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Abstract

I consider the asymptotic properties of a commonly advocated covariance matrix estimator for
panel data. Under asymptotics where the cross-section dimension, 7, grows large with the time
dimension, 7, fixed, the estimator is consistent while allowing essentially arbitrary correlation within
each individual. However, many panel data sets have a non-negligible time dimension. I extend the
usual analysis to cases where n and 7 go to infinity jointly and where 7' — oo with 7 fixed. I provide
conditions under which ¢ and F statistics based on the covariance matrix estimator provide valid
inference and illustrate the properties of the estimator in a simulation study.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The use of heteroskedasticity robust covariance matrix estimators, cf. White (1980), in
cross-sectional settings and of heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimators, cf. Andrews (1991), in time series contexts is extremely
common in applied econometrics. The popularity of these robust covariance matrix
estimators is due to their consistency under weak functional form assumptions. In
particular, their use allows the researcher to form valid confidence regions about a set of
parameters from a model of interest without specifying an exact process for the
disturbances in the model.
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With the increasing availability of panel data, it is natural that the use of robust
covariance matrix estimators for panel data settings that allow for arbitrary within
individual correlation are becoming more common. A recent paper by Bertrand et al.
(2004) illustrated the pitfalls of ignoring serial correlation in panel data, finding through a
simulation study that inference procedures which fail to account for within individual
serial correlation may be severely size distorted. As a potential resolution of this problem,
Bertrand et al. (2004) suggest the use of a robust covariance matrix estimator proposed by
Arellano (1987) and explored in Kezdi (2002) which allows arbitrary within individual
correlation and find in a simulation study that tests based on this estimator of the
covariance parameters have correct size.

One drawback of the estimator of Arellano (1987), hereafter referred to as the
“clustered” covariance matrix (CCM) estimator, is that its properties are only known in
conventional panel asymptotics as the cross-section dimension, n, increases with the time
dimension, 7, fixed. While many panel data sets are indeed characterized by large » and
relatively small 7, this is not necessarily the case. For example, in many differences-in-
differences and policy evaluation studies, the cross-section is composed of states and the
time dimension of yearly or quarterly (or occasionally monthly) observations on each state
for 20 or more years.

In this paper, I address this issue by exploring the theoretical properties of the CCM
estimator in asymptotics that allow » and T to go to infinity jointly and in asymptotics
where T goes to infinity with n fixed. I find that the CCM estimator, appropriately
normalized, is consistent without imposing any conditions on the rate of growth of 7'
relative to n even when the time series dependence between the observations within each
individual is left unrestricted. In this case, both the OLS estimator and the CCM estimator
converge at only the ./n-rate, essentially because the only information is coming from
cross-sectional variation. If the time series process is restricted to be strongly mixing, I
show that the OLS estimator is /nT-consistent but that, because high lags are not down
weighted, the robust covariance matrix estimator still converges at only the /n-rate. This
behavior suggests, as indicated in the simulations found in Kezdi (2002), that it is the n
dimension and not the size of n relative to 7" that matters for determining the properties of
the CCM estimator. R

It is interesting to note that the limiting behavior of  changes “discontinuously” as the
amount of dependence is limited. In particular, the rate of convergence of f§ changes from
J/n in the “no-mixing case” to \/ﬁf when mixing is imposed. However, despite the
difference in the limiting behavior of f8, there is no difference in the behavior of standard
inference procedures based on the CCM estimator between the two cases. In particular, the
same ¢ and F statistics will be valid in either case (and in the n — oo with T fixed case)
without reference to the asymptotics or degree of dependence in the data.

I also derive the behavior of the CCM estimator as 7' — oo with n fixed, where I find the
estimator is not consistent but does have a limiting distribution. This result corresponds to
asymptotic results for HAC estimators without truncation found in recent work by Kiefer
and Vogelsang (2002, 2005), Phillips et al. (2003), and Vogelsang (2003). While the limiting
distribution is not proportional to the true covariance matrix in general, it is proportional
to the covariance matrix in the important special case of iid data across individuals,'

"Note that this still allows arbitrary correlation and heteroskedasticity within individuals, but restricts that the
pattern is the same across individuals.
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allowing construction of asymptotically pivotal statistics in this case. In fact, in this case,
the standard ¢-statistic is not asymptotically normal but converges in distribution to a
random variable which is exactly proportional to a 7, ; distribution. This behavior
suggests the use of the 7,_; for constructing confidence intervals and tests when the CCM
estimator is used as a general rule, as this will provide asymptotically correct critical values
under any asymptotic sequence.

I then explore the finite sample behavior of the CCM estimator and tests based upon it
through a short simulation study. The simulation results indicate that tests based on the
robust standard error estimates generally have approximately correct size in serially
correlated panel data even in small samples. However, the standard error estimates
themselves are considerably more variable than their counterparts based on simple
parametric models. The bias of the simple parametric estimators is also typically smaller in
the cases where the parametric model is correct, suggesting that these standard error
estimates are likely preferable when the researcher is confident in the form of the error
process. In the simulation, I also explore the behavior of an analog of White’s (1980) direct
test for heteroskedasticity proposed by Kezdi (2002).> The results indicate the performance
of the test is fairly good for moderate n, though it is quite poor when n is small. This
simulation behavior suggests that this test may be useful for choosing between the use of
robust standard error estimates and standard errors estimated from a more parsimonious
model when 7 is reasonably large.

The remainder of this paper is organized as follows. In Section 2, I present the basic
framework and the estimator and test statistics that will be considered. The asymptotic
properties of these estimators are collected in Section 3, and Section 4 contains a discussion
of a Monte Carlo study assessing the finite sample performance of the estimators in simple
models. Section 5 concludes.

2. A heteroskedasticity—autocorrelation consistent covariance matrix estimator for panel
data

Consider a regression model defined by
Vie = Xy B+ e, (D

where i = 1,...,n indexes individuals, r = 1,..., T indexes time, x; is a k x 1 vector of
observable covariates, and ¢, is an unobservable error component. Note that this
formulation incorporates the standard fixed effects model as well as models which include
other covariates that enter the model with individual specific coefficients, such as
individual specific time trends, where these covariates have been partialed out. In these
cases, the variables x;;, y;;, and &; should be interpreted as residuals from regressions of x7,,
Vi, and ¢, on an auxiliary set of covariates z} from the underlying model
Vi = x;‘,/ﬁ + zf,/y + ¢f. For example, in the fixed effects model, Z* is a matrix of dummy
variables for each individual and 7 is a vector of individual specific fixed effects. In this
case, x; = x}, — (1/T )Zthl X}, and y;, and ¢; are defined similarly. Alternatively, x;, y;.,
and ¢; could be interpreted as variables resulting from other transformations which

2Solon and Inoue (2004) offers a different testing procedure for detecting serial correlation in fixed effects panel
models. See also Bhargava et al. (1982), Baltagi and Wu (1999), Wooldridge (2002, pp. 275, 282-283), and
Drukker (2003).
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remove the nuisance parameters from the equation, such as first-differencing to remove the
fixed effects. In what follows, all properties are given in terms of the transformed variables
for convenience. Alternatively, conditions could be imposed on the underlying variables
and the properties derived as T — oo as in Hansen (2006).*

Within each individual, the equations defined by (1) may be stacked and represented in
matrix form as

vi=xif + &, 2

where y; isa T x 1 vector of individual outcomes, x; is a T x k vector of observed covariates,
and & is a T x 1 vector of unobservables affecting the outcomes y; with E[e;e}|x;] = ©;. The

OLS estimator of f# from Eq. (2) may then be defined as f = (327, x/x,)~' S, Xy;. The
properties of B as n — oo with T fixed are well known. In particular, under regularity

conditions, /n (B B) is asymptotically normal with covariance matrix Q™' WQ™! where
0 = lim, (1/n)>""_, E[xx;] and W = lim, (1/n)>_"_, E[x/Q;x;].

The problem of robust covariance matrix estimation is then estimating W without
imposing a parametric structure on the Q;. In this paper, I consider the estimator suggested
by Arellano (1987) which may be defined as

N 1 n .
W=—> xXjaigxi, ©)

where & = y; — x,ﬁ are OLS residuals from Eq. (2). This estimator is an appealing
generalization of White’s (1980) heteroskedasticity consistent covariance matrix estimator
that allows for arbitrary intertemporal correlation patterns and heteroskedasticity across
individuals.* The estimator is also appealing in that, unlike HAC estimators for time series
data, its implementation does not require the selection of a kernel or bandwidth parameter.
The properties of W under conventional panel asymptotics where n — oo with T fixed are
well-established. In the remainder of this paper, I extend this analysis by considering the
properties of W under asymptotic sequences where 7" — oo as well.

The chief reason for interest in the CCM estimator is for performing inference about /[?

Suppose +/ dnT(ﬁ -p) < N(0, B) and define an estimator of the asymptotic variance of ﬁ as
(1/ dnT)§ where B> B. The following estimator of the asymptotic variance of B based on
W is used throughout the remainder of the paper:

n -1 n -1
Avar(B) = (Z x?x,-) (nTW) <Z x;-xl-)
i=1 i=1

n -1 n n -1
(Z x;xi> (Z x;§i§;xi> (Z x;xi> ) %)
i=1 i=1 =1

3This is especially relevant in Theorem 3 where the mixing conditions will not hold for the transformed variables
if, for example, the transformation is to remove fixed effects by differencing out the individual means. Hansen
(2006) provides conditions on the untransformed variables which will cover this case in a different but related
context. This approach complicates the proof and notation and is not pursued here.

“It does, however, ignore the possibility of cross-sectional correlation, and it will be assumed that there is no
cross-sectional correlation for the remainder of the paper.
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In addition, for testing the hypothesis Rf = r for a ¢ x k matrix R with rank ¢, the usual z
(for R a 1 x k vector) and Wald statistics can be defined as

t*: \/I’l_T(Rﬂ—r) (5)

RO WO 'R

and
F* = nT(RB— [RO WO 'R (Rp - r), ()

respectively, where W is defined above and Q = (1/nT)Y_"_, Xix;. In Section 3, T verify
that, despite differences in the limiting behavior of ﬁ, r 5 N(, 1), F* 5 Xfi, and /‘I/IJZF(B) is

valid for estimating the asymptotic variance of B as n — oo regardless of the behavior of 7.

I also consider the behavior of * and F* as T — oo with 7 fixed. In this case, W is not
consistent for ¥ but does have a limiting distribution; and when the data are iid across i>1

show that * —d>(n /(n— 1))1/ 21,1 and that F* is asymptotically pivotal and so can be used

to construct valid tests. This behavior suggests that inference using (n/(n — 1))W and
forming critical values using a ¢,_; distribution will be valid regardless of the asymptotic
sequence considered. R

It is worth noting that the estimator W has also been used extensively in multilevel
models to account for the presence of correlation between individuals within cells; cf.
Liang and Zeger (1986) and Bell and McCaffrey (2002). For example, in a schooling study,
one might have data on individual outcomes where the individuals are grouped into
classes. In this case, the cross-sectional unit of observation could be defined as the class,
and arbitrary correlation between all individuals within each class could be allowed. In this
case, one would expect the presence of a classroom specific random effect resulting in
equicorrelation between all individuals within a class. While this would clearly violate the
mixing assumptions imposed in obtaining the asymptotic behavior as 7" — oo with 7 fixed,
it would not invalidate the use of W for inference about f in cases where n and T go to
infinity jointly. .

In addition to being useful for performing inference about ff, W may also be used to test
the specification of simple parametric models of the error process.® Such a test may be
useful for a number of reasons. If a parametric model is correct, the estimates of the
variance of f# based on this model will tend to behave better than the estimates obtained
from W. In particular, parametric estimates of the variance of § will often be considerably
less variable and will typically converge faster than estimates made using W; and if the
parametric model is deemed to be adequate, this model may be used to perform FGLS
estimation. The FGLS estimator is asymptotically more efficient than the OLS estimator,
and simulation evidence in Hansen (2006) suggests that the efficiency gain to using FGLS
over OLS in serially correlated panel data may be substantial.

SNote that this still allows arbitrary correlation and heteroskedasticity within individuals but restricts that the
pattern is the same across individuals.

“The test considered is a straightforward generalization of the test proposed by White (1980) for
heteroskedasticity and was suggested in the panel context by Kezdi (2002).
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To define the specification test, called hereafter the heteroskedasticity—autocorrelation
(HA) test, let W (0) = (1 /nT)Z?zlxgﬂi(g)/xi where 0 are estimates of a finite set of

parameters describing the disturbance process and Ql-(/H\) is the implied covariance matrix
for individual i.” Define a test statistic

= (nT)[vec(W — W(0))D vec(W — W(0))], 7)

where D is a positive semi-definite weighting matrix that estimates the variance of vec( W —
W(@)) and A~ is the generalized inverse of a matrix 4. In the following section, it will be

d ~
shown that $* — Xi(lc+1)/2 for D defined below.
A natural choice for D is

'~ 1 & i~ i~ )
D= [(vec(xaigixi — x/; {(O)x)(vec(XEEx; — X,Q:(0)x))]- 8)
nT =
Under asymptotics where {n, T} — oo jointly, another potential choice for D is an estimate
of the asymptotic variance of W

Z[(vec(x’a?x, — W))(vec(XEEx; — W))]. ©)

That V provides an estimator of the variance of Vec(W W(@)) follows from the fact that
as {n, T} — oo, vec( W) is 4/n-consistent while vec( W(H)) will be V/nT-consistent in many
cases, so vec( W(G)) may be taken as a constant relative to vec( W) The difference in rates
of convergence would arise, for example, in a fixed effects panel model where the errors
follow an AR process with common AR coefficients across individuals. However, it is
important to note that this will not always be the case. In particular, in random effects
models, the estimator of the variance of the individual specific shock will converge at only
a 4/n rate, implying the same rate of convergence for both the robust and parametric
estimators of the variance. In the following section, I outline the asymptotic properties of
[3 W, and ¥ from which the behavior of #*, F*, and S* will follow. The properties of D,
though not discussed, will generally be the same as those of V under the different
asymptotic sequences considered.

3. Asymptotic properties of the robust covariance matrix estimator

To develop the asymptotic inference results, I impose the following conditions.

"Consistency and asymptotic normality of W(@) will generally follow from consistency and asymptotic
normality of 0. In particular, defining W;(0) as the derivative of W with respect to 0; and letting 0 be a p x 1
vector, a Taylor series expansion of W(ﬁ) yields W(ﬁ) =WO)+ >0, W;(ﬁ)(a — 0) where 0 is an intermediate
value. As long as a uniform law of large numbers applies to W;(0), W(ﬁ) — W(0) will inherit the properties of
0— 0. The problem is then reduced to finding an estimator of 6 that is consistent and asymptotically normal with a
mean zero asymptotic distribution. Finding such an estimator in fixed effects panel models with serial correlation
and/or heteroskedasticity when n — oo and T'/n — p where p <oo is complicated, though there are estimators
which exist. See, for example, Nickell (1981), MaCurdy (1982), Solon (1984), Lancaster (2002), Hahn and
Kuersteiner (2002), Hahn and Newey (2004), and Hansen (2006). R

8The test could alternatively be defined by only considering the (k(k + 1)) /2 unique elements of W — W(0) and
using the inverse of the implied covariance matrix. This test will be equivalent to the test outlined above.
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Assumption 1. {x;,¢;} are independent across i, and E[g;e}|x;] = ;.

Assumption 2. Q,; = E[Y_/_,(x}x;/nT)] is uniformly positive definite with constant limit O
where limits are taken as n — oo with T fixed in Theorem 1, as {n, T} — oo in Theorems 2
and 3, and as T — oo with n fixed in Theorem 4.

In addition, I impose either Assumption 3(a) or Assumption 3(b) depending on the
context.

Assumption 3.

(a) Elsilx] = 0.
(b) E[xiei] = 0.

Assumptions 1-3 are quite standard for panel data models. Assumption 1 imposes
independence across individuals, ruling out cross-sectional correlation, but leaves the time
series correlation unconstrained and allows general heterogeneity across individuals.
Assumption 2 is a standard full rank condition, and the restriction that Q,, has a constant
limit could be relaxed at the cost of more complicated notation. Assumption 3 imposes
that one of two orthogonality conditions is satisfied. Assumption 3(b) imposes that x;
and ¢; are uncorrelated and is weaker than the strict exogeneity imposed in Assump-
tion 3(a). Assumption 3(a) is stronger than necessary, but it simplifies the proof of asymp-
totic normality of W and consistency of V. In addition, Assumption 3(a) would typically
be imposed in fixed effects models.’ R
__The first theorem, which is stated here for completeness, collects the properties of f and
W in asymptotics where n — oo with T fixed.

Theorem 1. Suppose the data are generated by model (1), that Assumptions 1 and 2 are
satisfied, and that n — oo with T fixed.

() If Assumption 3(b) holds and E|x;;|*"° <A <oo and Eley|*° <A <oo for some §>0,
then

. 1 &
VTR —pS 0°'N (o, W=lm—3" E[x;Q,-x,-]> ,
nonT
and
WS w.

(i) In addition, if Assumption 3(a) holds and E|x;|*t° <A <oo and Eley|3° <A <oo for
some 6>0, then

VnT] [VeC(W — W)

) 1 n
AN (0, V= h?ﬁ; E[(vec(xgieix; — W))(vec(xjee,x; — W))’]) ,

“Note that a balanced panel has also implicitly been assumed. All of the results with the exception of Corollary
4.1 could be extended to accommodate unbalanced panels at the cost of more complicated notation.
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and
vy,
Remark 3.1. It follows from Theorem 1(i) that the asymptotic variance of B can be
estimated using (4) since

n -1 n n -1
Avar(p) = (Z x;xi> > xjeiEix; (Z x:-x[)
i=1 i=1 i=1
1 1 n -1 1 & -1 1
~ DU
= — | — / i W E— / i = — W R
nT (nT’Z:;x’x> (nTIZ:;x’x> nTQ Q

where Q71 W@i1 L O~ 'wQ!. 1t also follows immediately from the definitions of #* and
F* in Egs. (5) and (6) and Theorem 1(i) that, under the null hypothesis, ¢* —d> N(0, 1) and
J A ;{é. Similarly, using Theorem 1(ii) and assuming W(ﬁ) has properties similar to those

of W, it will follow that the HA test statistic, S*, formed using D defined above converges
in distribution to a X%(k+1)/2 under the null hypothesis.

Theorem 1 verifies that ﬁ and W are consistent and asymptotically normal as n — oo
with T fixed without imposing any restrictions on the time series dimension. In the
following results, I consider alternate asymptotic approximations under the assumption
that both n and T are going to infinity.'’ In these cases, consistency and asymptotic
normality of suitably normalized versions of W are established under weak conditions.

Theorem 2, given immediately below, covers the case where n and T are going to infinity
and there is not weak dependence in the time series. In particular, the results of Theorem 2
are only interesting in the case where W = lim, r(1/nT 2)2;;1 E[x}Q;x;]>0. Perhaps the
leading case where this behavior would occur is in a model where &; includes an individual
specific random effect that is uncorrelated to x;; and the estimated model does not include
an individual specific effect. In this case, all observations for a given individual will be
equicorrelated, and the condition given above will hold. Theorem 3, given following
Theorem 2, covers the case where there is mixing in the time series.

Theorem 2. Suppose the data are generated by model (1), that Assumptions 1 and 2 are
satisfied, and that {n, T} — oo jointly.

() If Assumption 3(b) holds and E|x;u|*° <A<oo and Eley|*° <A <oo for some >0,
then

Vi = B> 07NOW = 12}?#2 E[x/ 1),

%0ne could also consider sequential limits in which one takes limits as 7 or T goes to infinity with the other
dimension fixed and then lets the other dimension go to infinity. It could be shown that under the conditions of
Theorem 2 and appropriate normalizations sequential limits taken first with respect to either n or 7" would yield
the same results as the joint limit. Similarly, under the conditions of Theorem 3, the sequential limits taken first
with respect to either n or T would produce the same results as the joint limit.
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and

W/TS w.

(i) In addition, if Assumption 3(a) holds and E|x;|*t° <A <oo and Eley|3° <A <oo for
some 6>0, then

Va[vee(W /T — W)]

d 1 ,
—N (0, V= lnu?m; E[(vec(xjeieix; — W))(vec(xieeix; — W))’]) ,

and
v/TY S v

Remark 3.2. It is important to note that the results presented in Theorem 2 are not
interesting in the setting where the {/, k} element of Q; becomes small when |j — k]| is large
since in these circumstances (1/ nTZ)Z;’:1 E[x/Q;x;] — 0. Theorem 3 presents results which
are relevant in this case.

Remark 3.3. Theorem 2 verifies consistency and asymptotic normality of both E and W
while imposing essentially no constraints on the time series dependence in the data. The
large cross-section effectively allows the time series dimension to be ignored even when T'is
large. However, without constraints on the time series, f§ is /n-consistent, not /n7-
consistent. Intuitively, the slower rate of convergence is due to the fact that there may be
little information contained in the time series since it is allowed to be arbitrarily dependent.

Remark 3.4. The fact that ﬁ andAW are not ~/nT-consistent will not affect practical
implementation of inference about f8. In particular, the estimate of the asymptotic variance

of ﬁ based on Eq. (4) is
-1 -1
@r(ﬁ) = (Z x}x,-) Z X (Z x;xi>
i=1 i=1 i=1

-1 -1
1{1 <, P 1 &, _1/\—1 ~ ~—1
=;<ﬁ;x,‘xi> (W/T)(W;xix,) _EQ w/ne

where Qil(l/?/ / T)Q71 2 O~ ' WQ™". The t-statistic defined in Eq. (5) may also be expressed
as

o NT(RE—1)
VRO WO 'R
Vn(RB —r)
- 1~ 1
VRO /10 R
which converges in distribution to a N(0, 1) random variable under the null hypothesis,

Rp = r, by Theorem 2(i). Similarly, it follows that F* < ;(621 under the null. Finally, the HA
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test statistic, S*, defined above also satisfies
S* = (nT)[vec(W — W(0)YD vec(W — W(0))]
= n[vec(W /T — W(0)/T)(D/T?) vec(W /T — W(0)/T)],
which converges in distribution to a X;z((k )2 under the conditions of the theorem and the

additional assumption that W(@) behaves similarly to V.

The previous theorem establishes the properties of ﬁ and the robust variance matrix
estimator as n and 7 go to infinity jointly without imposing restrictions on the time series
dependence. While the result is interesting, there are many cases in which one might expect
the time series dependence to diminish over time. In the following theorem, the properties
of f and W are established under the assumption that the data are strong mixing in the
time series dimension.

Theorem 3. Suppose the data are generated by model (1), that Assumptions 1 and 2 are
satisfied, and that {n, T} — oo jointly.

() If Assumption 3(b) is satisfied, E|xi;|""° < A and E|e;,|° < A for some 5>0, and {x;y, &}
is a strong mixing sequence in t with o of size —3r/(r — 4) for r>4,

VTG-S 07 'N (0, W= 13’1}1% ; E[xQQ,-x,])

and

A~

w—w2o.

(i) In addition, if Assumption 3(a) is satisfied, E|x;u|° <A and E|e;y|° < A for some 6>0,
and {x, &} is a strong mixing sequence in t with o of size —Tr/(r — 8) for r>38,

Jilvee(W — W)
AN (0, V= lim%zn: E[(vec(xjeie;x; — W))(vec(xjeeix; — W))’]) ,
nlnT”
and
viT> .

Remark 3.5. Theorem 3 verifies consistency and asymptotic normality of both B and W
under fairly conventional conditions on the time series dependence of the variables. The
added restriction on the time series dependence allows estimation of f§ at the VnT-rate,
which differs from the case above where f is only /n-consistent. Intuitively, the increase in
the rate of convergence is due to the fact that under the mixing conditions, the time series is
more informative than in the case analyzed in Theorem 2.

Remark 3.6. It follows immediately from the conclusions of Theorem 3 and the definitions
of Avar(B), t*, and F* in Egs. (4)~(6) that Avar(B) is valid for estimating the asymptotic
variance of E and that ¢* 4 N(0, 1) and F* < /5 under the null hypothesis. The HA test
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statistic, S*, also satisfies
S* = (nT)[vec(W — W(0)) D vec(W — W(0))]
= n[vec(W — W)Y (D/T) vec(W — W(0)))],
which converges in distribution to a X,%,(k 12 under the conditions of the theorem and the

assumption that D behaves similarly to V. In this case, ¥ could also typically be used as
the weighting matrix in forming S* since it will often be the case that W(@) will be v/nT-
consistent while W is y/n-consistent.

Theorems 1-3 establish that conventional estimators of the asymptotic variance of B and
t and F statistics formed using W have their usual properties as long as n — oo regardless
of the behavior of 7. In addition, the results indicate that it is essentially only the size of n
that matters for the asymptotic behavior of the estimators under these sequences. To
complete the theoretical analysis, I present the asymptotic properties of W as T — oo with
n fixed below. The results are interesting in providing a justification for a commonly used
procedure and in unifying the results and the different asymptotics considered.

Theorem 4. Suppose the data are generated by model (1), that Assumptions 1, 2, and 3(b) are
satisfied, and that T — oo with n fixed. If E|xin|+° < A, E|ex|""° < A, and {x;z, €1} is a strong
mixing sequence in t with o of size —3r/(r — 4) for r>4, then

VIT(B — B)S 07N, W), xpxi/nT — Q;/n5 0, Xe://nT -> N, Wi/n),

and

n n n -1
WS U= S (BB~ 4B, (Z B;-AJ) (Z Q,) 0,
i=1 j=1 j=1
n -1 n
-0 (Z Qj> <Z Aij) B;‘Ai
J=1 J=1
n -1 n n n -1
+ Qi (Z Qj) <Z Aij> <Z B],'Aj> (Z Qj) Qi,
j=1 j=1 j=1 j=1

where W; = limr(1/T)E[x}Q;x;], W = limr(1/nT)> ", E[x}Q;x;], B/~N(0, I}) is a k-dimen-
sional normal vector with E[B,B}] =0and A; = w2,

1

Remark 3.7. Theorem 4 verifies that I is not consistent but does have a limiting distribution as
T — oo with n fixed. Unfortunately, the result here differs from results obtained in Phillips
et al. (2003), Kiefer and Vogelsang (2002, 2005), and Vogelsang (2003) who consider HAC
estimation in time series data without truncation in that how to construct asymptotically pivotal
statistics from U is not immediately obvious. However, in one important special case, U is
proportional to the true covariance matrix allowing construction of asymptotically pivotal tests.

Corollary 4.1. Suppose the conditions of Theorem 4 are satisfied and that Q; = Q and
W= W for all i. Then

WS U=%A<i3i5§—%i3iibﬁ>/1
i=1 i=1 i=1
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for B; defined in Theorem 4 and A = W'/?._ Then, for testing the null hypothesis Hy : Rf = r
against the alternative Hy : RB+#r for a q x k matrix R with rank gq, the limiting distributions
of the conventional Wald (F*) and t-type (t*) tests under Hy are

F* = (uT)RB —rY[RO WO RT\(RE— 1)
-1

S E;’n % (Z BB, — Eq,nﬁ;,n> By, = %Fw_q, (10)
,
and
o TR
. B . "

JameB, -5, VT

where B,;~N(0,1,), §q,n = (1/y/n)> By, tar is a t distribution with n — 1 degrees of
freedom, and F,,_, is an F distribution with q¢ humerator and n — q denominator degrees of
freedom.

Corollary 4.1 gives the limiting distribution of W as T — oo under the additional
restriction that Q; = Q and W; = W for all i. These restrictions would be satisfied when
the data vectors for each individual {x;, y;} are iid across i. While this is more restrictive
than the condition imposed in Assumption 1, it still allows for quite general forms of
conditional heteroskedasticity and does not impose any structure on the time series process
within individuals.

The most interesting feature about the result in Corollary 4.1 is that under the
conditions imposed, the limiting distribution of W is proportional to the actual covariance
matrix in the data. This allows construction of asymptotically pivotal statistics based on
standard ¢ and Wald tests as in Phillips et al. (2003), Kiefer and Vogelsang (2002, 2005),
and Vogelsang (2003). This is particularly convenient in the panel case since the limiting
distribution of the ¢-statistic is exactly /(n/(n—1))t,—; where t,_; denotes the ¢
distribution with n — 1 degrees of freedom.lA' It is also interesting that EU = (1 — (1/n)) W
This suggests normalizing the estimator W by n/(n — 1) will result in an asymptotically
unbiased estimator in asymptotics where T'— oo with n fixed and will likely reduce the
finite-sample bias under asymptotics where n — oo. In addition, the #-statistic constructed
based on the estimator defined by (n/(n — 1))W will be asymptotically distributed as a ¢,
for which critical values are readily available.'?

The conclusions of Corollary 4.1 suggest a simple procedure for testing hypotheses
regarding regression coefficients which will be valid under any of the asymptotics
considered. Using (n/(n — 1)) W and obtaining critical values from a ¢,_; distribution will
yield tests which are asymptotically valid regardless of the asymptotic sequence since the

fn=1, Wis identically equal to 0. In this case, it is easy to verify that U equals 0, though the results of
Theorem 4 and Corollary 4.1 are obviously uninteresting in this case.

2This is essentially the normalization used in Stata’s cluster command, which normalizes w by
[nT — 1)/(nT — k)][n/(n — 1)], where the normalization is motivated as a finite-sample adjustment under the
usual n — oo, T fixed asymptotics; see Stata User’s Guide Release 8, p. 275 (Stata Corporation, 2003).
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ti—1 — N(0,1) and n/(n — 1) - 1 as n — oo. Thus, this approach will yield valid tests
under any of the asymptotics considered in the presence of quite general heteroskedasticity
and serial correlation.'?

In addition, it is important to note that in the cases where there is weak dependence in
the time series and 7 is large, more efficient estimators of the covariance matrix which
make use of this information are available. In particular, standard time series HAC
estimators which downweight the correlation between observations that are far apart will
have faster rates of convergence than the CCM estimator.

Finally, it is worth noting that the maximum rank of W will generally be n — 1, which
suggests that W will be rank deficient when k>n — 1. Since W is supposed to estimate a
full rank matrix, it seems likely that inference based on W will perform poorly in these
cases. Also, the above development ignores time effects, which will often be included in
panel data models. Under T fixed, n — oo asymptotics, the time effects can be included in
the covariate vector x; and pose no additional complications. However, as T — oo,
they also need to be considered separately from x and partialed out with the individual
fixed effects. This partialing out will generally result in the presence of an O(1/n)
correlation between individuals. When n is large, this correlation should not matter,
but in the fixed n, T — oo case, it will invalidate the results. The effect of the presence
of time effects was explored in a simulation study with the same design as that
reported in the following section where each model was estimated including a full set of
time fixed effects. The results, which are not reported below but are available upon
request, show that tests based on W are somewhat more size distorted than when no
time effects are included for small n, but that this size distortion diminishes quickly
as n increases.

4. Monte Carlo evidence

The asymptotic results presented above suggest that tests based on the robust stan-
dard error estimates should have good properties regardless of the relative sizes of n
and T. I report results from a simple simulation study used to assess the finite sample
effectiveness of the robust covariance matrix estimator and tests based upon it below.
Specifically, the simulation focuses on z-tests for regression coefficients and the HA test
discussed above.

The Monte Carlo simulations are based on two different specifications: a “fixed effect”
specification and a “random effects’ specification. The terminology refers to the fact that
in the “fixed effect” specification, the models will be estimated including individual specific
fixed effects with the goal of focusing on the case where the underlying disturbances exhibit
weak dependence. In the “random effects’ specification individual specific effects are not
estimated and the goal is to examine the behavior of the CCM estimator and tests based
upon it in an equicorrelated model.

The fixed effect specification is

J
Yie = X, B+ o + €,

where x;, is a scalar and o; is an individual specific effect. The data generating process for
the fixed effect specification allows for serial correlation in both x; and g, and

3This argument also applies to testing multiple parameters using F*.
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heteroskedasticity:
Xir = .SXj—1 + vi,  vi~N(0,.75),

en = pei—1 +\/ao + arxiuy,  ui~N(0,1— p?),
1~N(0,.5).

Data are simulated using four different values of p, p €{0,.3,.6,.9}, in both the
homoskedastic (¢p = 1, @ = 0) and heteroskedastic (ayp = a; = .5) cases, resulting in a
total of eight distinct parameter settings. The models are estimated including x;, and a full
set of individual specific fixed effects.'®

The random effects specifications is

J
Vi = X B + &irs

where x;; is a normally distributed scalar with E[xl?,] = 1 and E[x;, x;,] = .8 forall t; #15. &
contains an individual specific random component and a random error term:

&ir = 0o + Uy,
OC,"‘"N(O, p)a
uy~N(0,1 — p).

Note that the random effects data generating process implies that E[e;, &;;,] = p for #; #1».
Three values of p are employed for the random effects specification: .3, .6, and .9. The
model is estimated by regressing y,, on x; and a constant.

The fixed effects model is commonly used in empirical work when panel data are
available. The random effects specification is also widely used in the policy evaluation
literature. In many policy evaluation studies, the covariate of interest is a policy variable
that is highly correlated within aggregate cells, often with a correlation of one, which has
led to the dominance of the random effects estimator in this context. For example, a
researcher may desire to estimate the effect of classroom level policies on student-level
micro data containing observations from multiple classrooms. In this setting, 7 indexes the
number of students within each class, n indexes the number of classrooms, and «; is a
classroom specific random effect. The CCM estimator has been widely utilized in such
situations in order to consistently estimate standard errors.'?

Simulation results for various values of the cross-sectional (r) and time (7") dimensions
are reported. For each {n, T} combination, reported results for each of the 11 parameter
settings (eight for the fixed effects specification and three for the random effects
specification) are based on 1,000 simulation repetitions. Each simulation estimates three
types of standard errors for : unadjusted OLS standard errors, Sors, CCM standard
errors, Scrus, and standard errors consistent with an AR(1) process, §AR(1).16 For the

14Since o; is uncorrelated with x;, this model could be estimated using random effects. I chose to consider a
different specification for the random effects estimates where the x; were generated to more closely resemble
covariates which appear in policy analysis studies.

SThis is, in fact, one of the original motivations for the development of the CCM estimator, cf. Liang and
Zeger (1986).

"’§AR(1) imposes the parametric structure implied by an AR(1) process. The p parameter is estimated from the
OLS residuals using the procedure described in Hansen (2006) which consistently estimates AR parameters in
fixed effects panel models. The standard errors are then computed as (X' X)™' X'Q(7)X (X' X)™" where Q(p) is the
covariance matrix implied by an AR(1) process.
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random effects specification, standard errors consistent with random effects, Sgg, are
substituted for Sag( 1).17 ScLus is consistent for all parameter settings. Sors is consistent only
in the iid case (the homoskedastic data generating process with p = 0). Sar(1) is consistent
in all homoskedastic data generating processes, and Sgg is consistent in all models for
which it is reported. In all cases, the CCM estimator is computed using the normalization
implied by 7' — oo with n fixed asymptotics; that is, the CCM estimator is computed as
(n/(n — 1)W for W defined in Eq. (3).

Tables 1-4 present the results of the Monte Carlo study, where each table corresponds to
a different {n, T} combination.'® In each table, Panel A presents the fixed effects results for
the homoskedastic and heteroskedastic cases, while Panel B presents the random effects
results. Column (1) presents z-test rejection rates for 5% level tests based on OLS, CCM,
and AR(1) standard errors. The critical values for tests based on OLS and AR(1) errors
are taken from a t,7_,_; distribution, and the critical values for tests based on clustered
standard errors are taken from a #,_; distribution. Columns (2) and (3) present the mean
and standard deviation of the estimated standard errors respectively. Column (4) presents
the standard deviation of the f’s. The difference between columns (2) and (4) is therefore
the bias of the estimated standard errors. Finally, column (5) presents the rejection rates
for the HA test described above which tests the null hypothesis that both the CCM
estimator and the parametric estimator are consistent.

As expected, tests based on Sors and Sag(yy perform well in the cases where the assumed
model is consistent with the data across the full range of n and T combinations. The results
are also consistent with the asymptotic theory, clearly illustrating the /nT-consistency of ﬁ
and W with the bias of W and the variance of both ﬁ and W decreasing as either n or T
increases. Of course, when the assumed parametric model is inconsistent with the data,
tests based on parametric standard errors suffer from size distortions and the standard
error estimates are biased. The RE tests have the correct size for moderate and large n, but
not for small #n (i.e. » = 10); and as indicated by the asymptotic theory, the T dimension
has no apparent impact on the size of RE based tests or the overall performance of the RE
estimates.

Tests based on the CCM estimator have approximately correct size across all
combinations of n and T and all models of the disturbances considered in the fixed effect
specification. The estimator does, however, display a moderate bias in the small n case; it
seems likely that this bias does not translate into a large size distortion due to the fact that
the bias is small relative to the standard error of the estimator and the use of the 7,_;
distribution to obtain the critical values. While the clustered standard errors perform well
in terms of size of tests and reasonably well in terms of bias, the simulations reveal that a
potential weakness of the clustered estimator is a relatively high variance. The CCM
estimates have a substantially higher standard deviation than the other estimators and
this difference, in percentage terms, increases with 7. This behavior is consistent with the

%5RE is estimated in a manner analogous to Sag(1) where the covariance parameters are estimated in the usual
manner from the OLS and within residuals.

"¥Tables 14 correspond to {n, T} = {10, 10}, {n, T} = {10, 50}, {n, T} = {50, 10}, {n, T} = {50, 50}, respectively.
Additional results for {n, T} = {10,200}, {n, T} = {50,20}, {n, T} = {50,200}, {n, T} = {200, 10}, and {n, T} =
{200, 50} are available from the author upon request. The results are consistent with the asymptotic theory with
the performance of the CCM estimator improving as either n or T increases in the fixed effects specification and as
n increases in the random effects specification. In the random effects case, the performance does not appear to be
greatly influenced by the size of T relative to n.
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Table 1
Data generating process t-test rejection Mean (s.e.) Std (s.e.) Std (B) HA test
rate rejection rate
M @ 3 “ (5

N=10, T=10
A. Fixed effects
Homoskedastic, p =0

OLS 0.038 0.1180 0.0133 0.1152 0.152

Cluster 0.043 0.1149 0.0330 0.1152

ARI1 0.041 0.1170 0.0141 0.1152 0.135
Homoskedastic, p = .3

OLS 0.082 0.1130 0.0136 0.1269 0.095

Cluster 0.054 0.1212 0.0357 0.1269

ARI1 0.055 0.1240 0.0161 0.1269 0.133
Homoskedastic, p = .6

OLS 0.093 0.1005 0.0133 0.1231 0.074

Cluster 0.060 0.1167 0.0352 0.1231

ARI1 0.051 0.1219 0.0181 0.1231 0.123
Homoskedastic, p = .9

OLS 0.145 0.0609 0.0090 0.0818 0.038

Cluster 0.053 0.0772 0.0249 0.0818

ARI 0.054 0.0795 0.0136 0.0818 0.085
Heteroskedastic, p = 0

OLS 0.126 0.1150 0.0126 0.1502 0.051

Cluster 0.057 0.1410 0.0458 0.1502

ARI 0.126 0.1140 0.0137 0.1502 0.042
Heteroskedastic, p = .3

OLS 0.171 0.1165 0.0137 0.1708 0.036

Cluster 0.068 0.1538 0.0500 0.1708

ARI 0.143 0.1284 0.0172 0.1708 0.044
Heteroskedastic, p = .6

OLS 0.187 0.1238 0.0153 0.1853 0.027

Cluster 0.074 0.1717 0.0572 0.1853

ARI 0.117 0.1503 0.0219 0.1853 0.049
Heteroskedastic, p = .9

OLS 0.198 0.1406 0.0209 0.2181 0.031

Cluster 0.087 0.1872 0.0641 0.2181

ARI1 0.097 0.1830 0.0336 0.2181 0.074
B. Random effects
p=.3

OLS 0.295 0.1063 0.0231 0.1926 0.017

Cluster 0.115 0.1561 0.0609 0.1926

RE 0.097 0.1693 0.0460 0.1926 0.027
p=.6

OLS 0.399 0.1030 0.0248 0.2438 0.054

Cluster 0.118 0.2024 0.0788 0.2438

RE 0.094 0.2180 0.0600 0.2438 0.023
p=.9

OLS 0.482 0.0987 0.0293 0.2925 0.093

Cluster 0.108 0.2346 0.0909 0.2925

RE 0.095 0.2546 0.0723 0.2925 0.018
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Table 2
Data generating process t-test rejection Mean (s.e.) Std (s.e.) Std (p) HA test
rate rejection rate
M @ 3 (C)] (5

N=10, T=50
A. Fixed effects
Homoskedastic, p =0

OLS 0.054 0.0462 0.0024 0.0472 0.184

Cluster 0.050 0.0449 0.0117 0.0472

ARI1 0.057 0.0460 0.0026 0.0472 0.185
Homoskedastic, p = .3

OLS 0.088 0.0459 0.0024 0.0519 0.077

Cluster 0.043 0.0520 0.0133 0.0519

ARI1 0.050 0.0529 0.0031 0.0519 0.159
Homoskedastic, p = .6

OLS 0.155 0.0447 0.0028 0.0590 0.049

Cluster 0.042 0.0574 0.0150 0.0590

ARI1 0.047 0.0598 0.0044 0.0590 0.184
Homoskedastic, p = .9

OLS 0.225 0.0372 0.0034 0.0600 0.046

Cluster 0.046 0.0562 0.0159 0.0600

ARI 0.049 0.0583 0.0072 0.0600 0.150
Heteroskedastic, p = 0

OLS 0.158 0.0459 0.0021 0.0637 0.052

Cluster 0.051 0.0606 0.0169 0.0637

ARI 0.162 0.0458 0.0023 0.0637 0.057
Heteroskedastic, p = .3

OLS 0.199 0.0479 0.0022 0.0724 0.046

Cluster 0.041 0.0735 0.0198 0.0724

ARI 0.142 0.0553 0.0032 0.0724 0.047
Heteroskedastic, p = .6

OLS 0.229 0.0558 0.0031 0.0934 0.067

Cluster 0.043 0.0928 0.0260 0.0934

ARI 0.112 0.0748 0.0054 0.0934 0.059
Heteroskedastic, p = .9

OLS 0.239 0.0857 0.0079 0.1490 0.059

Cluster 0.046 0.1428 0.0451 0.1490

ARI 0.076 0.1338 0.0163 0.1490 0.099
B. Random effects
p=.3

OLS 0.568 0.0471 0.0092 0.1636 0.147

Cluster 0.104 0.1356 0.0547 0.1636

RE 0.097 0.1475 0.0413 0.1626 0.014
p=.6

OLS 0.703 0.0466 0.0105 0.2331 0.212

Cluster 0.104 0.1897 0.0727 0.2331

RE 0.095 0.2079 0.0567 0.2331 0.007
p=.9

OLS 0.744 0.0450 0.0130 0.2785 0.245

Cluster 0.106 0.2310 0.0920 0.2785

RE 0.103 0.2539 0.0701 0.2785 0.014
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Table 3
Data generating process t-test rejection Mean (s.e.) Std (s.e.) Std (B) HA test
rate rejection rate
M @ 3 “ (5

N=50, T=10
A. Fixed effects
Homoskedastic, p =0

OLS 0.049 0.0522 0.0026 0.0526 0.106

Cluster 0.057 0.0515 0.0062 0.0526

ARI1 0.047 0.0522 0.0028 0.0526 0.099
Homoskedastic, p = .3

OLS 0.080 0.0500 0.0027 0.0569 0.053

Cluster 0.059 0.0552 0.0072 0.0569

ARI1 0.055 0.0556 0.0033 0.0569 0.092
Homoskedastic, p = .6

OLS 0.102 0.0447 0.0026 0.0539 0.132

Cluster 0.048 0.0549 0.0071 0.0539

ARI1 0.049 0.0553 0.0037 0.0539 0.072
Homoskedastic, p = .9

OLS 0.156 0.0273 0.0273 0.0387 0.220

Cluster 0.075 0.0364 0.0367 0.0387

ARI 0.067 0.0367 0.0367 0.0387 0.078
Heteroskedastic, p = 0

OLS 0.119 0.0517 0.0025 0.0659 0.213

Cluster 0.047 0.0673 0.0093 0.0659

ARI 0.116 0.0516 0.0028 0.0659 0.210
Heteroskedastic, p = .3

OLS 0.197 0.0521 0.0026 0.0768 0.369

Cluster 0.062 0.0741 0.0114 0.0768

ARI 0.139 0.0581 0.0033 0.0768 0.140
Heteroskedastic, p = .6

OLS 0.214 0.0558 0.0031 0.0840 0.451

Cluster 0.048 0.0820 0.0126 0.0840

ARI 0.108 0.0688 0.0045 0.0840 0.056
Heteroskedastic, p = .9

OLS 0.152 0.0623 0.0043 0.0883 0.324

Cluster 0.038 0.0899 0.0144 0.0883

ARI1 0.057 0.0834 0.0070 0.0883 0.023
B. Random effects
p=.3

OLS 0.291 0.0451 0.0041 0.0822 0.673

Cluster 0.062 0.0776 0.0135 0.0822

RE 0.059 0.0788 0.0091 0.0822 0.058
p=.6

OLS 0.357 0.0452 0.0049 0.1034 0.892

Cluster 0.073 0.1004 0.0183 0.1034

RE 0.068 0.1028 0.0127 0.1034 0.054
p=.9

OLS 0.497 0.0447 0.0056 0.1246 0.943

Cluster 0.062 0.1192 0.0212 0.1246

RE 0.063 0.1210 0.0147 0.1246 0.048
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Table 4
Data generating process t-test rejection Mean (s.e.) Std (s.e.) Std (p) HA test
rate rejection rate
M @ 3 (C)] (5

N=50, T=20
A. Fixed effects
Homoskedastic, p =0

OLS 0.050 0.0342 0.0013 0.0341 0.097

Cluster 0.049 0.0341 0.0040 0.0341

ARI1 0.052 0.0342 0.0014 0.0341 0.088
Homoskedastic, p = .3

OLS 0.094 0.0334 0.0013 0.0393 0.077

Cluster 0.051 0.0379 0.0045 0.0393

ARI1 0.056 0.0382 0.0016 0.0393 0.086
Homoskedastic, p = .6

OLS 0.120 0.0315 0.0014 0.0414 0.300

Cluster 0.059 0.0407 0.0052 0.0414

ARI1 0.050 0.0412 0.0021 0.0414 0.092
Homoskedastic, p = .9

OLS 0.200 0.0222 0.0013 0.0336 0.580

Cluster 0.059 0.0327 0.0047 0.0336

ARI 0.060 0.0329 0.0024 0.0336 0.094
Heteroskedastic, p = 0

OLS 0.168 0.0340 0.0011 0.0479 0.408

Cluster 0.063 0.0458 0.0056 0.0479

ARI 0.171 0.0340 0.0012 0.0479 0.406
Heteroskedastic, p = .3

OLS 0.209 0.0350 0.0012 0.0536 0.675

Cluster 0.051 0.0527 0.0068 0.0536

ARI 0.145 0.0399 0.0016 0.0536 0.294
Heteroskedastic, p = .6

OLS 0.228 0.0394 0.0017 0.0653 0.802

Cluster 0.050 0.0636 0.0084 0.0653

ARI 0.119 0.0514 0.0027 0.0653 0.123
Heteroskedastic, p = .9

OLS 0.196 0.0507 0.0028 0.0775 0.681

Cluster 0.036 0.0809 0.0131 0.0775

ARI 0.058 0.0751 0.0056 0.0775 0.034
B. Random effects
p=.3

OLS 0.405 0.0320 0.0029 0.0756 0.915

Cluster 0.069 0.0726 0.0131 0.0756

RE 0.063 0.0738 0.0085 0.0756 0.064
p=.6

OLS 0.515 0.0318 0.0033 0.1012 0.944

Cluster 0.066 0.0976 0.0169 0.1012

RE 0.055 0.0996 0.0118 0.1012 0.055
p=.9

OLS 0.614 0.0314 0.0038 0.1203 0.948

Cluster 0.054 0.1166 0.0204 0.1203

RE 0.051 0.1194 0.0140 0.1203 0.053
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J/n-consistency of the estimator and does suggest that if a parametric estimator is
available, it may have better properties for estimating the variance of f.

The clustered estimator performs less well in the random effects specification. For small
n, tests based on the CCM estimator suffer from a substantial size distortion for all values
of T. For moderate to large values of n, the tests have the correct size, and the overall
performance does not appear to depend on 7. In addition, the variance of f§ does not
appear to decrease as T increases. These results are consistent with the lack of /nT-
consistency in this case.'

The performance of the HA test is much less robust than that of z-tests based on
clustered standard errors. For small n, the tests are badly size distorted and have essentially
no power against any alternative hypotheses. As n and T grow, the test performance
improves. With n = 50, the test remains size distorted, but it does have some power against
alternatives that increases as T increases. The HA test also performs poorly for the random
effects specification for small n. However, for moderate or large n, the test has both the
correct size and good power.

Overall, the simulation results support the use of clustered standard errors for
performing inference on regression coefficient estimates in serially correlated panel data,
though they also suggest care should be taken if n is small and one suspects a “random
effects” structure. The poor performance of W in “random effects” models with small 7 is
already well-known; see for example Bell and McCaffrey (2002) who also suggest a bias
reduction for W in this case. However, that the estimator does quite well even for small n
in the serially correlated case where the errors are mixing is somewhat surprising and is a
new result which is suggested by the asymptotic analysis of the previous section. The
simulation results confirm the asymptotic results, suggesting that the clustered standard
errors are consistent as long as n — oo and that they are not sensitive to the size of n
relative to T. The chief drawback of the CCM estimator is that the robustness comes at the
cost of increasing the variance of the standard error estimate relative to that of standard
errors estimated through more parsimonious models.

The HA test offers one simple information based criterion for choosing between the
CCM estimator and a simple parametric model of the error process. However, the
simulation evidence regarding its usefulness is mixed. In particular, the properties of the
test are poor in small sample settings where there is likely to be the largest gain to using a
parsimonious model. However, in moderate sized samples, the test performs reasonably
well, and there still may be gains to using a simple parametric model in these cases.

5. Conclusion

This paper explores the asymptotic behavior of the robust covariance matrix estimator
of Arellano (1987). It extends the usual analysis performed under asymptotics where n —
oo with T fixed to cases where n and T go to infinity jointly, considering both non-mixing
and mixing cases, and to the case where T — oo with 7 fixed. The limiting behavior of the
OLS estimator, f§, in each case is different. However, the analysis shows that the
conventional estimator of the asymptotic variance and the usual ¢ and F statistics have the
same properties regardless of the behavior of the time series as long as n — oo. In addition,

“The inconsistency of B when 7 increases with # fixed in differences-in-differences and policy evaluation studies
has also been discussed in Donald and Lang (2001).
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when T — oo with n fixed and the data satisfy mixing conditions and an iid assumption
across individuals, the usual 7 and F statistics can be used for inference despite the fact that
the robust covariance matrix estimator is not consistent but converges in distribution to a
limiting random variable. In this case, it is shown that the ¢ statistic constructed using
n/(n — 1) times the estimator of Arellano (1987) is asymptotically 7,_;, suggesting the use
of n/(n — 1) times the estimator of Arellano (1987) and critical values obtained from a 7,_;
in all cases. The use of this procedure is also supported in a short simulation experiment,
which verifies that it produces tests with approximately correct size regardless of the
relative size of n and T in cases where the time series correlation between observations
diminishes as the distance between observations increases. The simulations also verify that
tests based on the robust standard errors are consistent as n increases regardless of the
relative size of n and T even in cases when the data are equicorrelated.
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Appendix

For brevity, sketches of the proofs are provided below. More detailed versions are
available in an additional Technical Appendix from the author upon request and in
Hansen (2004).

Proof of Theorem 1. §— ﬁ—p> 0 and nT(f— ﬁ)—d> O~'N(0, W = lim,(1/nT)> ",
E[x}Q;x;]) follow immediately under the conditions of Theorem 1 from the Markov
LLN and the Liapounov CLT. The remaining conclusions follow from repeated use of the
Cauchy-Schwarz inequality, Minkowski’s inequality, the Markov LLN, and the
Liapounov CLT. O

The proofs of Theorems 2 and 3 make use of the following lemmas which provide a LLN
and CLT for inid data as {n, T} — oo jointly.

Lemma 1. Suppose {Z;r} are independent across i for all T with E[Z;r]= w;r and
E|Z; 7|7 < A< 0o for some §>0 and all i, T. Then /m)> " (Zir — ir) 20 as n,T} —
oo jointly.

Proof. The proof follows from standard arguments, cf. Chung (2001) Chapter 5. Details
are given in Hansen (2004). O

Lemma 2. For k x 1 vectors Z;r, suppose {Z;r} are independent across i for all T with
E[Z;r]=0, E[Zi’TZ;’T] =Q;r, and E||Z,;T||2‘“3 <A<oo for some 6>0. Assume Q=
lim,, 7(1/n)Y"1, Qi 7 is positive definite with minimum eigenvalue Jmin >0. Then (1//n)>""_,

Zir S N, W) as {n, T} — oo jointly.
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Proof. The result follows from verifying the Lindeberg condition of Theorem 2 in Phillips
and Moon (1999) using an argument similar to that used in the proof of Theorem 3 in
Phillips and Moon (1999). Details are given in Hansen (2004). [

Proof of Theorem 2. The conclusions follow from conventional arguments making
repeated use of the Cauchy—Schwarz inequality, Minkowski’s inequality, and Lemmas 1
and 2. O

In addition to using Lemmas 1 and 2, I make use of the following mixing inequality,
restated from Doukhan (1994) Theorem 2 with a slight change of notation, to establish the
properties of the estimators as {n, T} — oo when mixing conditions are imposed. Its proof
may be found in Doukhan (1994, p. 25-30).

Lemma 3. Let {z;} be a strong mixing sequence with E[z,] = 0, E||z,||** < 4 < 0o, and mixing

coefficient a(m) of size (1 — ¢)r/(r — ¢) where ¢ € 2N, ¢=x1, and r > c. Then there is a constant
C depending only on t and o(m) such that E|Z,T=1 Y I°<CD(t,¢6,T) with D(z,¢e,T)
defined in Doukhan (1994) and satisfying D(t,e, T) = O(T) if t1<2 and D(t,¢e, T) =
O(T™?) if t>2.

Proof of Theorem 3. The conclusions follow under the conditions of the theorem by
making use of the Cauchy—Schwarz inequality, Minkowsk’s inequality, and Lemma 3 to
verifythe conditions of Lemmas 1 and 2. O

Proof of Theorem 4. Under thed hypotheses of the theorem, ./ni (ﬁ [f)—> O~ 'N(0, W),
xXixi/T — Ql—>0 and Xe;/~/T — N(0, W;) are immediate from a LLN and CLT for
mixing sequences, cf. White (2001, Theorems 3.47 and 5.20). The conclusion then follows
from the definition of W ande,. O

Proof of Corollary 4.1. Consider t* = +/nT (RB—r)/ Ré_l WQ_IR’ Under the null
hypothesis, Rf =r, so the numerator of ¢* is \/nTR(B—B) R((1/nT)>"x/xi)~

((l/x/nT)E,»x;s,-)—i RQ™'AY",Bi//n. From Theorem 4 and the hypotheses of the
Corollary, the denominator of #* converges in distribution to

A (Zl BB, —%iB,-anB;)AQ‘IR’.

It follows from the Continuous Mapping Theorem that
d RQ'AYBi/\/n

JA/MRO AL BB~ (1) B B)AQ'R
Define & = (RQ~'4407'R)'/?, so

0> Bii/v/n

V@ L BB, — (S B BL)
_ By,

/B, ~ B,

[*

d
= U=
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. . = =2
It is straightforward to show that By ,~N(0, 1), that 3_,B7; — B| ,~y>_,. and that 3B}, —

~2 ~ . L
B, and B, are independent, from which it follows that

_ n \1/2 ZN?L,, (N 1/2 o
v=G=) VOB, - By )/ —1) =)

The result for F* is obtained through a similar argument, and using a result from Rao
(2002) Chapter 8b to verify that the resulting quantity follows an F distribution. O
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