
Goodard v. Google, Inc. Doc. 158 Att. 5

Dockets.Justia.com

http://dockets.justia.com/docket/court-candce/case_no-5:2008cv02738/case_id-203854/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2008cv02738/203854/158/5.html
http://dockets.justia.com/

[i l l Patent Number: 4,763,242
Lee et ai. [45] Date of Patent: Aug, 9, 1988

COMPUTER PROVIDING JXEXIBLE
PROCESSOR EXTENSION, FL.EXIBLE
INSTRUCTION SET EXTENSION, ANI3
M L I C T T EMULATION FOR UPWARD
SOITWARE COMPATIBILITY

Inventors: Ruby B. Lee, Cupertino; Michael J.
Mahon, San Jose, both of Calif.

Assignee: Wewlett-Packard Company, Palo
Alto, Calif.

Appl. NO.: 790,970

Fiied: onU,laSs

Int. a . 4 .. Go6F 9/w
us, a. .. w/2w
Field of Search ... 364/200 MS File, 9W MS File

Referencea Cited
U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS
0041405 12/198t European Pat: Off. .
0092610 11/1983 European Pat. Off. .
0123337 10/1984 European Pat. Off. .

OTHER PUBLICATIONS
Wescon Conference Record, Anaheim, Calif., U.S.A.,
vol. 24, Sep. 16-18, 1980, Bunky: “Enhancing CPU
Performance: Slave, Co-Processor, Smart 1/0 Altema-

Primary Examiner-Gareth D. Shaw
Assimanr Examiner-Debra A. Chun
Attorney, Agent, or Finn-Douglas L. Weller

A computer and an instruction set are presented which
allow for a number of assists to be easily incorporated
into the computer, and which allow for an instruction
set extension. The computer is designed to support
instructions which move data between an assist and a
location, although an assist’s operation and design need

tive~”, pp, 1-8.

1571 ABSTRACT

not be defined at the computer’s date of design. fnstruc-
3,242,465 3/1966 Gloates et al. 340/172.5 tions are mapped to panicular assist, Assist instruc- 4,084,235 4/1978 Hirtle et al. 364/200
4,104,720 8/1978 Gruner 364/200 can be either executed in hardware by an Or
4,205,370 5/1980 Hirtle 364/200 emufated in software via a trap.
4,484,273 11/1984 Stimer e? al. 364/200
4,S14,803 4/198S Agnew et al. 364/200 13 Claims, 6 Drawing Sheets

ASS COMPUTER SYSTEM 101 :
C O P 109 ‘ PROCESSOR I03 $ *

CONTROL UNIT 115 i

T CONTROL BUS 159 -
SFU 107.

INTERFACE 139 Q

\
MEMORY SYSTEM 111 ’ [E- 1 L

COP io9

COMPUTER SVSTE

SFU 107
7 L I I CONTROL U v L

DATA PATH t49 1 I

1

I

MEMORY SYSTEM 1ti

r 2t5

221 \
t

\
\

at Aug. 9,1988 Sheet 3 of 6 9 763

cl/ .
--- I-,

\

Aug. 9,1988 Sheet 4 of 6

c

515

ASSESTS E MULATION
SIGNAL,
BROADCASTS
ASSIST INSTRUCTION,
AND ISSUES

?

INSTRUCTION AND
ADDRESS, OF ASSIST
INSTRUCTION

DECODE NEXT
INSTRUCTION

DELAYED TRAP

TRAP FOR ASSIST
INSTRUCTION

- - - - - _ _ _
T DEASSERTS

t Aug. 9,1988 Sheet 6 of 6

t
1

COMPUTER PROVIDING FLEXIBLE
PROCESSOR EXTENSION, FLEXIBLE

INsTRucIlON SET EXTENSION, AM) IMPLICIT
EMULATION FOR UPWARD S O W A R E

COMPATIBILITY

BACKGROUND
The present invention relates to a computer into

which a number of assists can be easily added without
compromising software compatibility. An assist is hard-
ware which extends a processor’s capability. The pro-
posed computer can support assists that are undefrned at
the computer’s date of design. In addition to being able
to execute a basic instruction set, the computer can
execute one or more extension instruction sets. An ex-
tension instruction set contains instructions that do not
belong to the basic instruction set. The computer can
implement the extension instruction, either executed in
hardware via an assist, or emulated in software via a
trap.

in the prior art, it was either impossible or impracti-
cal to incorporate an assist into a computer, if the mist
was undefined at the comuuter’s date of desim. Incor-

4,763,242
3

prating the assist into thk computer wouldkversely 25
impact datapaths and controls of a processor within the
ccmputer, and would fail to satisfy speed requirements
for both a main processor and the assist. Another ver-
sion of the computer would have to be designed which

In the prior art, a computer sometimes incorporated a
floating-point accelerator as a very specialized add-on
assist. A typical floating-point accelerator had a highly
specialized interface to a processor. This highly special-
ized interface did not allow an incorporation of a differ- 35
ent type of assist.

Xrr the prior art, a limited method was devised
whereby only a very few &ts could be added to a
computer. Software programs written for a f i t com-
puter, the f i t computer including a first main proces- 40
sor and a fust assist, were not portable to a second
computer, the second computer including the fmt main
processor but not the fust assist.

In the prior art, a first computer was designed to
execute a basic instruction set. The first computer suf- 45
fered the disadvantage of being unable to execute exten-
sion instructions defined at a later date. A second com-
puter had to be designed which could execute the exten-
sion instructions as well as the basic instruction set.
There was no upward compatibility; although the aec- fo
ond computer could execute programs written for the
first computer, the first cornmiter could not execute

could more practically incorporate the assist. 30

programs-written for the secoid computer.
In the prior art, a scheme was devised whereby nu-

merous opccdes were reserved within a basic instruc-
tion set for extension instructions. The scheme wm less
than optimal, since too much valuable opcode space in
the basic instruction set was reserved for currently
undefined extension instructions.

In a variation of the scheme just discussed, a second
scheme was devised in which minimal opcode space in
the basic instruction set was reserved for an escape
instruction. The escape instruction indicated that subse-
quent instructions were not to be decoded as part of the
basic set, but as extension instructions, until another
escape instruction was encountered. While the second
scheme solved a disadvantage in which too many o p
codes were reserved for extension instructions, the fmt

L

computer was still unable to execute an extension in-
struction, and a second computer had to be designed.

In the prior art, a computer was designed to run with
an add-on assist either present or absent. If the add-on

5 assist was present in a configuration, a program with an
extension instruction intended for the add-on assist
would be executed in hardware by the add-on assist. If
the add-on assist was absent in the configuration, code
had to be written with a branch instruction instead of

lo the extension instruction. The branch instruction caused
execution to jump to a software routine that would
emulate execution of the extension instruction.

A serious disadvantage of the branch instruction was
that it did not provide software compatiblity. Code

Is written for a first computer that incorporated the add-
on assist was not portable to a second computer that did
not incorporate the add-on assist, unless the code was
completely recomp2ed. Code written for the second
computer had to be completely recompiled if the code

20 was to operate efficiently as possible on the first com-
puter.

Another disadvantage of the branch instruction was
that it did not provide fault tolerance at run-time. No
option for emulation existed at run-time if the add-on
assist failed. If the add-on assist failed at run-time, code
written for the first computer could not be executed.

SUMMARY OF THE INVENTION
In accordance with the preferred embodiment of the

present invention, a computer, including a main proces-
sor, a memory system, and an assist, are presented
which provide for flexible incorporation of additional
assists, which provide for a flexible extension of a basic
instruction set, which provide for implicit emulation of
an extension of the basic instruction set, and which
provide for software compatibility between computers
with different configurations of assists, including con-
figurations with no assists.

An assist can be incorporated into the computer,
provided the assist follows a predefined hardware pro-
tocol, simply by attaching the assist to the main proces-
sor via a set of buses. The assist decodes its own instruc-
tions, so that actual functional operations performed by
the assist can be defined at a later date, The hardware
protocol is set up so that the main processor is indiffer-
ent to the actual number of assist’s incorporated into the
computer, and to any actual functional operations per-
formed by a particular assist. The hardware protocol
operates in conjunction with software emulation so as
to make the main processor indifferent to a presence or
absence of a particular assist within the computer.

The main processor interfaces with an assist in one of
two ways, based upon a datapath used by the assist. An
e s t is defined as either a Special Function Unit, abbre-
viated SFLJ, or as a co-processor, abbreviated COP.

An SFW receives and sends data to the main proces-
sor’s registen. An SFU can be incorporated into the
computer by directly impacting internal register buses
of the main processor. Direct coupling to the main
processor’s internal register buses enables an SFU to
achieve a very high performance level. For an inte-
grated main processor, such as a Very Large Scale
Integrated processor on a chip, an SFO can also be
incorporated by attaching to an external bus, achieving
a reduced performance level, but thereby not directly
impacting the internal register buses of the main proces-
sor.

4763,242
3

A COP receives and sends data to the memory sys-
tem. A memory system is typically either a main mem-
ory or a cache in conjunction with a main memory. A
COP is incorporated into the computer without impact-
ing internal register buses of the processor. A COP is
incorporated into the computer without impacting the
processor's software register allocation and optimiza-
tion problem. The main processor performs address
calculations, virtual memory addressing, and virtual
memory protection checking for a COP.

Assist instructions defrne all data movement allowed
between an assist and another location. The main pro-
cessor decodes and supports a processor field of an
assist instruction. Hardware control and datapath needs
for the first field are built into the computer. The assist
decodes and supports an assist field of the assist instruc-
tion.

The assist instructions are generic in nature; they
define movement of data without regard to functional
operations performed by the assists upon that data This
allows the computer to be easily configured with addi-
tional assists whose operations need not be defined at
the computer's date of design. Opcode space is reserved
within assist instructions so that functional operations
can be defined at a later date.

Four basic opcodes are rewrved within the basic
instruction set for all possible instruction set extensions.
One basic opcode is reserved for SFU extension instruc-
tions, one for COP extension instructions, and two for
COP load and store instructions. Any extension instntc-
tion, with one of these four basic opcodes is called an
mis t instruction.

An extension of the basic instruction set can be ac-
complished by deftning opcude space reserved within
the assist instructions for functional operations to be-
performed by an assist. The assist can be designed to
perform a functional operation which accomplishes an
extension of the basic instruction set. A particular Set of
extension instructions can be identified bv a mau field

5

10

IS

20

25

30

35

within an assist field of the assist instruction. l%e map 40
field is recognized by the assist for whom the assist
instruction is intended.

Since data movement for assist instructions is sup-
ported by the computer, the assist can be easily inconpo-
rated into the computer. The computer can be config- 45
ured with a particular set of assists so that assist instruc-
tions are defined and tailored for a pmcular applica-
tion,

The present invention implements implicit emulation.
If the computer encountem an assist instruction at run 30
time for an assist that is unable to execute, being either
absent or failed, the main processor takes an emulation
trap. Software emulates a functional operation defied
by the assist instruction. If the assist is able to execute,
the emulation trap is not taken, and the assist executes 55
the assist instruction.

The emulation trap is a delayed, implicit trap. The
hardware protocol calls for an assist to acknowledge its
presence and its alive state in order to prevent the emu-
lation trap from being taken. The emulation trap is 60
taken by default if the assist does not acknowledge its
presence.

The assist instructions and the hardware protocol
allow the computer to be configured with a set of assists
enabling an instruction set extension to be executed in 65
hardware. When the computer is configured without a
particular assist, the computer takes an emulation trap
for assist instructions which map to the particular assist,

4
so that those assist instructions can be emulated in soft-
ware.

Upward software compatibility is provided, since via
the emulation trap a configuration without a particular
assist can still run code containing a particular assist
instruction mapped to the particular assist. The implicit
emulation trap and the hardware assists protocol also
provide fault tolerance, since an assist that fails at execu-
tion time implicitly invokes the emulation trap to exe-
cute the assist instructions in software, thereby continu-
ing execution, but with degraded performance. Hence,
the current invention provides not only upward soft-
ware compatibility but also fault tolerant features.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a prefemed embodiment

FIG. 2 is an operational diagram of a typical SFW

FIG. 3 is an operationel diagram of a first typical

FIG. 4 is an operational diagram of a second typical

FIG, 5 is a flow chart depicting steps taken for an

FIG. 6 is a detailed diagram of an assist control bus.

of the computer, an SFU, and a COP.

instruction.

COP instruction.

COP instruction.

emulation trap.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 is a block diagram of a computer configured
with an SFW and a COP. A main processor 103 is con-
nected via a data bus 105 to an SFU 107, a COP 109, and
a memory system 111.

Main processor 103 includes a control unit 115, a
processor functional unit 117, a plurality of registers
119, and a processor bus interface 125. Control unit 115
receives an instruction u7 from memory system 111 via
data bus lo9 and processor bus interface 125.

Memory system 111 includes a plurality of memory
addresses 121. A plurality of words is stored within
memory system 111, each word being located at a cor-
responding memory address. Instruction 127 is just one
instruction among a plurality of instructions located
within plurality of memory a#dresses 121. A word 169,
just one word among the plurality of words, is also
located within plurality of memory addresses 121.

Instruction I27 comprises a processor field 129 and
an assist field 131. Control unit 115 decodes processor
field 129. I f pmcessor field l29 indicates that instruction
127 is a basic instxuction, processor functional unit 117
executes instruction 127, loading or storing any re-
quired operands or results in plurality of registers 119 or
in memory system 111.

If processor field 129 indicates that instruction 127 is
an assist instruction, stores a copy of instruction 127 is
stored in a register among plurality of registers 119, An
instruction space and an instruction offset which indi-
cate a memory address 161 at which instruction 127 is
located are also stored in registers 119. If a data refer-
ence is specified in instruction 127, a data space and a
data offset which indicate a data address are also stored
in registers 119.

Instruction 127 is also transferred to either SFU 107
or COP 109, and control unit 115 directs data move-
ment defined by processor field 129. Assist field 131
includes a map field 133, which maps instruction 1'27 to
SFU 107, to COP 109, or to another assist.

5
4,763,242

6
SFU 107 includes an S 6 control unit 135, an SFU Other SF'U instructions-are defroed with the same

functional unit 137, and an SF'U bus interface 139. SFU major opcode 290, but different minor op field 225,
bus interface 139 passes instruction l27 on to SFU con- allowing other forms of generic data movement be-
trol unit 135. SFU functional unit 137 executes assist tween the processor and any SFU. For example, zero,
field 131. Control unit 115 directs SFU bus interface 139 5 one, or two words may be moved from a processor
via an asaist control bus 159. Control unit 119 directs register among a pluntlity of registers 119 into an SFU.
data movment via a data path 141 between a register FIG. 3 is a detailed diagram of a typical COP load or
$63, among plurality of registem 11% and sm fune store instruction 303. COP instruction 303 includes a
tional unit 137. processor field 305 and an assist field 307. Processor

COP 109 includes a COP control unit 143, a cop 10 field 305 is decoded and executed by main processor
h C t i 0 d unit 14% and a COP bus interface 147, COP 1Q3, and assist field 307 is decoded and executed by
bus interface 147 P- instfuction l27 on to cop con- COP 109. Processor field 305 includes a major op field

wit 14% cop functional Unit $45 executes assist 311, a register source field 313, a register index field 315,
field 131. COntml unit 115 diseGts cop interface and a s p e register specifier 317. Assist field 307 in-

data mOvement via a data path 14g between a Register source field 313 specifies a source register
address 191 and COP functional unit 14S. 323 among plurality of registen 119 within main proces-

5or 103. Register index field 315 specifies an index regis-
resister among plurality of registem 119 and a Mc* ter 325 among plurality of registers 119. Space register

path 149 can move data between a particular memory plurality of space registen 3n,

147 "& &t WntrOl bus 159. Control U& 115 directs 15 cludes a map field 3m and a register target field 321,

Data path move data between a

SFU functional Unit among a P l d t Y Of SFu's. nata 20 specifier 317 specifies a space register 341 among a

address pturality Of addresses and a p r o m o r 103 calculates an effective a d d f a ,
Particular cop functional unit among a plurality Of upon data within wurce register 323, index regis-

ter 325, space register 341, and other data within pro-
Memory address 151, which Stores word 169, is IO- 2 5 cesser field 305, Main processor 103 calculates the ef-

Gated among pludity of memory addresses 121. Mem. fective addrffs to insure that virtual integ- ory addresses are accessed through a memory system
bus interface 153, which is directed by unit 115 rity and protection checking integrity are maintained.
via a memory control bus 155, An emulation trap ban- The effective address is a concatenation of a virtual

address space and an address offset. The virtual address dler 157 resides in memory system 111,
FIG, i s a detail& diagram of a typical sFu instrue- space i s calculated from data within space register 341,

tion 203 sm a processor field and the other data within processor field 305. The ad-
205 an assist field 207. Pracessor field uIs is de- dress offset is calculated from data within source regis-
coded and executed by ter 323, index register 325, and the other data within
field 207 is decoded and executed by SFW 107. Proces- 35 processor
M)r fKd ZOJ includes a major op field 209, a register A word 329 is located in memory system at the effec-

207 includes a map field 213 and a functional op field which includes a plurality of regsten 339. Word 329 is
215. loaded into a target register 337 among plurality of

grouped arnong a plurality of
an assist instruction. Minor op field 225 identifia a COP'S 335. Map fieid 319 maps COP instruction 303 to
particular type of generic to be per- COP 331. Target register 337 is specified by register
formed, in &is instance "store from sm." Register target field 321. Other COP load and store instructions
target field 211 specifies a register 217 among plurality me defined SidlalY, except that the amount of data
of re&ten 119. Major op field ~9 directs prmes- 45 transferred, and the method of calculating the effective

from an address is different. In a COP store instruction, the data
assist, off data bus 109 and into pro- is transferred from the COP to memory SyStem 111.
C m r 103 is indifferent which &t data FIG. 4 is a detailed diagram of a COP instruction 403.
word 219 originates from. M& pwegsor 103 c0-u- COP instruction 403 includes a processor field 405 and
nicates with all assists via a hardware protoco] which H, an mist field 409. Prwessor field 409 comprises a major
supports from 0 to 16 at any given time. me OP code. Assist field 407 includes a rnap field 411 and a
hardware protocol is discussed in greater detail below, functional Op field 413.
in conjunction with FIG. 6. A COP 415 is among a plurality of COP'S 417. Map

An SFU 221 is among a plurality of S m s 223. Map field 413 maps COP instruction 403 to COP 415. Data
field 213 maps SEU instruction 203 to SFU 221. Data op 55 op field 413 directs COP 415 to perform a specified
fieid 215 directs SFU 2 U to perform a specified func- functional operation upon specified operands.
tional operation upon a specified set of operan&. Major FIG. 5 is a flow chart depicting steps taken for an
op field u)9 and functional op field 215 direct SFU 221 emulation trap. Main processor 103 may execute in a
to move data word 219 onto data bus 105. pipelined mode, so that a plurality of pipeline stages for

since main processor 103 does not decode assist field 60 different instructions are performed simultaneously. In
207, and since main processor 103 interfaces with each a step 511, main processor 103 Fetches an instruction
assist in an identical fashion, a second assist can be de- from memory system 111, and control unit 115 decodes
signed at a future date and easily coupled to data bus the instruction. If control unit 115 ascertains in a step
lW and to assist control bus 159. So long as the second 513 that the instruction is a basic instruction, not an
assist follows the hardware protocol in interfacing with 65 assist instruction, processor functional unit 117 executes
main processor 103, functional op field 215 will be able the basic instruction in a step 515. Main processor 103
to direct the second assist to perform a currently unde- returns to step 511; another instruction is fetched and
fined operation, decoded.

COP'S.

M3

processor 103, and
305*

target field 2x1, and a op field 225. h i s t field tive address. A COP 3 1 includes a fUllCtlOIlEl Unit 333,

Major op field 209 identifies SFu d m c t i o n 1n 89 40 E&krs 339. COP 331

103 to move a word 219,
217,

7
4,763,242 a

If control unit 115 ascertains in step 513 that the ated ANUL, and a signal “assist ready” 612, abbrevi-
instruction is an assist instruction, in a step 517 the assist ated ARDY.
instruction and information indicating an address of the AINIT 602 is a signal from main processor 103 for
assist instruction is saved in interrupt parameter regis- timing and identifying “assist cycles.” ADTR 604 is a
ters, among plurality of registers 119. For co-processor 5 signal from main processor 103 for identifying whether
load and store instructions, information indicating the an assist cycle is a data transfer cycle or a command
effective address of an associated data word is also cycle. A W Y 612 is a response signal from an assist for
saved in interrupt parameter registers. In a pipelined indicating that the assist is ready to continue.
processor 103, information is saved in the interrupt AEMU 606 is a response Signal from an assist for
parameter registers in such a way that these registers 10 indicating that the assist is present in the configuration,
contain information relative to the instruction that and therefore does not need to be emulated in software.
caused the intempt, when the interrupt is finally taken. AEXC 608 is a response signal from an assist for indicat-
In step 518, control unit 115 determines if the bit, corre- ing that an operation could not be successfully com-
sponding to the particular assist, in the co-processor pleted. and that an exception trap should be taken to
configuration register is set. At system initialization IS perform any necessary handling.
time, a bit in the co-processor coafguration register is A W L 610 is a response signal from an assist for
set for every co-processor included in the hardware indicating that a next instruction should be nullified.
configuration for this system. The co-processor config- A W L 61Q is typically used in conjunction with having
uration register is one register among plurality of regis- the assist test a condition, and using A W L 610 to nul-
ters 119. If the bit in the co-processor configuration 20 lify a branch instruction should the condition be met.
register is set, then execution continues at step 519, If processor field 129 indicates to control unit 115
otherwise the main processor takes an emulation trap at that instruction 127 is an assist instruction, main proces-
step 531. sor 103 places instruction 127 onto data bus 105 for a

Xn a step 519, control unit 115 asserts an emulation clock cycle. Instruction 127 is mapped to a particular
signal within assist control bus 159, or this signal is 25 assist, and the particular assist, if present and alive, is
normally asserted by a pull-up on that line of the assist expected to recognize a particular value of map field
control bus 159. The assist instruction is broadcast out 133 within instruction 127. The clock cycle is called a
over data bus 105. Main processor 103 issues an implicit, commmd cycle. Main processor 103 asserts AIMIT 602
delayed trap. The implicit, delayed trap is an emulation for the first half of the command cycle. During the
trap; the emulation trap will be taken if, after an interval 30 command cycle, rnai0 processor 103 deasserts ADTR
of time has passed, the emulation signal is still asserted. 604 to indicate that an assist instruction, rather than a
If the assist instruction is mapped to an assist that is data transfer, is coming across data bus 105.
unable to execute, the emulation signal is not deasserted A clock cycle, calted a response cycle, follows the
or pulled down. command cycle. On a falling edge of the response cycle,

If the assist instruction is mapped to an assist that is 35 main procmor 103 samples AEMU 605, ARDY 612,
able to execute, the assist acknowledges main processor AEXC 608, and ANUL 610. If map field 133 maps
103 by deasserting the emulation signal and executing instruction 127 to an assist that i s absent or failed, then
the assist instruction in a step 523. Deasserting the emu- no assist recognizes map field 133, and AEMU 606
lation signal is performed to prevent main processor I103 remains asserted. If AEMU 606 is asserted, main proces-
from taking the delayed trap on the assist instruction. 40 sor 103 rakes an emulation trnp, and the assist instruc-

If main processor 103 ascertains in step 325 that the tion is emulated in software. If map field 133 maps in-
emulation signal i s still asserted, main processor 103 struction 127 to an assist that is present and alive, the
taka a software emulation trap, and emulation trap assist deasserts AEMU 6%.
handler 157 is run to emulate the assist instruction in a If the assist asserts ARDY 612, the assist is indicating
step 531. 45 to main processor 103 that values of AEXC 608 and

Emulation trap handler 157 determines from the assist ANUL 610 are also valid. The assist asserts ARDY 612
instruction which assist was mapped and which opera- to indicate that the assist is ready to continue with a data
tion was desired, in order to jump to appropriate emuia- transfer cycle. If the assist is present, but not ready to
tion d e for emulating the assist instruction. Emulation continue, the assist deasserts both ARDY 612 and
trap handler 157 wastes no time in re-fetching the assist 50 AEMU 606.
instruction or in determining the address of the assist If ARDY 612 is degsserted during the response cycle,
instruction or the address of the associated data word, main processor 103 executes one or more wait cycles.
since pertinent values have already been saved in the At the middle of each wait cycle, main processor 103
interrupt parameter registers among plurality of regis- samples ARDY 612. Wait cycles continue and main
ters 119. Without the interrupt parameter registers, this 55 processor 103 continues sampling until ARDY 612 is
information would no longer be present in processor asscrrted by rhe assist.
103, if processor 105 were a pipelined processor. Following any wait cycles, main processor 103 as-

FIG. 6 is a block diagram showing one possible type serts ADTR 604 throughout one or more data transfer
of assist control bus 159, depicted in FIG. 1, in greater cycles to indicate that a data transfer, rather than an
detail. Main processor 103, SFU 107, and COP 109 are 60 assist instruction, is coming across data bus 105. Main
connected to memory system 111 via data bus 105. Main processor 103 asserts AINIT 602 for a first half of the
processor 103, SFU 107, and COP 109 are also con- first data transfer cycle.
nected to each other via assist control bus 159. Assist When instruction 127 is a “store from SFU and oper-
control bus 159 comprises a signal “assist initiate” 602, ate” instruction mapped to S W 107, SFU bus interface
abbreviated AINIT, a signal “assist data transfer” 604, 65 139 drives data specified by assist field 131 onto data bus
abbreviated ADTR, a signal ‘‘assist emulate” 606, ab- 105. Processor bus interface 125 latches onto the speci-
breviated AEMU, a signal “assist exception” 608, ab- fied data, and moves the data to register 163, specified
breviated AEXC, a signal “assist nullify” 610, abbrevi- by processor field 129.

9
4,763,242

10
When instruction 127 is a “load to SFW and operate”

instruction mapped to SFU 107, processor bus interface
f25: drives data stored in register 163, specified by pro-
cessor field 129. onto data bus 105. SFU bus interface

execute the assist instruction, wherein the main
processor, via the data bus, transfers

the assist instruction to the assist when the assist is

139 latches onto the data and moves the data to SFU
functional unit 137.

Instruction 127 may dir*ect that two words are to be
moved from main processor 103 to SFW 1M. The two
words may be moved in one data transfer cycle, pro-
vided data bus 105 is sufficiently wide, or the two words
may be moved in two data transfer cycles, if data bus
€05 can only transfer one word per cycle.

When instruction 127 is a “store from COP” instruc-
tion mapped to COP 109, word 169 is moved from COP
functional unit 145 to memory address 191. Memory
transaction timing is similar to memory transaction
timing for a basic instruction that stores a word to mem-
ory address 151 from main processor 1W. P~OCXSOT
functional unit 117 translates a location specified by
processor field l.29 into memory address 151. Main
p r v r 103 performs virtual memory addressing cal-
culahons and virtual memory protection checking. Pro-
cessor bus interface 12.5 drives memory address IS1
onto data bus 105 during a fmt data transfer cycle. In a
second data transfer cycle, COP bus interface 147
drives a word onto data bus lM, where the word is
stored in memory system 111. COP bus interface 147
samples memory control bus 155 in order to know when
word 169 may be removed from data bus 103. If mem-
ory system 111 is not ready, memory wait cycles are
inserted.

When instruction 127 is a “load to COP” instruction
mapped to COP 109, execution is simiiar to execution
for a “store from COP“ instruction, except that word
169 is moved from memory address 151 to COP func-
tional unit 145.

When instruction 127 is a “load double word to
COP” instruction mapped to COP 109, execution is
similar to execution for a ”load to COP” instruction,
except that two words are transferred rather than one.
When instruction 127 is a “store double word to COP”
instruction mapped to COP 109, execution is similar to
executioa for a “store to COP” instruction, except that
two words are transferred rather than one.

A final data transfer cycle may be foliowed by a
single recovery cycle. The single recovery cycle pro-
vides data hold time and prevents bus contention with a
following processor cycle. Response cycles for assist
hstructions which do not move any data, such as COP
instructions 403, are also followed by a single recovery
cycle.

’

We claim:
I, A computing device, comprising:
a bus which carries data;
an assist, which can be coupled to the bus and which
can be uncoupled from the bus, including a first
functional means for executing an assist instruction;
a main processor, coupled to the bus, including a
second functional means for executing a set of basic
instructions;
a system memory which contains emulation code

allowing the emulation of the assist instruction;
and,

a communication means, coupled to the main pro.
ceswr and coupled to the assist when the assist is
coupled to the data bus, for enabling the main
processor to determine if the assist is able to

able to execute the assist instruction and wherein
the main processor, using the emulation code
within the system memory, executes

the assist instruction when the assist i s unable to
execute the aspist instruction.

5

2. A computing device as in claim 1, wherein
the assist instruction and its address are saved in regis-

3. A computing device as in claim 2, wherein
a data offset address and a Virtual space identifier for

the assist instruction are saved in registers in the

4. A computing device as in claim 1 wherein the main
processor includes a configuration register means for
indicating whether the computing device has been con-
figured 90 that the assist is coupled to the bus.

5. A computing device tis in claim 4 wherein the
emulation code includes an emulation trap sequence
which directs the processor to emulate execution of the
assist instruction when the configuration register indi-
cates that the computing device has been configured so

25 that the assist is not coupled to the bus and been config-
ured so that the assist is not coupled to the bus, and
when the assist indicates it is unable to execute the assist
instruction.

10
ters in the main processor.

1s main processor.

2o

6. A computing device, comprising:
a bus which CBIliea data;
a fmt assist which executes a first field of a first in-

struction, including:
a first controlling means for controliing the first

field,
a fmt functional means, responsive to the first con-

trolling means, for executing the first field, and,
a first interface means for moving data between the

first functional means and the bus;

35

a memory system, including:
a plurality of memory locations which store data,

a second interface means for moving data between
and,

a
45 first memory location and the bus; and,

a main processor which executes a second field of the
first instruction, including:
a second controlling means for decoding the sec-

ond field and for controlling the first and second
interface means, thereby controlling data move-

’ment via the bus between the first memory loca-
tion and the first functional means, wherein the
main processor performs address calculations
when data is to be moved between the first assist

50

55 and the memory system.
7. A computing device as in claim 6, wherein
the main processor performs virtual memory address-

ing when data is to be moved between the first
assist and the memory system; and wherein

M) the main processor performs memory protection
checking when data is to be moved between the
first assist and the memory system.

8. A computing device as in claim 6, further compris-

a second assist which executes a third field of a sec-
ond instruction, including:
a third controlling means for controlling the third

ing:
65

field,

4,763,242
11 12

a second functional means, responsive to the third
controlling means, for executing the third field,
and,

a third interface means for moving data between
the second functional means and the bus;

wherein the main processor further includes:
a Set of registers which store data, and
a fourth interface means for moving data between

12. A computing device as in claim 11 additionally
comprising a fourth assist, wherein a fourth instruction
sent from the main processor to the fourth assist in-
chdes:

a data movement field which directs data movement

a functional op field which directs the fourth assist to

13. A protocol device which allows communication

wherein the plurality of assists includes a first assist, the
protocol device comprising:

amemorysystem;
a bus, coupled to the memory system, to the main

pr-r, and to each assist in the plurality of
as~bts, the bus being used to transfer data and in-
structions from the main processor to assists in the

a first control means, coupled to the main processor
and to each assist from the plurality of assists, for
indicating when the bus is carrying data as opposed
to instructions;

a first rapon* m a s v coupled to the main processor
and to each assist in the plurality of assists, for
allowing the first assist to indicate its presence to
the main processor when a first instruction field
within a fmt instruction indicates the f i t instruc-
tion is addressed to the first assist;

a second response means, coupled to the main proces-
sor and to each assist in the plurality of assists, for
allowing the first assist to indicate its readiness to
transfer data;

wherein when the first assist becomes detached from
the bus and when the fust assist does not indicate
its presence to the main processor via the first re-
sponse means, the main processor talres a trap and
executes the fmt instruction.

5
between the fourth assist and a location; and,

perform a functional operation.
the bus and a re@ster from the pluality Of 10 between a processor a d a plurlity of registers; and,

wherein the second controhg meam controls the
fourth interface means and the third interface
mM thereby controlling data movement via the
bus between the fmt register and the second fwc- 15
t i o d means.

9. A computing device as in claim 8 additionally

a communication means, coupled to the main process,
for allowing the main processor to determine if a 20
third assist is abIe to execute a third instruction,

wherein the main processor via the bus transfers the
third instruction to the third assist when the third
assist i s able to execute the third instruction and
wherein the main processor emulates

execution of the third instruction by executing a se-
ries of basic instructions when the third assist is
unable to execute the third instruction.

comprising: plurality of assists;

25

'O' A computing device as ffl 'Iaim
by means of a map field within the third instruction,

the third assist is able to recognize the third instruc-
tion as being addressed to the third assist.

11. A computing device as in claim IO, wherein the

a major op field within the third instruction, is able to
distinguish the third instruction from a plurality of
basic instructions. * * * * #

30

main processor, by checking 35

45

5 5

65

UNITED STATES PATENT AND TRADEMARK OFFICE
~ ~ ~ ~ I F I C

PATENTNO. : 4,763,242

DATED August 9, 1988
INVENTOR(S) :

corrected as shown below:

Ruby E . Lee and Richael J .
It is certified that error appears in the above-identified patent'and that said Letters Patent is hereby

C o l m 7 , Line 56, "if processor 105 were a pipelined" should read

-- if processor 103 re a pipelined ---;

10, Lines 26 through 27 , "bus and been configured so that the

assist i s not coupled to the bus, and" should read -- bus and ---;

Column I I , Line 19, ' in process'' should read --- i n processor ---.

