
Goodard v. Google, Inc. Doc. 158 Att. 6

Dockets.Justia.com

http://dockets.justia.com/docket/court-candce/case_no-5:2008cv02738/case_id-203854/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2008cv02738/203854/158/6.html
http://dockets.justia.com/

[I 11 Patent Number: 4,514,803
Agnew et al. [45] Date of Patent: Apr, 30, 1985

[541 hi ETHODS FOR PARTITIONING
MAINFRAME INSTRUCTION SETS TO
IMPLEMENT MICROPROCESSOR BASED
EMULATION THEREOF

[75] Inventors: Palmer W. Agnew, Owego; Joseph P.
Buonomo, Endicott: Steven R.
Houghtaien, Endicott; Anne S.
Kellerman, Endicott; Raymond E.
Losinger, Endicott; James W.
Vatashinas, Endicott, all of N.Y.

[73] Assignee: InternationaI Business Machines
Corporation, Armonk, N.Y.

[21] AppI. No.: 371,634
1221 Filed: Apr, 26, 1982

1511 Int. 63.3 .. GMF 9/22
1521 U.S. Q. .. 364/200
[SS] FieM of Search .,. 364/200 MS File, 900 MS File
~ 5 6 1 References Cited

U.S. PATENT DOCUMENTS
4.126.R76 12/1978 Ames et al. 364/200
4,354,225 10/1982 Friedcr el al. 364/200
4,356.546 10/1982 Whitaide et al 364/200

OTHER PUBLICATiONS
Microprocessor Implementation of Main frame Processors
by Means oj’Architeciure Partitioning-Agnew et a].-IBM
Journal RCD, vol. 26, No. 4, 1962.

PN‘mary Examiner-Harvey E. Springborn
Airorney. Agent, or Firm-Saul A. Seinberg

t571 ABSTRACT
Methods of applying LSI and microprocessors to the
design of microprocessor-based LSI implemeiitation of
mainframe processors are described. A mainframe in -
struction set is partitioned into two or more subsets,
each of which can be implemented by a microprocessor
having special on-chip microcode or by a standard off-
the-shelf microprocessor running programs written for
that purpose. Alternatively, one o r more of the subsets
can be implemented by a single microprocessor. In
addition, a subset of the partitioned instruction set can
be implemented by emulating software, by off-chip
vertical o r horizontal microcode, or by primitives. But,
however partitioning is implemented, the end result
thereof is to keep the critical flow paths, associated with
the most frequently used instruction subser, as short as
possible by constraining them to a single chip. The
application of this method requires partitioning that
makes each identified high performance subset execut-
able on one microprocessor in the current state of tech-
nology, a way to quickly pass control back and forth
between all of the microprocessors, a suitable way to
pass data back and forth between all of the microproces-
sors, and a technology in which it is econoniically feasi-
ble to have several copies of a complex data flow and
control store mechanism.

27 Claims, 8 Drawing Figures

BUS, 4 --f-

atent Apr. 30,1985 Sheet 1 of4

I PROCESSOR 81 1 ~.~AIT"ES 1
,REGIS ERS (FOR P l h R11

BUS, 4 i

FIG. 1

i I

i
C O N T R O L DECODERS I

9 51 3

I

I DATA FLOW I

I

I

FIG. 2

atellt Apr. 30,1985 Sheet 2 of 4 4,s 1

PROCESSOR SELECTION LOGIC 1ou
I 1

SECONDARY SECONDARY O F F - T H E -
PROFESSOR PROCESSOR SHELF
(FLOATING SECONDARY
POINT 1 PROCESSOR

FIG.

FIG. 8

PRIMITIVES

I 370 P R O G R A ~ S 1

I

Sheet 3 of 4

I

1 I I
I i A4 I i

\
\
\
\

FIG. 5

ateIlt Apr, 30,1985 Sheet 4 of 4 4,s

FIG. 7

4,5 14,803
1 2

other LSl chips which implement the interfaces be-
tween the microprocessor and the memory, keyboard,
display tube, disks, printers, and communication lines.
This is an example of partitioning a digital system's

THEREOF 5 function for imrdementation bv several LSI chips. This

METHODS FOR PARTITIONING MAINFRAME
INSTRUCTION SETS TO IMPLEMENT

.MICROPROCESSOR BASED EMULATION

functional partitioning method is simple, well known,
and straightforward because the instruction processing BACKGROUND OF THE INVENTION

1 . Field of the Invention function can be accomplished entirely by a single chip.
This invention is concerned with methods for parti- Methods of applying LSf technology to the imple-

fioning the large instruction sets of mainframe cornput- l o mentation of still more powerful digital system>, in
ing systems in order rhar such partitioned se[s can be which the state of the LSI art does not permit imple-
run by a plurality of microprocessors. More particu- menting the entire instruction processing function on a
larly, this invention relates to methodology for parti- single LSI chip, are far less obvious. A first approach
tioning mainframe instruction sets to obtain the most would be simply to wait until technology advances far
efktive cost/perfonnance emulation of the mainframe l 5 enough to contain a desired architecture, of a given
instruction set through microprocessor implementation complexity, on a single chip. Unfortunately, this ap-
thereof. proach has its pitfalls. For example, the architecture of

2. Description of the Prior Art each generation's state-of-the-art microprocessor was
One noteworthy characteristic of this era Of inte- determined by the then current capability of the tech-

grated circuits iS that higher ~ r f o m a n c e computers 2o nology, which explains why today's leading micro-
Ust: lower kVelS Of integration. This iS the result Of processors lack floating-point instructions, The
individual optimizations across the performance spec- disadvantage of !his method is that i t pre-
trum. Since the price of a state-of-the-art silicon chip is, cludes implementing a pre-defined that
on balance, independent of the level of integration, the does not happen to fit within o,,e chip i n the current

super computers. One result of this situation has been lems in having each generation of micro-

that payment of twice as much for a computer would LsI in the larger,

price per gate is lower for microcomputers that for 25 Echno]ogy, This has led 10 the major wftware prob-

the Of Law which processors implement an asentia]ly new architecture,

provide four limes
meant that One

Another method of much processing power' This more complex processing systems is to partition the
achieve the best cost/perfor- 30 instruction execution function xf that the data flow is on mance from the Largest computer that could be justified

when its reSOurCeS were shared among many one chip and the microcode that controls the data flow
users, As amended by the most recent is on one or more other chips. This method is the obvi-

now implies *hat best cost~wr~omance will bc 35 data flow and to the control store. Unfortunately, this

an application in an acceptable time. mentation, namely, that of having the control store and
a major the data flow that it controls, both on the same chip. l o

role in the cost/performance improvements of ail corn. most processors, the critical path runs from control
puting systems, particularly in reducing storage costs. 40 store, to data flow, to arithmetic result, to address of the
However, LSl has been much more effective in r d u c - next control store word. Its length, in nanoseconds,
ing the COS(S of low performance processom having determines the microcycle time and hence the instruc-
simple architectures than of high performance proces- tion Processing rate of the Processor. For a given Power
sors having complex architectura. This property of dissipation, a critical path that remains wholly on one
LSI favors implementing high performance computers 45 LsI chip results in a shorter cycle rime than that of a
using large numbers of low performance processors and critical path that must traverse several inches of con-
storage chips. However, this implementation is difficult ductor and a number of chip-to-card pin connections.
to apply to existing complex architectures intended for This off-chip microcode partitioning method also
uni-processors that process a single s t r a m of instruc- requires what LSI technology is least adept at provid-
tions. This limitation is best understood by considering 50 ing, namely, large numbers of pins. The data flow chip
the basic nature and effect of LSI on digital designs. needs at least a dozen pins to tell the control store what

Recent improvements in the cost/performance of microword to give it next. Even worse, the data flow
digital computer systems have been driven by the avail- chip needs from 16 to 100 pins to receive that control
ability of increasingly denser LS1 chips. Denser LSI word. A processor using this method is often limited to
memory chips, with reduced costs per bit stored, have 5s roughly 16-bit control words, and hence a vertical mi-
direct and obvious applicability to digiral systems over croprogram that can control only one operation at a
the entire application range from hand held calculators time, whereas a far higher performance processor could
to super computers. Denser LSI logic chips, however, be designed if a]@-bit control word were available. If
apply most naturally to digital systems near the low end available, such 100-bit control words would permit a
of the performance and complexity spectrum. M) horizontal microprogram that can control several oper-

LSI, as previously noted, applies naturally ro very ations in each micro-cycle and thus perform a given
small digital systems. The logic portion of a hand calcu- function in fewer cycles. I t should be noted chat the
lator, microwave oven, or wrist watch, including the off-chip microcode partitioning method has been partic-
necessary memory and 1/0 device interfaces, can be ularly successful when applied to bit-slice processors, in
implemented on a single LSI microcomputer chip. A 65 which the data flow is not reduced to a single chip, but
small personal computer can be readily realized by rather is a collection of chips, each of which implements
using a single microprocessor chip, to implement the a particular group of bits thoughout the data flow. Bit-
entire instruction set of the computer, together with slice processors usually employ bipolar technologies

advances and designs, the reversat of Grmch's Law

obtain& from the smallest computer that will perform

ous appljcation Of L s l technology, separatek to the

method relinquish@ the advantage of Lsl imple-

hrge scale integration Or LSI h a

4.5 14,803
3

whose densities are limited by the number ofgates avail-
able, or the ability to cool them, rather than by the
number of pins on the chips. The off-chip microcode
partitioning method applies to FET implementations
only in more unusual cases where many pins are avail-
able and the chip density happens to exactly match the
number of gates needed to implement the data flow of a
desired processor. The Toshiba T88000 16-bit micro-
processor happens to meet these conditions. Such an
implementation can be best viewed as a bit-slice design
in which the implementable slice width has widened to
encompass the entire desired dataflow.

Each major microprocessor manufacturer has faced
the need to implement an architecture more complex
that can be put onto a single LS1 chip. Some needed to
implement pre-existing architectures in order to achieve
software compatibility with installed machines. Others
sought to enhance the functions of existing successful
one-chip microprocessors by adding further instruc-
tions.

For example, Digital Equipment Corporation needed
a low-end implementation of their PDP-I 1 minicom-
puter architecture. They chose the off-chip microcode
partitioning method. The result was the LSI 1 1 four-
chip set manufactured firsr by Western Digital Corpo-
ration and then by Digital Equipment Corporation it-
self.

Intel Corporation needed to add hardware computa-
tional power, particularly floating-point instructions, to
its 8086 microprocessor systems. For this purpose, they
developed a “cc-processor”, the 8087. A processing
system containing both an 8086 chip and an 8087 chip
operates as follows. The chips fetch each instruction
simultaneously. If the instruction is one that the 8086
can execute, it executes the instruction and both chips
fetch the next instruction. If the instruction is one that
the 8087 executes, the 8087 starts to execute it. I n the
usual case where a main store address is required, the
8086 computes the address and puts it on the bus shared
with the 8087. The 8087 uses that address to complete
execution of the instruction and then signals the 8086
that it is ready for both ofthem to fetch the next instruc-
tion. Thus, each chip looks at each instruction and exe-
cutes its assigned subset, but only the 8086 computes
addresses .

Ziiog Corporation similarly needed to add floating-
point instructions to its 28000 microprocessor and de-
veloped an Extended Processing Unit or EPU. A sys-
tem containing a 28000 and one or more EPUs works as
follows. The 28000 fetches an instruction. If the 28000
can execute the instruction, it does so. Otherwise, the
28000 issues a request for service by an EPU and
supplies an identifier (ID) that i t determines by examin-
ing the instruction. One EPU recognizes that ID as its
own and begins executing. The EPU can use special
wires to the 28000 to instruct the 28ooO to move neces-
sary data back and forth between the EPU and the main
store. The 28000 proceeds to fetch and execute more
instructions while the EPW is working, and o n l y stops
EO wait for the EPU if it requests service by the same
EPU while that EPU is still busy. Thus, i t is the respon-
sibility of the 28000 to start the EPU and respond to
commands from the EPU. A great deal of execution
overlap is possible in such a system.

National Semiconductor Corporation had a similar
requirement to add floating-point instructions to its
NS-16000 microprocessor systems. It called the NS-
16oQo a “master” and called the computational proces-

5

IO

15

20

2 5

30

35

40

45

50

55

HI

65

4
sor a “slave”. In a system containing a master and a
slave, the master fetches instructions and executes them
if it can. When the master fetches an instruction it can-
not execute, it selects a slave to begin execution. The
master sends the instruction and any needed data to the
slave, waits for the slave to signal completion, receives
the result, and proceeds to fetch the next instruction.
Thus, the master never overfaps its execution with the
slave’s execution and is responsible for knowing what
the slave is doing and what it needs.

Data General Corporation needed an LSI implemen-
tation of its Eclipse minicomputer architecture. The
resulting MicroEclipse family employs a one-chip pro-
cessor that contains the data flow as well as the horizon-
tal (35-bit) and vertical (18-bit) microcode for executing
the most performance-critics1 instructions in the archi-
tecture. This processor can call for vertical microwords
from an off-chip control store, as necessary, to execute
the rest of the instructions in the architecture by making
use of the on-chip horizontal microwords. This is a
variant of the other approaches described above with
some of the advantages of both the off-chip control-
store method and the instruction-set partitioning of a
main frame instruction set method.

Designs that partitioned off 1/0 functions for imple-
mentation on dedicated microprocessors were common
and none of the advanced microprocessor partitioning
methods previously discussed had yet appeared when
the present invention was conceived. Partitioning of
functions within a central processing unit for implemen-
tation on separate processors had been employed in
super computers. Their goal was separate execution
units for fixed-point, floating-point, and perhaps deci-
mal instructions, that could overlap execution to
achieve maximum throughput.

OBJECTS A N D SUMMARY OF T H E
INVENTION

Accordingly, i t is a principal object of the present
invention to provide methods for implementing large
system instruction sets in a manner that minimizes the
critical path.

I t is also a principal object of the present invention to
provide a method of implementing large and/or com-
plex instruction sets in a manner that retains the critical
path on one LSI chip.

It is another object of the present invention to pro-
vide methodology for implementing large and/or com-
plex instruction sets in an efficient manner that takes
maximum advantage of LSI technology without the
need of providing a very large number of different
cusrom chips.

These and other objects of the present invention in
using LSI to implement an architecture that is too large
or complex to implement on one chip are realized by
partitioning the instruction set of the architecture itself
into subsets that are each microprocessor implemented.
This method of utilizing select architectural subsets
preserves the main advantage of a one-chip implementa-
tion. namely, keeping each critical path o n a single chip.
For each subset of the instructions, for which rxecurion
time is important to system performance, the corre-
sponding microprocessor chip contains the data flow
path and all elements, including registers, necessary for
the execution of that subset as well as the microcode
that controls execution. The application of this method
requires partitioning that makes each identified impor-
tant subset f i t on one microprocessor in the current state

5
4 3 14,803

6
of technology, a way to quickly pass control back and fore they would permir implementation of mainframe
forth between all of the microprocessors, a suitable way architecture on a single chip.
to pass data back and forth between all of the micro- As used herein, the terms "mainframe architecture"
processors, and a technology in which it is economi- or "mainframe instruction set" identify or refer tO the
cally feasible to have several copies of a complex data 5 architecture or instruction set of general purpose digital
flow and control store mechanism. computers of the type that have a rich and varied in -

struction set, typically several hundred in number, a
BRlEF DESCRIPTION OF THE DRAWINGS rekatively wide word size, typically four bytes, and a
The invention Complete methodology for handling exception condi-

preferred examples thereof. with reference to the ac- 10 tions. The IBM 4331, manufactured by International
companying drawings wherein: Business Machines Corporation, is considered to be a

FIG. 1 schematically illustrates a partitioned main- such a mainframe computer at the low end of the spec-
frame instruction set in accordance with the present trum. Further, as Used herein, "SYstm/370" is a term
invention, %id partitioned set having overlapping that identifies a range of computers, also manufactured

1s by International Business Machines Corporation, the subsets;
FIG, 2 the path of a details of which are well known and publicly docu-

definition of a mainframe. In addition, as used herein, comprehended by the present invention;
schematically depicts another the term "critical path" defines a path that runs from the

mainframe instruction Set in accordance with the pres- 20 control store, to data flow, to arithmetic result, to ad-
enl invention, said partitioned instruction Set having dress of the next control store word. Its length, in nano-

seconds, determines the microcycle time and hence the four subsets, three of which are implemented by on-chip
microcode and the other of which is implemented by instruction processing rate of the processor. For a given

power dissipation, a critical path that remains wholly on
25 one LSl chip results in a shorter cycle time than that of higher level instructions stored in memory chips;

mainframe instruction set in accordance with the pres- ductor and a number of chip-to-card pin connections,
ent invention, said partitioned instruction set having The following descriptions of several approaches to

chip microcode and the other of which is implemented 3o mentation are limited to the processing ~ r -
by higher level instructions stored in memory chips; tion of a computer, provides a local bus

FIG. S schematically depicts a further partitioned within the instruction processing portion on which one
mainframe instruction sei, partitioned in accordance or microprocessor chips can communicate with
with the present invention, said partitioned instruction each other and a local store, b c h approach as-
set having only one on-chip implemented subset; 35 sumes that the local bus can be connected to a global

FIG. 6 schematically illustrates another partitioned bus to allow the instruction com-
mainframe instruction set, with said partitioning being municate ,&h 110 de,&= and main memory, other
implemented in accordance with the present invention times, the local bus i s disconnected from the global bus
by Placing Predetermined vertical micrmode e k w h e r e so that separate communications can occur Over the
than on the implementing microprocessor chip;

FIG. 7 schematically shows yet another partitioned
mainframe instruction set, with said partitioning being A. T w o Overlapping Subsets
implemented in accordance with the present invention ne first approach to partitioning a mainframe archi-
by placing predetermined horizontal microcode else- tecture employs two specially microcoded micro-
where than on the implementing microProcessor chip; 45 processors AI and B1 that implement overlapping sub-
and sets of the architecture, as schematically depicted in

FIG. 8 scheniaticdlly depicts still another partitioned FIG, 1, Each of [he microprocessors is provided with
mainframe inStI'UCtiOn set, with said partitioning being on-chip microcode that replaces the standard micropro.
implemented in accordance with the present invention grams that are usually found in a 48000. This overlap-
by Placing one subset and a c o h 3 i o n of Primitives on 50 ping emulation is achieved in the following manner.
the implementing microprocessor chip. The mainframe architecture is partitioned into three sets

named PI, Q l and R1, with most of the high-frequency
use instructions being in set PI. DESCRIE'TION OF THE PREFERRED

As employed in this description, the terms "most EMBODIMENT
Mainframe architecture can be microprocessor im- 5s frequently used instructions" or "high-frequency use

Plemented in many ways with any one or more specific instructions'' or m y other term having similar connota-
goals or criteria in mind. The goal of the Present inven- tion refers to those instructions in the entire set that are
tion is to optimize cost/performance, not performance, used the most when a typical group of user programs is
at the low end of the mainframe spectrum. TO achieve run on a mainframe and the resulting instruction mix is
that end, it was decided lo use a microprocessor that 60 surveyed. It has been found that at least 70%, and usu-
was general purpose in design, that was significantly ally 75%, of such frequently used instructions can be
microcoded thereby allowing architectural tuning and grouped in the key or prime subset, subset P1 in this
that had an appropriate number of 32-bit general pur- approach, and will account for approximately 95% or
pose registers. Motorola's 16 bit processor, the 68000, more of use of the computing system.
was an excellent choice that fit this description rather 65 The special microcode referred to above i s written
well. T h i s MPU implementation approach was selected for the cornbination of sets P1 and Ql to reside in pro-
due to projections that HMOS and comparable FET cessor A I and microcode is written for the combination
technologies would require a wait of several years be- of sets PI and R l to reside in processor €31, as shown in

be described furtiler, by way of

computing system, in particular, the critical path as i t is mented, that also fall within the S O P of the foregoing

schematica"y shows another partitioned a critical path that must traverse several inches of con-

two subsets. only one Of which is by On- the of sing]e ,-hip mainframe imple-

40 two buses.

4,5 14,803
7 8

FIG. 1. At any one time, only one of the processors is whether each such instruction would affect its internal
"active", and the other processor is "passive". Only the values other than the 1-counter and Condition Code
active processor fetches and executes instructions and (CC). If so, the passive processor would set a bit indicat-
controls the bus. There is no contention between the ing that it must read internal values from the mailbox
processors. 5 when it again becomes the active processor. If i t be-

This approach functions in the following manner. comes the active processor when this bit i s still reset,
Assume that the last several instructions have 811 been then the passive processor would read in only the I -
either in set PI or in set Q1. Thus, processor A I is active counter and CC values when i t thereafter accessed the
and processor B1 is passive. Note that the internal Val- mailbox. This strategy often reduces the time required
ues of processor A1 (I-counter, general purpose regis- 10 to swap the active and passive processors, although i t
ters, condition code, etc.) are up-to-date, and the inter- does not reduce the frequency of swapping.
nal values of processor B1 are not. If the next instruc- It should be noted that the foregoing partitioning
tion is in set R1, processor A1 fetches this instruction method keeps the critical path of either microprocessor
and performs the following operations: chip to an absolute minimum, since there is no deviation

I , i t places all of its internal values, that processor B1 15 from the path shown in FIG. 2. As used herein, the
might need in order to execute any instructions in "critical path" in all of described approaches defines a
sets P1 or R1, into a mailbox in a local store; path, as shown in FIG. 2 by way of example, that runs

2, it taps processor BX on the shoulder, telling it to from the control store, to data flow (the dashed box), to
become the active processor, that is, to read new arithmetic result, to address of the next control store
internal values from the maiibox and to then exe- 20 word. The length of the critical path, in nanoseconds,
cute instructions as long as instructions remain in determines the microcycle time and, hence, the instruc-
set R1 or set PI; and tion processing rate of the processor.

3. i t becomes the passive processor until, sometime B. Four Subsets, Three Microcoded later, it feels a shoulder tap from processor B1
telling i t IO redd internal values and execute an 25 The second approach to partitioning, employs four
instruction in set Q l and then continue executing microprocessors as shown in FIG. 3. Three of these, a
all instructions up to the next instruction in set R1. primary processor A2 and two secondary processors,

The sets PI, Q1, and R1 are selected based on the BZ and C2, are Motorola Corporation 68oooS with spe-
following criteria. First, all of the high-usage instruc- cial onch ip microprograms that replace the 68000's
tions are placed in set PI, which is common to both 30 standard microprograms. The first of these specially
processon, thereby greatly reducing the frequency of microcoded processors A2 is utilized to implement I-
swapping the active and passive processors. This is cycles (instruction fetch and decode and effective-
desirable because, between swaps, instructions are exe- address calculation) for all instructions, and E-cycles
cuted as fast as if they were all implemented in the (instruction execution) for the fixed-point, load, and
microcode of a single processor. Second, the frequency 35 branch instructions. The register space of this processor
of processor swaps is reduced still further ifsets Q1 and is used for the general purpose registen (GPRs). It
R1 are selected in such a way that instructions in these should be noted that its on-chip microcode implements
two sets seldom interleave with each other. One partic- all functions that make heavy use of the GPRs, so the
ularly suitable instruction set partition scheme is to have critical path remains on and is contained within one
set P1 contain only fixed-point, branch, and load in- 40 chip. The second of the special microprocessors 8 2 is
structions, have set Q1 contain only floating-point in- employed to implement E-Cycles for floating-point
structions, and have set R1 contain only decimal and instructions. Half of the register space in this micro-
privileged instructions. This selection satisfies both cri- processor is used for the floating-point registers (FPRs)
teria. First, the fixed-point. branch. and load/store in- and the other half is used for work space. Again, the
structions represent about 75% of the execution time in 45 microcode is o n the same chip as the registers and, of
a typical mainframe instruction mix. Second, although course, the data flow that i t controls. An alternative
there is frequent interleaving of floating-point, branch, design employs a different microprocessor chip that can
and load instructions with either fixed-point instructions execute floating-point instructions faster because its
or decimal instructions, there is much less frequent data flow is wide enough to process most common
interleaving of floating-point instructions with decimal 50 floating-point variables in parallel. The third of the
instructions. Therefore, there is relatively little perfor- specially coded microprocessors C2 is used to handle
mance lost to swapping active and passive processors if rhe E-Cycles for decimal instructions. All of the register
this selection of P1, QI, and R1 is made. In fact, a need space in this microprocessor is available for work space,
for both floating-point and decimal instructions in the since decimal instructions have storage-to-storage for-
same application is sufficiently rare that special-purpose 55 mat.
systems containing only one of microprocessor A1 or The fourth microprocessor DZ is off-the-shelf, that is,
microprocessor B1 could be attractive. i t contains the standard Motorola microcode that imple-

If a selection is made in which instructions in sets Q1 ments the instruction set of the 68000. The part of the
and R1 frequently interleave. but have rather indepen- System/370 architecture not implemented by micro-
dent internal value modification characteristics. then an W) code, namely, privileged instructions, exception o r
additional manipulation could be used to shorten the error conditions, address translation misses, and inter-
processor swap overhead time. This would be to have rupt handling, are simulated by sequences o f 68000
the passive processor actually executing instructions in instructions that are stored in a separate local store,
set PI along with the active processor, listening to the rather than on a microprocessor chip. This is appropri-
bus, and updating its internal values, but not controlling 65 ate because these instructions and functions are used
the bus or affecting any external values. In addition, the infrequently so maximum speed is not required, are
passive processor would decode those instructions not error-prone so early models should have them in easily
implemented in i ts own microcode just enough to see changed PROMS, and are voluminous so they can be

4 s
9

written more economically in the relatively high-level
68000 machine language rather than in Ihr very low-
level h80@3 horiZOnta1 microcode language.

A system containing these four microprocessors op-
erates as follows. The first or primary microprocessor
A2 fetches an instruction. If i t can execute the instruc-
tion, il does so. If not. the wimary hands off control to

4,803
10

mixes. Therefore, the time to pass control from the
primary processor to the secondary processor, and
back, is relatively small. The secondary processor
carries out the necessary processing under control of

5 code contained in the local store. The same local store
contains other registers, such as the floating point regis-
fers, and the mailboxes in which the processors leave

one of the other or secondary m&oprocessors, B2 or instruction codes, operand addresses, condition codes,
C2. This involves, first, passing necessary data such as and other necessary data as they pass Control back and
the operation code and effective address in predefined I O forth. Control of the two processors IS simple because
IOcdl store locations and, second, selling a new value only one of them is ever running at any one time. There
into the four-state circuit (Quatch) whose stale deter- is no overlap and no bus contention. Either processor
mines which microprocessor has control of the local can pass control to the other by inverting the state of
bus that connects all four microprocessors and their the two-state latch that determines which of them is
local store, in parallel, to the rest of the system. The I5 granted use of the bus.
selected secondary runs, with full control of the local It is important to note that a state-of-the-art micro-
bus and full access to the main store and I/O system, processor, the Motorola 68000, has been used to suc-
until i t has completed execution of the instruction it was cessfully implement a reasonably high-level machine
given. Then, it sets the original value back into the language. This is the language in which most of the
Quatch, handing control back to the primary. At this 20 mainframe architecture is coded when using this ap-
point, the primary looks at a return code in local store proach to partitioning. Development of this code is
and proceeds to fetch the next instruction, or passes rapid and inexpensive, in comparison to writing in a
control to the off-the-shelf secondary microprocessor low-level microcode Language. Moreover, the code
for instruction error handling. Note that this mechanism resides in local store where i t is easy to change, in com-
for passing control allows a secondary microprocessor 25 parison to microcode residing on a microprocessor
responsible for floating-point or decimal instructions to chip. The corresponding disadvantage is that code im-
call on the off-the-shelf secondary to complete an in- plementing instructions tend to run longer than micro-
struction that detected an error. Thus, the error han- code implementing the same instructions. Therefore,
dling function, which i s voluminous and not critical to there is a performance imbalance between the high-
performance, need not occupy valuable control store 30 usage instructions, which are implemented in micro-
space on the floating-point secondary chip. code, and the low-usage instructions, which are impie-

mented in code.
.

The desirability of this approach’s partitioning of the
System/370 architecture can be seen by noting that the
urimarv urocessoc runs more than 75% of the time D. Subset With Emulation . . - .
when executing typical job mixes, and has to hand only 35
one instruction in twenty over to a secondary proces-

The fourth approach relies heavily on software to
implement parts of the architecture that cannot be

sor.

C . T w o Subsets, One Microcoded

placed on a single microprocessor chip, as is illustrated
in FIG. 5. In using this approach, one first defines a
suitable subset P4 of the mainframe architecture, imole-

The third approach 10 partitioning i s similar to the 40 ments this subset as the “machine” architecture of-the
second, but only employs a single speciaIIy microcoded microprocessor chip, and then writes a first layer of
microprocffsor A3 and a standard coded microproces- software to raise the level of the subset to the level of
sor B3. This approach combines the excellent cost/per- full mainframe architecture. The subset P4 must include
forrnance of on-chip microcode for the most critical sufficient instructions and functions to enable the first
functions with the flexibility, extendibility, and low 45 layer of software to sirnulare the rest of the mainframe
development cost of off-chip microprocessor code for architecture, including preservation of system integrity.
less critical functions. It uses the structure shown in In some applications, no such first software layer is
FIG. 4 and works as follows. Processor A3, called the necessary. It might be possible to run some System/3M)
primary processor, contains the general purpose regis- software, that which does not use new functions intro-
ters (GPRs) and tbe microcode for all functions that 50 duced in System/370, directly on the machine interface
make heavy use OC GPRs. It performs I-cycles for all of the microprocessor chip. The selected subset might
instructions. It aln, performs E-cycles for the most suffice for many OEM type applications, such 8s intelli-
frequently used instructions, that is, for almost all in- gent terminals, intelligent printers, and test-equipment
structions except floating-point, decimal, and privileged control. Applications in turnkey “applications ma-
instructions. i n a typical instruction mix, the instruc- 5 5 chines” could be written for the subset with customers
lions that the primary processor executes constitute or users never knowing that the subset was there. In
about 95% of the instructions by freqnency of OCCUJ- other applications, missing instructions can be replaced
rence and about 5% of the instructions by execution by subroutine calls at compile time. In the remaining
time. Because the primary processor also performs I- applications, the operating system, as shown in FIG. 4,
cycies for all instructions, it actually runs more than ho can have a first layer that handles “invalid operation”
50% of the time. program interruptions by simulating the missing in-

The primary processor A3 is also responsible for StJUCtiOflS instead of passing these interruptions up to
detecting instructions for which i t does not contain the the next-higher layer.
execution microcode. It hands over control to the sec- This solution of the problem of insufficient control
ondary processor f33 to complete such instructions. 65 store space has the advantages of minimal hardware
Most of the decimal, floating-point, and privileged in- development cost, risk, and time, as well as excellent
structions do a relaiively large amount of data process- product cost/performance for applications that employ
ing or are used very infrequently in typical instruction only the selected subset. However, it has the disadvan-

43 14,803
11 12

tages of a large mix imbalance in any sort of software
simulation of missing instructions, and an increased
maximum interrupt latency time,

just before the data bus or other dedicated pins are used
to bring the next vertical microword on chip or by
using the branch control fields of the horizontal mi-
crowords to select just the desired status information

5 and bring off of the chip just the low two bits of the E. Off-Chip Vertical Microcode
The three remaining approaches employ two levels

of microcode. The fifth approach, shown in FIG. 6, has Note that most horizontal microwords will probably
the advantages of using two levels of microcode with be used by both on-chip and off-chip vetical mi-
different w,idths. Current microprocessors achieve ex- crowords. However, some specially written horizontal
cellent cost/performance by allowing a single chip to 10 microwords will have to be put onto the chip just for
contain both the control store and the data flow that it the use of the off-chip vertical microcode. That is, the
controls. Their cost/performance is further improved if microprocessor, as seen by the off-chip vertical control
the control store is wide, or “horizontal”, rather than store, should interpret a thoroughly general and flexible
narrow or “vertical”. A wide control store eliminates vertical microcode language. This provides the ability
most decoding, so it reduces both complexity and prop- 15 to implement a complex mainframe architecture. The
agation delay. In addition, a wide control store can on-chip vertical microcode provides very high perfor-
control several simultaneous operations, so it improves mance for the most-frequently-used portions of that
performance. However, a wide control store usually architecture.
needs to contain more bits than a narrow one in order to Other advantages of this method of partitioning mi-
implement a given function. As used herein, the terms 20 crocode are that it allows microcoding for high speed,
“narrow” or “vertical“ storage or microcode are em- since coding for smallest size is not necessary, it allows
ployed io signify that a use of a word length on the off-chip vertical microcode, written for a first product,
order of 16 bits, while the terms “wide” or “horizontal” to be put in the on-chip vertical microstore in subse-
signify a word length on the order of 100 bits. In be- quent products whose microprocessors have larger
tween these two, although not used herein, is a mid- 2 5 Read Only Memory (ROM), and it encourages a micro-
range word length of approximately 32 bits. programming methodology of first selecting a set of

One common solution to the problem of a large wide useful horizontal microwords, and then stringing them
control store, has been described with reference to the together with vertical microwords, which increases
Motorola 68000 microprocessor. This solution is based microprogrammer productivity.

address Gf the next off-chip microword.

. -
on noting that the infoimation in a wide control store is 30
highly redundant; Le., many control words have bits
that are identical. The solution is to have both a wide

F, Off-Chip Horizontal Microcode
The sixth auDroach, shown in FIG. 7, emdovs two

horizontal store and a narrow vertical store. The hori- sets of microwords that have the same width.’One set is
zontal store contains the few, non-redundant control bit on the microprocessor chip and executes very rapidly.
patterns required by the data flow. The vertical store 35 The other set is in an external store and can be very
contains the many bit patterns that are necessary for large. In a typical instruction mix, fixed-point, branch,
sequencing through many machine instructions. Such and load instructions account for 95% of the instruc-
an approach is said to reduce the total control store size tions by frequency of occurrence, and for 60% to 75%
by about a factor of two in the Motorola 68000 micro- of the instructions by execution time. Thus, these in-
processor. 40 structions are suitable candidates for this partitioning

Even with this approach, current microprocessors scheme to have on-chip. The remaining microwords,
have insufficient on-chip control store io implement all kept in an off-chip control store, are brought onto the
of the microcode [hat is necessary to implement an chip one by one for execution. This could be done in
architecture as complex as that found in a mainframe. several cycles using existing address and/or data pins
Yet, there is a major cost/performance advantage in 45 for microword bits; or it could be done using dedicated
having all of the horizontal microcode on the same chip pins. The off-chip control store must be wide enough
as the data flow, to avoid the many pins or bus cycles for both the microword bits required by the data floy
required to bring a wide control word onto the chip, and the microword-selection bits required by the se-
and there is a cost/performance advantage in having the quencer. The off-chip microword sequencer must have
most frequently used vertical microwords on the same 50 access to on-chip status information, in order to perform
chip as the data flow to avoid any accesses to the off- conditional microprogram branches and in order to pass
chip bus in most micracycies. This leaves only the infre- control back and forth between on-chip and off-chip
quently used vertical microwords to be stored off the functions and instructions.
microprocessor chip, in a microprocessor-based imple- This method of partitioning the microcode necessary
mentation of a large system or mainframe architecture. 55 for implementing a complex mainframe architecture has

Such an implementation leaves two detailed design the advantage of permitting an architecture of unlimited
problems to be solved. These problems are accommo- complexity to be implemented by use of a sufficiently
dated in the following manner. First, branch from on- large off-chip control store. Further, difficult parts of
chip ro olT-chip vertical microcode by setting a latch the architecture can be placed off-chip, where they can
attached 10 a microprocessor output pin. by reitricring ho he corrected without altering the rnicropracrssor chip
on-chip vertical micro read-only memory (ROM), for itself. I n addition, off-chip microcode written for LL

example to 512 words, and branching to a word whose product so implemented may be placed on chip. with
address exceeds 51 I , or by branching to the highest minimal modifications, if a subsequent product uses a
valid on-chip vertical microword address after setting microprocessor chip with larger on-chip control store.
the off-chip vertical microword branch address onto 65 With care, patches to the on-chip microcode can be
the data bus. Second, allow conditional branches to implemented in the off-chip microcode if errors are
depend on status bits hy bringing up to 16 raw status bits found. Since off-chip instructions are executed in the
off the chip, by way of the data bus or dedicated pins, same engine as on-chip instructions. they have full ac-

4,5 14,803
13

cess to registers. condition code, and other facilities of
the machine yielding other advantages. A final advan-
tage accrues from the fact that all accesses to main
storage and channels are made by the same micro-
processor.

The arrangement for partitioning microcode between
on-chip and off-chip control stores allows the most
frequently used instructions to benefit from the cost/p-
erformance of microprocessors due to the short critical
path produced by on-chip microcode, and runs the
remaining instructions and functions with the costlper-
formance characteristics of bit slices with the longer
critical path produced by off-chip microcode.

G. Subset With Primitives
The last approach, shown in FIG. 8, could produce a

very economical processor at the expense of a difficult
and prolonged development process. The most difficult
aspect of this approach is defining suitable “primitive”
operations. In principle, a microprocessor that contains
on-chip microcode for a mainframe system’s fixed-
point, branch, and load/store instructions can be pro-
grammed to emulate the remainder of that system’s
architecture, as described under “Subset with Emula-
tion” above. In practice, that design produces relatively
puor performance for the instructions and functions that
are emulated by off-chip code, rather than microcoded
on the microprocessor chip. Microcoding some “primi-
rives”, instead of some instructions that could occupy
the same on-chip control store space, can produce sig-
nificantly higher performance on a complete instruction
mix. A primitive is not itself a system instruction, but
rather it executes a simple function that is useful in the
emulation of more complicated instructions or func-
tions. An emulation program can achieve higher perfor-
mance if it has primitives available as well as the basic
instructions. Examples of primitives are “load registers
with a n t e n t s of instruction fields”, “set condition code
according to arithmetic result” and “compute effective
address.”

This method of implementing a large system architec-
ture on a microprocessor is itself implemented by subdi-
viding the microprocessor’s operation code space into
the following three sets:

A. codes of high-usage instructions, each of which is
implemented by a sequence of on-chip microcode;

B. codes assigned to primitives which are useful for
emulating instructions, each of which is imple-
mented by a sequence of on-chip microcode; and

C. codes of the remaining low-usage instructions,
each of which is implemented by a sequence of
high-usage instructions {A) and primitives (B).

In operation, an instruction stream is being fetched
from store. As long as these instructions’ codes are
found to be in set A, execution is controlled by on-chip
microcode. Any codes in set B are illegal, in this mode.
When an instruction’s code is found to be in set C , direct
execution of on-chip microcode is terminated after com-
pletion of that instruction’s I-cycles, which can include
effective address generation. The instruction code se-
lects a starting address in a private program store, and
the microprocessor fetches its next “instruction” from
this address. That “instruction” code will be in set A or
8 , so it initiates a sequence of on-chip microcode. This
sequence ends by fetching another “instruction” which
initiates another sequence of on-chip microcode, and so
on, until the instruction whose code was in set C has
been completely emulated. Then the next instruction is

14
fetched from store, not from the private program store.
That instruction, too, i s either executed directly by a
sequence of on-chip microcode, or simulated by “in-
structions” in the private program store, which are in

5 turn executed by sequences of on-chip microcode.
It should be noted that the emulation mode used tu

program a low-usage instruction, whose code is in set C ,
has the following special characteristics. In this mode,
“instructions“ are fetched from the private program

IO store. not from main store. The instruction counter IS
not incremented and codes in both sets A and B are
legal while emulating an instruction in set C . In addi-
tion, interrupts must be held pending until all of the
“instructions” that emulated one instruction in set C are

15 completed. Any instructions in set A, that are used
along with primitives in set B to simulate an instruction
in set C, must be prevented from changing the condition
code or taking their ordinary exceptions.

Some advantages of this method of partitioning the
20 architecture between on-chip microcode and off-chip

emulation code are as follows. An instruction in set C
can be simulated with relatively few bus cycles. An
“instruction” brought in from the private instruction
store by one or two bus cycles, initiates a sequence of

25 many microwords which do not require bus cycles.
Constant data needed by dif‘ficult instructions or by
interrupts such as Translate and Test’s implied register,
or interrupts’ many implied storage addresses, can be
brought in easily as immediate fields of ”instructions”

30 fetched from the private program store. Such constants
may be difficult to introduce by way of on-chip micro-
code. An architecture of unlimited complexity can be
emulated by a sufficiently large private program store,
if the codes in sets A and B supply functions or suffi-

35 cient generality. The private program store can be rela-
tively small, because it stores relatively powerful “in-
structions” each of which i s interpreted by many mi-
crowords. T h i s is especially true if powerful branch and
subroutine call “Instructions” are used to save space.

The transfer of control from on-chip microcode to an
off-chip emulation program need not be limited to the
time when an I-cycle completes. On-chip microcode
should be allowed to call for simulation of the rest of an
instruction whenever it detects an unusual condition, so

45 it does not require high performance, that is difficult to
handle and would otherwise consume many valuable
on-chip microwords. For example, the on-chip micro-
code for Move Characters should be able to call an
off-chip program if it detects operand overlap.

H. Conclusion
The foregoing description has been specifically di-

rected to a methodology by means of which state-of
the-art microprocessors can be utilized to emulate main-

5 5 frame architectures. A comparison summary of the
various approaches is presented in Table I. This table
should prove useful in comparing each approach with
respect to different measures of goodness. Although the
present invention has been described in the context of

60 preferred embodiments thereof, it will be readily appar-
ent to those skilled in the appertaining art, that moditi-
cations and variations can be made therein without
departing from its spirit and scope. Accordingly, i t is
not intended that the present invention be limited to the

65 specifics of the foregoing description of the preferred
embodiments. Instead, the present invention should be
considered as being limited solely by the appended
claims, which alone are intended to define its scope.

40

so

15
4,5 14,803

16

APPROACH RANK' MAIN MAIN
APPROACH NAME P B D R ADVANTAGE DISADVANTAGE

A TWO 7 1 2 I LOWBUILD CAN NOT
OVERLAPPING COST, GOOD IMPLEMENT RICIi
SUBSETS BALANCE hRCHlTEC7 URE

B FOURSUBSETS, 6 2 4 7 HIGH HIGH BUILD
THREE PERFORMANCE COST
MICROCODED

ONE PERFORMANCE PERFORMANCE
C TWOSUBSETS, 1 6 6 7 GOODiCOST UNBALANCED

M GROCOD ED
D SUBSET I 6 7 6 LOW LOW AND

WITH COST UNBALANCED
EMULATION PERFORMANCE

VERTICAL SET OF
MICROCODE

E OFF-CHIP 3 5 5 5 - NEED COMPLETE

HO R 1 ZONTA L
MlCROWORDS

F OFF-CHIP 2 I 3 7 CANIMPLE- LOW
HORIZONTAL MENT RICH PERFORMANCE
MICROCODE ARCHITECTURE

WITH PERFORMANCE SET OF
PRIMITIVES SYSTEM/370 PRIMITIVES

G SUBSET 5 6 I 5 GOODCOST/ NEEDCOMPLETE

'RANK KEY (7 IS RESTI.
PEKFORMR NCE
BUILD COST
DEVELOPMENT COST
RICH NESS OF I M PLEM EN.IA RLE ARCHITECTURE

Having thus described our invention, what we claim
as new and desire to secure by Letters Patent, is as are grouped together for complete implementation on a
follows: 30 single microprocessor chip A1 and subsets P l and R t

1. A method for microprocessor implemented emula- are grouped together for complete implementation on
tion of a mainframe computer, using a plurality of large another single microprocessor chip El .
scale integrated chip microprocessors, said main frame 4. The method according to claim 3 including the step
computer having a predefined instruction set and a Set of partitioning subset P l to constitute about 95% of the
of general purpose registers associated therewith, said 3.5 mainframe instruction set by frequency of occurrence
method comprising the steps of: and about 70% of the instructions by execution time,

(a) partitioning the instruction set of said mainframe with subsets Q l and RX partitioned to include only the
computer into a plurality of subsets of enabling remaining mainframe instructions.
microcode, the enabling microcode of at least one 5 . The method according to claim Qincluding the step
of which subsets completely fits on and is entirely 40 of partitioning subset P1 to include only fixed-point.
executable by and on a single said chip micro- branch and load instructions, subset Q1 is partitioned to
processor; include only floating-point instructions and subset R1 is

(b) providing chip based microprocessors on which partitioned to include only decimal and privileged in-
said instruction set subsets are implemented, thus structions.
enabling each of said microprocessors capable of 45 6. The method according to claim 5 including the step
supporting said on-chip microcode; of suporting said partitioning step by providing on-chip

(c) providing each microprocessor with all of the microcode for microprocessors A1 and B1 to imple-
necessary microcode to allow implementation and ment the respective instruction subset groups of each.
control execution of its resident subset instructions 7. The method according to claim 6 including the step
entirely on-chip; M of operating said microprocessors in non-contention

(d) providing at least one path between all of said with only one being active and the other passive at any
microprocessors via which control can be passed one time.
back and forth between said microprocessors; and 8. The method according to claim 1 including the

(e) providing at least one path between all of said steps of partitioning said mainframe instruction set into
microprocessors via which data can be passed back 5 5 four subsets, P2, 42, R2 and 52, and providing an off-
and forth between said microprocessors. chip control store and microprocessor chips A2, B2, CZ

2. The method according to claim 1 wherein said and D2, said subsers P2, Q2 and RZ being each respec-
completely fitting instruction subsets includes those tively completely implemented on microprocessor
instructions that make substantial use of the general chips A2. B2 and C2, with all remaining mainframe
purpose registers. including [hr. step of providing the ho instructions iiot found in said partitioned subsets P2.02 .
microprocessor chip on which said subset is resident and R2, namely those contained in subset S2, being
with sufficient general purpose registers to handle the provided by simulation instruction sequences slored in
instructions of said subset o f microcode for all of the said off-chip control store, with microprocessor chip
subset's functions that make use of said general purpose DZ being used for initialization, PSW maintenance, start
registers. ' 65 I/O and housekeeping functions.

3. The method according to claim 1 including the step 9. The method according to claim 8 including the
of partitioning said mainframe instruction set in to three steps of partitioning subset P2 to implement I-cycles f o r
subsers, P1, Q1 and R1, and wherein subsets P1 and Q1 all instructions and E-cycles for the fixed-point, load

17
4,5 14,803

18 -.
and branch instructions to gather therein all functions
that make frequent use of general purpose registers,
partitioning subset QZ to implement E-cycles for float-
ing-point instructions and partitioning subset R2 to
implement E-cycles for decimal instructions.

IO. The method according to claim 9 including the
steps of partitioning subset P2 to constitute about 95%
of the mainframe insrruction set of frequency of occur-
rence and about 70% of the instructions by execution
time, and partitioning subsets QZ. RZ and S2 to include
only the remaining mainframe instructions.

11. The method according to claim 10 which further
includes the step of providing microcode for each of
said microprocessor chips A2, B2 and CZ to enable full
implementation thereon of its assigned instruction sub-
set.

12. The method according to claim 1 including the
steps of partitioning said mainframe instruction set into
two subsets, P3 and Q3, and providing an off-chip con-
trol store and microprocessor chips A3 and B3, said
subset P3 being completely implemented on micro-
processor chip A3. with all remaining mainframe in-
structions not found in said partitioned subset P3,
namely those of subset 43, being provided by simula-
tion instruction sequences stored in said off-chip control 25
store, with microprocessor chip B3 being used for exe-
cuting said simulation instructions for said subset Q3
and also for address translation misses, exception condi-
tions and interrupt handling.

step of partitioning subset P3 to implement I-cycles for
ail instructions and E-cycles for the fixed-point, load
and branch instructions to gather therein all functions
that make frequent use of general purpose registers.

includes the step of providing microcode for said micro-
processor chip A3 to enable full implementation
thereon of its assigned instruction subset P3.
15. The method according to claim 14 including the

steps of partitioning subset P3 t o constitute about 95% 40
of the mainframe instruction set by frequency of occur-
rence and about 50% of the instructions by execution
time, and partitioning subset Q3 to include only the
remaining mainframe instructions.

steps of partitioning said mainframe instruction set into
at least subsets P4 and Q4, providing a microprocessor
chip A4, implementing subset P4 completely on micro-
processor chip A4 as the machine architecture thereof,
and then providing at least one layer of software that 50
will raise the level of subset P4 to that of the full main-
frame architecture, said software layer including sufti-
cienr instructions and functions 10 simulate said instruc-
tion subset Q4, namely t h e mainframe architecture not
defined in and by subset P4, including preservation of 55
system integrity.
17. The method according to claim I including the

steps of partitioning said mainframe instruction set into
two subsets, P5 and Q5, and providing an off-chip con-
trol store that is suitable for storing vertical microcode 60
therein, providing microprocessor chip AS, implement-
ing said subset P5 completely on microprocessor chip
AS, with all remaining mainframe instructions not
found in said partitioned subset PS, namely those of
subset QS, being provided by vertical microcode stored 65

13. The method according to claim 12 including the 30

14. The method according to claim 13 which further 35

16. The method according to claim 1 including the 45

in said off-chip control store, and using microprocessor
chip A5 for managing said instruction subset Q5, and
address translation misses, exception conditions and
interrupt handling.

18. The method according to claim 17 including the
step of partitioning subset P5 to implement all instruc-
tions that do not require infrequently used vertical mi-
cr ocod e.

19. The method according to claim 18 which further
includes the step of providing microcode for said micro-
processor chip A5 10 enable full irnplrmentatron
thereon of its assigned instruction sheet P5.

20. The method according to claim 19 which includes
the additional step of including microcode on said mi-
croprocessor chip A5 to assist in the implementation of
said off-chip vertical microcode.

21. The method according to claim 20 which includes
the additional steps of providing a latch coupled to a
microprocessor A5 output pin and branching from on-
chip to off-chip vertical microcode by setting said latch
whenever a predetermined condition occurs.

22. The method according to claim 1 including the
steps of partitioning said mainframe instruction set into
two subsets, P6 and Q6, and providing an off-chip con-
trol store that is suitable for storing horizontal micro-
code therein, providing microprocessor chip A6, imple-
menting said subset P6 completely on microprocessor
chip A6, with all remaining mainframe instructions not
found in said partitioned subset P6, namely those of
subser Q6, being provided by horizontal microcode
stored in said off-chip control store, and using micro-
processor chip A6 for this and for managing privileged
instructions, address translation misses, exception con-
ditions and interrupt handling.

23. The method according to claim 22 including the
step of partitioning subset P6 to implement all instruc-
tions that do not require infrequently used horizontal
microcode.
24. The method according to claim 23 which further

includes the step of providing microcode for said micro-
processor chip A6 to enable full implementation
thereon of its assigned instruction subset P6.

25. The method according to claim 24 which includes
the additional step of including microcode on said mi-
croprocessor chip A6 to assist in the implementation of
said off-chip horizontal microcode.

26. The method according to claim 25 which includes
the additional steps of providing a latch coupled to a
microprocessor A6 output pin and branching from on-
chip to off-chip horizontal microcode by setting said
latch whenever a predetermined condition occurs.

27. The method according to claim 1 including the
steps of partitioning said mainframe instruction set into
two subsets, P7 and 47, and providing an off-chip con-
trol store that is suitable for storing coded therein, pro-
viding a microprocessor chip A?, providing on-chip
microcode for implementing said subset P7 entirely on
said microprocessor A'?, assigning and providing opera-
tion codes to identify and implement, as primitives,
additional instructions in said instruction subset P7
using said on-chip microcode, and providing code for
said instruction subset 4 7 that is stored in said off-chip
control store and i s implemented by a mix of on-chip
microcode and primitives.

* I * * *

