cf. White (1980), in
cross-sectional settings and of heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimators, cf. Andrews (1991), in time series contexts is extremely
common in applied econometrics. The popularity of these robust covariance matrix
estimators is due to their consistency under weak functional form assumptions. In
particular, their use allows the researcher to form valid confidence regions about a set of
parameters from a model of interest without specifying an exact process for the
disturbances in the model.
see front matter r 2007 Elsevier B.V. All rights reserved.
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With the increasing availability of panel data, it is natural that the use of robust
covariance matrix estimators for panel data settings that allow for arbitrary within
individual correlation are becoming more common. A recent paper by Bertrand et al.
(2004) illustrated the pitfalls of ignoring serial correlation in panel data, finding through a
simulation study that inference procedures which fail to account for within individual
serial correlation may be severely size distorted. As a potential resolution of this problem,
Bertrand et al. (2004) suggest the use of a robust covariance matrix estimator proposed by
Arellano (1987) and explored in Kezdi (2002) which allows arbitrary within individual
correlation and find in a simulation study that tests based on this estimator of the
covariance parameters have correct size.
One drawback of the estimator of Arellano (1987), hereafter referred to as the

‘‘clustered’’ covariance matrix (CCM) estimator, is that its properties are only known in
conventional panel asymptotics as the cross-section dimension, n, increases with the time
dimension, T, fixed. While many panel data sets are indeed characterized by large n and
relatively small T, this is not necessarily the case. For example, in many differences-in-
differences and policy evaluation studies, the cross-section is composed of states and the
time dimension of yearly or quarterly (or occasionally monthly) observations on each state
for 20 or more years.
In this paper, I address this issue by exploring the theoretical properties of the CCM

estimator in asymptotics that allow n and T to go to infinity jointly and in asymptotics
where T goes to infinity with n fixed. I find that the CCM estimator, appropriately
normalized, is consistent without imposing any conditions on the rate of growth of T

relative to n even when the time series dependence between the observations within each
individual is left unrestricted. In this case, both the OLS estimator and the CCM estimator
converge at only the

ffiffiffi
n
p

-rate, essentially because the only information is coming from
cross-sectional variation. If the time series process is restricted to be strongly mixing, I
show that the OLS estimator is

ffiffiffiffiffiffiffi
nT
p

-consistent but that, because high lags are not down
weighted, the robust covariance matrix estimator still converges at only the

ffiffiffi
n
p

-rate. This
behavior suggests, as indicated in the simulations found in Kezdi (2002), that it is the n

dimension and not the size of n relative to T that matters for determining the properties of
the CCM estimator.
It is interesting to note that the limiting behavior of bb changes ‘‘discontinuously’’ as the

amount of dependence is limited. In particular, the rate of convergence of bb changes fromffiffiffi
n
p

in the ‘‘no-mixing case’’ to
ffiffiffiffiffiffiffi
nT
p

when mixing is imposed. However, despite the
difference in the limiting behavior of bb, there is no difference in the behavior of standard
inference procedures based on the CCM estimator between the two cases. In particular, the
same t and F statistics will be valid in either case (and in the n!1 with T fixed case)
without reference to the asymptotics or degree of dependence in the data.
I also derive the behavior of the CCM estimator as T !1 with n fixed, where I find the

estimator is not consistent but does have a limiting distribution. This result corresponds to
asymptotic results for HAC estimators without truncation found in recent work by Kiefer
and Vogelsang (2002, 2005), Phillips et al. (2003), and Vogelsang (2003). While the limiting
distribution is not proportional to the true covariance matrix in general, it is proportional
to the covariance matrix in the important special case of iid data across individuals,1
1Note that this still allows arbitrary correlation and heteroskedasticity within individuals, but restricts that the

pattern is the same across individuals.
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allowing construction of asymptotically pivotal statistics in this case. In fact, in this case,
the standard t-statistic is not asymptotically normal but converges in distribution to a
random variable which is exactly proportional to a tn�1 distribution. This behavior
suggests the use of the tn�1 for constructing confidence intervals and tests when the CCM
estimator is used as a general rule, as this will provide asymptotically correct critical values
under any asymptotic sequence.

I then explore the finite sample behavior of the CCM estimator and tests based upon it
through a short simulation study. The simulation results indicate that tests based on the
robust standard error estimates generally have approximately correct size in serially
correlated panel data even in small samples. However, the standard error estimates
themselves are considerably more variable than their counterparts based on simple
parametric models. The bias of the simple parametric estimators is also typically smaller in
the cases where the parametric model is correct, suggesting that these standard error
estimates are likely preferable when the researcher is confident in the form of the error
process. In the simulation, I also explore the behavior of an analog of White’s (1980) direct
test for heteroskedasticity proposed by Kezdi (2002).2 The results indicate the performance
of the test is fairly good for moderate n, though it is quite poor when n is small. This
simulation behavior suggests that this test may be useful for choosing between the use of
robust standard error estimates and standard errors estimated from a more parsimonious
model when n is reasonably large.

The remainder of this paper is organized as follows. In Section 2, I present the basic
framework and the estimator and test statistics that will be considered. The asymptotic
properties of these estimators are collected in Section 3, and Section 4 contains a discussion
of a Monte Carlo study assessing the finite sample performance of the estimators in simple
models. Section 5 concludes.
2. A heteroskedasticity–autocorrelation consistent covariance matrix estimator for panel

data

Consider a regression model defined by

yit ¼ x0itbþ �it, (1)

where i ¼ 1; . . . ; n indexes individuals, t ¼ 1; . . . ;T indexes time, xit is a k � 1 vector of
observable covariates, and �it is an unobservable error component. Note that this
formulation incorporates the standard fixed effects model as well as models which include
other covariates that enter the model with individual specific coefficients, such as
individual specific time trends, where these covariates have been partialed out. In these
cases, the variables xit, yit, and �it should be interpreted as residuals from regressions of x�it,
y�it, and ��it on an auxiliary set of covariates z�it from the underlying model
y�it ¼ x�

0

it bþ z�
0

it gþ �
�
it. For example, in the fixed effects model, Z� is a matrix of dummy

variables for each individual and g is a vector of individual specific fixed effects. In this
case, xit ¼ x�it � ð1=TÞ

PT
t¼1 x�it, and yit and �it are defined similarly. Alternatively, xit, yit,

and �it could be interpreted as variables resulting from other transformations which
2Solon and Inoue (2004) offers a different testing procedure for detecting serial correlation in fixed effects panel

models. See also Bhargava et al. (1982), Baltagi and Wu (1999), Wooldridge (2002, pp. 275, 282–283), and

Drukker (2003).
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remove the nuisance parameters from the equation, such as first-differencing to remove the
fixed effects. In what follows, all properties are given in terms of the transformed variables
for convenience. Alternatively, conditions could be imposed on the underlying variables
and the properties derived as T !1 as in Hansen (2006).3

Within each individual, the equations defined by (1) may be stacked and represented in
matrix form as

yi ¼ xibþ �i, (2)

where yi is a T � 1 vector of individual outcomes, xi is a T � k vector of observed covariates,
and �i is a T � 1 vector of unobservables affecting the outcomes yi with E½�i�0ijxi� ¼ Oi. The

OLS estimator of b from Eq. (2) may then be defined as bb ¼ ðPn
i¼1 x0ixiÞ

�1Pn
i¼1 x0iyi. The

properties of bb as n!1 with T fixed are well known. In particular, under regularity

conditions,
ffiffiffi
n
p
ðbb� bÞ is asymptotically normal with covariance matrix Q�1WQ�1 where

Q ¼ limn ð1=nÞ
Pn

i¼1 E½x
0
ixi� and W ¼ limn ð1=nÞ

Pn
i¼1 E½x

0
iOixi�.

The problem of robust covariance matrix estimation is then estimating W without
imposing a parametric structure on the Oi. In this paper, I consider the estimator suggested
by Arellano (1987) which may be defined as

bW ¼ 1

nT

Xn

i¼1

x0ib�ib�0ixi, (3)

where b�i ¼ yi � xi
bb are OLS residuals from Eq. (2). This estimator is an appealing

generalization of White’s (1980) heteroskedasticity consistent covariance matrix estimator
that allows for arbitrary intertemporal correlation patterns and heteroskedasticity across
individuals.4 The estimator is also appealing in that, unlike HAC estimators for time series
data, its implementation does not require the selection of a kernel or bandwidth parameter.
The properties of bW under conventional panel asymptotics where n!1 with T fixed are
well-established. In the remainder of this paper, I extend this analysis by considering the
properties of bW under asymptotic sequences where T !1 as well.

The chief reason for interest in the CCM estimator is for performing inference about bb.
Suppose

ffiffiffiffiffiffiffiffi
dnT

p
ðbb� bÞ!

d
Nð0;BÞ and define an estimator of the asymptotic variance of bb as

ð1=dnT ÞbB where bB!p B. The following estimator of the asymptotic variance of bb based onbW is used throughout the remainder of the paper:

dAvarðbbÞ ¼ Xn

i¼1

x0ixi

 !�1
ðnT bW Þ Xn

i¼1

x0ixi

 !�1

¼
Xn

i¼1

x0ixi

 !�1 Xn

i¼1

x0ib�ib�0ixi

 ! Xn

i¼1

x0ixi

 !�1
. ð4Þ
3This is especially relevant in Theorem 3 where the mixing conditions will not hold for the transformed variables

if, for example, the transformation is to remove fixed effects by differencing out the individual means. Hansen

(2006) provides conditions on the untransformed variables which will cover this case in a different but related

context. This approach complicates the proof and notation and is not pursued here.
4It does, however, ignore the possibility of cross-sectional correlation, and it will be assumed that there is no

cross-sectional correlation for the remainder of the paper.
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In addition, for testing the hypothesis Rb ¼ r for a q� k matrix R with rank q, the usual t

(for R a 1� k vector) and Wald statistics can be defined as

t� ¼

ffiffiffiffiffiffiffi
nT
p
ðRbb� rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R bQ�1 bW bQ�1R0q (5)

and

F� ¼ nTðRbb� rÞ0½R bQ�1 bW bQ�1R0��1ðRbb� rÞ, (6)

respectively, where bW is defined above and bQ ¼ ð1=nTÞ
Pn

i¼1 x0ixi. In Section 3, I verify

that, despite differences in the limiting behavior of bb, t�!
d
Nð0; 1Þ, F�!

d
w2q, and dAvarðbbÞ is

valid for estimating the asymptotic variance of bb as n!1 regardless of the behavior of T.

I also consider the behavior of t� and F� as T !1 with n fixed. In this case, bW is not
consistent for W but does have a limiting distribution; and when the data are iid across i,5 I

show that t�!
d
ðn=ðn� 1ÞÞ1=2tn�1 and that F� is asymptotically pivotal and so can be used

to construct valid tests. This behavior suggests that inference using ðn=ðn� 1ÞÞ bW and
forming critical values using a tn�1 distribution will be valid regardless of the asymptotic
sequence considered.

It is worth noting that the estimator bW has also been used extensively in multilevel
models to account for the presence of correlation between individuals within cells; cf.
Liang and Zeger (1986) and Bell and McCaffrey (2002). For example, in a schooling study,
one might have data on individual outcomes where the individuals are grouped into
classes. In this case, the cross-sectional unit of observation could be defined as the class,
and arbitrary correlation between all individuals within each class could be allowed. In this
case, one would expect the presence of a classroom specific random effect resulting in
equicorrelation between all individuals within a class. While this would clearly violate the
mixing assumptions imposed in obtaining the asymptotic behavior as T !1 with n fixed,
it would not invalidate the use of bW for inference about b in cases where n and T go to
infinity jointly.

In addition to being useful for performing inference about bb, bW may also be used to test
the specification of simple parametric models of the error process.6 Such a test may be
useful for a number of reasons. If a parametric model is correct, the estimates of the
variance of bb based on this model will tend to behave better than the estimates obtained
from bW . In particular, parametric estimates of the variance of bb will often be considerably
less variable and will typically converge faster than estimates made using bW ; and if the
parametric model is deemed to be adequate, this model may be used to perform FGLS
estimation. The FGLS estimator is asymptotically more efficient than the OLS estimator,
and simulation evidence in Hansen (2006) suggests that the efficiency gain to using FGLS
over OLS in serially correlated panel data may be substantial.
5Note that this still allows arbitrary correlation and heteroskedasticity within individuals but restricts that the

pattern is the same across individuals.
6The test considered is a straightforward generalization of the test proposed by White (1980) for

heteroskedasticity and was suggested in the panel context by Kezdi (2002).
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To define the specification test, called hereafter the heteroskedasticity–autocorrelation

(HA) test, let bW ðbyÞ ¼ ð1=nTÞ
Pn

i¼1 x0iOið
byÞ0xi where by are estimates of a finite set of

parameters describing the disturbance process and Oið
byÞ is the implied covariance matrix

for individual i.7 Define a test statistic

S� ¼ ðnTÞ½vecð bW � bW ðbyÞÞ0 bD�vecð bW � bW ðbyÞÞ�, (7)

where bD is a positive semi-definite weighting matrix that estimates the variance of vecð bW �bW ðbyÞÞ and A� is the generalized inverse of a matrix A.8 In the following section, it will be

shown that S�!
d
w2kðkþ1Þ=2 for bD defined below.

A natural choice for bD is

bD ¼ 1

nT

Xn

i¼1

½ðvecðx0ib�ib�0ixi � x0iOið
byÞxiÞÞðvecðx

0
ib�ib�0ixi � x0iOið

byÞxiÞÞ
0
�. (8)

Under asymptotics where fn;Tg ! 1 jointly, another potential choice for bD is an estimate
of the asymptotic variance of bW :

bV ¼ 1

nT

Xn

i¼1

½ðvecðx0ib�ib�0ixi � bW ÞÞðvecðx0ib�ib�0ixi � bW ÞÞ0�. (9)

That bV provides an estimator of the variance of vecð bW � bW ðbyÞÞ follows from the fact that
as fn;Tg ! 1, vecð bW Þ is ffiffiffi

n
p

-consistent while vecð bW ðbyÞÞ will be ffiffiffiffiffiffiffi
nT
p

-consistent in many
cases, so vecð bW ðbyÞÞ may be taken as a constant relative to vecð bW Þ. The difference in rates
of convergence would arise, for example, in a fixed effects panel model where the errors
follow an AR process with common AR coefficients across individuals. However, it is
important to note that this will not always be the case. In particular, in random effects
models, the estimator of the variance of the individual specific shock will converge at only
a

ffiffiffi
n
p

rate, implying the same rate of convergence for both the robust and parametric
estimators of the variance. In the following section, I outline the asymptotic properties ofbb, bW , and bV from which the behavior of t�, F�, and S� will follow. The properties of bD,
though not discussed, will generally be the same as those of bV under the different
asymptotic sequences considered.

3. Asymptotic properties of the robust covariance matrix estimator

To develop the asymptotic inference results, I impose the following conditions.
7Consistency and asymptotic normality of bW ðbyÞ will generally follow from consistency and asymptotic

normality of by: In particular, defining W iðyÞ as the derivative of W with respect to yi and letting y be a p� 1

vector, a Taylor series expansion of W ðbyÞ yields W ðbyÞ ¼W ðyÞ þ
Pp

i¼1 W iðȳÞðby� yÞ where ȳ is an intermediate

value. As long as a uniform law of large numbers applies to W iðyÞ, W ðbyÞ �W ðyÞ will inherit the properties ofby� y. The problem is then reduced to finding an estimator of y that is consistent and asymptotically normal with a

mean zero asymptotic distribution. Finding such an estimator in fixed effects panel models with serial correlation

and/or heteroskedasticity when n!1 and T=n! r where ro1 is complicated, though there are estimators

which exist. See, for example, Nickell (1981), MaCurdy (1982), Solon (1984), Lancaster (2002), Hahn and

Kuersteiner (2002), Hahn and Newey (2004), and Hansen (2006).
8The test could alternatively be defined by only considering the ðkðk þ 1ÞÞ=2 unique elements of bW � bW ðbyÞ and

using the inverse of the implied covariance matrix. This test will be equivalent to the test outlined above.
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Assumption 1. fxi; �ig are independent across i, and E½�i�0ijxi� ¼ Oi.

Assumption 2. QnT ¼ E½
Pn

i¼1ðx
0
ixi=nTÞ� is uniformly positive definite with constant limit Q

where limits are taken as n!1 with T fixed in Theorem 1, as fn;Tg ! 1 in Theorems 2
and 3, and as T !1 with n fixed in Theorem 4.

In addition, I impose either Assumption 3(a) or Assumption 3(b) depending on the
context.

Assumption 3.
(a)
9N

4.1 c
E½�ijxi� ¼ 0.

(b)
 E½xit�it� ¼ 0.
Assumptions 1–3 are quite standard for panel data models. Assumption 1 imposes
independence across individuals, ruling out cross-sectional correlation, but leaves the time
series correlation unconstrained and allows general heterogeneity across individuals.
Assumption 2 is a standard full rank condition, and the restriction that QnT has a constant
limit could be relaxed at the cost of more complicated notation. Assumption 3 imposes
that one of two orthogonality conditions is satisfied. Assumption 3(b) imposes that xit

and �it are uncorrelated and is weaker than the strict exogeneity imposed in Assump-
tion 3(a). Assumption 3(a) is stronger than necessary, but it simplifies the proof of asymp-
totic normality of bW and consistency of bV . In addition, Assumption 3(a) would typically
be imposed in fixed effects models.9

The first theorem, which is stated here for completeness, collects the properties of bb andbW in asymptotics where n!1 with T fixed.

Theorem 1. Suppose the data are generated by model (1), that Assumptions 1 and 2 are

satisfied, and that n!1 with T fixed.
(i)
 If Assumption 3(b) holds and Ejxithj
4þdoDo1 and Ej�itj

4þdoDo1 for some d40,
then ffiffiffiffiffiffiffi

nT
p
ðbb� bÞ!

d
Q�1N 0;W ¼ lim

n

1

nT

Xn

i¼1

E½x0iOixi�

 !
,

and bW!p W .
(ii)
 In addition, if Assumption 3(a) holds and Ejxithj
8þdoDo1 and Ej�itj

8þdoDo1 for

some d40, thenffiffiffiffiffiffiffi
nT
p
½vecð bW �W Þ�

!
d
N 0;V ¼ lim

n

1

nT

Xn

i¼1

E½ðvecðx0i�i�
0
ixi �W ÞÞðvecðx0i�i�

0
ixi �W ÞÞ0�

 !
,

ote that a balanced panel has also implicitly been assumed. All of the results with the exception of Corollary

ould be extended to accommodate unbalanced panels at the cost of more complicated notation.
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and bV!p V .

ark 3.1. It follows from Theorem 1(i) that the asymptotic variance of bb can be
Rem

estimated using (4) since

dAvarðbbÞ ¼ Xn

i¼1

x0ixi

 !�1Xn

i¼1

x0ib�ib�0ixi

Xn

i¼1

x0ixi

 !�1

¼
1

nT

1

nT

Xn

i¼1

x0ixi

 !�1 bW 1

nT

Xn

i¼1

x0ixi

 !�1
¼

1

nT
bQ�1 bW bQ�1,

where bQ�1 bW bQ�1!p Q�1WQ�1. It also follows immediately from the definitions of t� and

F� in Eqs. (5) and (6) and Theorem 1(i) that, under the null hypothesis, t�!
d
Nð0; 1Þ and

F�!
d
w2q. Similarly, using Theorem 1(ii) and assuming bW ðbyÞ has properties similar to those

of bW , it will follow that the HA test statistic, S�, formed using bD defined above converges

in distribution to a w2kðkþ1Þ=2 under the null hypothesis.

Theorem 1 verifies that bb and bW are consistent and asymptotically normal as n!1

with T fixed without imposing any restrictions on the time series dimension. In the
following results, I consider alternate asymptotic approximations under the assumption
that both n and T are going to infinity.10 In these cases, consistency and asymptotic
normality of suitably normalized versions of bW are established under weak conditions.
Theorem 2, given immediately below, covers the case where n and T are going to infinity

and there is not weak dependence in the time series. In particular, the results of Theorem 2
are only interesting in the case where W ¼ limn;T ð1=nT2Þ

Pn
i¼1 E½x

0
iOixi�40. Perhaps the

leading case where this behavior would occur is in a model where �it includes an individual
specific random effect that is uncorrelated to xit and the estimated model does not include
an individual specific effect. In this case, all observations for a given individual will be
equicorrelated, and the condition given above will hold. Theorem 3, given following
Theorem 2, covers the case where there is mixing in the time series.

Theorem 2. Suppose the data are generated by model (1), that Assumptions 1 and 2 are

satisfied, and that fn;Tg ! 1 jointly.
(i)
 If Assumption 3(b) holds and Ejxithj
4þdoDo1 and Ej�itj

4þdoDo1 for some d40,
then

ffiffiffi
n
p
ðbb� bÞ!

d
Q�1Nð0;W ¼ lim

n;T

1

nT2

Xn

i¼1

E½x0iOixi�Þ,
One could also consider sequential limits in which one takes limits as n or T goes to infinity with the other

nsion fixed and then lets the other dimension go to infinity. It could be shown that under the conditions of

rem 2 and appropriate normalizations sequential limits taken first with respect to either n or T would yield

ame results as the joint limit. Similarly, under the conditions of Theorem 3, the sequential limits taken first

respect to either n or T would produce the same results as the joint limit.
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and bW=T!
p

W .
(ii)
 In addition, if Assumption 3(a) holds and Ejxithj
8þdoDo1 and Ej�itj

8þdoDo1 for

some d40, thenffiffiffi
n
p
½vecð bW=T �W Þ�

!
d
N 0;V ¼ lim

n;T

1

nT4

Xn

i¼1

E½ðvecðx0i�i�
0
ixi �W ÞÞðvecðx0i�i�

0
ixi �W ÞÞ0�

 !
,

and bV=T3!
p

V .
Remark 3.2. It is important to note that the results presented in Theorem 2 are not
interesting in the setting where the fj; kg element of Oi becomes small when jj � kj is large
since in these circumstances ð1=nT2Þ

Pn
i¼1 E½x

0
iOixi� ! 0. Theorem 3 presents results which

are relevant in this case.

Remark 3.3. Theorem 2 verifies consistency and asymptotic normality of both bb and bW
while imposing essentially no constraints on the time series dependence in the data. The
large cross-section effectively allows the time series dimension to be ignored even when T is
large. However, without constraints on the time series, bb is

ffiffiffi
n
p

-consistent, not
ffiffiffiffiffiffiffi
nT
p

-
consistent. Intuitively, the slower rate of convergence is due to the fact that there may be
little information contained in the time series since it is allowed to be arbitrarily dependent.

Remark 3.4. The fact that bb and bW are not
ffiffiffiffiffiffiffi
nT
p

-consistent will not affect practical
implementation of inference about bb. In particular, the estimate of the asymptotic variance

of bb based on Eq. (4) is

dAvarðbbÞ ¼ Xn

i¼1

x0ixi

 !�1Xn

i¼1

x0ib�ib�0ixi

Xn

i¼1

x0ixi

 !�1

¼
1

n

1

nT

Xn

i¼1

x0ixi

 !�1
ð bW=TÞ

1

nT

Xn

i¼1

x0ixi

 !�1
¼

1

n
bQ�1ð bW=TÞ bQ�1,

where bQ�1ð bW=TÞ bQ�1!p Q�1WQ�1: The t-statistic defined in Eq. (5) may also be expressed
as

t� ¼

ffiffiffiffiffiffiffi
nT
p
ðRbb� rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R bQ�1 bW bQ�1R0
q

¼

ffiffiffi
n
p
ðRbb� rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R bQ�1ð bW=TÞ bQ�1R0
q

which converges in distribution to a Nð0; 1Þ random variable under the null hypothesis,

Rb ¼ r, by Theorem 2(i). Similarly, it follows that F�!
d
w2q under the null. Finally, the HA
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test statistic, S�, defined above also satisfies

S� ¼ ðnTÞ½vecð bW � bW ðbyÞÞ0 bD� vecð bW � bW ðbyÞÞ�
¼ n½vecð bW=T � bW ðbyÞ=TÞ0ð bD=T3Þ

� vecð bW=T � bW ðbyÞ=TÞ�,

which converges in distribution to a w2kðkþ1Þ=2 under the conditions of the theorem and the

additional assumption that bW ðbyÞ behaves similarly to bV .

The previous theorem establishes the properties of bb and the robust variance matrix
estimator as n and T go to infinity jointly without imposing restrictions on the time series
dependence. While the result is interesting, there are many cases in which one might expect
the time series dependence to diminish over time. In the following theorem, the properties
of bb and bW are established under the assumption that the data are strong mixing in the
time series dimension.

Theorem 3. Suppose the data are generated by model (1), that Assumptions 1 and 2 are

satisfied, and that fn;Tg ! 1 jointly.
(i)
 If Assumption 3(b) is satisfied, Ejxithj
rþdoD and Ej�itj

rþdoD for some d40, and fxit; �itg

is a strong mixing sequence in t with a of size �3r=ðr� 4Þ for r44,ffiffiffiffiffiffiffi
nT
p
ðbb� bÞ!

d
Q�1N 0;W ¼ lim

n;T

1

nT

Xn

i¼1

E½x0iOixi�

 !
and bW �W!

p
0.
(ii)
 In addition, if Assumption 3(a) is satisfied, Ejxithj
rþdoD and Ej�itj

rþdoD for some d40,
and fxit; �itg is a strong mixing sequence in t with a of size �7r=ðr� 8Þ for r48,ffiffiffi

n
p
½vecð bW �W Þ�

!
d
N 0;V ¼ lim

n;T

1

nT2

Xn

i¼1

E½ðvecðx0i�i�
0
ixi �W ÞÞðvecðx0i�i�

0
ixi �W ÞÞ0�

 !
,

and bV=T!
p

V .
Remark 3.5. Theorem 3 verifies consistency and asymptotic normality of both bb and bW
under fairly conventional conditions on the time series dependence of the variables. The
added restriction on the time series dependence allows estimation of b at the

ffiffiffiffiffiffiffi
nT
p

-rate,
which differs from the case above where bb is only

ffiffiffi
n
p

-consistent. Intuitively, the increase in
the rate of convergence is due to the fact that under the mixing conditions, the time series is
more informative than in the case analyzed in Theorem 2.

Remark 3.6. It follows immediately from the conclusions of Theorem 3 and the definitions

of dAvarðbbÞ, t�, and F� in Eqs. (4)–(6) that dAvarðbbÞ is valid for estimating the asymptotic

variance of bb and that t�!
d
Nð0; 1Þ and F�!

d
w2q under the null hypothesis. The HA test
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statistic, S�, also satisfies

S� ¼ ðnTÞ½vecð bW � bW ðbyÞÞ0 bD�vecð bW � bW ðbyÞÞ�
¼ n½vecð bW � bW ðbyÞÞ0ð bD=TÞ�vecð bW � bW ðbyÞÞ�,

which converges in distribution to a w2kðkþ1Þ=2 under the conditions of the theorem and the

assumption that bD behaves similarly to bV . In this case, bV could also typically be used as

the weighting matrix in forming S� since it will often be the case that bW ðbyÞ will be ffiffiffiffiffiffiffi
nT
p

-

consistent while bW is
ffiffiffi
n
p

-consistent.

Theorems 1–3 establish that conventional estimators of the asymptotic variance of bb and
t and F statistics formed using bW have their usual properties as long as n!1 regardless
of the behavior of T. In addition, the results indicate that it is essentially only the size of n

that matters for the asymptotic behavior of the estimators under these sequences. To
complete the theoretical analysis, I present the asymptotic properties of bW as T !1 with
n fixed below. The results are interesting in providing a justification for a commonly used
procedure and in unifying the results and the different asymptotics considered.

Theorem 4. Suppose the data are generated by model (1), that Assumptions 1, 2, and 3(b) are

satisfied, and that T !1 with n fixed. If Ejxithj
rþdoD, Ej�itj

rþdoD, and fxit; �itg is a strong

mixing sequence in t with a of size �3r=ðr� 4Þ for r44, thenffiffiffiffiffiffiffi
nT
p
ðbb� bÞ!

d
Q�1Nð0;W Þ; x0ixi=nT �Qi=n!

p
0; x0i�i=

ffiffiffiffiffiffiffi
nT
p

!
d
Nð0;W i=nÞ,

and

bW!d U ¼
1

n

Xn

i¼1

ðLiBiB
0
iLi � LiBi

Xn

j¼1

B0jLj

 ! Xn

j¼1

Qj

 !�1
Qi

�Qi

Xn

j¼1

Qj

 !�1 Xn

j¼1

LjBj

 !
B0iLi

þQi

Xn

j¼1

Qj

 !�1 Xn

j¼1

LjBj

 ! Xn

j¼1

B0jLj

 ! Xn

j¼1

Qj

 !�1
Qi,

where W i ¼ limT ð1=TÞE½x0iOixi�, W ¼ limT ð1=nTÞ
P

i E½x
0
iOixi�, Bi�Nð0; IkÞ is a k-dimen-

sional normal vector with E½BiB
0
j� ¼ 0 and Li ¼W

1=2
i .

Remark 3.7. Theorem 4 verifies that bW is not consistent but does have a limiting distribution as
T !1 with n fixed. Unfortunately, the result here differs from results obtained in Phillips
et al. (2003), Kiefer and Vogelsang (2002, 2005), and Vogelsang (2003) who consider HAC
estimation in time series data without truncation in that how to construct asymptotically pivotal
statistics from U is not immediately obvious. However, in one important special case, U is
proportional to the true covariance matrix allowing construction of asymptotically pivotal tests.

Corollary 4.1. Suppose the conditions of Theorem 4 are satisfied and that Qi ¼ Q and

W i ¼W for all i. Then

bW!d U ¼
1

n
L
Xn

i¼1

BiB
0
i �

1

n

Xn

i¼1

Bi

Xn

i¼1

B0i

 !
L
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for Bi defined in Theorem 4 and L ¼W 1=2. Then, for testing the null hypothesis H0 : Rb ¼ r

against the alternative H1 : Rbar for a q� k matrix R with rank q, the limiting distributions

of the conventional Wald (F�) and t-type ðt�Þ tests under H0 are

F� ¼ ðnTÞðRbb� rÞ0½R bQ�1 bW bQ�1R0��1ðRbb� rÞÞ

!
d eB0q;n 1

n

X
i

Bq;iB
0
q;i �

eBq;n
eB0q;n

 !" #�1 eBq;n;¼
nq

n� q
Fq;n�q, ð10Þ

and

t� ¼

ffiffiffiffiffiffiffi
nT
p
ðRbb� rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R bQ�1 bW bQ�1R0q
!
d eB1;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞð

P
iB

2
1;i �

eB2

1;nÞ

q ¼

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
tn�1, ð11Þ

where Bq;i�Nð0; IqÞ, eBq;n ¼ ð1=
ffiffiffi
n
p
Þ
Pn

i¼1Bq;i, tn�1 is a t distribution with n� 1 degrees of

freedom, and Fq;n�q is an F distribution with q numerator and n� q denominator degrees of

freedom.

Corollary 4.1 gives the limiting distribution of bW as T !1 under the additional
restriction that Qi ¼ Q and W i ¼W for all i. These restrictions would be satisfied when
the data vectors for each individual fxi; yig are iid across i. While this is more restrictive
than the condition imposed in Assumption 1, it still allows for quite general forms of
conditional heteroskedasticity and does not impose any structure on the time series process
within individuals.
The most interesting feature about the result in Corollary 4.1 is that under the

conditions imposed, the limiting distribution of bW is proportional to the actual covariance
matrix in the data. This allows construction of asymptotically pivotal statistics based on
standard t and Wald tests as in Phillips et al. (2003), Kiefer and Vogelsang (2002, 2005),
and Vogelsang (2003). This is particularly convenient in the panel case since the limiting
distribution of the t-statistic is exactly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=ðn� 1ÞÞ

p
tn�1 where tn�1 denotes the t

distribution with n� 1 degrees of freedom.11 It is also interesting that EU ¼ ð1� ð1=nÞÞW .
This suggests normalizing the estimator bW by n=ðn� 1Þ will result in an asymptotically
unbiased estimator in asymptotics where T !1 with n fixed and will likely reduce the
finite-sample bias under asymptotics where n!1. In addition, the t-statistic constructed
based on the estimator defined by ðn=ðn� 1ÞÞ bW will be asymptotically distributed as a tn�1

for which critical values are readily available.12

The conclusions of Corollary 4.1 suggest a simple procedure for testing hypotheses
regarding regression coefficients which will be valid under any of the asymptotics
considered. Using ðn=ðn� 1ÞÞ bW and obtaining critical values from a tn�1 distribution will
yield tests which are asymptotically valid regardless of the asymptotic sequence since the
11If n ¼ 1, bW is identically equal to 0. In this case, it is easy to verify that U equals 0, though the results of

Theorem 4 and Corollary 4.1 are obviously uninteresting in this case.
12This is essentially the normalization used in Stata’s cluster command, which normalizes bW by

½ðnT � 1Þ=ðnT � kÞ� ½n=ðn� 1Þ�, where the normalization is motivated as a finite-sample adjustment under the

usual n!1, T fixed asymptotics; see Stata User’s Guide Release 8, p. 275 (Stata Corporation, 2003).
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tn�1! Nð0; 1Þ and n=ðn� 1Þ ! 1 as n!1. Thus, this approach will yield valid tests
under any of the asymptotics considered in the presence of quite general heteroskedasticity
and serial correlation.13

In addition, it is important to note that in the cases where there is weak dependence in
the time series and T is large, more efficient estimators of the covariance matrix which
make use of this information are available. In particular, standard time series HAC
estimators which downweight the correlation between observations that are far apart will
have faster rates of convergence than the CCM estimator.

Finally, it is worth noting that the maximum rank of bW will generally be n� 1, which
suggests that bW will be rank deficient when k4n� 1: Since bW is supposed to estimate a
full rank matrix, it seems likely that inference based on bW will perform poorly in these
cases. Also, the above development ignores time effects, which will often be included in
panel data models. Under T fixed, n!1 asymptotics, the time effects can be included in
the covariate vector xit and pose no additional complications. However, as T !1,
they also need to be considered separately from x and partialed out with the individual
fixed effects. This partialing out will generally result in the presence of an Oð1=nÞ

correlation between individuals. When n is large, this correlation should not matter,
but in the fixed n, T !1 case, it will invalidate the results. The effect of the presence
of time effects was explored in a simulation study with the same design as that
reported in the following section where each model was estimated including a full set of
time fixed effects. The results, which are not reported below but are available upon
request, show that tests based on bW are somewhat more size distorted than when no
time effects are included for small n, but that this size distortion diminishes quickly
as n increases.

4. Monte Carlo evidence

The asymptotic results presented above suggest that tests based on the robust stan-
dard error estimates should have good properties regardless of the relative sizes of n

and T. I report results from a simple simulation study used to assess the finite sample
effectiveness of the robust covariance matrix estimator and tests based upon it below.
Specifically, the simulation focuses on t-tests for regression coefficients and the HA test
discussed above.

The Monte Carlo simulations are based on two different specifications: a ‘‘fixed effect’’
specification and a ‘‘random effects’’ specification. The terminology refers to the fact that
in the ‘‘fixed effect’’ specification, the models will be estimated including individual specific
fixed effects with the goal of focusing on the case where the underlying disturbances exhibit
weak dependence. In the ‘‘random effects’’ specification individual specific effects are not
estimated and the goal is to examine the behavior of the CCM estimator and tests based
upon it in an equicorrelated model.

The fixed effect specification is

yit ¼ x0itbþ ai þ eit,

where xit is a scalar and ai is an individual specific effect. The data generating process for
the fixed effect specification allows for serial correlation in both xit and eit and
13This argument also applies to testing multiple parameters using F�.
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heteroskedasticity:

xit ¼ :5xit�1 þ vit; vit�Nð0; :75Þ,

eit ¼ reit�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1x

2
it

q
uit; uit�Nð0; 1� r2Þ,

ai�Nð0; :5Þ.

Data are simulated using four different values of r, r 2 f0; :3; :6; :9g, in both the
homoskedastic ða0 ¼ 1; a1 ¼ 0Þ and heteroskedastic ða0 ¼ a1 ¼ :5Þ cases, resulting in a
total of eight distinct parameter settings. The models are estimated including xit and a full
set of individual specific fixed effects.14

The random effects specifications is

yit ¼ x0itbþ �it,

where xit is a normally distributed scalar with E½x2
it� ¼ 1 and E½xit1xit2 � ¼ :8 for all t1at2. �it

contains an individual specific random component and a random error term:

�it ¼ ai þ uit,

ai�Nð0;rÞ,

uit�Nð0; 1� rÞ.

Note that the random effects data generating process implies that E½�it1�it2 � ¼ r for t1at2.
Three values of r are employed for the random effects specification: .3, .6, and .9. The
model is estimated by regressing yit on xit and a constant.
The fixed effects model is commonly used in empirical work when panel data are

available. The random effects specification is also widely used in the policy evaluation
literature. In many policy evaluation studies, the covariate of interest is a policy variable
that is highly correlated within aggregate cells, often with a correlation of one, which has
led to the dominance of the random effects estimator in this context. For example, a
researcher may desire to estimate the effect of classroom level policies on student-level
micro data containing observations from multiple classrooms. In this setting, T indexes the
number of students within each class, n indexes the number of classrooms, and ai is a
classroom specific random effect. The CCM estimator has been widely utilized in such
situations in order to consistently estimate standard errors.15

Simulation results for various values of the cross-sectional (n) and time ðTÞ dimensions
are reported. For each fn;Tg combination, reported results for each of the 11 parameter
settings (eight for the fixed effects specification and three for the random effects
specification) are based on 1,000 simulation repetitions. Each simulation estimates three
types of standard errors for bb: unadjusted OLS standard errors, bsOLS, CCM standard
errors, bsCLUS, and standard errors consistent with an AR(1) process, bsARð1Þ.

16 For the
14Since ai is uncorrelated with xi, this model could be estimated using random effects. I chose to consider a

different specification for the random effects estimates where the xit were generated to more closely resemble

covariates which appear in policy analysis studies.
15This is, in fact, one of the original motivations for the development of the CCM estimator, cf. Liang and

Zeger (1986).
16bsARð1Þ imposes the parametric structure implied by an AR(1) process. The r parameter is estimated from the

OLS residuals using the procedure described in Hansen (2006) which consistently estimates AR parameters in

fixed effects panel models. The standard errors are then computed as ðX 0X Þ�1X 0OðbrÞX ðX 0X Þ�1 where OðbrÞ is the
covariance matrix implied by an AR(1) process.
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random effects specification, standard errors consistent with random effects, bsRE, are
substituted forbsARð1Þ.

17 bsCLUS is consistent for all parameter settings.bsOLS is consistent only
in the iid case (the homoskedastic data generating process with r ¼ 0Þ. bsARð1Þ is consistent
in all homoskedastic data generating processes, and bsRE is consistent in all models for
which it is reported. In all cases, the CCM estimator is computed using the normalization
implied by T !1 with n fixed asymptotics; that is, the CCM estimator is computed as
ðn=ðn� 1ÞÞ bW for bW defined in Eq. (3).

Tables 1–4 present the results of the Monte Carlo study, where each table corresponds to
a different fn;Tg combination.18 In each table, Panel A presents the fixed effects results for
the homoskedastic and heteroskedastic cases, while Panel B presents the random effects
results. Column (1) presents t-test rejection rates for 5% level tests based on OLS, CCM,
and AR(1) standard errors. The critical values for tests based on OLS and AR(1) errors
are taken from a tnT�n�1 distribution, and the critical values for tests based on clustered
standard errors are taken from a tn�1 distribution. Columns (2) and (3) present the mean
and standard deviation of the estimated standard errors respectively. Column (4) presents
the standard deviation of the bb’s. The difference between columns (2) and (4) is therefore
the bias of the estimated standard errors. Finally, column (5) presents the rejection rates
for the HA test described above which tests the null hypothesis that both the CCM
estimator and the parametric estimator are consistent.

As expected, tests based on bsOLS and bsARð1Þ perform well in the cases where the assumed
model is consistent with the data across the full range of n and T combinations. The results
are also consistent with the asymptotic theory, clearly illustrating the

ffiffiffiffiffiffiffi
nT
p

-consistency of bb
and bW with the bias of bW and the variance of both bb and bW decreasing as either n or T

increases. Of course, when the assumed parametric model is inconsistent with the data,
tests based on parametric standard errors suffer from size distortions and the standard
error estimates are biased. The RE tests have the correct size for moderate and large n, but
not for small n (i.e. n ¼ 10); and as indicated by the asymptotic theory, the T dimension
has no apparent impact on the size of RE based tests or the overall performance of the RE
estimates.

Tests based on the CCM estimator have approximately correct size across all
combinations of n and T and all models of the disturbances considered in the fixed effect
specification. The estimator does, however, display a moderate bias in the small n case; it
seems likely that this bias does not translate into a large size distortion due to the fact that
the bias is small relative to the standard error of the estimator and the use of the tn�1

distribution to obtain the critical values. While the clustered standard errors perform well
in terms of size of tests and reasonably well in terms of bias, the simulations reveal that a
potential weakness of the clustered estimator is a relatively high variance. The CCM
estimates have a substantially higher standard deviation than the other estimators and
this difference, in percentage terms, increases with T. This behavior is consistent with the
17bsRE is estimated in a manner analogous to bsARð1Þ where the covariance parameters are estimated in the usual

manner from the OLS and within residuals.
18Tables 1–4 correspond to fn;Tg ¼ f10; 10g, fn;Tg ¼ f10; 50g, fn;Tg ¼ f50; 10g, fn;Tg ¼ f50; 50g, respectively.

Additional results for fn;Tg ¼ f10; 200g, fn;Tg ¼ f50; 20g, fn;Tg ¼ f50; 200g, fn;Tg ¼ f200; 10g, and fn;Tg ¼
f200; 50g are available from the author upon request. The results are consistent with the asymptotic theory with

the performance of the CCM estimator improving as either n or T increases in the fixed effects specification and as

n increases in the random effects specification. In the random effects case, the performance does not appear to be

greatly influenced by the size of T relative to n.
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Table 1

Data generating process t-test rejection

rate

Mean (s.e.) Std (s.e.) Std ðbÞ HA test

rejection rate

(1) (2) (3) (4) (5)

N ¼ 10; T ¼ 10

A. Fixed effects

Homoskedastic, r ¼ 0

OLS 0.038 0.1180 0.0133 0.1152 0.152

Cluster 0.043 0.1149 0.0330 0.1152

AR1 0.041 0.1170 0.0141 0.1152 0.135

Homoskedastic, r ¼ :3
OLS 0.082 0.1130 0.0136 0.1269 0.095

Cluster 0.054 0.1212 0.0357 0.1269

AR1 0.055 0.1240 0.0161 0.1269 0.133

Homoskedastic, r ¼ :6
OLS 0.093 0.1005 0.0133 0.1231 0.074

Cluster 0.060 0.1167 0.0352 0.1231

AR1 0.051 0.1219 0.0181 0.1231 0.123

Homoskedastic, r ¼ :9
OLS 0.145 0.0609 0.0090 0.0818 0.038

Cluster 0.053 0.0772 0.0249 0.0818

AR1 0.054 0.0795 0.0136 0.0818 0.085

Heteroskedastic, r ¼ 0

OLS 0.126 0.1150 0.0126 0.1502 0.051

Cluster 0.057 0.1410 0.0458 0.1502

AR1 0.126 0.1140 0.0137 0.1502 0.042

Heteroskedastic, r ¼ :3
OLS 0.171 0.1165 0.0137 0.1708 0.036

Cluster 0.068 0.1538 0.0500 0.1708

AR1 0.143 0.1284 0.0172 0.1708 0.044

Heteroskedastic, r ¼ :6
OLS 0.187 0.1238 0.0153 0.1853 0.027

Cluster 0.074 0.1717 0.0572 0.1853

AR1 0.117 0.1503 0.0219 0.1853 0.049

Heteroskedastic, r ¼ :9
OLS 0.198 0.1406 0.0209 0.2181 0.031

Cluster 0.087 0.1872 0.0641 0.2181

AR1 0.097 0.1830 0.0336 0.2181 0.074

B. Random effects

r ¼ :3
OLS 0.295 0.1063 0.0231 0.1926 0.017

Cluster 0.115 0.1561 0.0609 0.1926

RE 0.097 0.1693 0.0460 0.1926 0.027

r ¼ :6
OLS 0.399 0.1030 0.0248 0.2438 0.054

Cluster 0.118 0.2024 0.0788 0.2438

RE 0.094 0.2180 0.0600 0.2438 0.023

r ¼ :9
OLS 0.482 0.0987 0.0293 0.2925 0.093

Cluster 0.108 0.2346 0.0909 0.2925

RE 0.095 0.2546 0.0723 0.2925 0.018
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Table 2

Data generating process t-test rejection

rate

Mean (s.e.) Std (s.e.) Std ðbÞ HA test

rejection rate

(1) (2) (3) (4) (5)

N ¼ 10; T ¼ 50

A. Fixed effects

Homoskedastic, r ¼ 0

OLS 0.054 0.0462 0.0024 0.0472 0.184

Cluster 0.050 0.0449 0.0117 0.0472

AR1 0.057 0.0460 0.0026 0.0472 0.185

Homoskedastic, r ¼ :3
OLS 0.088 0.0459 0.0024 0.0519 0.077

Cluster 0.043 0.0520 0.0133 0.0519

AR1 0.050 0.0529 0.0031 0.0519 0.159

Homoskedastic, r ¼ :6
OLS 0.155 0.0447 0.0028 0.0590 0.049

Cluster 0.042 0.0574 0.0150 0.0590

AR1 0.047 0.0598 0.0044 0.0590 0.184

Homoskedastic, r ¼ :9
OLS 0.225 0.0372 0.0034 0.0600 0.046

Cluster 0.046 0.0562 0.0159 0.0600

AR1 0.049 0.0583 0.0072 0.0600 0.150

Heteroskedastic, r ¼ 0

OLS 0.158 0.0459 0.0021 0.0637 0.052

Cluster 0.051 0.0606 0.0169 0.0637

AR1 0.162 0.0458 0.0023 0.0637 0.057

Heteroskedastic, r ¼ :3
OLS 0.199 0.0479 0.0022 0.0724 0.046

Cluster 0.041 0.0735 0.0198 0.0724

AR1 0.142 0.0553 0.0032 0.0724 0.047

Heteroskedastic, r ¼ :6
OLS 0.229 0.0558 0.0031 0.0934 0.067

Cluster 0.043 0.0928 0.0260 0.0934

AR1 0.112 0.0748 0.0054 0.0934 0.059

Heteroskedastic, r ¼ :9
OLS 0.239 0.0857 0.0079 0.1490 0.059

Cluster 0.046 0.1428 0.0451 0.1490

AR1 0.076 0.1338 0.0163 0.1490 0.099

B. Random effects

r ¼ :3
OLS 0.568 0.0471 0.0092 0.1636 0.147

Cluster 0.104 0.1356 0.0547 0.1636

RE 0.097 0.1475 0.0413 0.1626 0.014

r ¼ :6
OLS 0.703 0.0466 0.0105 0.2331 0.212

Cluster 0.104 0.1897 0.0727 0.2331

RE 0.095 0.2079 0.0567 0.2331 0.007

r ¼ :9
OLS 0.744 0.0450 0.0130 0.2785 0.245

Cluster 0.106 0.2310 0.0920 0.2785

RE 0.103 0.2539 0.0701 0.2785 0.014
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Table 3

Data generating process t-test rejection

rate

Mean (s.e.) Std (s.e.) Std ðbÞ HA test

rejection rate

(1) (2) (3) (4) (5)

N ¼ 50; T ¼ 10

A. Fixed effects

Homoskedastic, r ¼ 0

OLS 0.049 0.0522 0.0026 0.0526 0.106

Cluster 0.057 0.0515 0.0062 0.0526

AR1 0.047 0.0522 0.0028 0.0526 0.099

Homoskedastic, r ¼ :3
OLS 0.080 0.0500 0.0027 0.0569 0.053

Cluster 0.059 0.0552 0.0072 0.0569

AR1 0.055 0.0556 0.0033 0.0569 0.092

Homoskedastic, r ¼ :6
OLS 0.102 0.0447 0.0026 0.0539 0.132

Cluster 0.048 0.0549 0.0071 0.0539

AR1 0.049 0.0553 0.0037 0.0539 0.072

Homoskedastic, r ¼ :9
OLS 0.156 0.0273 0.0273 0.0387 0.220

Cluster 0.075 0.0364 0.0367 0.0387

AR1 0.067 0.0367 0.0367 0.0387 0.078

Heteroskedastic, r ¼ 0

OLS 0.119 0.0517 0.0025 0.0659 0.213

Cluster 0.047 0.0673 0.0093 0.0659

AR1 0.116 0.0516 0.0028 0.0659 0.210

Heteroskedastic, r ¼ :3
OLS 0.197 0.0521 0.0026 0.0768 0.369

Cluster 0.062 0.0741 0.0114 0.0768

AR1 0.139 0.0581 0.0033 0.0768 0.140

Heteroskedastic, r ¼ :6
OLS 0.214 0.0558 0.0031 0.0840 0.451

Cluster 0.048 0.0820 0.0126 0.0840

AR1 0.108 0.0688 0.0045 0.0840 0.056

Heteroskedastic, r ¼ :9
OLS 0.152 0.0623 0.0043 0.0883 0.324

Cluster 0.038 0.0899 0.0144 0.0883

AR1 0.057 0.0834 0.0070 0.0883 0.023

B. Random effects

r ¼ :3
OLS 0.291 0.0451 0.0041 0.0822 0.673

Cluster 0.062 0.0776 0.0135 0.0822

RE 0.059 0.0788 0.0091 0.0822 0.058

r ¼ :6
OLS 0.357 0.0452 0.0049 0.1034 0.892

Cluster 0.073 0.1004 0.0183 0.1034

RE 0.068 0.1028 0.0127 0.1034 0.054

r ¼ :9
OLS 0.497 0.0447 0.0056 0.1246 0.943

Cluster 0.062 0.1192 0.0212 0.1246

RE 0.063 0.1210 0.0147 0.1246 0.048
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Table 4

Data generating process t-test rejection

rate

Mean (s.e.) Std (s.e.) Std ðbÞ HA test

rejection rate

(1) (2) (3) (4) (5)

N ¼ 50; T ¼ 20

A. Fixed effects

Homoskedastic, r ¼ 0

OLS 0.050 0.0342 0.0013 0.0341 0.097

Cluster 0.049 0.0341 0.0040 0.0341

AR1 0.052 0.0342 0.0014 0.0341 0.088

Homoskedastic, r ¼ :3
OLS 0.094 0.0334 0.0013 0.0393 0.077

Cluster 0.051 0.0379 0.0045 0.0393

AR1 0.056 0.0382 0.0016 0.0393 0.086

Homoskedastic, r ¼ :6
OLS 0.120 0.0315 0.0014 0.0414 0.300

Cluster 0.059 0.0407 0.0052 0.0414

AR1 0.050 0.0412 0.0021 0.0414 0.092

Homoskedastic, r ¼ :9
OLS 0.200 0.0222 0.0013 0.0336 0.580

Cluster 0.059 0.0327 0.0047 0.0336

AR1 0.060 0.0329 0.0024 0.0336 0.094

Heteroskedastic, r ¼ 0

OLS 0.168 0.0340 0.0011 0.0479 0.408

Cluster 0.063 0.0458 0.0056 0.0479

AR1 0.171 0.0340 0.0012 0.0479 0.406

Heteroskedastic, r ¼ :3
OLS 0.209 0.0350 0.0012 0.0536 0.675

Cluster 0.051 0.0527 0.0068 0.0536

AR1 0.145 0.0399 0.0016 0.0536 0.294

Heteroskedastic, r ¼ :6
OLS 0.228 0.0394 0.0017 0.0653 0.802

Cluster 0.050 0.0636 0.0084 0.0653

AR1 0.119 0.0514 0.0027 0.0653 0.123

Heteroskedastic, r ¼ :9
OLS 0.196 0.0507 0.0028 0.0775 0.681

Cluster 0.036 0.0809 0.0131 0.0775

AR1 0.058 0.0751 0.0056 0.0775 0.034

B. Random effects

r ¼ :3
OLS 0.405 0.0320 0.0029 0.0756 0.915

Cluster 0.069 0.0726 0.0131 0.0756

RE 0.063 0.0738 0.0085 0.0756 0.064

r ¼ :6
OLS 0.515 0.0318 0.0033 0.1012 0.944

Cluster 0.066 0.0976 0.0169 0.1012

RE 0.055 0.0996 0.0118 0.1012 0.055

r ¼ :9
OLS 0.614 0.0314 0.0038 0.1203 0.948

Cluster 0.054 0.1166 0.0204 0.1203

RE 0.051 0.1194 0.0140 0.1203 0.053
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ffiffiffi

n
p

-consistency of the estimator and does suggest that if a parametric estimator is
available, it may have better properties for estimating the variance of bb:
The clustered estimator performs less well in the random effects specification. For small

n, tests based on the CCM estimator suffer from a substantial size distortion for all values
of T. For moderate to large values of n, the tests have the correct size, and the overall
performance does not appear to depend on T. In addition, the variance of bb does not
appear to decrease as T increases. These results are consistent with the lack of

ffiffiffiffiffiffiffi
nT
p

-
consistency in this case.19

The performance of the HA test is much less robust than that of t-tests based on
clustered standard errors. For small n, the tests are badly size distorted and have essentially
no power against any alternative hypotheses. As n and T grow, the test performance
improves. With n ¼ 50, the test remains size distorted, but it does have some power against
alternatives that increases as T increases. The HA test also performs poorly for the random
effects specification for small n. However, for moderate or large n, the test has both the
correct size and good power.
Overall, the simulation results support the use of clustered standard errors for

performing inference on regression coefficient estimates in serially correlated panel data,
though they also suggest care should be taken if n is small and one suspects a ‘‘random
effects’’ structure. The poor performance of bW in ‘‘random effects’’ models with small n is
already well-known; see for example Bell and McCaffrey (2002) who also suggest a bias
reduction for bW in this case. However, that the estimator does quite well even for small n

in the serially correlated case where the errors are mixing is somewhat surprising and is a
new result which is suggested by the asymptotic analysis of the previous section. The
simulation results confirm the asymptotic results, suggesting that the clustered standard
errors are consistent as long as n!1 and that they are not sensitive to the size of n

relative to T. The chief drawback of the CCM estimator is that the robustness comes at the
cost of increasing the variance of the standard error estimate relative to that of standard
errors estimated through more parsimonious models.
The HA test offers one simple information based criterion for choosing between the

CCM estimator and a simple parametric model of the error process. However, the
simulation evidence regarding its usefulness is mixed. In particular, the properties of the
test are poor in small sample settings where there is likely to be the largest gain to using a
parsimonious model. However, in moderate sized samples, the test performs reasonably
well, and there still may be gains to using a simple parametric model in these cases.

5. Conclusion

This paper explores the asymptotic behavior of the robust covariance matrix estimator
of Arellano (1987). It extends the usual analysis performed under asymptotics where n!

1 with T fixed to cases where n and T go to infinity jointly, considering both non-mixing
and mixing cases, and to the case where T !1 with n fixed. The limiting behavior of the
OLS estimator, bb, in each case is different. However, the analysis shows that the
conventional estimator of the asymptotic variance and the usual t and F statistics have the
same properties regardless of the behavior of the time series as long as n!1: In addition,
19The inconsistency of bb when T increases with n fixed in differences-in-differences and policy evaluation studies

has also been discussed in Donald and Lang (2001).



ARTICLE IN PRESS
C.B. Hansen / Journal of Econometrics 141 (2007) 597–620 617
when T !1 with n fixed and the data satisfy mixing conditions and an iid assumption
across individuals, the usual t and F statistics can be used for inference despite the fact that
the robust covariance matrix estimator is not consistent but converges in distribution to a
limiting random variable. In this case, it is shown that the t statistic constructed using
n=ðn� 1Þ times the estimator of Arellano (1987) is asymptotically tn�1, suggesting the use
of n=ðn� 1Þ times the estimator of Arellano (1987) and critical values obtained from a tn�1

in all cases. The use of this procedure is also supported in a short simulation experiment,
which verifies that it produces tests with approximately correct size regardless of the
relative size of n and T in cases where the time series correlation between observations
diminishes as the distance between observations increases. The simulations also verify that
tests based on the robust standard errors are consistent as n increases regardless of the
relative size of n and T even in cases when the data are equicorrelated.
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Appendix

For brevity, sketches of the proofs are provided below. More detailed versions are
available in an additional Technical Appendix from the author upon request and in
Hansen (2004).

Proof of Theorem 1. bb� b!
p
0 and

ffiffiffiffiffiffiffi
nT
p
ðbb� bÞ!

d
Q�1Nð0;W ¼ limnð1=nTÞ

Pn
i¼1

E½x0iOixi�Þ follow immediately under the conditions of Theorem 1 from the Markov
LLN and the Liapounov CLT. The remaining conclusions follow from repeated use of the
Cauchy–Schwarz inequality, Minkowski’s inequality, the Markov LLN, and the
Liapounov CLT. &

The proofs of Theorems 2 and 3 make use of the following lemmas which provide a LLN
and CLT for inid data as fn;Tg ! 1 jointly.

Lemma 1. Suppose fZi;T g are independent across i for all T with E½Zi;T � ¼ mi;T and

EjZi;T j
1þdoDo1 for some d40 and all i;T . Then ð1=nÞ

Pn
i¼1 ðZi;T � mi;T Þ!

p
0 as fn;Tg !

1 jointly.

Proof. The proof follows from standard arguments, cf. Chung (2001) Chapter 5. Details
are given in Hansen (2004). &

Lemma 2. For k � 1 vectors Zi;T , suppose fZi;T g are independent across i for all T with

E½Zi;T � ¼ 0, E½Zi;T Z0i;T � ¼ Oi;T , and EkZi;Tk
2þdoDo1 for some d40. Assume O ¼

limn;T ð1=nÞ
Pn

i¼1 Oi;T is positive definite with minimum eigenvalue lmin40. Then ð1=
ffiffiffi
n
p
Þ
Pn

i¼1

Zi;T!
d
Nð0;W Þ as fn;Tg ! 1 jointly.
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Proof. The result follows from verifying the Lindeberg condition of Theorem 2 in Phillips
and Moon (1999) using an argument similar to that used in the proof of Theorem 3 in
Phillips and Moon (1999). Details are given in Hansen (2004). &

Proof of Theorem 2. The conclusions follow from conventional arguments making
repeated use of the Cauchy–Schwarz inequality, Minkowski’s inequality, and Lemmas 1
and 2. &

In addition to using Lemmas 1 and 2, I make use of the following mixing inequality,
restated from Doukhan (1994) Theorem 2 with a slight change of notation, to establish the
properties of the estimators as fn;Tg ! 1 when mixing conditions are imposed. Its proof
may be found in Doukhan (1994, p. 25–30).

Lemma 3. Let fztg be a strong mixing sequence with E½zt� ¼ 0, Ekztk
tþ�oDo1, and mixing

coefficient aðmÞ of size ð1� cÞr=ðr� cÞ where c 2 2N, cXt, and r4c. Then there is a constant

C depending only on t and aðmÞ such that Ej
PT

t¼1 ytj
tpCDðt; �;TÞ with Dðt; �;TÞ

defined in Doukhan (1994) and satisfying Dðt; �;TÞ ¼ OðTÞ if tp2 and Dðt; �;TÞ ¼
OðT t=2Þ if t42.

Proof of Theorem 3. The conclusions follow under the conditions of the theorem by
making use of the Cauchy–Schwarz inequality, Minkowsk’s inequality, and Lemma 3 to
verifythe conditions of Lemmas 1 and 2. &

Proof of Theorem 4. Under the hypotheses of the theorem,
ffiffiffi
n
p
ðbb� bÞ!

d
Q�1Nð0;W Þ,

x0ixi=T �Qi!
p
0, and x0i�i=

ffiffiffiffi
T
p
!
d
Nð0;W iÞ are immediate from a LLN and CLT for

mixing sequences, cf. White (2001, Theorems 3.47 and 5.20). The conclusion then follows
from the definition of bW and b�i. &

Proof of Corollary 4.1. Consider t� ¼
ffiffiffiffiffiffiffi
nT
p
ðRbb� rÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R bQ�1 bW bQ�1R0q

. Under the null

hypothesis, Rb ¼ r, so the numerator of t� is
ffiffiffiffiffiffiffi
nT
p

Rðbb� bÞ ¼ Rðð1=nTÞ
P

ix
0
ixiÞ
�1

ðð1=
ffiffiffiffiffiffiffi
nT
p
Þ
P

ix
0
i�iÞ!

d
RQ�1L

P
i Bi=

ffiffiffi
n
p

. From Theorem 4 and the hypotheses of the

Corollary, the denominator of t� converges in distribution toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RQ�1

1

n
L
Xn

i¼1

BiB
0
i �

1

n

Xn

i¼1

Bi

Xn

i¼1

B0i

 !
LQ�1R0

vuut .

It follows from the Continuous Mapping Theorem that

t�!
d RQ�1L

P
iBi=

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=nÞRQ�1Lð
Pn

i¼1BiB
0
i � ð1=nÞ

Pn
i¼1Bi

Pn
i¼1B0iÞLQ�1R0

q .

Define d ¼ ðRQ�1LLQ�1R0Þ1=2, so

t� !
d

U ¼
d
P

iB1;i=
ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd2=nÞð
Pn

i¼1B1;iB
0
1;i � ð1=nÞ

Pn
i¼1B1;i

Pn
i¼1B01;iÞ

q
¼

eB1;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞð

P
iB

2
1;i �

eB2

1;nÞ

q .
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It is straightforward to show that eB1;n�Nð0; 1Þ, that
P

iB
2
1;i �

eB2

1;n�w
2
n�1, and that

P
iB

2
1;i �eB2

1;n and eB1;n are independent, from which it follows that

U ¼
n

n� 1

� �1=2 eB1;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

iB
2
1;i �

eB2

1;nÞ=ðn� 1Þ

q �
n

n� 1

� �1=2
tn�1.

The result for F� is obtained through a similar argument, and using a result from Rao
(2002) Chapter 8b to verify that the resulting quantity follows an F distribution. &
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