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Chapter 8

Nonstandard Standard Error Issues

] it

We have normality. I repeat, we have normality.
Anything you still can’t cope with is therefore your own
problem.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

standard errors derived under weak assumptions about

the sampling process or underlying model. For example,
you get regression standard errors based on formula (3.1.7)
using the Stata option robust. Robust standard errors
improve on old-fashioned standard errors because the result-
ing inferences are asymptotically valid when the regression
residuals are heteroskedastic, as they almost certainly are when
regression approximates a nonlinear conditional expectation
function (CEF). In contrast, old-fashioned standard errors are
derived assuming homoskedasticity. The hangup here is that
estimates of robust standard errors can be misleading when
the asymptotic approximation that justifies these estimates is
not very good. The first part of this chapter looks at the failure
of asymptotic inference with robust standard error estimates
and some simple palliatives.

A pillar of traditional cross section inference—and the dis-
cussion in section 3.1.3—is the assumption that the data are
independent. Each observation is treated as a random draw
from the same population, uncorrelated with the observa-
tion before or after. We understand today that this sampling
model is unrealistic and potentially even foolhardy. Much
as in the time series studies common in MAacroeconomics,
cross section analysts must worry about correlation between
observations. The most important form of dependence arises

Today, software packages routinely compute asymptotic



294 Chapter 8

in data with a group structure—for example, the test scores
of children observed within classes or schools. Children in the
same school or class tend to have test scores that are corre-
lated, since they are subject to some of the same environmental
and family background influences. We call this correlation the
clustering problem, or the Moulton problem, after Moulton
(1986), who made it famous. A closely related problem is
correlation over time in the data sets commonly used to imple-
ment differences-in-differences (DD) estimation strategies. For
example, studies of state-level minimum wages must confront
the fact that state average employment rates are correlated over
time. We call this the serial correlation problem, to distinguish
it from the Moulton problem.

Researchers plagued by clustering and serial correlation also
have to confront the fact that the simplest fixups for these
problems, like Stata’s cluster option, may not be very good.
The asymptotic approximation relevant for clustered or seri-
ally correlated data relies on a large number of clusters or time
series observations. Alas, we are not always blessed with many
clusters or long time series. The resulting inference problems
are not always insurmountable, though often the best solu-
tion is to get more data. Econometric fixups for clustering
and serial correlation are discussed in the second part of this
chapter. Some of the material in this chapter is hard to work
through without matrix algebra, so we take the plunge and
switch to a mostly matrix motif.

8.1 The Bias of Robust Standard Error Estimates*

In matrix notation

-1
B= I:Z Xix;] Y Xivi = (X'X)"1Xy,

where X is the Nxk matrix with rows X/ and y is the
N x 1 vector of v,’s. We saw in section 3.1.3 that B has an
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asymptotically normal distribution. We can write:
VN(B - B) ~ N(0,Q)

where © is the asymptotic covariance matrix and 8=
E[X;X[]7'E[X;Y;]. Repeating (3.1.7), the formula for Qin this
case is

Q, = E[X;X]]7 E[X;X}e?]E[X;X!] 7, (8.1.1)

where ¢; = v; — X!8. When residuals are homoskedastic, the
covariance matrix simplifies to ., = azE[X,-Xf-]‘l, where
o? = E[¢?].

We are concerned here with the bias of robust standard error
estimates in independent samples (i.e., no clustering or serial
correlation). To simplify the derivation of bias, we assume
that the regressor vector can be treated as fixed, as it would
be if we sampled stratifying on X;. Nonstochastic regressors
gives a benchmark sampling model that is often used to look
at finite-sample distributions. It turns out that we miss little
of theoretical importance by making this assumption, while
simplifying the derivations considerably.

With fixed regressors, we have

XX\ xwex\ /x'x\!
Q'=(N) (N)(N) o B

V¥ = E[ee'] = diag(v;)

is the covariance matrix of residuals. Under homoskedasticity,
Vi = o2 for all i and we get

X'X\ !
Q. =c2(22) .
“(N)

Asymptotic standard errors are given by the square root of the
diagonal elements of 2, and Q,, after removing the asymptotic
normalization by dividing by N.

In practice, the pieces of the asymptotic covariance matrix
are estimated using sample moments. An old-fashioned or

where
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conventional covariance matrix estimator is
A 22
0 = (XX)182 = (X'X)! (Z N’) :

where &; = Y; — X|B is the estimated regression residual and

2N &
a-y
N

estimates the residual variance. The corresponding robust
covariance matrix estimator is

X732
Q, = N(X'X)"! (Z X—Ee—> (X'X)1., (8.1.3)

We can think of the middle term as an estimator of the form
w, where V; = &2 estimates ;.

By the law of large numbers and Slutsky’s theorem, N,
converges in probability to €., while N, converges to ,.
But in finite samples, both variance estimators are biased. The
bias in €, is well-known from classical least squares theory and
easy to correct. Less appreciated is the fact that if the resid-
uals are homoskedastic, the robust estimator is more biased
than the conventional estimator, perhaps a lot more. From
this we conclude that robust standard errors can be more mis-
leading than conventional standard errors in situations where
heteroskedasticity is modest. We also propose a rule of thumb
that uses the maximum of old-fashioned and robust standard
errors to avoid gross misjudgments of precision.

Our analysis begins with the bias of 2.. With nonstochastic
regressors, we have

: )-1g ) E@)
E[Q] = (X'X)7'6% = (X'X)™! (Z T)

To analyze E[?], start by expanding & = y — X :
=y —-X(X'X) X'y = [In— X(X'X)"'X'I(XB + ) = Me,

where ¢ is the vector of population residuals, M = Iy —
X(X'X)~'X' is a nonstochastic residual-maker matrix with
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ith drow m;, and I isthe N x N identity matrix. Then &; = mie,
an

E(é,-z) = E(miee'm;)
= m;Wm;.

To simplify further, write m; = L; — bhi, where ¢; is the ith
column of Iy and h; = X(X'X)~'X;, the ith column of the
projection matrix H = X(X’X)~!X’. Then

E(@7) = (£ — b)) W(e; — b;)
=Y — 21/f,'h,',‘ + h;\yh,’, (8.1.4)

where bj;, the ith diagonal element of H , satisfies
hij = hib; = X{(X'X)71X,. (8.1.5)

Parenthetically, b; is called the leverage of the ith observa-
tion. Leverage tells us how much pull a particular value of X;
exerts on the regression line. Note that the ith fitted value (ith
element of Hy) is

Yi=hy =hivi+ Y by (8.1.6)
#i

A large b;; means that the jth observation has a large impact on
the ith predicted value. In a bivariate regression with a single
regressor, x;,
by = 1, i=%?
N Z (x,- - 3_6)2 ’
This shows that leverage increases when x; is far the mearn. In

addition to (8.1.6), we know that ; is a number that lies in
N

the interval [0, 1] and that Z h;; = K, the number of regressors

(8.1.7)

i=1
(see, e.g., Hoaglin and Welsch, 1978).

N
'The property Z hij = X comes from the fact that H is idempotent, and so
1=1

has trace equal to rank. We can also use (8.1.7) to verify that in a bivariate
N

regression, Zh,, =2.
=1



298  Chapter 8

Suppose residuals are homoskedastic, so that ¥; = 2. Then
(8.1.4) simplifies to

E(?) = o2[1~2b; + bib] = 0X(1 — by) < o>

So €2, tends to be too small. Using the properties of b;;, we can
go one step further:

E(é,z)_ 2 l—h,','_ 2 N—K)
N =T = ()

Thus, the bias in . can be fixed by a simple degrees-of-
freedom correction: divide by N —x instead of N in the
formula for 62. This correction is used by default in most
regression software.

We now want to show that under homoskedasticity, the bias
in €2, is likely to be worse than the bias in .. The expected
value of the robust covariance matrix estimator is

X, X/E(22)

E[Q/] = N(X'X)™! (Z 5 )(X’X)‘l, (8.1.8)

where E(2?) is given by (8.1.4). Under homoskedasticity,
¥, = 0% and we have E(@?) = 0%(1~h;) as in Q.. It’s clear,
therefore, that the bias in & tends to pull robust standard
errors down. The general expression, (8.1.8), is hard to evalu-
ate, however. Chesher and Jewitt (1987) show that as long as
there is not “too much” heteroskedasticity, robust standard
errors based on &, are indeed biased downward.2

How do we know that €, is likely to be more biased
than .? Partly this comes from Monte Carlo evidence (e.g.,
MacKinnon and White, 1985, and our own small study, dis-
cussed below). We also prove this here for a bivariate example,
where the single regressor, x;, is assumed to be in deviations-
from-means form, so there is a single coefficient. In this case,

the estimator of interest is f; = ZXZ:";_‘ZH and the leverage is
i

2In particular, as long as the ratio of the largest ; to the smallest Vi is less
than 2, robust standard errors are biased downward.
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%2 . -
by = Z’g (we lose the % term in (8.1.7) by partialing out

=2
X . .
the constant). Let s2 = Z—N'— For the conventional covariance

estimator, we have

a _ 0'2 Z(l_hii) _ 0'2 1
med = | =5 =R [ w )

so the bias here is small. A simple calculation using (8.1.8)
shows that under homoskedasticity, the robust estimator has
expectation:

R o? (1—hy) (%
ElQ)=— ) ——— =%
ol o?
= I\TSEZ(l—hﬁ)hﬁ=N—S%[1_Zhé]'

The bias of €, is therefore worse than the bias of Q. if
Y b > &, as it is by Jensen’s inequality unless the regressor
has constant leverage, in which case b;; = % for all 7.3

We can reduce the bias in Q, by trying to get a better estima-
tor of ¥, say ;. The estimator Q, sets Y= é,.z, as proposed by
White (1980a) and our starting point in this section. The resid-

ual variance estimators discussed in MacKinnon and White
(1985) include this and three others:

HCO . '9/},' =é,2
HCy:9; =

3Think of b;; as a random variable with a uniform distribution in the sample.
Then

1 Sohy _ 1
Elhil = N N‘a

and . 5
B = 570 e = (1)

by Jensen’s inequality unless 4, is constant. Therefore Yh > Flj The
constant leverage case occurs when (%;)? is constant.
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~

HC,: 17/,' = —1—_7ﬁe,»
1

~

HGC;: ¢ = &7

(1—hi)? i

HC; is a simple degrees of freedom correction as is used for Qf.
HC, uses the leverage to give an unbiased estimate of the vari-
ance of the ith residual when the residuals are homoskedastic,
while HC3 approximates a jackknife estimator.* In the appli-
cations we’ve seen, the estimated standard errors tend to get
larger as we go down the list from HCy to HC3, but this is not
a theorem.

Time-Out for the Bootstrap

Bootstrapping is a resampling scheme that offers an alterna-
tive to inference based on asymptotic formulas. A bootstrap
sample is a sample drawn from our own data. In other woFd§,
if we have a sample of size N, we treat this sample as if it
were the population and draw repeatedly from it (with r'epla.ce—
ment). The bootstrap sampling distribution is the dismbgtlon
of an estimator across many draws of this sort. Intuitively,
we expect the sampling distribution constructed by sampling
from our own data to provide a good approximation to the
sampling distribution we are after.

There are many ways to bootstrap regression estimates. The
simplest is to draw pairs of {v;, X;} values, sometimes called
the “pairs bootstrap” or a “nonparametric bootstrap.” Alter-
natively, we can keep the X; values fixed, draw from the
distribution of residuals (&;), and create a new estimate of the
dependent variable based on the predicted value and the resid-
ual draw for each observation. This procedure, which is a type
of parametric bootstrap, mimics a sample drawn with non-
stochastic regressors and ensures that X; and the regression

4A jackknife variance estimator estimates sampling variance from the
empirical distribution generated by omitting one observation at a time. Stata
computes HCy, HC2, and HCj3. You can also use a trick suggested by Messer

and White (1984): divide v; and X; by ‘/Z and instrument the transformed
model by X,/ ‘/Z for your preferred choice of V.
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residuals are independent. On the other hand, we don’t want
independence if we’re interested in standard errors under het-
eroskedasticity. An alternative residual bootstrap, called the
wild bootstrap, draws X;ﬁ +¢&; (which, of course, is just the
original ;) with probability 0.5, and X/8 — & otherwise (see,
e.g., Mammen, 1993, and Horowitz, 1997). This preserves
the relationship between residual variances and X; observed
in the original sample, while imposing mean-independence of
residuals and regressors, a restriction that improves bootstrap
inference when true.

Bootstrapping is useful as a computer-intensive but other-
wise straightforward calculator for asymptotic standard
errors. The bootstrap calculator is especially useful when the
asymptotic distribution of an estimator is hard to compute
or involves a number of steps (e.g., the asymptotic distribu-
tions of the quantile regression and quantile treatment effects
estimates discussed in chapter 7 require the estimation of den-
sities). Typically, however, we have no problem deriving or
evaluating asymptotic formulas for the standard errors of OLS
estimates.

More relevant in this context is the use of the bootstrap
to improve inference. Improvements in inference potentially
come in two forms: (1) a reduction in finite-sample bias in esti-
mators that are consistent (for example, the bias in estimates
of robust standard errors) and (2) inference procedures which
make use of the fact that the bootstrap sampling distribution
of test statistics may be closer to the finite-sample distribu-
tion of interest than the relevant asymptotic approximation.
These two properties are called asymptotic refinements (see,
e.g., Horowitz, 2001).

Here we are mostly interested in use of the bootstrap for
asymptotic refinement. The asymptotic distribution of regres-
sion estimates is easy enough to compute, but we worry that
the traditional robust covariance estimator (HCjy) is biased.
The bootstrap can be used to estimate this bias, and then, by a
simple transformation, to construct standard error estimates
that are less biased. However, for now at least, bootstrap bias
correction of regression standard errors is not often used in
empirical practice, perhaps because the bias calculation is not
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automated and perhaps because bootstrap bias corrections
introduce extra variability. Also, for simple estimators like
regression coefficients, analytic bias corrections such as H C
and HCj are readily available (e.g., in Stata).

An asymprotic refinement can also be obtained for hypoth-
esis tests (and confidence intervals) based on statistics that
are asymptotically pivotal. These are statistics that have
asymptotic distributions that do not depend on any unknown
parameters. An example is a ¢-statistic: this is asymptoti-
cally standard normal. Regression coefficients are not asymp-
totically pivotal; they have an asymptotic distribution that
depends on the unknown residual variance. To refine infer-
ence for regression coefficients, you calculate the ¢-statistic in
each bootstrap sample and compare the analogous ¢-statistic
from your original sample to this bootstrap “t-distribution.”
A hypothesis is rejected if the absolute value of the original -
statistic is above, say, the 95th percentile of the absolute values
from the bootstrap distribution.

Theoretical appeal notwithstanding, as applied researchers,
we don’t like the idea of bootstrapping pivotal statics very
much. This is partly because we’re not only (or even primarily)
interested in formal hypothesis testing: we like to see the stan-
dard errors in parentheses under our regression coefficients.
These provide a summary measure of precision that can be
used to construct confidence intervals, compare estimators,
and test any hypothesis that strikes us, now or later. In our
view, therefore, practitioners worried about the finite-sample
behavior of robust standard errors should focus on bias cor-
rections like HC; and HC3. As we show below, for moderate
heteroskedasticity at least, an inference strategy that uses the
larger of conventional and bias-corrected standard errors often
seems to give us the best of both worlds: reduced bias with a
minimal loss of precision.

An Example

For further insight into the differences between robust covari-
ance estimators, we analyze a simple but important example
that has featured in earlier chapters in this book. Suppose you
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are interested in an estimate of B, in the model
Yi = Po + B1D; + ¢, (8.1.9)

where D; is a dummy variable. The OLS estimate of B8 is the
difference in means between those with D; switched on and off.
Denoting these subsamples by the subscripts 1 and 0, we have

B1=Y1 ~Yo.
For the purposes of this derivation we think of D; as nonran-
dom, so that 3" p; = N; and 2> (1—D;) = N are fixed. Let
r= Nl /N

We know something about the finite-sample behavior of §;
from statistical theory. If v; is normal with equal but unknown
variance in both the b; = 1 and p; = 0 populations, then the
conventional ¢-statistic for f; has a ¢-distribution. This is the
classic two-sample z-test. Heteroskedasticity in this context
means that the variances in the D; =1 and p; = 0 popula-
tions are different. In this case, the testing problem in small
samples becomes surprisingly difficult: the exact small-sample
distribution for even this simple problem is unknown.’ The
robust variance estimators HCy~HC 3 give asymptotic approx-
imations to the unknown finite-sample distribution for the case
of unequal variances.

The differences between HCy, HC4, HC;, and HCj are dif-
ferences in how the sample variances in the two groups defined
by D; are processed. Define §t= 2o (Yi—=%j)2 forj=0,1.
The leverage in this example is

b [NLO ifD,'=0

1 : 1"
Np lfD,—l

Using this, it’s straightforward to show that the five variance
estimators we’ve been discussing are

Conventional :

N /82482 1 82482
NONI(I(\)ItZI):Nr(l—r)(I(\)I-*—-Zl)

5This is called the Behrens-Fisher problem (see, e.g., DeGroot and
Schervish, 2001, chap. 8).
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5 , 8
HCo_g-f-Nli
N (8 &
HC;y: QN—Z <Fg+N—12)
Y3 $?
HCy: —9% 4 21
¥ NoNo—1) T Ni(N; =19)
2 SZ
HC3: SO !

No—12 TN, =1

The conventional estimator pools subsamples: this is efficient

when the two variances are the same. The White (1980a)

estimator, HCy, adds separate estimates of the sampling vari-

ances of the means, using the consistent (but biased) variance
2

estimators, N—’/ The HC; estimator uses unbiased estimators
of the sample variance for each group, since it makes the
correct degrees-of-freedom correction. H Ci makes a degrees-
of-freedom correction outside the sum, which will help but is
generally not quite correct. Since we know H C; to be the unbi-
ased estimate of the sampling variance under homoskedastic-
ity, HC3 must be too big.® Note that with 7 — 0.5, a case where
the regression design is said to be balanced, the conventional
estimator equals HC; and all five estimators differ little.

A small Monte Carlo study based on (8.1.9) illustrates the
pluses and minuses of alternative estimators and the extent to
which a simple rule of thumb goes a long way toward amelio-
rating the bias of the HC class. We choose N — 30 to highlight
small sample issues, and r = 0.10 (10 percent treated), which
implies b; = 1 if p; = 1 and b;; = 5 if D; = 0. Thisis a highly
unbalanced design. We draw residuals from the distributions:

~[N(0,0?) ifp, =0
“TINO1) ifp =1

and report results for three cases. The first has lots of het-
eroskedasticity, with o = 0.5, while the second has relatively

8In this simple example, HC, is unbiased whether or not residuals are
homoskedastic.
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little heteroskedasticity, with o = 0.85. No heteroskedasticity
is the benchmark case.

Table 8.1.1 displays the results. Columns 1 and 2 report
means and standard deviations of the various standard error
estimates across 25,000 replications of the sampling experi-
ment. The standard deviation of B1 is the sampling variance
We are trying to measure. With lots of heteroskedasticity, as
in the upper panel of the table, conventional standard errors
are badly biased and, on average, only about half the size of
the Monte Carlo sampling variance that constitutes our target.
On the other hand, while the robust standard errors perform
better, except for H C3, they are still too small.”

The standard errors are themselves estimates and have con-
siderable sampling variability. Especially noteworthy is the
fact that the robust standard errors have much higher sam-
pling variability than the conventional standard errors, as can
be seen in column 2.8 The sampling variability of estimated
standard errors further increases when we attempt to reduce
bias by dividing the residuals by 1-4; (HC,) or (1 - by)?
(HC3). The worst case is H. C3, with a standard deviation about
50 percent above the standard deviation of the White (1980a)
standard error, HC,.

The last two columns in the table show empirical rejection
rates in a nominal 5 percent test for the hypothesis g, = 0,
the population parameter in this case. The test statistics are
compared with a normal distribution and to a ¢-distribution
with N — 2 degrees of freedom. Rejection rates are far too high
for all tests, even with H Cs. Using a t-distribution rather than
a normal distribution helps only marginally.

7A|though HC;3 is an unbiased estimator of the sampling variance, the mean
of the HC; standard errors across sampling experiments (0.52) is srill below
the standard deviation of B {0.59). This comes from the fact that the standard
error is the square root of the sampling variance, the sampling variance is itself
estimated and hence has sampling variability, and the square root is a concave
function.

8The large sampling variance of robust standard error estimators is noted
by Chesher and Austin (1991). Kauermann and Carroll (2001) propose an
adjustment to confidence intervals to correct for this,
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TasLE 8.1.1
Monte Carlo results for robust standard error estimates

Empirical 5% Rejection Rates

Mean Standard Normal t
Deviation
Parameter Estimate (1) (2) (3) (4}
A. Lots of heteroskedasticity
B —.001 .586
Standard Errors
Conventional 331 .052 278 257
HCy 417 .203 247 231
HC; 447 218 223 .208
HC» .523 .260 177 164
HC; 636 321 130 120
max(HCy, Conventional) 448 172 188 171
max(HC1, Conventional) 473 190 173 157
max(HC,, Conventional) 542 238 141 128
max(HC3, Conventional) .649 .305 .107 .097
B. Little heteroskedasticity
N .004 .600
Standard Errors
Conventional 520 .070 .098 .084
HCy 441 193 217 202
HCy 473 207 194 179
HC;, .546 250 156 143
HC3 657 312 114 104
max(HCp, Conventional) 562 121 .083 .070
max(HC/, Conventional) 578 138 .078 .067
max(HC,, Conventional) 627 186 .067 .057
max(HCj3, Conventional) 713 259 .053 .045
C. No heteroskedasticity
b —.003 611
Standard Errors
Conventional .604 .081 .061 .050
HCy 453 190 209 193
HC, 486 203 .185 171
HC, 557 247 150 136
HC; 667 309 110 .100
max(HCyp, Conventional) 629 .109 .055 .045
max({HC,, Conventional) .640 122 .053 .044
max({HC;, Conventional) 679 166 .047 .039
max(HC3, Conventional) 754 237 .039 .031

Notes: The table reports results from a sampling experiment with 25,000 replica-
tions. Columns 1 and 2 shows the mean and standard deviation of estimated standard
errors, except for the first row in each panel which shows the mean and standard devi-
ation of f1. The model is as described by (8.1.9), with 1 =0, r =.1, N= 30, and
heteroskedasticity as indicated in the panel headings.
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The results with little heteroskedasticity, reported in the sec-
ond panel, show that conventional standard errors are still too
low; this bias is now on the order of 15 precent. HCy and HC;
are also too small, about as before in absolute terms, though
they now look worse relative to the conventional standard
errors. The HC; and HCj3 standard errors are still larger than
the conventional standard errors, on average, but empirical
rejection rates are higher for these two than for conventional
standard errors. This means the robust standard errors are
sometimes too small “by accident,” an event that happens
often enough to inflate rejection rates so that they exceed the
conventional rejection rates.

One lesson we can take away from this is that robust
standard errors are no panacea. They can be smaller than con-
ventional standard errors for two reasons: the small sample
bias we have discussed and their higher sampling variance.
We therefore take empirical results where the robust standard
errors fall below the conventional standard errors as a red flag.
This is very likely due to bias or a chance occurrence that is bet-
ter discounted. In this spirit, the maximum of the conventional
standard error and a robust standard error may be the best
measure of precision. This rule of thumb helps on two counts:
it truncates low values of the robust estimators, reducing
bias, and it reduces variability. Table 8.1.1 shows the empir-
ical rejection rates obtained using max(HC;, Conventional).
Rejection rates using this rule of thumb look pretty good
in panel B and are considerably better than the rates using
robust estimators alone, even with lots of heteroskedasticity,
as shown in panel A.°

Since there is no gain without pain, there must be some cost
to using max(HC;, Conventional). The cost is that the best
standard error when there is no heteroskedasticity is the con-
ventional estimate. This is documented in the bottom panel of
the table. Use of the maximum inflates standard errors unnec-
essarily under homoskedasticity, depressing rejection rates.
Nevertheless, the table shows that even in this case, rejection

9Yang, Hsu, and Zhao (2005) formalize the notion of test procedures
based on the maximum of a set of test statistics with differing efficiency and
robustness properties.
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rates don’t go down all that much. We also view an underes-
timate of precision as being less costly than an overestimate.
Underestimating precision, we come away thinking the data
are not very informative and that we should try to collect more
or improve the research design, while in the latter case we may
mistakenly draw important substantive conclusions.

A final comment on this Monte Carlo investigation con-
cerns the small sample size. Labor economists like us are used
to working with tens of thousands of observations or more.
But sometimes we don’t. In a study of the effects of busing on
public school students, Angrist and Lang (2004) worked with
samples of about 3,000 students grouped in 56 schools. The
regressor of interest in this study varied within grade only at
the school level, so some of the analysis uses 56 school means.
Not surprisingly, therefore, Angrist and Lang (2004) obtained
HC; standard errors below conventional OLS standard errors
when working with school-level data. As a rule, even if you
start with the microdata on individuals, when the regressor
of interest varies at a higher level of aggregation—a school,
state, or some other group or cluster—effective sample sizes
are much closer to the number of clusters than to the num-
ber of individuals. Inference procedures for clustered data are
discussed in detail in the next section.

8.2 Clustering and Serial Correlation in Panels

8.2.1 Clustering and the Moulton Factor

Heteroskedasticity rarely leads to dramatic changes in infer-
ence. In large samples where bias is not likely to be a problem,
we might see standard errors increase by about 25 percent
when moving from the conventional to the HC; estimator. In
contrast, clustering can make all the difference.

The clustering problem can be illustrated using a simple
bivariate model estimated in data with a group structure.
Suppose we’re interested in the bivariate regression,

Yig = Bo+ ﬂlxg + éeig, (8.2.1)
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where Yj, is the dependent variable for individual 7 in cluster
or group g, with G groups. Importantly, the regressor of inter-
est, xg, varies only at the group level. For example, data from
the STAR experiment analyzed by Krueger (1999) come in the
form of v, the test score of student i in class g, and class
size, x.

Although students were randomly assigned to classes in the
STAR experiment, the STAR data are unlikely to be inde-
pendent across observations. The test scores of students in
the same class tend to be correlated because students in the
same class share background characteristics and are exposed
to the same teacher and classroom environment. It’s therefore
prudent to assume that, for students 7 and j in the same class, g,

Elejgej] = peo? > 0, (8.2.2)

where p, is the residual intraclass correlation coefficient and
o? is the residual variance.

Correlation within groups is often modeled using an addi-
tive random effects model. Specifically, we assume that the
residual, e, has a group structure,

eig = Vg + 7jg, (8.2.3)

where v, is a random component specific to class g and Nigisa
mean-zero student-level error component that’s left over. We
focus here on the correlation problem, so both of these error
components are assumed to be homoskedastic. The group-
level error component is assumed to capture all within-group
correlation, so the 7;, are uncorrelated.1?

When the regressor of interest varies only at the group level,
an error structure like (8.2.3) can increase standard errors
sharply. This unfortunate fact is not news—Kloek (1981) and

19This sort of residual correlation structure is also a consequence of strat-
ified sampling (see, e.g., Wooldridge, 2003). Most of the samples that we
work with are close enough to random that we typically worry more about the
dependence due to a group structure than clustering due to stratification. Note
that there is no GLS estimator for equation 8.2.1 with error structure 8.2.3
because the regressor is fixed within groups. In any case, here as elsewhere we
prefer a “fix-the-standard-errors” approach to GLS.
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Moulton (1986) both made the point—but it seems fair to
say that clustering didn’t really become part of the applied
econometrics zeitgeist until about 15 years ago.

Given the error structure, (8.2.3), the intraclass correlation
coefficient becomes

__9%
Pe = po 3_ n 0172 s
where o2 is the variance of v, and o is the variance of 7.
A word on terminology: p. is called the intraclass corre-
lation coefficient even when the groups of interest are not
classrooms.

Let V,.(B1) be the conventional OLS variance formula for the
regression slope (a diagonal element of €, in the previous sec-
tion), while V(8;) denotes the correct sampling variance given
the error structure, (8.2.3). With nonstochastic regressors
fixed at the group level and groups of equal size, 7, we have

V(Bi1)
VC(BI)

a formula derived in the appendix to this chapter. We call the
square root of this ratio the Moulton factor, after Moulton’s
(1986) influential study. Equation (8.2.4) tells us how much
we overestimate precision by ignoring intraclass correlation.
Conventional standard errors become increasingly misleading
as » and p, increase. Suppose, for example, that p, = 1. In
this case, all the errors within a group are the same, so the
Yig values are the same as well. Making a data set larger by
copying a smaller one # times generates no new information.
The variance V,(B;) should therefore be scaled up from V.(41)
by a factor of #n. The Moulton factor increases with group size
because with a fixed overall sample size, larger groups mean
fewer clusters, in which case there is less independent infor-
mation in the sample (because the data are independent across
clusters but not within).!!

=14+ (n—1)p., (8.2.4)

11With nonstochastic regressors and homoscedastic residuals, the Moulton
factor is a finite-sample result. Survey statisticians call the Moulton factor the
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Even small intraclass correlation coefficients can generate a
big Moulton factor. In Angrist and Lavy (2008), for example,
4,000 students are grouped in 40 schools, so the average 7 is
100. The regressor of interest is school-level treatment sta-
tus: all students in treated schools were eligible to receive
cash awards for passing their matriculation exams. The intra-
class correlation in this study fluctuates around .1. Applying
formula (8.2.4), the Moulton factor is over 3, so the stan-
dard errors reported by default are only one-third what they
should be.

Equation (8.2.4) covers an important special case where the
regressors are fixed within groups and group size is constant.
The general formula allows the regressor, x;, to vary at the
individual level and for different group sizes, 7. In this case,
the Moulton factor is the square root of

V(B1) Ving) _ }
— =1 —_— — 11 0 e, 2.
V() +[ T L (8.2

where 7 is the average group size, and p, is the intraclass
correlation of x;g:

Z Z Z (xig — %) (xjg — %)

g j i#H

Vixig) Y ng(ng—1)
g

Px =

Note that p, does not impose a variance components structure
like (8.2.3); here, p, is a generic measure of the correlation of
regressors within groups. The general Moulton formula tells
us that clustering has a bigger impact on standard errors with
variable group sizes and when p, is large. The impact vanishes
when p, = 0. In other words, if the x;, values are uncorrelated
within groups, the grouped error structure does not matter for
standard errors. That’s why we worry most about clustering
when the regressor of interest is fixed within groups.

design effect because it tells us how much to adjust standard errors in stratified
samples for deviations from simple random sampling (Kish, 1965).
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We illustrate formula (8.2.5) using the Tennessee STAR
example. A regression of kindergartners’ percentile score on
class size yields an estimate of —.62 with a robust (HC;) stan-
dard error of .09. In this case, p, = 1 because class size is
fixed within classes, while V(ng) is positive because classes
vary in size (in this case, V(ng) = 17.1). The intraclass corre-
lation coefficient for residuals is .31 and the average class size
is 19.4. Plugging these numbers into (8.2.5) gives a value of

about 7 for \‘//_(('?9111)’ so that conventional standard errors should
[4

be multiplied by a factor of 2.65 = +/7. The corrected standard
error is therefore about 0.24.

The Moulton factor works similarly with 2SLS estimates. In
particular, we can use (8.2.5), replacing p, with oz, where pz
is the intraclass correlation coefficient of the first-stage fitted
values and p, is the intraclass correlation of the second-stage
residuals (Shore-Sheppard, 1996). To understand why this
works, recall that conventional standard errors for 2SLS are
derived from the residual variance of the second-stage equa-
tion divided by the variance of the first-stage fitted values.
This is the same asymptotic variance formula as for OLS, with
first-stage fitted values playing the role of the regressor.

To conclude, we list and compare solutions to the Moul-
ton problem, starting with the parametric approach described
above.

1. Parametric: Fix conventional standard errors using (8.2.5).
The intraclass correlations p, and py are easy to com-
pute and supplied as descriptive statistics in some sofrware
packages.12

2. Cluster standard errors: Liang and Zeger (1986) general-
ize the White (1980a) robust covariance matrix to allow
for clustering as well as heteroskedasticity. The clustered
covariance matrix is

Qo= (XX) 71 XU Xe | (X'X)7Y, where
4
(8.2.6)

12Use Stata’s loneway command, for example.
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é%g e1g2g T C1g8n.g
bighrg &,
éng—ill,géngg

Giglngg lng—1,g8mg é,,gg
Here, X, is the matrix of regressors for group g and a is a
degrees of freedom adjustment factor similar to that which
appears in HC1. The clustered estimator is consistent as the
number of groups gets large given any within-group correla-
tion structure and not just the parametric model in (8.2.3).
€2, is not consistent with a fixed number of groups, how-
ever, even when the group size tends to infinity. Consistency
is determined by the law of large numbers, which says that
we can rely on sample moments to converge to population
moments (section 3.1.3). But here the sums are at the group
level and not over individuals. Clustered standard errors are
therefore unlikely to be reliable with few clusters, a point
we return to below.

3. Use group averages instead of microdata: let ¥g be the mean
of Yjg in group g. Estimate

Yg = Bp+Bi1xg +¢

by WLS using the group size as weights. This is equivalent
to OLS using micro data but the grouped-equation stan-
dard errors reflect the group structure, (8.2.3).13 Again,
the asymptotics here are based on the number of groups
and not the group size. Importantly, however, because the
group means are close to normally distributed with modest
group sizes, we can expect the good finite-sample properties
of regression with normal errors to kick in. The standard
errors that come out of grouped estimation are therefore
likely to be more reliable than clustered standard errors in
samples with few clusters.

3The grouped residuals are heteroskedastic unless group sizes are equal
but this is less important than the fact that the error has a group structure in
the microdata.
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Grouped-data estimation can be generalized to models
with microcovariates using a two-step procedure. Suppose
the equation of interest is

Yig = Bo +B1xg + B2 Wig +ejg, (8.2.7)

where wjg is a covariate that varies within groups. In
step 1, construct the covariate-adjusted group effects, pg,
by estimating

Yig = tg +BaWig + 1njg.

The pg, called group effects, are coefficients on a full set of
group dummies. The estimated /i¢ are group means adjusted
for differences in the individual level variable, w;;. Note
that, by virtue of (8.2.7) and (8.2.3), ug = Bp + B1xg + vg.
In step 2, therefore, we regress the estimated group effects
on group-level variables:

g = Bo + B1xg + (vg + (iig — g)). (8.2.8)

The efficient GLS estimator for (8.2.8) is WLS, using the
reciprocal of the estimated variance of the group-level resid-
ual, {vg +(fig — ug)}, as weights. This can be a problem,
since the variance of vg is not estimated very well with few
groups. We might therefore weight by the reciprocal of the
variance of the estimated group effects, the group size, or use
no weights at all.1* In an effort to better approximate the
relevant finite-sample distribution, Donald and Lang (2007)
suggest that inference for grouped equations like (8.2.8) be
based on a t-distribution with G - x degrees of freedom.

Note that the grouping approach does not work when
Xjg varies within groups. Averaging Xjg tO Xg is a version
of IV, as we saw in chapter 4. So with micro-variation
in the regressor of interest, grouped estimation identifies
parameters that differ from the target parameters in a model
like (8.2.7).

14See Angrist and Lavy (2008) for an example of the latter two weighting
schemes.
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4. Block bootstrap: In general, bootstrap inference uses the
empirical distribution of the data by resampling. But simple
random resampling won’t do in this case. The trick with
clustered data is to preserve the dependence structure in the
target population. We can do this by block bootstrapping,
that is, drawing blocks of data defined by the groups g.
In the Tennessee STAR data, for example, we’d block
bootstrap by resampling entire classes instead of individual
students.

5. In some cases, you may be able to estimate a GLS or
maximum likelihood model based on a version of (8.2.1)
combined with a model for the error structure like (8.2.3).
This fixes the clustering problem but also changes the esti-
mand unless the CEF is linear, as detailed in section 3.4.1
for LDV models. We therefore prefer other approaches.

Table 8.2.1 compares standard-error fixups in the STAR
example. The table reports six estimates: conventional robust
standard errors (using HC); two versions of corrected stan-
dard errors using the Moulton formula (8.2.5), the first using
the formula for the intraclass correlation given by Moulton
and the second using Stata’s estimator from the Loneway com-
mand; clustered standard errors; block-bootstrapped standard
errors; and standard errors from weighted estimation at the
group level. The coefficient estimate is —.62. In this case, all
cluster adjustments deliver similar results, a standard error of
about .23. This happy outcome is due in large part to the fact
that with 318 classrooms, we have enough clusters for group-
level asymptotics to work well. With few clusters, however,
things are much dicier, a point we return to at the end of the
chapter.

8.2.2 Serial Correlation in Panels
and Difference-in-Difference Models

Serial correlation—the tendency for one observation to be
correlated with those that have gone before—used to be Some-
body Else’s Problem, specifically, the unfortunate souls who
make their living out of time series data (macroeconomists, for
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TaBLE 8.2.1
Standard errors for class size effects in the STAR
data (318 clusters)

Variance Estimator Std. Err.
Robust (HCq) .090
Parametric Moulton correction 222

(using Moulton intraclass correlation)

Parametric Moulton correction 230
(using Stata intraclass correlation)

Clustered 232
Block bootstrap 231
Estimation using group means 226

{(weighted by class size)

Notes: The table reports standard errors for the estimates
from a regression of kindergartners’ average percentile scores
on class size using the public use data set from Project STAR.
The coefficient on class size is —.62. The group level for clus-
tering is the classroom. The number of observations is 5,743.
The bootstrap estimate uses 1,000 replications.

example). Applied microeconometricians have therefore long
ignored it.3 But our data often have a time dimension, too,
especially in DD models. This fact combined with clustering
can have a major impact on statistical inference.

Suppose, as in section 5.2, that we are interested in the
effects of a state minimum wage. In this context, the regres-
sion version of DD includes additive state and time effects. We
therefore get an equation like (5.2.2), repeated below:

Yist = y:+kt+5Dst+Eist, (8.2.9)

15The Somebody Else’s Problem (SEP) field, first identified as a natural
phenomenon in Adams’s Life, the Universe, and Everything, is, according to
Wikipedia, “a generated energy field that affects perception. . . . Entities within
the field will be perceived by an outside observer as ‘Somebody Else’s Problem,’
and will therefore be effectively invisible unless the observer is specifically
looking for the entity.”
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As before, Y;y is the outcome for individual ; in state s in year
t and Dg; is a dummy variable that indicates treatment states
in posttreatment periods.

The error term in (8.2.9) reflects the idiosyncratic variation
in potential outcomes across people, states, and time. Some
of this variation is likely to be common to individuals in the
same state and year, for example, a regional business cycle. We
can model this common component by thinking of &;, as the
sum of a state-year shock, vy, and an idiosyncratic individual
component, 7,;. So we have:

Yist = Vs + At +8Dg +vs + Nist - (8.2.10)

We assume that in repeated draws across states and over time,
E[vg,] = 0, while E[n;y[s, ] = 0 by definition.

State-year shocks are bad news for DD models. As with
the Moulton problem, state- and time-specific random effects
generate a clustering problem that affects statistical inference.
But that might be the least of our problems in this case. To see
why, suppose we have only two periods and two states, as in
the Card and Krueger (1994) New Jersey-Pennsylvania study.
The empirical DD estimator is

dck = (Ys=NJ,t=Nov — Ys=NJ,1=Feb) — (Ye=PA t=Nov — Ys=PA s—Feb)-

This estimator is unbiased, since E[v,;] = E[7;] = 0. On the
other hand, assuming we think of probability limits as increas-
ing group size while keeping the choice of states and periods
fixed, state-year shocks render 8¢k inconsistent:

plim SCK

= 8 + {(Us=NJ,t=Nov — Vs=NJ,1=Feb) ~(Vs=PAt=Nov — Vs=Pa 1=Feb)}-

Averaging larger and larger samples within New Jersey and
Pennsylvania in a pair of periods does nothing to eliminate
the regional shocks specific to a given location and period.
With only two states and years, we have no way to dis-
tinguish the differences-in-differences generated by a policy
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change from the difference-in-dfferences due to the fact that,
say, the New Jersey economy was holding steady in 1992
while Pennsylvania was experiencing a cyclical downturn. The
presence of v, amounts to a failure of the common trends
assumption discussed in section 5.2,

The solution to the inconsistency induced by random shocks
in differences in differences models is to analyze samples
including multiple time periods or many states (or both).
For example, Card ( 1992) uses 51 states to study minimum
wage changes, while Card and Krueger (2000) take another
look at the New Jersey-Pennsylvania experiment with a longer
monthly time series of payroll data. With multiple states or
periods, we can hope that the Ust average out to zero. As in the
first part of this chapter on the Moulton problem, the inference
framework in this context reljes on asymptotic distribution
theory with many groups and not on group size (or, at least,
not on group size alone). The most important inference issue
then becomes the behavior of Vs In particular, if we are pre-
pared to assume that shocks are independent across states and
over time—that is, that they are serially uncorrelated—we are
back to the plain vanilla Moulton problem in section 8.2.1,in
which case clustering standard errors by state x year should
generate valid inferences. But in most cases, the assumption
that v, is serially uncorrelated is hard to defend. Almost
certainly, for example, regional shocks are highly serially cor-
related: if things are bad in Pennsylvania in one month, they
are likely to be about as bad in the next.

The consequences of serial correlation for clustered panels
are highlighted by Bertrand, Duflo, and Mullainathan (2004)
and Kézdi (2004). Any research design with a group structure
where the group means are correlated can be said to have the
serial correlation problem. The upshot of recent research on
serial correlation in data with a group structure is that, just as
we must adjust our standard errors for the correlation within
groups induced by the presence of Ust, we must further adjust
for serial correlation in the v, themselves. There are a number
of ways to do this, not all equally effective in all situations. It
seems fair to say that the question of how best to approach
the serial correlation problem is currently under study, and a
consensus has not yet emerged.
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The simplest and most widely applied approach is to pass the
clustering buck one level higher. In the state-year example, we
can report Liang and Zeger (1986) standard errors clustered by
state instead of by state and year (e.g., using Stata cluster).
This might seem odd at first blush, since the model controls
for state effects. The state effect, y;, in (8.2.10) removes the
state mean of v,,, which we denote by 7,. Nevertheless, v,, — A
is probably still serially correlated. Clustering standard errors
at the state level takes account of this, since the one-level-up
clustered covariance estimator allows for unrestricted residual
correlation within clusters, including the time series correla-
tion in vy —%,. This is a quick and easy fix.’® The problem
here is that passing the buck up one level reduces the number
of clusters. And asymptotic inference supposes we have a large
number of clusters because we need many states or periods to
estimate the correlation between Vst —Us and vg_q — 7, rea-
sonably well. A paucity of clusters can lead to biased standard
errors and misleading inferences.

8.2.3 Fewer than 42 Clusters

Bias from few clusters is a risk in both the Moulton and the
serial correlation contexts because in both cases, inference is
cluster-based. With few clusters, we tend to underestimate
either the serial correlation in a random shock like v,; or the
intraclass correlation, Pe; in the Moulton problem. The rele-
vant dimension for counting clusters in the Moulton problem
is the number of groups, . In a DD scenario where you’d like
to cluster on state or some other cross-sectional dimension,
the relevant dimension for counting clusters is the number of
states or cross-sectional groups. Therefore, following Douglas
Adams’s dictum that the ultimate answer to life, the universe,
and everything is 42, we believe the question is: How many
clusters are enough for reliable inference using the standard
cluster adjustment derived from (8.2.6)?

If 42 is enough for the standard cluster adjustment to be
reliable, and if less is too few, then what should you do when

6 Arellano (1987) appears to have been the first to suggest higher-level
clustering for models with a panel structure.
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the cluster count is low? First-best is to get more clusters by
collecting more data. But sometimes we’re too lazy for that
or the number of groups is naturally fixed, so other ideas aré
detailed below. It’s worth noting at the outset that not all of

these ideas are equally well-suited for the Moulton and serial
correlation problems.

1. Bias correction of clustered standard errors: Clustered stan-
dard errors are biased in small samples because E(ege},) #
E(egeé) = Wg, just as with the residual covariance magtrix
in section 8.1. Usually, E(égéé) is too small. One solution
is to inflate residuals in the hopes of reducing bias. Bell and
McCaffrey (2002) suggest a procedure (called bias-reduced
linearization, or BRL) that adjusts residuals by

where Ag solves

-1
Aghg = (I-Hg) ™",
Hg = Xg(X'X)™1 X},

and a is a degrees-of-freedom correction.

This is a version of HC, for the clustered case. BRL
works for the straight-up Moulton problem with few clus-
ters but for technical reasons cannot be used for the typical
DD serial correlation problem.17

7The matrix A is not unique; there are many such decompositions. Bell
and McCaffrey (2002) use the symmetric square root of (] — Hg)™!, or

Ag = RA2,

where R is the matrix of eigenvectors of (- I-Ig)_1 and A1/2 is the diagonal
matrix of the square roots of the eigenvalues. One problem with the Bell and
McCaffrcy adjustment is that (I — Hyg) may not be of full rank, and hence the
Inverse may not exist for all designs. This happens, for example, when one of
the regressors is a dummy variable that is one for exactly one of the clusters

and zero otherwise. This scenario occurs in the panel DD model discussed b):

Bertrand et al. {2004}, which includes a full set of state dummies and clusters
by state.
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2. Recognizing that the fundamental unit of observation is a

cluster and not an individual unit within clusters, Bell and
McCaffrey (2002) and Donald and Lang (2007) suggest that
inference be based on a ¢-distribution with G — k degrees of
freedom rather than on the standard normal distribution.
For small G, this makes a difference: confidence intervals
will be wider, thereby avoiding some mistakes. Cameron,
Gelbach, and Miller (2008) report Monte Carlo examples
where the combination of a BRL adjustment and the use of
t-tables works well.

. Donald and Lang (2007) argue that estimation using group

means works well with small G in the Moulton problem,
and even better when inference is based on a ¢-distribution
with G — K degrees of freedom. But, as we discussed in sec-
tion 8.2.1, for grouped estimation the regressor should be
fixed within groups. The level of aggregation is the level
at which you’d like to cluster, such as schools in Angrist
and Lavy (2008). For serial correlation, this is the state, but
state averages cannot be used to estimate a model with a
full set of state effects. Also, since treatment status varies
within states, averaging up to the state level averages the
regressor of interest as well, changing the rules of the game
in a way we may not like (the estimator becomes IV using
group dummies as instruments). The group means approach
is therefore out of bounds for the serial correlation problem.
Note also that if the grouped residuals are heteroskedastic,
and you therefore use robust standard errors, you may have
to worry about bias of the form discussed in section 8.1.
In some cases, heteroskedasticity in the grouped residuals
can be fixed by weighting by the group size. But weight-
ing changes the estimand when the CEF is nonlinear, so the
case for weighting is not open and shut (Angrist and Lavy,
1999, chose not to weight school-level averages because the
variation in their study comes mostly from small schools).
Weighted or not, a conservative approach when working
with group-level averages is to use our rule of thumb from
section 8.1: take the larger of robust and conventional
standard errors as your measure of precision.
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4. Cameron, Gelbach, and Miller (2008) report that some
forms of a block bootstrap work well with small numbers
of groups, and that the block bootstrap typically outper-
forms Stata-clustered standard errors, This appears to be
true both for the Moulton and serial correlation problems.
But Cameron, Gelbach, and Miller (2008) focus on rejec-
tion rates using (pivotal) test statistics, while we like to see
standard errors.

5. Parametric corrections: For the Moulton problem, this
amounts to use of the Moulton factor. With serial cor-
relation, this means correcting your standard errors for
first-order serial correlation at the group level. Based on
our sampling experiments with the Moulton problem and a
reading of the literature, parametric approaches may work
well, and berter than the nonparametric cluster estimator
(8.2.6), especially if the parametric model is not too far
off (see, e.g., Hansen, 2007a, which also proposes a bias
correction for estimates of serial correlation parameters).
Unfortunately, however, beyond the greenhouse world of
controlled Monte Carlo studies, we’re unlikely to know
whether parametric assumptions are a good fit.

Alas, the bottom line here is not entirely clear, nor is the
more basic question of when few clusters are fatal for infer-
ence. The severity of the resulting bias seems to depend on the
nature of your problem, in particular whether you confront
straight-up Moulton or serial correlation issues. Aggregation
to the group level as in Donald and Lang (2007) seems to
work well in the Moulton case as long as the regressor of
interest is fixed within groups and there is not too much
underlying heteroskedasticity. At a minimum, you’d like to
show that your conclusions are consistent with the inferences
that arise from an analysis of group averages, since this is
a conservative and transparent approach. Angrist and Lavy
(2008) use BRL standard errors to adjust for clustering at
the school level but validate this approach by showing that
key results come out the same using covariate-adjusted group
averages.
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As far as serial correlation goes, most of the evidence sug-
gests that when you are lucky enough to do research on U.S.
states, giving 51 clusters, you are on reasonably safe ground
with a naive application of Stata’s cluster command at
the state level. But you might have to study Canada, which
offers only 10 clusters in the form of provinces, well below
42. Hansen (2007b) finds that Liang and Zeger (1986) (StaFa-
clustered) standard errors are reasonably good at correcting
for serial correlation in panels, even in the Canadian scenario.
Hansen also recommends use of a ¢-distribution with G —
degrees of freedom for critical values. _

Clustering problems have forced applied microeconometri-
cians to eat a little humble pie. Proud of working with large
microdata sets, we like to sneer at macroeconomists toying
with small time series samples. But he who laughs last laughs
best: if the regressor of interest varies only at a coarse group
level, such as over time or across states or countries, then it’s
the macroeconomists who have had the most realistic mode of
inference all along.

8.3 Appendix: Derivation of the Simple
Moulton Factor

Write
Ylg elg
Yog €2¢
yg = . eg = .
Y”gg e”ggJ
and
Y1 l1x1 rel
Y2 12x2 e
y= X = e = 5
Yo lgXg | €
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where ¢ is a column vector of #, ones and G is the number of
groups. Note that

Eee)=w=|0 W2
: . 0
0 .- 0 v,
1 p - p.
1 :
v, =o? /Te . =g? [(1 - pe)I+peLgt;,] ,
2 e
D Pe 1
where o, = ;255-77
Now !
X'X = anxgx;
g
XvX = ngt;,\llgtgx;,.
g
But
1+ (ng — 1)p,
xglyWelgxy = Uezxg‘; 1+ (n.g“— 1e. Xg
14 (ng —1)p.
= 01y [1+ (g — 1)p¢ ] XgXg-

Let 1z = 1+ (ng —1)p., so we get

’ r__ 2 ’
XglyWelgXy = 0. Mg TeXgX,

/ 2 /
X'¥vX =0 antgxgxg.
g
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With this in hand, we can write

V(B) = (X'X) X' wX(X'X)!
2 ! -1 ! / -1
=0 (Z ngxgxg) Z Mg TgXgXy (Z ngxgxg) .
4 4 4
We want to compare this with the standard OLS covariance

estimator .
~ 2 -
V(B) =0 (Z ngxgxfg> .
g

If the group sizes are equal, n; = nand i, = 7 = 1+ (n—1)p.,
so that

V(B) = aZ‘t(Z nxgx'g)_l Z nxgx;, (Z nxgx;)_l
g £ g
= aezt(z nxgx;,)_l
g

~

=tV.(B),
which implies (8.2.4).





