
Goodard v. Google, Inc. Doc. 158 Att. 8

Dockets.Justia.com

http://dockets.justia.com/docket/court-candce/case_no-5:2008cv02738/case_id-203854/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2008cv02738/203854/158/8.html
http://dockets.justia.com/

[I I] Patent Number: 4,992,934
Portanova et 4. 1451 Date of Patent: Feb. 12, 1991

[54] REDUCED MSTRUCTION SET

[75] Inventom Gregory A. Portanova; Brian J.
Spmgue, both of Enfield, Conn.

1731 Assignee: United Tecbnologies Corp~ation,
Hartford, Conn.

[2l] Appl. No.: !W4,055

C O M P W N G APPARATUS AND iMETHODS

[22] Filed: Mar. 30,l

Related U.S. Application Data

[63]
[SI] Xnt. C l . 5 GOdF 9/40

364/232.3; 364/240.2
Field of Search ... 361/200 MS File, 900 MS File

Continuation of Ser. No. 941.450, Dec. 15, 1986.

[52] U.S.Cl 3W232.23;

[58]
[561 References Cited

U.S. PATENT DOCUMENTS
4,434,462 2/1984 Guttag et a1 364/200
4,498,135 2/1985 Caudel ..,. 364/200
4,514,801 4/1985 Caudel et 364/200
4,514,805 411985 McDonou 364/2110
4,569,016 2/1986 Hao et ai. 364/2cO
4,577,282 3/1986 Caudel et al. . 364/200
4,587,612 VI986 Fisk et al. 364/200
4,589,065 Vt986 Auslander et al. 364/200

4,608,634 8/1986 Caudel et al. 364/2(10

4,719.568]/I988 Carrubba et al. 364/200
4,727,480 2/1988 Albnght et al. 364/2W

4,589,087 VI986 Auslmder et al. 3 ~ 7 6 8

4,638,426 111987 Chang et al 364/200

OTHER PUBLICATIONS
A VSLI RISC, by Patterson et ai, lEEE ComDuter,

Microprocessor System", IEEE Compurer, Oct. 1986.

Rasset. T. L., Niederland, R. A,. Lane. J . H., Geideman.
W. A., "A 31-bit RISC Implemented in Enhancemen-
[-Mode J E T GaAs", JEEE Compurer. Oct.. 1986, pp.
60-68.
Meng, "Airborne Architecture Standard Holds On".
Digital Design. Oct. 1986, pp. 24, 25.
Silvey, A., Milutinovic, Mendoza-Grado, V., "A Sur-
vey of Advanced Microprocessors and HLL Computer
Architectures", IEEE Cornpurer, Aug. 1986, pp, 72-85.
Colwell, R . P.. Hitchcock, 111, 6. Y.. Jensen. E. D.,
Sprunt, H. M. Brinkley, Kollar, C , P., "Computers,
Complexity, and Controversy", iEEE Computer, Sep.

Ohr, S., "RISC Machines", Elecrronic Design, Jan. 10.

Patterson, D. A., "Reduced Instruction Set Compur-
ers", Communications ofthe ACM. Jan. 1985, vol. 28.

Hennesy, J. L., "VLSI Processor Architecture", IEEE
Tranrnctions on Computers. vol. C-33. ;Vo. 12. Dec. 1984.

Ungar, D., Blau, R., Foley, P., Samples, D., Patterson.
D., "Architecture of SOAR: Smalltalk on a RISC".
11th Annual Symposium on Computer Architecture.
Jun. 4-7, 1984, Ann Arbor, Mich.
Wulf, W. A., "Compilers and Computer Architecture".
IEEE Compurer, Jul. 1981, pp. 41-47.

Primary Examiner-Michaei R. Fleming
Assistonr Exominer-Debra A. Chun
Attorney, Agent, or Firm-Francis J. Maguire, J r .

[571 ABSTRACT

pp. 71-81.

1985, pp. 8-19.

1985, pp. 175-190.

NO. I . pp. 8-21.

pp. I221-i245.

Sep. 1982. pp. 8-18.
The 801 Minicomputer, by Radin, IBM J. Res. De-
velop., vol. 27, No. 3, May 1983, pp. 237-246.
Byington, L., Theis, D., "Air Force Standard 1750A
ISA Is the New Trend,,, 1986,

a l ~ ~ ~ ~ i ~ ~ an on a circuit E ~ ~ ~ ~ , ~ ~ P . , E]ec[ronic
Design. Oct. 30, 1986.
Tab&, D,, "Which System 1s a RISc?", IEEE Corn-
purer. Oct. 1986, pp. 85, 86.
Fox, E. R., Kiefer, K. J.. Vangen, R. F., Whalen, S. P.,
"Reduced Instruction Set Architecture for a GaAs

A reduced instruction set computer (RISC) with a Har.
vard
signed to be used simply as a RISC or may be desipncd
to be used to emulate a complex instruction set corn.
puter (CISC). Or, it may be designed for use as either A
CISC design methodology is disclosed whereby a RISC
is designed and fabricated and whereby RISC emuls-
tiOn C o d e iS Written concurrently with design and fahrt-
cation and also subsequent to fabrication.

11 Claims, 6 Drawing Sheets

is disclosed. The RISC may bc

comparrep,
pp. 50-59.

iyb

RDC
I.C.

Feb. 12, 1991 Sheet 1 of 6 9 992,9~

FI QPEMND ADDRESS

[RISC INSTRUCTION BUS I

P
vs vs
t.3
vs w
P

v

v

atent Feb. 12, 1991 Sheet 3 of 6 9 992,

Feb. 12, 1991 Sheet 4 of 6 9

atent

FIG.7
d 6

Feb. 12, 1991

I2

Sheet 5 of 6 9 99~,934

FIG.8

I

IG.10 IO T

I c

Feb. 12, 1991 Sheet 6 of 6 4,992,93

I IN RlSC CODE I

4.992,934
1

REDUCED INSTRUCTION SET COMPUTING
APPARATUS AND METHODS

This is a continuation of application Ser. No.
06/941,450, filed Dec. 15, 1986, now abandoned.

DESCRIPTION
1. Technical Field
The present invention relates to computers and, more

particularly, to reduced instruction set computers
(RISC).

2. Background Art
Complex Instruction Set Computer (CISC) propo-

nents increasingly use very large scale integration to
construct highly complex microprocessor hardware to
do functions previously done by software alone. This is
the result of software becoming increasingly expensive
and hardware (VLSI) increasingly cheaper. By using
cheaper and more complex hardware, the CISC de-
signer reasons, the higher level language can become
simpler and hence easier to use and the software devel-
opment cost goes down.

RISC proponents, on the other hand, create simpler
microprocessors where more functions are done by
software. Such machines are based on the insight that
the vast majority of functions executed in any given
program tend to be rather simple functions such as load,
store, compare, branch, integer arithmetic, logic shift-
ing, etc., that can all be designed for execution in one
machine cycle. instead of having microinstructions for
interpreting the architecture of the particular CISC for
each complex function to be performed, the architec-
tural approach in RISC is to have a reduced instruction
set designed for direct execution by hardware. Thus,
there is no interpretation required since the micro-
processor architecture exactly matches the micro-archi-
tecture which, in this case, i s just code, Le., there is no
laborious programming involving the setting of ones
and zeros in microcode for setting control lines. Every-
thing is done automatically by functions implemented
exactly in code.

There can be many aspects 10 a RISC design a p
proach. An admirable attempt to describe such aspects,
drawn from diverse sources, was made in the IEEE,
Campurer magazine of September, 1985, pp. 8-19 by
Robert P. Colwell et a1 in an article entitled “Comput-
ers, Complexity, and Controversy.” The aspects de-
scribed included: (I) “Singlecycle operation“ for facili-
tating the rapid execution of simple functions that domi-
nate a computer’s instruction stream and promoting a
low interpretive overhead; (2) “Load/store design’’
following from a desire for single-cycle operation; (3)
“Hardwired control” providing for the fastest possible
single-cycle operation since microcode leads to slower
control paths and adds to interpretive overhead; (4)
“Relatively few instructions and addressing modes”
facilitating a fast, simple interpretation by the control
engine; (5) “Fixed instruction format” for easing, with
consistant use, the hardwired decoding of instructions,
which again speeds control paths: and (6) “More com-
pile-time effort” offering an opportunity to explicitly
move static run-time complexity into the compiler.

As pointed out in the above quoted article, a common
miscanccption about RISC and CISC, probably due to
their acronyms, is that the domain for discussion should
be restricted to selecting candidates for a machine’s
instruction set. Although the number of instructions i s

5

IO

15

20

25

30

3s

40

45

50

5 5

60

65

one of the primary issues in the RISC literature, the best
generalization of RISC theory g w s well beyond this
issue. Colwell et al point out that RISC theory connotes
a willingness to make design trade-offs freely and con-
sciously across architecture/implementation, hard-
warehoftware and compile-time/run-time boundaries
in order to maximize performance, as measured in some
specific context.

According to this thinking, although the RISC and
CKSC acronyms seem to imply that any machine can be
classified as one or the other, in actuality RISCs and
CXSCs should be thought of as being at different corners
of a continuous multi-dimensional design space. Thus,
the need is not for one exclusive of the other but for the
formulation of a set of techniques drawn from CISC
experiences and RISC tenets, which can be used by a
designer in creating new systems.

Notwithstanding the above, it will be understood that
the number of instructions is an important criterion for
categorizing an architecture as a RXSC or CISC. There-
fore, the RISC disclosure and claims which follow,
which formulate such techniques, should be understood
as failing in the category of a design philosophy for a
computer with, in fact, a reduced instruction set, with-
out limitation to a RISC having some nr all of the attri-
butes of a RISC machine, so well described by Colwell
et al. fn other words, the disclosure which follows
draws on some RISC concepts other than a reduced
instruction set and is not necessarily located at the RISC
“corner” of the “design space.”

The military has defined a standard 16-bit complex
instruction set architecture (MIL-STD-1750 and 11s
progeny) for airborne computers. The purpose of the
standard is to establish a uniform instruction set archt-
tecture for specifying Air Force avionic weapon s p
tems without defining spcific implementation details of
a computer. Thus, it only defines the complex instruc.
tion set architecture and system-unique requirement\
are left for later definition for each specific compuicr
Its application is not restricted to any particular avioniC
function or specific hardware implementation. Genu.
ally, the standard may be applicable, without limitatinn.
to computers that perform such functions as moderarc
accuracy navigation, computed air release potnt\.
weapon delivery, air rendezvous, stores management.
aircraft guidance, and aircraft management. The dr-
scription “MIL-STD- 1750” may be used throughoui
this document to describe the original standard and ail
its progeny, except where specific revisions are de-
scribed, and it should therefore be understood in that
sense.

The expected benefits of the MIL-STD-1750 stan-
dard instruction set architecture are the use and re-use
of avaitable support software such as compilers and
instruction level simulators. Other benefits may also be
achieved such as: (a) reduction in total support software
gained by the use of the standard instruction set archi-
tecture for two or more computers in a weapon system,
and (b) software development independent of hardware
development.

The military standard defines the functional opera-
tion from a programmer’s perspective. I t defines data
formats, instruction formats, instruction mnemonics,
instruction operations, addressing modes, programmer
accessed regsters, interrupt structure, etc. Since it does
not define specific implementations, it is vendor and
technology independent. As mentioned, its use is ex-
pected to promote :he use of standard software support

4,992,934
tools, the reduction of total support software in multi-
vendor military systems and software development
independent of hardware development.

The MIL-STD-1750 register set includes sixteen 16-
bit general purpose registers (RO, . . . RF), a 16-bit status 5
word (SW). a 16-bit instruction counter (IC), a 16-bit
mask register (MK). a 16-bit interrupt register (PI), and
a 16-bit fault register (FT).

The data formats supported include byte (upper,
lower), 16-bit fixed point singIe precision (16-bit 2's 10
complement), 32-bit fixed point double precision (32-bit
2's complement), 32-bit floating point (24-bit 2's com-
plement mantissa: 8-bit 2's complement exponent), and
48-bit floating point extended precision (48-bit 2's com-
plement mantissa; 8-bit 2's complement exponent).

The MIL-STD-1750 instruction set is a complex in-
struction set which has been implemented by several
companies. so far, using CISCs. For example, Fairchild,
MacDonnell-Douglas and Performance Semi-Conduc-
tor among others, have all marketed MIL-STD-1750 20
CISC machines.

15

DISCLOSURE OF THE INVENTION
An object of the present invention is to provide a

simple microprocessor. The microprocessor provided 25
may be viewed as a reduced instruction set computer
(RISC), or simply as a signal processor having a simple
architecture. The word "RISC' will be used frequently
throughout the specification in connection with this
object of the present invention.

Another object of the present invention is to provide
a reduced instruction set computer (RISC) having sin-
gle-cycle operation for most instructions.

Stili another object of the present invention is to
provide a RlSC load/store design which follows from 35
the above object of single-cycle operation.

Still another object of the present invention is to
provide hardwired control for fast singlecycle opera-
tion.

provide relatively few instructions and addressing
modes to facilitate a fast, simple interpretation by the
control engine.

Still another object of the present invention is to
provide a fixed instruction format which may be used 45
consistently to ease the hardwired decoding of instruc-
tions which in turn speeds control paths.

Still another object of the present invention is to
provide a simple RISC architecture useable with nu-

Still another object of the present invention is to
provide a reduced instruction set which is conducive to
the implementation of such a simple RISC architecture.

Still another object of the present invention is to
provide a signal processing method using a reduced 55
instruction set for emulating a complex instruction set.

Still another object of the present invention is to
provide a reduced instruction set signal processor capa-
ble of emulating a MIL-STD-I750 instruction set.

provide a MIL-STD-I 750 microprocessor with which
the user may define functions by writing RISC code
subroutines for off-chip storage and callup.

Still another object of the present invention is to
provide a reduced instruction set signal proccssor for 65
use in efficiently emulating a complex instruction set.

Still another object of the present invention is to
provide a method of designing a signal processor which

30

Still another object of the present invention is to 40

merous possible reduced instruction sets. 50

Still another object of the present invention is to 60

4
responds to complex instructions but executes them
using groups of reduced instructions.

Still another object of the present invention is to
provide such a method for quickly designing a signal
processor in which the architecture of the reduced
instruction set signal processor may be designed and
reduced to hardware ("silicon") while the program-
ming for the code emulation of the complex instruction
set (in reduced instructions) is concurrently carried out.
In other words, this object of the present invention i s to
provide a reduced instruction set signal processor for
emulating a complex instruction set which signal pro-
cessor has a quick design cycle.

According to a first aspect o f the present invention, a
reduced instruction set computer (RISC) having a Har-
vard architecture, Le., having separate data and instruc-
tion buses is provided.

According to a second aspect of the present inven-
tion, the RISC i s designed for use as an emulator of a
complex instruction set computer (CISC). The RISC
responds to complex instructions received over its oper-
and or data bus by addressing, over the RISC instruc-
tion bus, a corresponding one of a plurality of groups of
R E X instructions, each corresponding to one of the
complex instructions. Once the first instruction of the
group corresponding to the received complex instruc-
tion is addressed and executed, the remainder of the
associated reduced instructions in the particular group
may be addressed and executed in sequence until all the
instructions in the group have been completely exe-
cuted. In this way, the complex instructions are emu-
lated in hardware using groups of reduced instructions.
The reduced instructions are received over the instruc-
tion bus of the RlSC machine.

In further accord with this second aspect of the pres-
ent invention, the reduced instruction set computer
having the Harvard architecture is designed for use not
only as a reduced instruction set signal processor for
emulating a complex instruction set computer, but also
as a reduced instruction set signal processor operating
in a reduced instruction Set operating mode using the
instruction bus, as before, for RISC instructions but, in
this mode, using the data bus only for operands. This
can be characterized as the RISC operating mode. By
selecting which mode one wishes to be in, one may
select either the RISC or the complex instruction emu-
lation mode and operate as selected.

In still further accord with the second aspect of the
present invention, the plurality of groups of reduced
instructions are stored in a memory store external to the
signal processor. As mentioned above, the instructions
within a group are stored sequentially for execution. In
other words, the addressing of the first reduced instruc-
tion in a group is quickly followed by the sequential
execution of each of the other reduced instructions in
the group.

In still further accord with the second aspect of the
present invention, the complex instruction set emulated
is a MIL-STD-I750 instruction set.

According to a third aspect of the present invention,
a method of designing a signal processor responsive to
complex instruction set instructions comprises the steps
of first designing a reduced instruction set signal proces-
sor having separate data and instruction buses for use as
a reduced instruction set signal processor and, second,
designing the reduced instruction set signal processor to
emulate the complex instruction set, whereby the data
bus of the RISC machine is used for both incoming

4.992,934 7 -

5
complex instruction set instructions and bi-directional
data relating thereto. The RISC instruction bus is used
for addressing and receiving reduced instruction set
instructions only. A plurality of reduced instructions
are executed for each incoming complex instruction
received. In this way, the hardware can be designed and
reduced to practice while the emulation code is concur-
rently being written.

In still further accord with the first aspect of the
present invention, a signal processor architecture has an
arithmetic logic unit (ALU) responsive to a first input
signal and to a second input signal for performing a
logical operation upon the two input signals and for
providing an ALU output signal indicative of the result
of the logical operation. It also has an accumulator
which is responsive to the ALU output signal, for stor-
ing it and providing it back to a '73" multiplexer
(BMUX) which selects from among three different
signals, including the accumulator output signal, for
providing the second ALU input signal. Another one of
the inputs to the BMUX is a RlSC instruction counter
output signal which constitutes an address of an instruc-
tion to be executed or manipulated by the ALU. The
third input to the BMUX is the output of a destination
register which is responsive to any one of a number of
registers in a register tile. The destination register out-
put signal may instead be provided as data on the oper-
and bus. The instruction counter may receive starting
instruction addresses from the ALU and may be regu-
larly clocked for sequential incrementing of addresses.
The ALU output signal may also be provided to the
register tile which contains a number of registers also
responsive to incoming operand signals from the data or
operand bus. The register file stores either the ALU
output signal or the operand signal in seiected storage
registers as decoded from the incoming instruction. The
register file provides register outputs to the destination
register and ,the source register. The source register
stores the signal received from the register fite and
provides it to an "A" multiplexer (AMUX) or as an
output to the operand address bus. The AMUX is alw
responsive to RISC instructions received from the
RISC instruction bus as previously addressed by the
RISC instruction counter. The AMUX provides the
first input signal to the ALU. A hardwired control unit
decodes incoming complex instructions and provides all
the necessary controI signals for operating the above
described architecture in the proper sequences.

The hardwired control unit decodes instruction sig-
nals for: (i) addressing sequentially stored instructions
by providing an incrementing signa1 to the RISC in-
struction counter during a first quarter of each machine
cycle; (ii) providing, during a second quarter of selected
machine cycles, control signals to a register tile for
selecting storage registers in the regster file to have
their signal contents operated on by the ALU and for
providing, during the second quarter, the selected regis-
ter signal contents for storage in the source and destina-
tion registers; (iii) providing, during a third quarter of
selected machine cycles, enabling signals for enabling
the operand address and data buses in response to an
instruction to load or store data from memory to the
register file or to memory from the register file; (iv)
providing, s w i n g during a third quarter of selected
machine cycles, a first select signal to the AMUX for
selecting between the source output si& and the in-
struction signal for provision as said first input signal for
the ALU; (v) providing, starting during the third quar-

5

IO

15

20

25

30

35

.K)

45

so

5 5

60

65

6
fer of selected machine cycles, a second select signal to
the BMUX for selecting between the destination output
signal, the accumulator output signal and the instruction
address signal for provision as the second input signal
for the ALU: (vi) selecting, starting during the second
quarter of selected machine cycles, an Operation to be
performed by the ALU by providing an ALU operation
select signal to the ALU; (vii) storing, during a first
quarter of selected machine cycles, the ALU output
signal in the register file, the accumulator, or the in-
struction counter by providing an ALU output select
signal to the appropriate register; and (viii) providing
shift signals, during an extended fourth quarter of se-
lected machine cycles, for performing shift, multiplica-
tion and division operations.

In still further accord with the second aspecr of the
present invention, such a RISC signal processor further
comprises a complex instruction set program register
responsive to complex instruction signals provided re-
lating to an application program written with complex
instructions received over the data bus for storing and
providing such complex instruction signals to the con-
trol means for decoding and providing a reduced in-
struction set address signal to the RISC instruction
counter for addressing the first instruction signal of a
group of sequentially stored reduced instruction set
signals. Each such group addressed is one of a plurality
of such groups, each designed for emulating one of the
complex instructions in the complex instruction set. A
complex instruction set program address counter is
responsive to an incrementing signal for addressing the
next complex instruction in the application program in
sequence, or iS responsive to an ALU output signal for
storing and providing an exception complex instruction
address signal.

In still further accord with the second aspect of the
present invention, the complex instruction signals re-
ceived are decoded by the control means and are se-
quentially addressed by providing the program counter
with the incrementing signal during a first quaner of
selected machine cycles. The control means also pro-
vides the reduced instruction set address signal for be-
ginning a group of such reduced instructions to the
RISC instruction address counter during a third quarter
of selected machine cycles. It also enables the complex
program register during a fmt quarter of selected ma-
chine cycles to receive, store and provide the complex
instruction signals.

The first aspect of the present invention provides a
simple architecture which m a y be designed and used
simply as a RISC machine, without any reference what-
soever to any emulation of a CISC. Of course, as ex-
plained in the Background Art section, such a simple
architecture can have RlSC attributes and CISC attri-
butes at one and the same time and it is therefore diffi-
cult to make a hard and fast boundary between the two.
Therefore, it will be understood that the present archi-
tecture is located in the design space between the two
extremes and is not really strictly characterizable as
either except in the broad "reduced instruction" sense,
discussed above. The "reduced" instruction set dis-
closed in the specification is particularly well suited for
execution on the disclosed architecture. However. it
will be understood that other RISC instruction sets may
be formulated for execution on the architecture dis-
closed.

Nevertheless, the simple architecture provided takes
several different RISC architectural approaches which,

7
4,992,934

8
without limitation. will be described. First, all instruc- hardware and software. The design efficiency comes
tions except the shift. multiply and divide instructions from the efficiency of the software. In the prior art, all
are executed within a single "two-clock" machine cy- functions were on one chip. The present disclosure
cle. Operands are register-to-register, with only LOAD teaches the use of a "two-chip solution" in which the
and STORE accessing memory. This simplifies internal 5 control function is separated from the implementing
control. All RISC instructions are executed using hard- function. The simple machine disclosed herein speeds
wire control. NO microcode is used. orsly 32 instruction [he hardware design process and &o permits the Con-
operations are implemented. Addressing is limited to current design of emulation code. The design jeopardy
register indirect and immediate modes. The instruction experienced in the prior art, i.e,, being expa& to WV-
format iS simple and does not cross word boundaries. 10 era1 hardware iterations &fore getting the design to

In addition to the RISC architecture disclosed herein, operate properly is avoided,
a panicularly useful design methodology is dixlosed, The second wpwt of the present invention provides a
according to the third aspect of the present invention, RISC machine executing RISC arranged in
by which a CXSC may be emulated, in the sense that the groups for emulating a CISC. An embodiment of this
signd processor is actually =vnsive to the complex 15 a s F t may provide the capability of running a RISC
instructions received from the complex instruction set; machine either as a pure RISC machine with a Harvard
each such complex instruction received by the RISC architecture in a pure RISC mode, or as a RISC ma-

reduced instructions preformulated for executing each lating a cIsc. In either case, each such group of
such instruction by way of emulation. Thus, for each 20 may be executed in response to a complex instruction 1o
complex instruction emufated, there exists a group of which it corresponds. Once the initial address of the reduced instructions stored for call up and execution in group is piaced on the RISC address bus the other mem-

CISC emulated by means groups of RISC code and the bodiment, e.g., as a gate array, while at the same time 2 5
the emulation code i s being developed. Thus, if the
designer wishes to design a cIsc he may quickly novel approach of having the RISC machine run just as

ceeding reduce i t to '.silicon,3, while at the Same time cessing tools according to a reduced instruction set

lating the complex instruction set, It is est,mated that bility to emulate a complex instruction set using the
this approach less than 10% ofthe COSt of design- reduced instruction set architecture. This aspect of the
ing a CISC as a pure CISC, and with supe..or results. present invention, when used in this way, is indeed a
One of the primary cost savings are related to reduction powerful
of the design jeopardy The abiiity of the user to develop his own. user-
designers in the form of several design cycles. defined functions to be executed in RISC code is an-
nis design approach provides the advantage of other powerful feature of the reduced instruction set

quick turnaround because of the concurrent reduction procmr as taught the second as-
of the hardware to "silicon" while, at the =me time, the pect Of the present invention. Ordinarily, a MIL-STD-
emulation code i s being But speed is not the 40 1750 CISC manufacturer would require its customers to
only advantage. Once a hardware design is reduced to order custom-made, sFial1Y developed MIL-ST'D-
"silicon" the design process is completed with respect 1750 microprocessor chips if that customer wishes to
thereto and no funher changes can be made, Design impiement a userdefined function, as permitted by that
errors are almost inevitably &=overed at this stage, military standard. (MIL-STD- 1750A implicitly permits
requiring another costly design cycle with the possibii- 45 user-defined functions while MIL-STD-1750B ex-
ity of additional errors being uncovered later even after pressly Provides for such functions). The Present inven-
the m o n d design. This is an extremely costly process tion provides the user with the capability of defining
both in terms of time and money. The present invention any number of such userdefined complex instructions
permits the circumventing of this problem by designing for execution in RISC Code after the chip 1s bought;
an extremely simple architecture in hardware which 50 these may be designed by the customer simply using the
although also being subject to hardware design "prob. RXSC instruction set associated with the RISC machine
lems" may nonetheless be susceptible to correction and stored separately in a memory storage device, such
using the emulation code to bypass hardware problems. as a PROM, for use with the RISC microprocessor. The
As is known in the an, during the design process, a complete RISC instruction s e t must of course be ex-
function may be effected by the designer, in a given 55 plained to the customer in the product literature pro-
signal processor, in usually more than one way. Thus, if vided at the time of purchase of the MIL-STD-1750
one is attempting to emulate a CISC using a RISC ma- microprocessor to enable him to write user-defined
chine one may design the RISC and, in the event of a functions.
"glitch" in the hardware design which does not permit In addition to all of the above teachings of the first
a complex instruction to be executed in rhe manner first 60 aspect of the present invention, a specific reduced in-
contemplated in the original design, the designer can struction set is taught along with the specific RISC
change around the emulation code to emulate the architecture which is of course, as previously men-
"problem" complex instruction in another manner. tioned, particularly useful for implementing that in-
Thus, the present approach provides the flexibility to struction set as well as many other possible similar in-
tolerate hardware design glitchn. 65 struction sets. The specific RISC architecture disclosed

The design methodology for implementation of a is also extremely useful for the purpose of emulating
complex instruction set computer using RISC, disclosed MIL-STD-1750 instructions as per the second aspect, as
herein, splits the task of designing a CISC between taught below.

machine triggers the addressing Of a particular POUP of chine executing RISC code arranged in groups for emu-

hardware' This approach permits the RISC ar-
chitecture lo be designed quickly for a hardware em- bers of the reduced instructions in that group are exe-

cuted in sequence, The approach of having a

obtain his objectives by first deigning a RISC, pro-

continuing development ofthe emulation code for emu. M phitosophyv

a RISC Or as an provide powerful pro-

Same time providing the capa" at

by CISC 35

9
4,992,934

10
These and other objects, features and advantages of

the present invention will become more apparent in
light of the detailed description of a best mode embodi-
ment thereof, as illustrated in the accompanying draw-
ing.

acronym "RISC" is used herein in the broadest sense of
a reduced instruction set machine.

The use of a Harvard architecture is distinct from a
multiplexed instruction/dafa bus approach as used in

5 the prior CISC art in which such a von Neumann archi-
tecture has been the preferred approach. The Harvard
architectural approach pennits the RlSC to operate at a

FIG. 1 is an illustration of a RISC 10, according to much faster speed due to the fact that instructions and
the first aspect of the present invention; data may be accessed at the Same time. This i s in keep-

FIG. 2 is an ilhstration Of a RlSC 10, according to 10 ing with the above discussed general R[SC approach of
the first aspect of the present invention, used along with mmimizing performance.
a separate memory Store 20 containing groups of RISC FIG. 2 is an illustration of a RISC 10. similar to the
instructions, each group for emulating a complen in- RISC 10 of FIG. 1, and having the %me Harvard archi-
struction received from a source of complex instruc- tecture, The RISC 10 of FIG. 2 is associated with a
tions over the data bus 18, according to the second 15 memory storage device m, such as a programmable
aspect of the present invention; read only memory (PROM) which when used together,

FIG. 3 is a more detailed illustration of a RISC 10, accord,ng the second aspect of the present invent ton,
according to the first aspect of the present invention, as may emulate a complex instruction set computer
illustrated by lightly drawn 1 i w ~ (the heavily drawn ((-1s~). ne R ~ S C 10 and the PROM 3 may together
lines provide additional hardware necessary for imple- 20 be thought of as a ,,two-chip*j 22 of or
menting a RISC which may emulate a CISC, according +~solution,q the concept of using a RISC emulate a

CISC. The two-chips 22 are in fact a CISC. This turns to the second aspect of the present invention);
FIG. 4 illustrates various waveforms corresponding approach, as disclosed to the voltage levels of various signals on lines illus-

Complex instructions in rhe form of signals are pro- trated in FIG. 3:
FIG. S is a more detailed illustration of the register vided Over a signal line 24 the data bus 18 by u,hich file 74 of FIG. 3;

complex instructions 24 is not relevant to the present module 78 of FIG. 3;
is a more detailed illustration of the destina- 3o invention but would generally consist of some applica-

tion program which is to be executed by the "CISC" 22. tion module 76 of FIG. 3:
Complex instructions are sequentially received in this
manner and decoded by the RISC 10. For each such tor module 140 of FIG. 3;
complex instruction received, an initial starting address

mentation of a CISC in which all instructions are imple- 35 is provided on the RISC instruction address bus 12 to
mented using single level control; the PROM 20 where a group of RlSC instructions,

FIG. 10 is an illustration of a prior a n approach to the conesponding to the panicular ClSC instruction being
design of a CISC in which ail instructions are impie- emulated, me sequentiaily stored. The first RISC in-
rnented using two-level control: struction addressed in the PROM 20 is then placed on

FfG. 11 is an illustration of a prior a n ~ [S C deign 40 the RISC instruction bus 14, typically for an entire
approach in which m a t instructions are implement& machine cycle. After the instruction has been safely
using two-level control with the remaining instructions delivered to the RISC 10 for storage or execution, the
implemented using software; RlSC 10 wil1 next increment the address on RISC in-

FIG. 12 is an illustration of a CISC implaentation stnrction address bus 12 for accessing the next sequen-
using a design approach in which dl instmctions use 45 tially Stored emulation instruction for placement On

two-level control, according to the third aspect of the InStrIICtiOn bus 14. This PrOCeSS COntinUeS Until the en-
present invention: and tire group of RISC instructions (stored in PROM 20 for

FIG. 13 is an illustration of the steps which may be emulating the particular clsc instruction received over
camed out in designing and fabricating a RISC for data bus 18) has been executed by way of emulation. A
emulating a CISC. according to the third aspect of the 50 given instruction among others. involve a memory
present invention. load/store operation in which the data bus 18 I S used to

BRIEF OF THE DRAWING

be a highly
25 above, from both the designer and user perspectives.

FIG. 6 is a detailed illustration of the MUrCe they are transmitted the RISC lo. The Of

F ~ ~ ,

FIG. 8 is a detailed illustration of the accumula-

FIG, 9 is an illustration of a prior art design imple-

load or store operands by way of data bus 18 and an
extension 26 thereof (which merely indicates a path to a BEST MODE FOR CARRYING OUT THE

INVENTION data source or destination).
FIG. 1 is an illustration of a simple signal processor 55

10, according to the first aspect of the present invention,
which may be broadly characterized as a reduced in-
struction set computer (RISC) and which would nor-
mally, without limitation, take the form of a micro-
processor. The novel RISC of the present invention has 60
a Harvard architecture, Le., meaning the instruction and
data buses are separate. A RISC instruction address bus
12 is used to address reduced instructions which are
then received over a reduced instruction bus 14 by the
RISC 10. An operand a d d r w bus 16 is used to address 65
data which is either received or provided by the RISC
10 over a data bus IS, which may be bi-directional. As
discussed above, in the Background A n section, the

A RlSC
FIG. 3 is a simplified block diagram illustration of the

i n t e d s of a RISC 10, similar to the RISCs illustrated
in FIGS. 1 and 2. The lightly drawn lines of FIG. 3
correspond to a RISC 10 of FIG. 1, without the CISC
emulation aspect of the present invention. FIG. 3 will
first be described in terms of these more lightly drawn
lines, in order to first fully explain the operation of a
RISC embodiment of the first aspect of the present
invention. The more heavily drawn lines will then be
described in detail in order to fully describe an embodi-
ment of the second aspect of the present invention, i.e.,
a RISC used to emulate a CISC, as illustrated in FIG. 2.

11
4,992,934

12 _ _
A control unit 30 provides the internal control signals present in the secondary register overlaps from the

(not shown far the sake ofsimplicity) for the RISC 10. middle of one machine cycle to the middle of another.
Among the functions controlled by such control signals At the same time that the instruction on the instruc-
is the fetching of the next RISC instruction to be exe- tion bus 14 is clocked into the instruction register 34
cut&. This is accomplished by incremenring an instruc- 5 “pipe,” the address on the instruction address bus 12 is
tion counter 32, used ‘to hold a RISC instruction ad- normally incremented to the next sequential address as
dress, for loading a RISC instruction stored at that initiated by a control signal whose timing is shown in
address into an instruction register 34. The instruction FIG. qh), waveform 68. having its Operative clocking
register 34 is actually made up of two registen, a ”pine” (rising edge 70) timing coincident with the rising edge
Or primary register for initially receivingandstoring the 10 of CK1 at the beginning of each machine cycle. If,
RISC instruction currently On the instruction bus 14 however, an exception inStrUCti0n i.5 to be executed. it
(during the current machine cycle) and another, sec- Will be loaded with an out of sequence address.
ondary, was Another function of the control unit 30 IS to decode,
On the instruction bus 14 dueng the previous machine in different ways, the instructions residing in the in-
cycle until the middle of the current machine cycle. The 15 struction register 34 “pipe” and in the secondary regis-
pipe transfen its in ter of the instruction register 34. During the first quarter
the middle of each 40 of each machine cycle, the control unit 30 decodes

the register field portion of the instruction just loaded detail below.
Referring now into the pipe register of the instruction register 34. A

shown of the vatious waveforms corresponding to the 20 line 72 indicates the transfer of information from the

fields. (The RlSC instruction format will be described It will be observed that. for illustrative purposes, the
various are ,,frozen,, in time for in detail below. Suffice it to say at this point that for the

embodiment shown, for a I &bit RISC register-to-regis-

the opcode, the next five most significant bits are the cycle 38, which is split up into quarter machine cycles

shown in qO)’ which may be Of any selected fie- field). The decoded register field information may be

‘lock signal ” (cK1) which is useful for U, registers in a register file 74 which are to be loaded into
a destination register 76 and source register 78. Once

for holding the instruction

the secondary
as described in

F ~ ~ , 4, an illustration is there

various control sign& provided by the control unit 30. Pipe to the 3o for decoding Of the register

of FIG,
with each Other within a sing1e machine 25 ter instruction format, the most significant bit5 are

40% 42, @* A basic system “clock” waveform is destination field the last five bits are the wurce

quency Or duty qb) shows a first quarter used, while in the pipe, to identify a selected pair of

puWOses to be described in more
qc) shows a 52 tCK2) which (ln

this case, high) during the second quarter 42 Of each
the register fields are decoded, the proper pair of regis-
ters is selected, indicated by a select line $0 which is

machine cycle. FIG. shows a waveform 5 4 (C W activatd during the second quarter 42 of the machine
during the third quarter 44 Of each machine 35 cycle. FIGS. a([) and 40) illustrate waveforms 82, 84,

cycle. FIG. we) shows a waveform 56 (CK4) recurring respectively, which indicate by their respective rising
during the fourth quarter 46 of each machine cycle, edges 84, 88, that the selected registers in the register

!@ which shows the file 74 are clocked into the destination and source regis-
timing of the loading of the “pipe” register in the in- ters 76, 78 at that time, i.e., at the mid-point of the ma-
struction register %. Waveform 58 is shown with a w chine cycle.
smail arrow at the rising edge of a change in V O h F At this point in time, as discussed above, the tnstruc-
from low to high Occumng at the Same time as the tion in the pipe is latched into the secondary register i n
sing of CK1 of waveform 50 of FIG ‘%b), This the instruction register . While in the secondary regis-
indicates that the instruction present on RlSC inStruC- ter of the instruction register the owode is decoded for
tion lines 14 of FIG. 3 (which will have been present, at 45 the pu’pose of detemining the to be per-
that p i n t In time, for a full machine CyCie) is now Wt- famed, The destination fieid is also dw&ed again at
tled OUt and ready for ClOCking into the RISC iIlStrUC- this time for the p ~ f p o x of determining the register or
tion register pipe within the instruction register 34.
Thus, a clock line 60, shown in FIG. 3, rises on the written into with either the resuits of an internal opera-
*sing edge of CK1 at the beginning of each machine 50 tion or with an operand moved in from the data bus 18.
Cycle. In other words, the contents Of the instruction Tfiw two alternative loading paths are indicated by a
register Pipe is chanced at the beginning of each ma- signal line 100 and a signal line 102. The signal line 100
chine cycle. After the instruction has been present in the represents the 32.bit output of an arithmetic-logjc unit
“Pipe” register for two full quarter Cycles it is latched (ALU) 104 which operates on, among others, signals
from the “Pipe” into the ~ O n d a r y instruction register, 55 provided by the destination and source registers 76, 78.
i.e., at the beginning of CK3 as shown by a rising edge For an operation in which the contents of destination
62 of a waveform 64 in RG. ‘%E!). Of COufse, it Will be and source registers 76.78 are operated on by the ALU
understood that the signal presented to the input ofthe 104, the output of that operation is provided on line 100
secondary register during the second quarter 42 is pres- back into a register pair from which the destination
ent at the output of the secondary also during this set- 60 register 76 was originally loaded. On the other hand,
ond quarter 42. since the clock is low. Therefore. the the information might instead be from the data bus 18
opcode can begin to be decoded by the control during via a buffer 106, a signal line 108, an input/output (I/O)
this second quarter period even though not yet latched. unit 110 and signal line 102. The I/O unit may be
Thus, although the instruction in the ‘*pipe” is resident thought of, for the purposes described thus far, as sim-
therein from the beginning of a machine cycle to its end, 65 ply a short circuit from signal line 108 to signal line 102,
the contents of the pipe are also copied into the second- Le., it scrves no function relevant 10 the present level of
ary instruction register in the middle of each machine disclosure. (It will, however, be important with respect
cycle. Therefore, the time that a given instruction is to a subsequent level of disclosure in connection with a

a

within the register file 74 which is or are to

4.992.934
13

MIL-STD-1750 embodiment of the present invention
and is therefore included in FIG. 3 for that purpose).

If the control 30 selects an operation for the ALU 104
which involves an ALU output signal on the line 100
into a register or register pair in the register file 74, as
decoded from the secondary register in the instruction
register 34, the output of the ALU is clocked into the
selected register or register pair in the register file 74 at
the beginning of the second quarter of the machine
cycle as indicated by a rising edge 112 of a waveform
114 in FIG. q k) . This waveform represents the voltage
present on aclock line 116 shown in FIG. 3 for clocking
the register which is to be written into by the ALU 104.

Thus, during the first half of each machine cycle, the
control unit 30 decodes the instruction register 34 pipe
to determine a pair of registers in the register file to be
accessed for loading the destination and source registers
76,78 and decodes the secondary register in the instruc-
tion register 34 for the purpose of determining which
register in the register file 74 is to be loaded with the
input bus 102 or with output of the ALU from the previ-
ous machine cycle. T h e ALU output signal on line 100
or data on line 102 is loaded in the selected register or
register pair on the rising edge of CK2 while the desti-

14

nation and source registers are loaded on the rising edge 25
of CK3.

If the opcode decoded from the instruction in the
secondary register in the instruction register 34 turns
out to be a load/store instruction for loading or storing
data from or to an external memory space, then there 30
will have to be an operand address output from the
source register 78 onto the operand address bus 16 via a
signal line 118 and a buffer 120. The control 30 will of
course enable the buffer 120 for the purpose of passing
the signal on line 118 over to the operand address bus 35
15. This will occur on the rising edge of CK3 as clocked
on signal lines 117u and 117b. On a load operation, an
operand will then appear on the data bus 18 from the
memory which will be routed into the register file 74
via buffer 106, as enabled by the control 30, line 108, 40
I/O 110, and signal line 102. The destination field of the
RISC instruction residing in the secondary register in
the instruction register 34 is us&, as it was for an in-
struction relating to an ALU operation, for designation
the register within the register file 74 into which the 45
operand is to be loaded. Again, this occurs on the rising
edge of CK.2 as shown in waveform 114 of FIG. q k) .
On a store operation, an operand will be provided on
the data bus 18 from the reaster pointed toby the desti-
nation field of the instruction which is loaded into the 50 signal from the instruction address bus 12. Such ad-
destination register 76. dresses may also be manipulated from time to tme.

Thusfar, the control unit 30 has been described per- Thus, the control unit 30 selects inputs to the ALU
forming its functions of fetching RISC instructions by through the multiplexers 124, 126 for operation therein.
incremeniing the instruction counter 32, decoding cur- according to the opcode. It also selects, according to
rent instructions received in both the primary ("pipe") 55 the opcode, the particular operation to be performed on
register and secondary register of an instruction register the input signals by the ALU. The operation is per-
34 for performing various control functions internally formed by hardwired logic which produces a stable
within the RISC machine 10, including seIecting regis- output signal on the line 100 after the inputs become
ters to be operated on within the register file 74 and stable. This normally takes place during the latter half
storing them into source and destination registers 76.78, 60 of the machine cycle and on into the first quarter of the'
and loading either an ALU output signal from the pre- next machine cycle. The output of the ALU is not
vious instruction into a selected register in the register loaded into the intended destination until the rising edge
file 74 or ioading an operand from the data bus 18 if the of the second quarter of the next machine cycle, i.e.,
decoded operand indicates a load operation from mem- corresponding to rising edge 112 of waveform 114 in
ow. 65 FIG. 4(k). The destinations for the ALU output signal

The next control function to be described is the selec- on line 100 may be a register in the register file 74, the
tion of inputs to the ALU 104 through a pair of multi- instruction counter 32 or an accumulator 140. The accu-
plexers 124, 126. The first multiplexer 124 provides a mulator is for the purpose of performing shift, multiply

first input signal 128 to a first input of the ALU 104. The
second multiplexer 126 provides a second input signal
on a line 130 to a second input of the ALU 104. These
input signals are selected by means of select lines 132.
134 from among several different input signals to each
multiplexer. The select lines are provided by decoding
the secondary instruction register and are present by the
time of occurrence of the rising edge of CK3. In other
words, when the destination and source registers 76, 78
have been loaded with the selected registers then the
multiplexers will be selected. If the destination and
source registers 76, 78 are selected for having their
contents operated on by the ALU 104 then thew con-
tents will be transferred via lines 118 and 136 and
through the respective multiplexers 124, 126 into the
proper inputs of the ALU for having the proper opera-
tion executed. The control unit 30 also selects the opera-
tion to be performed by the ALU by decoding the op-
code while it resides in the secondary instruction regis-
ter. This would normally occur sometime after the
rising edge of CK3. The ALL! is capable of the standard
repertoire of operations including ADD, AND, OR.
and EXCLUSIVE OR. Once the output of the multi-
plexers have stabilized the operation is then stabilized in
hardware to provide a stable output on the line 100.

For the RISC 10 illustrated in FIG. 3, at the present
level of disclosure, Le.. in connection with the first
aspect of the present invention, each of the multiplexers
124, 126 is responsive to only two separate signals. Ad-
ditional signals will be described later in connection
with another level of disclosure for describing the sec-
ond aspect of the present invention. The other inputs to
the multiplexers, for the RISC level of disclosure, are
connected with the RISC instruction and instruction
address buses. Thus, multiplexer 124 is responsive to an
instruction signal on a line 136 from the control unit 30.
This would correspond to an immediate data field resid-
ing in the secondary register of the instruction register
34 which would be transferred into the multiplexer 124
during the third quarter 44 of the particular machine
cycle in which it was desired to perform an operation
on a RISC instruction. These would be few and far
between, however, as compared to for example. the
normal internal operations in which data is manipulated
rather than an immediate data field (in the instruction).
Register-to-Immediate instructions will be described
below, in connection with the description of the RISC
instruction set. The multiplexer 126 is also responsive.
at this level of disclosure, to a RISC instruction address

15
4,992,934

16 - -
and divide operations and is also loaded with the output
of the ALU on the rising edge of C K 2 during selected
machine cycles, as is done with the loading of register
files with ALU output signals following the ALU oper-
ation.

The control unit 30 also updates sysrem status and
checks for exception program flow (interrupts, calls,
jumps). Appropriate control signals are provided to the
various functional entities shown in FIG. 3 in such
cases.

Referring now to FIG. 5, a more detailed illustration
of the register file 74 of FIG. 3 is there shown. The
internal data bus 102 is shown provided to a first 3:l
multiplexer 150 and to a second 3:l multiplexer 152
which selects between the internal data bus 102 and the
ALU output signal on the line 100, which is split in
FIG. 5, between a most significant half of the ALU
output on a signal line 1ODa and the least significant half
of the ALU output on a signal line 1006, Each of these
lines 1o00, 1006 are also presented to both the first and u)
second multiplexers 150, 152. The control unit 30 of
FIG. 3 controls which multiplexer 150, 152 and which
path 100, 102 feeds the registers.

The register file 74 itself comprises a group of 20
general purpose registers. The register file can be 25
loaded with either ALU data from the signal line 100 or
operand data from the signal line 102 (originating on the
data bus 18). RISC instructions perform operations on
these registers. FIG. 5 shows the registers split into two
groups, a first ("even") group 740 (RpR14 & A0 & AZ), M
is responsive to an output signal on a line 154 from the
first multiplexer 150 and comprises IO general purpose
registers. A second ("odd") group (R]-Rl5& A1 & A3)
of general purpose registers 74b is responsive to a sec-
ond signal on a line 156 from the second multiplexer 35
152. Any of the registers in either group 74a, 746 may
provide its contents to a third multiplexer 158 or a
fourth multiplexer 160 over signal lines 162, 164. The
third multiplexer i s a 20: 1 multiplexer for providing an
output signal 166 to the destination register 76 of FIG. 40
3. The fourth multiplexer 160 is also a 20: 1 multiplexer
and provides an output signal on a line 168 to the source
register 78 of FIG. 3.

In the embodiment of FIG. 3, the ALU is a 32-bit
ALL' while the data and data address buses 18, 16, as 45
well as the instruction and instruction address buses 14,
12, are only 16-bit. Therefore, for the structure of FIG.
5, the internal data bus 102 is 16-bit, the most significant
half of the ALU signal output line lo00 is also 16-bits, as
is the least significant half signal on line 1006. The multi- 50
plexer output lines 154, 156 are therefore also 16-bit as
are all the general purpose registers 74u, 745. Each of
the 2O:l multiplexers 158, 160 constructs a 32-bit word,
the most significant half taken from one of the ten regis-
ters in the group 74b and the least significant half taken 5 5
from any one of the registers in either group 740 or 746.
Thus, the destination and source output signals 166, 168
are 32-bit words.

Referring now to FIG. 6, an illustration of a source
module such as the source module 78 shown in FIG. 3 M)

is there illustrated. The signal on line 168 is a 32-bit
signal and it is split into two 16-bit words at a point 174 '

for presentation as an upper 16-bits on a line 176 and a
lower significant half on a line 178 to, respectively, a
fint 3:1 multiplexer 180 and a second 3:1 multiplexer 65
182. At a point 184 the least significant 5-bits of the
32-bit word on line 168 is provided on a line 186 to a
BIT decoder which selects the appropriate bit for all bit

operations (where a bit is changed). A 32-bit word from
the BIT decoder 188 is split into a most significant half
on a line 192 and a least significant half on a linq 194 for
presentation to the first and second mulriplexers 180,
182, respectively. The first multiplexer selects the most
significant half output of a register file or selects a BIT
field on a BIT instruction. I t also sign extends bit 16
output of the register file (forces to all ones or zeros).
The second multiplexer 182 selects the least significani
half output of the register file or selects the BIT field on
BIT instructions. It also swaps the lower 8-bits and
upper 8-bits on BYTE SWAP instruction.

The selected most significant half on a line 168a and
the selected least significant half on a line 1686 is pro-
vided to the source register 78 which, as described
before in connection with FIG. 3, is a temporary regis-
ter used to hold the derived source data field, prior to
performing an ALU operation thereon. The source is
also used to provide an operand address prior to loading
or storing a register to or from memory. This is illus-
trated in FIG. 3 in which the output line 118 is provided
to a buffer 120 which in turn provides the operand
address signal on a line 16 to the operand memory
space. As mentioned, the output signal 118, if not per-
forming an operand addressing function, is provided to
a multipiexer 124 along with an instruction line 136 for
providing a fint input signal 128 to the ALU 104. as
better shown in FIG. 3.

Referring now to FIG. 7, an illustration is there pro-
vided of a destination module, similar to the destinalton
module 76 illustrated in FIG. 3. The output signal on
the line 166 from the multiplexer 158 in the register file
74 is provided to a 32-bit shifter multiplexer 200 which
allows right shift, left shift or no shift on each clock
signal on 16 and 32-bit words. I t shifts logically, arirh.
metically, and cyclically. The output of the shifter mux
Mo is provided on a line 202 to a destination register
2W. This register may be thought of as a temporar?
register used to hold the derived destination data field
output of shifter multiplexer 200. The output of thc
destination register 204 is provided on the line 136 I C)

the multiplexer 126 for providing the second input kig.
nal on the line 130 to the ALU 104 of FIG. 3. Thc
destination module 76 is also used to provide operand
data prior to storing a register to memory. The desrrna-
tion can also be shifted right or left 1-bit per c l x k and
i s used to perform shift, multiply and divide operations

Referring now to FIG. 8, an illustration is there pro-
vided of an accumulator module 210 similar to the accu-
mulator 140 shown in FIG. 3. The ALU output signal
on the line 100 is provided to a 2:l multiplexer 212
which is also responsive to an accumulator register 216
output signal on a line 218. The multiplexer provides a
32-bit output signal on a line 220 to a shifter multiplexer
222 which permits right shift. left shift or no shift opera-
tions as required for multiplication, division. and &bit
shifts (it is concatenated with the destination register).
The output of the shifter multiplexer 222 is provided on
a line 224 to the accumulator register 216. The accumu-
lator module 210 as a whole may a b b e used for tem-
porary storage of data. It should be noted that the re-
sults of multiplication and division are formulated in the
destination module 76 and the accumulator module 140
or 210.

The signal processor of FIG. 3 has two basic instruc-
tion formats that support 16 and 32-bit instructions. The
operation code (opcode) consists of the six most signifi-
cant bits of the instruction. Table I shaws the opcode

17

oxx xxx R D

4,992,934

1l110 16-811
Irnrnedutie

18
TABLE II-continued matrix of thirty-two instructions. The opcode's upper

2-bits and next lower 3-bits select, respectively, the
column and row for which an instruction is located.
The two instruction fonnats are (I) register-to-register fi"; SF RD When RS RD RS
(RR); and (2) register-to-immediate (RI). The least sig- 5
niticant bit of the &bit opcode selects the format by
which the instruction is to be interpreted. Each of the 32
instructions may be executed in each format, depending
on the.sixth bit.

TABLE r
00 01 10 I 1

Drstinatron and Source Field scleciian

will field wi l l Wll l
S C k t value I c l c t l vlcct

R F I l l l l ACC ACC ollll RF
'.*" '&" cx~mlwn lieid lor IwrCc'

Table 11 is an illustration of the organization selected
lo for the two halves of the register file 74 of FIG. 5.

TABLE 111
My) MOV A D D A N D SLL
001 LR A D D C O R SAR
010 STR A B XOR SCR

100 MOVC SUB RBR MOVB
I O 1 1NR SUBB SBR SWAB
110 O T R SB TBR DIV
I l l JCR C M P LRI STRI

011 C A L L A D D U NOT MULS 15

20
The register-to-register format IS a 1 &bit instruction

consisting of a &bit opcode and two 5-bit regmer fields
The register field can select any one of (I) 20 general
registers, (2) ten general register pairs, or (3) one accu-
mulator 25

I w e I Dcstraatron I Source 1
MSB LSB

[oxxxxx 1 R D 1 RS J
If IO 9 5 4 0 30

The register-to-register destination (RD) and saurce
(RS) field can be selected according to Table 11.

TPBLE I1
35

Dcstmauon and Source Field rtlectwn
B I ~ W h c n R D WhcnRS Bit W h e o R D W n R S

field wll Wll l field will Wlll
value Wlcci rciecc value deet Xlax
Mx)oo RO RO IMXX) XRO XRO
oooO1 R i R I lWl XR2 XR2 40
aMl0 R2 R2 lo010 XR4 XR4
aM11 R3 R3 lWll XR6 XR6
ODIC0 R4 R4 IO102 XR8 XR8
00101 RS 8 5 IOIOI XRA X U
00110 R6 R6 l O l l 0 XRC XRC
00111 R7 R7 10111 X R E XRE 45
O I M y) R8 R8 llM0 A 0 A0
01001 R9 R9 llWI AI AI
OIOIO R A R A I1010 A2 A2
OIOll RB RB 11011 A 3 A3

01101 R D R D I1101 XAZ
OIL10 R E R E 11110 - "IMM

OllW R C R C 11100 XAO X A O
XA2 50

Rcgrstei
Pair
XRO
XR2
XR4
XR6
XR8

XRA
XRC
XRE
XAO
XA2

The left-hand (16-Bits) column of the table corresponds
to the ten registers 74u and the right-hand (16-Bi t s)
column of the table corresponds to the ten registers 7#.
As mentioned previously, the registers can be selected
for operation in pairs in order to form 32-bit words. The
nomenclature for the register pairs shown in Table 111
and are also reflected in Table I1 for selection by the
register field in the register-to-register instruction. The
AO-A3 registers are generally used for holding interme-
diate results.

The Register Immediate format is a 32-bit instruction
consisting of a &bit opcode, one 5-bit register address, a
%bit code indicating an immediate instruction and a
16-bit data field.

T H E RISC INSTRUCTION S E T
REGISTER
TRANSFER REGISTERS A D D R

M O D E MNEMONIC DESCRIPTION C P Z N V A F F E C T E D
RR M O V R D . R S R D - R S I.+.. R D
R R LR RD,RS I F (R S = SP) ***** RD.SP

T H E N
RS - R S + I:
R D - @(RS):
I F (RS I = SP)
T H E N
RS - @(RS1:

RR STR RD.RS IFfRS = SP)
T H E N
RS c R S - 1:
RS - WRD);
IF (RS != SP)

19
-continued

4,992,934
20

THE RISC INSTRUCTION SET

ADDR TRANSFER REGISTERS
MODE MNEMONIC DESCRIPTION CPZNV AFFECTED

REGISTER

RR

RR
RR
RR
RR

RR
RR
RR

RR
RR
RR
RR

RR
RR
RR
RR
RR
R R
RR
RR
RR
RR
RR
RR
R R

CALL RD.RS

MOVC RD.RS
INR RD.RS
OTR RD,RS
JCR N.RS

ADD RD. RS
ADDC RD.RS
AB RD,RS

ADDU RD,RS
SUE RD,RS
SUBB RD.RS
SB RD.RS

CMP RD, RS
XOR RD.RS
NOT RD.RS
RBR RD.RS
SBR RD.RS
T B R RD.RS
LRI RD,RS
SLR RD,RS
SAR RD,RS
SCR RD.RS
MULS RD,RS
MOVB RD.RS
SWAB RD.RS

RR 6 DIV RD.RS
RR STRI RD.RS

THEN
RS - @!(RD).
R D - F C + 2
PC - RS
RD- RS
RD - @fRS).
@(RS) - RD.
IF (SW = N)
THEN
PC - PC + RS.
ELSE
P C - P c + 1.
RD - RD + RS.
RD - RD + RS + C,
RD7-0- RD7-o +
RSi - 0.
R D - R D i R S .
R D - R D + R S + l .

RD7-0- RD7-0 *
RD - RD + RS + C.

RS7-o TI.
RD:R$;
RD - RD % R S
RD c RS:
RD c RD AND BIT(RS).
RD - RD AND BIT(RS1,
ALU - RD AND BlT(RSh
RD - (RS),
RD - R D SHIFf (RS).
RD - RD SHIFT (RS),
RD - RD SHIFT (RS),
RD - RD * RS,
RDi-o - RS7-o,
RDIJ-8 - RS7-a
RD7-o - RSi5-8,
RD c RD / RS

..*.I

OPZNO ..*..
..I.*

.I.

CPZNV
CPZNV
CPZNV

CPZN'
CPZNV
CPZNV
CPZNV

OPZN-
OPZN'
OPZN'
e....
OPZNn

OPZN'
OPZN'
OPZN* .*.."
Q+v..

*.I..
...e.

....V

pc. SP

RD, SW
RD, SP
SP
PC

RD. SW
RD. SW
RD, SW

RD, SW
RD. SW
RD, SW
RD. SW

sw
RD. SW
RD. SW
RD
RD
sw
RD
RD, SW
RD, SW
RD, SW
RD. SW
RD
RD

RD

DETAILED DESCRIPTION OF INSTRUCTION
SET

Each of the RISC instructions described below is
described for the register-to-register format.

However, it will be understood that each has a regis-
ter-to-immediate format counterpart which may be
designated by the status of the sixth, or least significant
bit of the opcode.

The Move instruction (MOV) allows the contents of
the source register (RS) to be moved to the destination
register (RD).

The Load Register instruction (LR) moves the con-
tents of the memory location pointed to by RS to RD.
I f RS is the Stack Pointer (SP), then the SP is incre-
mented prior to the load.

The Store Register instruction (STR) stores the con-
tents of R D into the memory location pointed to by RS.
If RS is the stack pointer, then the SP is decremented.

The Call instruction (CALL) loads the contents of
program counter plus two into the register pointed to
by RD. The contents of RS are then moved into the
program counter.

The Move and Set Status instruction (MOVC) moves
the contents of RS to RD.

The Input Regrster instruction (INR) specifies an I/O
cycle which moves the contents of the I/O location
pointed to by RS to RD. On the other hand, if the regis
ter-to-immediate instruction format is specified for this
instruction then an internal cycle is indicated whereby
an internal l/O location is moved to RD. A summary of
these internal locations is provided in Table IV below.

I t will be understood that although the present section
of the specification is devoted to the description of a

@ RISC, it is sometimes difficult, descriptively, to entirely
separate the RISC, or first aspect of the present mven-
tion, from the RISC CISC, or second aspect of the
present invention, where the embodiment combines
both. Many of the functions disclosed in Table fV are

45 dictated by MIL-STD-1750 and are therefore not
strictly related to the Erst aspect of the present inven-
tion. However, they are disclosed at this point in the
specification for the sake of cohesiveness. They should
be understood, however, with that object in mind.

TABLE IV
so

Command Ctld (RS)
(ha) Mnemonic Command

10 - Reserved
1 1 EA0 Effective Addrrss Zero
12 EA I Effective Addreu One
13 EA2 Effective Address Two
14 PI Pending Inumpt
15 MK Mask Register
16 Fr Fault Register
17 sw Status Word
I8 IRS instructton Register

Source field
19 IRD Instruction Regtstcr
IA - RCXNcd
18 - Rtscrvcd
IC Pc Program Counter

1E PCREL PC Relative
IF - Reserved

55

60

63 ID PIPE Pipe Rcgster

21
4,992,934

22
TABLE IV 10. Reserved.

1 I . Effective address zero (EAO): Used for imple-
rnenting MIL-STD-1750 addressing modes not imple- (hex) (RS) Mnemonic Command . rnented by the RISC architecture, Le., Direct and Di-
rect Indexed (D, DX) addressing modes. The register 5

pointed to by the 1750 Instruction Register Destination I2 ENBL Enable Interrupts
field (IRD) is added to the pipe register. The result is 13 DSBL Disable Interrupts
stored in selected accumulator (A). The 1750 Pipe regis- 14 SPI Set Pending Interrupt
ter is then loaded with the contents of the memory IS SMK Set Mask Rcgtster

L6 SFT Sei Fauli Rcgtstrr
17 ssw Set Status Word

Program Counter is post-incremented. I S IRS Instruction Register

10 C L F f Clear Fault Register
I 1 PCL Program Counter Load

location pointed to by the 1750 Program Counter. The 10

12. Effective address one (EAl): Used for imdement- Source field

mode. The contents of the 1750 Status Word register
(SW) are stored in A.

18. Read Instruction Register Source field (IRS) IRS:
The 4bit IRS field of the 1750 program register 235 is
stored in A.

19. Read IRD field URD): The 4bit IRD tield in the
1750 PR 230 is stored in A.

)A. Reserved.
1B. Reserved.
IC. Read Program Counter (PC): The contents of the

1750 Program counter 234 are stored in A.
ID. Read 1750 Instruction Pipe register (PIPE}: The

contents of the 1750 Instruction Pipe register 232
are stored in A. The 1 7 s Pipe register is then
loaded with the contents of the memory location
pointed to by the 1750 Program Counter. The Pro-
gram Counter is post-incremented.

1E. Read Program Counter Relative (PCREL):
Takes the &bit field in the 1750 instruction register
230 and adds it to the 1750 PC 234. The result is
stored in A.

1F. Reserved.
The Output Register instruction (OTR) stores the

contents of RD into the 1 / 0 location pointed to by RS.
This also corresponds to an I/O cycle. However, if the
register-to-immediate instruction format is indicated for
this instruction then an internal cycle is indicated
whereby an internal 1/0 location is moved to RD. A
summary of these internal I/O locations is provided in
Table V below:

-

ing MIL-STD-1750 addressing modes not impiemented 19 IRD lnsiruction Register

INCS Increment IRS field
by the RISC architecture, Le., for Base Relative (B)
addressing mode. The register pointed to by the 1750 I s I S INCD Increrncni IRD field
Instruction Register Base field (IRB) is added to the IC IRL Load Instruction
lower I-bit of the Instruction register (IR). The result is

ID lRLD Load lnstructron

1E CCOFF Disable Condition

Desrinaiion field
I A

Register

Register Rest. licld

CdCS

interrupt

stored in A.
13. EFfective address two (EA2): Used for imple-

rnenting 1750 addressing modes not implemented by the 2o
RISC architecture, Le., Based Indexed (BX) addressing \F RPl Rerei Pending
mode. The register pointed to by the 1750 Instruction
Register Base field (IRB) is added to the register
pointed to by the IRD field. The result is stored in A. zs
14. Read Pending Interrupt (PI): Dictated by MIL-

STD-I750 but is used in either RISC or CISC emulation
mode. The contents of the pending interrupt register
(PI) are stored in A.

STD- 1750 but is used in either RISC or CISC emulation

(MK) are stored in A.

STD-1750 but is used in either RISC or CISC emulation f S STD-1750 but is used in
mode. The contents of the Fault register (IT) are stored
in A.

10, Clear Fault Register (c L ~) :
RISC or 1750 emulation mode. The contents of the
!&bit fault register are reset to zero,

11, Load program eounter (p c ~) : ~h~ 1750 pro-
gram counter 234 is loaded with contents of A.

12. Enable Interrupts (ENBL): Dictated by MIL-
STO-17SO but is used in either R ~ S C or CISC

not masked out.

use in either

15. Read Mask Register (MK): Dictated by MIL- 30

mode. The contents of the Interrupt Mask register

Dictated by MIL.

mode. This command enables all interrupts which are

13, Disable Interrupts (DSBL): Dictated by 25 MIL- 16. R e d Fault Register
RISC or CISC emupation

mode, This command disables all interrupts (except
those defined such that they cannot be disabled) at the

17. Read Word (sw): Only beginning of the execution of the DSBL instruction.
Currentl;, INT &Power Down, INT]-Machine

40 Error, and I N T 5-Executive Call are the only three
interrupts that cannot be disabled.

14. Set Pending Interrupt Register (SPI): Dictated by
MIL-STD-I750 but is used in either RISC or CISC
emulation mode, This command outputs the 16-blt con-

45 tents of A to the pending interrupt register. I f there is a
one in the corresponding bit position of the interrupt
mask, (same bit set in both the PI and MK), and the
interrupts are enabled, then an interrupt shall occur

15. Set Interrupt Mask Register (SMK): Dictated by
MIL-STD-1750 but is used in either RISC or CISC
emulation mode. This command transfers the contents
of A to the interrupt mask register. A "1" in the corre-

55 sponding bit position allows the interrupt to occur and
a "0" prevents the interrupt from occurring except for
those interrupts that are defined such that they cannot
be masked. Currently, INT &Power Down. and INT
5-Executive Call are the only interrupts that cannot be
masked.

16. Set Fault Register (SFT): Dictated by MIL-STD-
1750 but is used in either RISC or CISC emulation
mode. The contents of the Fault register (FF) are
loaded with the contents of A. A bit vaiue of " I " shall

65 set the particular fault. Refer to Section 4 for Fault
register requirements.

17. Sct Status Word (SSW): The 1750 Status Word
(SW) is loaded with the contents of A.

5o after the execution of the next instruction.

4.992.934
23

18. Load IRS (Instruction Register Source Field)
field (IRS): The Cbit 1750 Instruction Register 230 IRS
field is loaded with bits 5-8 of A.

19. Load IRD (Instruction Register Destination
Field) field (IRD): The &bit IRD field in the 1750 PR
230 i s loaded with bits 1-4 (bit 1 is LSB) of A.

1A. Increment IRS field (INCS): The 4-bit IRS field
in the 1750 PR 230 is Incremented.

IB. Increment IRD field (INCD): The 4-bit IRD
field in the 1750 PR UO is incremented.

IC. Load Instruction Register (IRL): 1750 Program
register UO is loaded with the contents of the Pipe
register RISC program flow is transferred to either
the Interrupt vector (if an interrupt is pending) or
the Map vector (specified by the upper 8-bits of the
1750 PR 230). The 1750 Pipe register 230 is then
loaded with the contents of the memory location
pointed to by the 1750 Program Counter 234. The
Program Counter is post-incremented. Conditional
status field is enabled.

ID. Load Instruction Register (IRLD): 1750 Pro-
gram register 230 is loaded with the contents of the
Pipe register 232. RISC program flow is trans-
ferred to the Map vector (specified by the upper
8-bits of the 1750 PR 230). The 1750 Pipe register
232 is then loadid with the contents of the memory
location pointed to by the 1750 Program Counter
234. The Program Counter 23% is post-incre-
mented. Conditional status field is enabled.

1E. Disable Condition Codes (CCOFF): The Condi-
tional Status field (CS) of the 1750 status Word
(SW) is disabled so that it cannot be changed.

1F. Reset Pending Interrupt (RPI): Dictated by MIL-
STD-1750 but may be used in either RISC or CXSC
emulation mode. For every bit set in A, that corre-
sponding interrupt bit will be reset.

The Jump on Conditional Register instruction (JCR)
is a conditional jump instruction wherein the immediate
field is added to the program counter, if a logical one
pattern corresponding to the CC field results from the
bit-for-bit ANDing of the CC field with the CS field.
The 5-bit condition status field is labeled WCPZN';
V-overflow; C-carry; P-positive: 2-zero; N-negative.
They are set or reset by the ALU. The CC field is in the
RS field of the RISC instruction register 34. The vari-
ous CC commands are shown in Table VI.

5

10

15

20

25

M

35

40

45

TABLE VI
- N -

CC fwld Jump condition Mnemonic x) ... NOP
ow01
W I O
OOOI 1
WIOO
WIOI
031 IO
00lll
10111
01001
OIOtO
0101 I
01 100
01 101
01 I IO
O I I 1 1
IMOO
loco1
1w10
1001 I
10100
10101

L a than zero
Equal to zero
Lcsr thankquai lo zero
Grater than zero
Not equal to zero
Grater thankqua1 to zero
UWOndittQnal
Carry rt
Carry or LT
Carry or EQ
Carry or LE
Carry or GT
Carry or NE
Carry or G E
Unconditional
Overflow sei
Overflow or LT aero
Overflow or EQ zero
Overflow or LE zero
Ovcrllow or GT rcro
Overflow or NE zero

JC LT.RS
JC EQRS
IC L ~ K S

JC NE.RS 55
IC GT.RS

IC G E R S

IC CY,RS
IC CLT,RS
IC CEZRS
IC CLE.RS 60
IC CGT,RS
JC CNE.RS
JC CGE,RS

IC V.RS
JC VLT.RS 65
JC VE.RS
IC VLE.RS
JC VGT.RS
JC VNE.RS

e..

...

24
TABLE VI-continued

- N . -
CC f d d Jump condition . Mnemonic

101 IO
101 1 I Uncondiiiod ...
I IOW Overflow or Carry 5et JC VC. RS
I la)l Overllow or carry or LT zero JC VCLT.RS
I I010 Overflow or carry or EO zero JC VCEO.RS
t 101 I 1C VCLE-RS
I I 1 0 3 Overflow or cavy or Gt zero IC VCGT.RS
I I101 Overflow or carry or NE zero JC VCNE.RS
I I 1 IO IC VCGE,RS
1 1 1 1 1 Unconditional ...

IC VG€.RS Overflow or GE zero

Overllow or carry or LE zero

Overflow or carry or GE zero

The Add Register instruction (ADD) adds the con-
tents of RS to the contents of RD. The result is stored
in RD. An overflow condition will occur if the oper-
ands have the same sign and the result is of the opposite
sign.

The Add Register with Carry instruction (ADDC)
adds the contents of RS to the contents of RD. The
result is incremented if the carry flag is set. The result is
stored in RD. An overflow condition will occur if the
operands have the same sign and the result is of the
opposite sign.

The Add Byte instruction (AB) adds the lower byte
contents of RS to the lower byte Contents of RD. The
byte result is stored in the lower byte of RD. An over-
flow occurs if the byte operands have the Same sign and
the byte result is of the opposite sign.

The Add Register Unsigned instruction (ADDU)
adds the contents of RS to the contents of RD. The
result is stored in RD. The overflow condition will not
be affected.

The Subtract Register instruction (SUB) subtracts
the contents of RS from the contents of RD. The result
is stored in RD. An overflow condition will occur if the
operands have the opposite sign and the result is of the
same sign as RS.

The Subtract Register with Borrow instruction
(SUBB) subtracts the contents of RS from the contents
of RD. The results are decremented by one if the carry
flag is clear. The result is stored in RR. An overflow
condition will occur if the operands have the opposite
sign and the result is of the same sign as RS.

The Subtract Byte instruction (SB) subtracts the
lower byte contents of RS from the lower byte contents
of RD. The byte result is stored in the lower byte of
RD. An overflow condition will occur if the byte oper-
ands have the opposite sign and the byte result is of the
same sign as RS.

The Compare Register instruction (CMP) compares
the contents of RS to the contents of RD. The P condi-
tion code is set if RD is greater than RS. If RD=RS
then the Z condition code is set. If R D is less than RS
then the N condition code is set.

The Logical AND Register instruction (AND)
ANDs the contents of RS with the contents of RD. The
result is stored in RD.

The Logical OR Register instruction (OR) inclu-
sively ORs the contents of RS with the contents of RD.
The result is stored in RD.

The Logical XOR Register instruction (XOR) exclu-
sively ORs the contents of RS with the contents of RD.
The result is stored in RD.

The Logical NOT Register instruction (NOT) stores
a One's complement of the contents of RS in RD.

25

MSB LSB B ~ I cleared in RD
wooMyx)oMowoo 3 1 MSB

,4,992,934

lo shows how to select the bake of RS when determining
the direction and n u m k of shifts to perform.

26

Value in RS

The Reset Bit in Register instruction (RBR) selects a select the shift count and direction. Therefore. for shift
bit within R D to be reset (cleared) according to the operations, the maximum number of shifts possible is 32.
Value in RS. Table vi1 below relates the value in RS tO Bit 6 of RS selects normal or extended shifts, When it js
the bit in R D that will be cleared. The least significant opposite in to bit 16 of RS, then extend& shift
5-bits in RS are used to determine the bit to be cleared. 5 mode will be selected, ln shift tempo-

rary register (TA) will contain the upper 32-bits of the T h e other bit values are not relevant.
TABLE VI1 value to be shifted and the register pair R D will contain

the lower 32-bits. Using extended shifts, &bits can be I Value in RS 1 1 shifted. but onlv 32 times oer instruction. Table X below

I arithmetically shifts the contents of R D by the number
,MSB LSB

oooowoooooOwoo
0 0 o o 0 0 ~ a w 1
00 oooo oooo OOlO

B i i x t in RD ,

31 MSB
M
29

Value in RS
MSB LSB B ~ I rcsrcd in RD

o o o o ~ o o o o o o o o 31 MSB
~ w o o o w o o o o 1 M
Doat OOOD owo (MI0 29

..,

of bits selected by the contents of RS. An overflow
occurs if the sign of (RD) changed during a left shift.
The lower 5-bits of RS select the shift count and direc-
tion. Therefore, for shift operations, the maximum num-

35 ber of shifts possible is 32. Bit 6 of RS selects normal or
extended shifts. When it is opposite in sign to bit 16 of
RS, then extended shift mode will be selected. In ex-
tended shift mode, temporary register (TA) will contain
the upper 32-bits of the value to be shifted and the regis-

44 ter uair R D will contain the lower 32-bits. Using ex-

maximum number of shifts possible is 32. Bit 6 RS se-
lects normal or extended shifts. When i t is opposite in
sign to bit 16 of RS, then extended shift mode will be

5 5 selected. In extended shift mode, temporary register
(TA) will contain the upper 32-bits of the value to be

27
4,992,934

28
The Swap Byte in Register instruction (SWAB) loads instruction in a group, the pipe 232 and the program

the lower and upper byte contents of RS into, respec- register 230 would have been clocked on the rising edge
tively, the upper and lower byte contents of RD. of CKI for the purpose of providing their respective

The Divide Register instruction (DEW divides the contents to the appropriate destinations. i.e., the pro-
Contents of RD by the Contents of RS. The quotient 1s 5 gram register UO contents to the control unit M a and
stored in RD. The remainder is stored in TA. the pipe 232 contents to the multiplexer 124, if appropri-

The Store Register with Instruction +ode instruc- ate, ~l~~ clock& on the rising edge of this CK1 would
tion (STRI) loads the contents of RD into the instruc- be the program ~ 4 , nus, for a new CISC

lo machine cycle, there will be a delay of one half cycle struction memory cycle.

A RISC CISC before the corresponding initial RISC instruction ad-
dress is loaded into the RISC instruction counter 32. Referring back to FIG. 3, it will be recalled that the

I,o llo provides additional features for the, CISc in- An example of a CISC instruction executed in this
cluding system status in the form o f a status word (SW) 15 manner using the instruction set described above in
retister, a pending interrupt (PI), register, an interrupt

fined by MIL-STD-I750, A .
nection with the RISC, it is also used to link operand
data to the register file. For a RISC used for emulating 20 lation groups.
a CISc, a program register UQ is provided as a tempo- The CISC instruction set selected for the example is
rary register used to hold clsc program instructions the MIL-STD-17SOA instruction set in which one of the
currently being executed. These instructions are re- opcodes is a single precision integer add in the direct
ceived from a CISC instruction "pipe" 232 which in addressing mode (see Section 5 ,5S on page 89 of MIL-
turn receives CISC instructions over the data bus 18 as 25 STD-I750A, dated 2 July 1980). In that mode, for the
provided via the buffer 106, the signal line 108, and the add, the derived operand is added to the contents of the
I/O 110, as addressed by a CISC program counter 234. RA register. The result (a 2's complemenr sum) is stored
CXSC program instruction addresses are temporarily in register RA. The fomat is shown below.
stored in the CISC program register 234 prior to load-
ing a corresponding CISC program instruction into the 30 ADDR
pipe B2. The program counter provides its CISC in- MODE MNEMONIC F o R M A . r / o x o D E

tion memory location pointed to by RS. This is an in- instruction clocked into the CISC 22 during a

connection with the basic RtSC is presented

mer skilled in the art, given a set of CISC instructions,
may eaily COnStNCt a corresponding set of RISC emu-

mask (MK) and a fault register (m). These are dl de- Additional examples are unnecessary as any program-
above, in

struction address onto the instruction bus 16 via a buffer
236 controlled by a control Joa. D A RA,ADDH A 0 1 RA I RX IADDR

8 4 4 1 6

It will be recalled that the multiplexer 124, of the
basic RISC was used to select a first input to the ALU 35
for arithmetic and logical operations and also for linking
instruction data to the register file. It serves the addi-
tiofla1 function, in the CISc emUlatiOn mode, Of linking
CISC program instructions to the register file via a
Signal line w8. SimilUIY, the mUltlpleXer 126 iS used tO 40 Thus, the instruction shown might
link CISc Program addresses via a signal h e the
register file.

The &bit opcode is an "Add Direct'' operation code.
The &bit RA field dmisignates the register to which the
derived operand is added and into which the result is
stored. The RX field (&bits) is an index register. m e
i&bit ADDR field is for obtaining the derived operand.

stored in a 1750
memory space to which the instruction bus 24 of FIG.
2 has access. It will be provided over the data bus 18

For any given CISc appticatio"s progrdm, the pro-
increment through each %quen-

and the upper I&bits will provided into the program
register 230 for provision via lines 242 to [he control a gram counter uQ

tial CISC instruction which will be received in the pipe 45 for decoding [he lower 16-bits (ADDR) will be
232 for execution in a similar sequential manner. As Of course, it will be under- each CISC instruction is received, it will be decoded by stood that in the embodiment shown, the data the control unit 3Oa which is shown being provided via bus Over which these instructions are received is only a a line 242 thereto. The control unit will "look-up" a I&bit bus half must be ~ n t

50 separately. In any event, [he upper half in the program instruction in a group of RISC instructions stored in the
PROM 2o of FIG, for emulating the particular cIsc register 230 is provided via lines 242 to the control 304

dres is placed on a signal line 244 and provided to the indicating the beginning address of a RISC emulation
RISC instmction 32 where it is then placed on 5 5 group for emulating the particular CISC instruction, is
the RISC instruction addrffs bus 12, ne desired R ~ S C provided over line 244 to the RISC instruction counter
instruction then appears on instruction bus 14 and is 32.
decoded and executed as described previously. ne The first such RISC instruction for emulating the
instruction counter is then incremented in the middle of MIL-STD-1750A single precision integer add is as fol-
this machine cycle, Le., on the rising edge of CK3 for 60 lows:

INR A0,EAl addressing the RISC instruction at the beginning of the
emulation group, as controlled by the control unit 300.
A clock line 246 indicates the signal line which goes According to the above instruction, the lower 16-bit
high on the rising edge of CK3. The instruction counter address residing in the pipe 132 is then routed into regis-
i s incremented o n CKl for all instructions other than 65 ter A0 of the register file 74 via the mux I24 and the
the first instruction of an emulation group. ALU 104.

During the machine cycle previous to the loading of The instruction counter 32 is then incremented to
the instruction counter 32 with the first RISC emulation address the next emulation instruction as follows:

the

the upper half and address at which the

instruction received over line N2, RISC first where it is decoded and an appropriate RISC address.

29
4,992,934

30 _ _
tecrure 300 is implemented via a “hardwired” control
302. LR A1,AO

The above Load Register instruction is a memory Another approach would be to implement all instruc-
cycle in which the contents of the memory location tions using two level control. In other words, execution
pointed to by the address residing in A0 is moved to AI. 5 is controlled by microcode (firmware) control of hard-
The next RlSC emulation instruction to be executed in ware. FIG. 10 shows the result of such an approach
this group: whereby a CISC instruction set architecture 304 could

be provided via instructions on a signal line 306 to a
ADD @IRS,Al firmware control 308 which in turn passes on the re-

the con- IO mainder Of the execution fUnCrlOn IO a hardwire control
tents of the register pointed to by the PR **S*l field (6 unit 310 Via a signd line 312. An example Of such 3n
bits) and adds it to the contents of register AI. The approach could use the Motorola 6 8 0 0 .
result of the addition is stored into the register pointed
Io by the PR *y field (one of 16 *<R- registers), ne structions using 2-level control with the remaining in-
next, and last RISC emulation instruction for this group 15 structions implemented using sofrware. The result of
basically says to go get the next ClSC instruction from such an would be as shown in in l1

where complex instructions beionging to a CISC in- the pipe 232 and the register 230. It is as follows:
struction set architecture 314 are provided to both firrn-

OTR A0,IRL ware control 316 and means for providing software
this way, each of the M I L - s ~ ~ - ~ ~ ~ ~ instrue- 20 emulation 318. The firmware is responsive to complex
may be emulated as groups of RISC instructions instructions on a signal line 320 and a signal on a line 322

indicative of the results of the software emulation car-
of programming to COnStNCt

ried out in the emulation unit 318. Additional signal
various groups of RISC instructions, each for emulating manipulations of the signal on line 322 may be carried

s e ~ , 2 5 out by the firmware 316. The rernalning control func-
tions are executed in a hardwire control unit 324. An
example of such an implementation could be the Mi-
croVax.

FIG. 12 is an illustration of the result of a prior art
to using the pres- M design using an approach dictated by the fact that the

334 BTe afready in A clsc instrucrion ,~,
architecture 3% provides complex instructions over il

330 whtct,

The above Add Register instruction

Another be to imp1ement

in the PROM 20 of FIG. 2. It is a simple
to one

one of the instructions of a complex
MIL-STD-1750A

instruction set emulated in RISC code will not be given
here. The example given is sufficient.

in the

an example of the

is a special’ added
approach for designing a RiSC emu’at- hardware represented by the architecture 326 and u n l (. ing a MIL-STD-1750 CISG. In the two-chip Fpolution

shown in 2p the 2o may be used by the user
to define his own special userdefined functions. In a

on page 147, there is described a Built-In-Function
instruction for a “special” addressing mode. This in-
struction invokes special operations defined by the user.
The instruction may use one or more additional words FIG. 13 is an iilustration of the design steps, acct,rd.
immediately following it, the number and interpretation 40 ing the third aspect ofthe present invention, A R 1 s ~ ‘
of which are determined by 8-bit opode extension. is first designed in a step 340. Once the hardware dtwgn
The present approach for providing such built-in-func- a d RISC instruction set is fixed, the next step 342 I\ ((1

&ions, for MIL-STD-1750 Chips presently On the mar- send the design for fabrication, At the Same lime, ;t
ket, is for the customer to specially order a specially step 344 is carried Out concurrently, in which the e m u -
made chip from the ~ ~ ~ f a c t u r e r which has to be re- 45 lation code is written for emulating each of a selecird
duced to silicon according to a cusom-made appm=h CISC instruction set with RISC instructions grouped
in order to incorporate the specially requested built-in- together on the PROM M of FIG. 2.
fUnCtlon. This is a very expensive approach which can- The design method disclosed herein applies 1 0 anl.
not be an Option in many COSt limited applications. number of CISC instruction sets including MIL-STD.
HOwever, using the approach of the Present invention, 50 1750. VAX, NEBULA, etc. The approach IS to first
the user Can be informed of the capabilities of the RISC build a single-level control (hardwired) using RISC
hStrUCtIOn set and can program his own built-in-func- design philosophy. In 50 doing, the designer attempts t o
tions in software for placement in the PROM 20. Thus, maximize execution of the RISC (hardwired) instruc-
the user Can very cheapb P~odUCC his own built-in- tion set. Once the RISC i s hardware designed it can be
functions using RISC software executed in the RISC 55 sent to the factory for reduction to silicon. The designer
hardware 10. T h i s is a very desirable feature not p i - then writes the CISC instruction emulator using RISC
ble using the prior art approach. instructions, as described in the example above. The

rationale for taking this approach is that the RISC de-
sign time is much, much less than CISC design time. DESIGN METHODOLOGY

The third aspect of the present invention provides a 60 For example, it is known in the art that the Fairchild
design methodology for implementation of a complex F9450, MD281 took longer than three years to develop.
instruction set computer (CISC) architecture. Using Using the present approach, the MIL-STD-1750 RISC
current methods, the designing of a CISC could take emulator took less than one year with only one trip to
several different forms. A first approach would be to the silicon factory needed to achieve certificarion.
implement all instmctions using single level control. In 65 Although the invention has been shown and de-
other words, execution is controlled by hardware as, for scribed with respect to a best mode embodiment
example, in the 28000. FIG. 9 an iIlustration of such a thereof, it should be understood by those skilled in the
design approach in which a CISC instruction set archi- art that the foregoing and various other changes, omis-

line 328 to a saftware emulat,on
draft version Of M’L-STD-I75OB* dated &pt. 29* Ig86 35 provides a sign& on a line 332 for hardwire exect.J(ti)II

separate hardwired
IBM 51’370 cxsc
in U.S. pat, N ~ , 4,587,612 by ~i~~ et ai ,

334, An example would h.
by way of a RISC as sh,,,,

31 .~

sions, and additions in the form and detail thereof may
be made therein without departing from the spirit and
scope of the invention.

We claim:
1. A microprocessor for executing complex instruc-

tion set (CIS) instructions provided by an external
source, comprising:

a source of reduced instruction set (RIS) instructions:
a reduced instruction set computer (RISC) having an

internal data bus and an internal instruction bus
separate from said data bus, each of said buses
extending externally of said RISC, said RISC being
connected to said RIS source by said instruction
bus and being connected to the external source by
said data bus, said RISC including means for ac-
cessing RIS instructions in said RIS source and
executing said RIS instructions; and

emulator means associated and integrally operative
with said RISC, and operative in response to re-
ceipt of CIS instructions and data over said data
bus for causing said RISC to respond to each CIS
instruction received by accessing said RIS source
for and executing. one at a time, a corresponding
series of RIS instructions;

whereby execution of each of said series of RIS in-
structions emulates execution of a corresponding
one of said CIS instructions.

2. The microprocessor of claim 1, wherein said RISC
is responsive to a mode select signal for selecting opera-
tion in a reduced instruction set mode in whch said data
bus is used for data only, or a complex instruction set
mode in which said data bus is used for both data and
CIS instruction signals.

3. The microprocessor of claim 1, wherein the RIS
source is an external memory device for storing a plu-
rality of groups of RIS instructions for sequential execu-
tion, each group corresponding to a CIS instruction.

4. The microprocessor of claim 1, wherein said RISC
utilizes the reduced instruction set described in the spec-
ification.

5. The microprocessor of claim 1, wherein said com-
plex instruction set is a MIL-STD-1750 instruction set.

6. A signal processing method, comprising the steps
of:

processing reduced instruction set instructions and
data over separate reduced instruction and data
buses emanating from a reduced instruction set
computer (RISC);

emulating a complex instruction set signal processing
method by processing, within said RISC, complex
instructions received over said data bus by process-
ing, over said reduced instruction bus, one of a
plurality of groups of reduced instructions for each
complex instruction emuiated. each group of re-
duced instructions corresponding to a particular
complex instruction.

7. An essentially one machine cycle instruction set
signal processor having at least two cycle periods per
machine cycle for use with separate data and instruction
buses, comprising:

an instruction counter, responsive to an incrementing
signal provided during a first portion of the first
clock period of each machine cycle for increment-
ing the present address signal stored therein for
addressing the next instruction, or responsive to an
ALU output signal during the first portion of the
first clock period of each machine cycle for storage
therein for providing an exception instruction ad-

4,992,934
2.3

5

10

IS

20

25

30

35

40

45

50

55

M)

65

J L
dress signal on the instruction address bus for ad-
dressing exception instructions;

an instruction register, responsive during the second
portion of the second clock period to replacement
instruction signals addressed during the first por-
tion of the first clock period by the instruction
counter and present on the instruction bus before
the beginning of the second portion of the second
clock period, said instruction register for receiving,
storing and provided said instruction signal begin-
ning in and subsequent to the second portion of the
second clock period of each machine cycle;

control means, responsive during the first clock per-
iod of each machine cycle to said instruction sig-
nals stored in said instruction register during the
second portion of the second clock period of the
previous machine cycle for decoding said tnstruc-
tion register signals during the first clock period of
each machine cycle and for providing control sig-
nals for the signa1 processor during the second
clock period of each machine cycle;

arithmetic logic unit (ALU), responsive during se-
lected machine cycles to a first input signal and to
a second input signal provided beginning with the
first portion of the second clock period and subse-
quently for performing a logical operation thereon
and for providing an ALU output signal indicative
of the result of said logical operation during rhe
first ponion of the first clock period of the next
machine cycle;

an accumulator, responsive during the first portion of
the first clock period of selected machine cycles to
said ALU output signal for storing and providing
said ALU output signal;

a register file, having a plurality of storage registen,
responsive either to said ALU output signal during
the first portion of the first clock period of selected
machine cycles, or responsive during the first por-
tion of the first clock .period of selected machine
cycles to an incoming operand signal from the data
bus, for storing said ALU output signal, said oper-
and signal in selected storage registers, and respon-
sive to one or more of said control signals from said
control means for selecting a storage register dur-
ing the second portion of the Erst clock period for
providing a destination input signal and for select-
ing a storage register during the second porrion of
the first clock period for providing a source input
signal;
destination register, responsive to said destination
input signal for storage of the signal information in
a selected storage register and for providing said
stored information as a destination output signal
beginning with the first portion of the second clock
period for use either as a destination output signal
to be operated on in said ALU, or as an outgoing
operand signal on the data bus;
source register, responsive to said source input
signd for storage of the signal information in a
selected storage register and for providing said
stored source signal either as a source output signal
to be operated on by said ALU or as an outgoing
operand address signal on the operand address bus,
each provided beginning with the first portion of
the second clock period:

first multiplexer means, responsive during selected
machine cycles to said source output signal pro-
vided by said source register and to said instruction

of the second clock period;
a complex instruction set program register, respon-

sive during a first portion of a first clock period of
selected machine cycles to complex instruction 20
signals provided over the data bus for storing and
providing said complex instruction signals;

a complex instruction set program address counter,
responsive during a first portion of the first clock
period of selected machine cycles to a program 25
counter incrementing signal for incrementing its
address signal magnitude for addressing the next
complex instruction, or responsive during a first
portion of the first clock period of selected ma-
chine cycles to said ALU output signal for storing 30
and praviding an exception instruction address
signai, each provided on the data address bus; and
wherein said control means is responsive during a
first quarter of selected machine cycles to said
complex instruction signals from said program 35
register for decoding and providing fi reduced in-
struction set address signal to said instruction ad-
dress counter for addressing the first instruction
signal of" a group of sequentially stored reduced
instruction set signals, said group being one of a 40
plurality of such groups designed for emulating a
complex instruction set; wherein

said first multiplexer i s responsive to said complex
instruction signals and to a corresponding select

4,992,934
33 34

signals stored during the previous machine cycle instruction in one machine cycle and for executing
for providing, in response to a first select signal, said series of reduced instructions in successive
either said source output signal or said instruction machine cycles for processing said received input
signal as said first input signal to said ALU starting data according thereto and for providing said input
during the first portion of the second clock period; 5 data processed as if according to said complex
and instructions over said data bus as output data.

second multiplexer means. responsive during selected 9. The signal processor of claim 8, wherein said com-
machine cycles to said ALU output signal from plex instruction signals correspond to selected instruc-
said accumulator, to destination output signal p r e tions of the MIL-STD- I750 instruction set.
vided by said destination register and to said in- 10 10. A complex instruction set computer (CISC), re-
struction address signal stored in said instruction sponsive to incoming data signals and complex instruc-
counter for providing, in response to a second tion signals (representing complex instructions of a
select signal, either said ALU output signal from complex instruction set), for processing the data signals
said accumulator, said destination output signal or according to the complex instructions represented and
said instruction address signal as said second input 15 for providing outgoing, processed data signals, com-
signal to said ALU starting during the first portion prising:

a reduced instruction set comDuter (RISC) havinR
separate external data and iktruckon buses, re-
sponsive to the incoming data signals received over
said data bus, for processing the incoming data
signals and for providing the processed data signals
over said data bus, said RlSC having emulator
means internal thereto, responsive to the complex
instruction signals received over said data bus, for
causing said RISC to sequentially provide, in re-
sponse to each complex instruction set instruction
signal received, a corresponding group of reduced
instruction address signals which address a corre-
sponding externally stored group of reduced in-
struction signals; and

an external memory device, having a plurality of
groups of directly executable reduced instruction
signals stored therein, each group corresponding to
a selected one of the complex instruction set in-
structions, said memory device being responsive to
said group of reduced instruction address signals
for sequentially providing said stored reduced in-
struction signals over said instruction bus: whereby

said RISC is responsive to said group of reduced
instruction signals for sequentially find directly
executing a corresponding group of reduced in-
structions, thereby emulating a corresponding
complex instruction.

11. An emulator for processing instructions in re-
signal for providing said complex instruction signal 45 sponse to signals received on a data bus from an external
as said first ALU input signal; and source, comprising:

said second multiplexer is responsive to said address
signal from said program address counter and to a
corresponding select signal for providing said ad-
dress signal as said second ALU input signal.

8. A complex instruction set computer (CISC), com-

a reduced instruction set computer (RISC) having
separate data and instruction buses external
thereto, responsive to complex instructions and 5 5
input data received over said data bus for provid-
ing, in response to each complex instruction re-
ceived, an associated series of reduced instruction
addresses; and

memory means, responsive to each associated series 60
of addresses for providing a corresponding series
of reduced instructions over said instruction bus,
and wherein

said RISC is responsive to each corresponding series
of reduced instructions for executing each reduced 65

50

prising:

memory mean; responsive to address signals, for
providing instruction signals from a first instruc-
tion set; and

an integrated circuit having separate, external data
and instruction buses, said data bus being con-
nected with said external source, said instruction
bus being connected with said memory means,
comprising:
means, responsive to data signals received from

said external source over said data bus and re-
sponsive to said first instruction set instruction
signals received over said instruction bus, for
processing said data signals by executing instruc-
tions from said first instruction set; and

means, responsive to instruction signals from a
second instruction set, received over said data
bus from said exrernal source for providing said
address signals.

e r r * +

UNITED STATES PATENT AND TRADEMARK OFFICE
c EG

1 PATENT NO. *: 4,992,934

DATED : February 12 , 1991
INVENTOR(S) :

comcted as A w n below:

C l a i m 7, colurtm 31, line 58, after "a t least two", I1cycIe" should read
--clock--

Gregory A. Portanova et al
It is certified that m o r appears in the above-identified patent and that said Letters Patent is hereby

I C l a i m ?, column 3 2 , l i ne 10, after "storing and", "provided" should read
-- providing--

, Clam 7, column 32, line 2 2 , &fore "a r iLh t i c l q i c urzit", imert --ma--

Arrest:

Attesring Officer

Signed and Sealed this

Twentyeighth Day of July, lW2

DOUGLAS B COMER

Rcrrng Cornmrssroner of Purenrr and Truilrmark

