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[57f ABsTRAcr 
The system and method of this invention simulates the 
flow of control of an application program targeted for a 
specific instruction set of a specific processor by utiliz- 
ing a simulator running on a second processing system 
having a second processor with a different instruction 
set. The simulator reduces the number of translated 
instructions needed to simulate the flow of control of 
the first processor instructions when translating the 
address of the next executable instruction resulting from 
a dynamic transfer of control, Le., resulting from a re- 
turn instruction. The simulator compares the address 
that is loaded at run time by the return instruction with 
the return address previously executed by that instruc- 
tion. If the last return address matches, the location of 
the return is the same. If the last return does not match, 
a translate look-aside buffer is used to determine the 
address. If the translate look-aside buffer does not find 
the address, then a binary tree look up mechanism is 
used to determine the address of the next instruction 
aAer a return. The performance of the simulator is en- 
hanced by utilizing the easiest approaches first in the 
chance that a translated instruction will result most 
efficiently. 

7 Claims, I1 Drawing Sheets 
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TRANSLATING A DYNAMIC TRANSFER 
C O m O L  INSTRUCTXOK ADDRESS IN A 

SIMULATED CPU PROCESSOR 

This is a continuation of application Ser. No. 
07/151,137, filed Feb. 1, 1988, now abandoned. 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

Ser. No. 820,451, filed Jan. 17, 1986 for a VIRTUAL 
TERMINAL SUBSYSTEM, currently co-pending, 
and assigned to the same assignee as the present inven- 
tion. 

Ser. No. 151,136, filed Feb. I ,  1988 forCONDITXON 
CODE GRAPH ANALYSIS FOR SIMULATING A 
CPU PROCESSOR, now U.S. Pat. No. 4,951,195 and 
assigned to the same assignee as the present invention, 
which is hereby incorporated by reference. 

Ser. No. 151,123, filed Feb. 1, 1988 for a SYSTEM 
AND METHOD FOR SIMULATING THE I/O OF 
A PROCESSING SYSTEM, now abandoned, and 
assigned to the same assignee as the present invention, 
which is hereby incorporated by reference. 

Ser. No. 151,135, filed Feb. 1, 1988 for a MEMORY 
MAPPING AND SPECIAL WRITE DETECTION 

ING A CPU PROCESSOR, now abandoned, and as- 
signed to the same assignee as the present invention, 
which is hereby incorporated by reference. 

A portion of the Disclosure of this patent document 
contains material which i s  subject to copyright protec- 
tion. The copyright owner has no objection to the fac- 
simile reproduction by anyone of the patent document 
or the patent disclosure, as ir appears in the Patent and 
Trademark Office patent file or records, but otherwise 
reserves all copyright rights whatsoever. 

BACKGROUND OF THE INVENTION 

IN A SYSTEM AND METHOD FOR SIMULAT- 

1. Field of the Invention 
This invention relates to data processing systems 

running applications written for a specific first proces- 
sor  of a first processing system, and more particularly to 
a system and method of simulating the first processor 
for running the applications on a second processing 
system having a second dissimilar processor. 

2.  Description of the Related Art 
Current advances in computer technology have lead 

to ever changing processors, otherwise referred to 
herein as the central processing unit (CPU), of the pro- 
cessing system. Examples of the evolution of various 
processors are Intel’s 8088 processor used in the IBM 
PC, Intel’s 80286 processor used in the IBM PC AT1, 
Intel’s 80386 processor used in the IBM Personal Sys- 
tcm/22 model 80, and the IBM Research/ OPD Micro- 
processor (ROMP) which utilizes a Reduced Instruc- 
tion Set Computer (RISC) architecture in the IBM RT 
PC3. Other processors include Motorola’s 68000,68020 
among others. 

The hardware of various processing systems changes 
rapidly to take advantage of the increased processing 
power of emerging processors. A disadvantage of 
changing hardware is that the software written for pre- 
vious processors typically can not be used on the later 
hardware technology. In some cases where an applica- 
tion can be used on a different processing system other 
than the one it was originally written for, the perfor- 
mance of the application is not as good on the different 
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processing system as it would have been on the process- 
ing system for which the application was originally 
written. As a result, software applications which may 
have had a long development cycle may become obso- 
lete quickly. The demise of the earlier written software 
is all the more tragic when the function of the applica- 
tion as originally written is still very much pertinent and 
in demand on the new hardware processing systems. 

As a result, there is typically only a limited amount of 
“new” software available that is specifically written for 
the “new” hardware design when the new hardware is 
initially released into the market place. T h i s  is  due in 
paft by the long development cycle of creating software 
application programs, and the confidentiality of the new 
hardware design by the manufacturer prior to releasing 
the hardware into the market place. The software man- 
ufacturer has to know certain facts about the hardware 
of a processing system before a software application 
program can be written for the processing system. 

Ideally, a manufacturer of processing systems would 
like to have a vast amount of software available to run 
on the processing system as soon as the new hardware 
for the processing system is announced into the market 
place, A customer would more likely invest in a new 
processing system if the customer knows that an abun- 
dant supply of software is already available for use. 

There have been several approaches in tapping the 
vast amount of software that has previously been writ- 
ten for “older“ hardware designs. A previous hardware 
approach for being able to run appkations originally 
written for another processor is to build the new pro- 
cessing system with a coprocessor. In this way, the 
processing system can run applications for both types of 
processors, the new processor and the old processor. 

For example, the IBM RT PC contained an IBM PC 
AT coprocessor in order to use applications that were 
originally written for the IBM PC AT. However, since 
the coprocessor was supported at a low level in the 
operating system, the coprocessor could not take full 
advantage of the functions provided by the AIX4 oper- 
ating system. One of the functions provided by the AIX 
operating system is multi-tasking as described in co- 
pending application Ser. No. 820,45t, fited Jan. 17, 1986 
for a VIRTUAL TERMINAL ’ SUBSYSTEM and 
assigned to the same assignee as the present invention, 
which is herein incorporated by reference. 

The coprocessor, however, limits the user to one 
session at a time, since the coprocessor included a hard- 
ware adapter for emulating the PC AT. In other words, 
once the coprocessor was started, no other instances of 
the coprocessor could be running. 

The coprocessor i s  also limited to the speed of the 
processor of the fist processing system and cannot take 
advantage of faster second processing systems as they 
evolve. 

A second approach is to simulate the second proces- 
sor through software A software simulator provides a 
mechanism to run previously written software for one 
proccssor on a new processing system having a different 
processor. A software approach to simulation allows 
taking advantage of faster second prcccssing systems as 
they evolve. It also allows the use of multitasking capa- 
bilities of the operating system to provide muluple in- 
stances of the first processor. 

Some software simulators on the market today in- 
clude SoftPC, by Insignia Solutions, and the Amiga 
Transformer by Simile Research Inc. for Commodore’s 
Amiga (based on Motorola’s 68000). Information on this 
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system was published in the article “Amiga’s Trump instruction can not fit into one cell, then a subroutine 
Card: EBM PC Emulation”, AMIGA WORLD, Vol. I ,  call is generated thar branches to a run time environ- 
NO. 2, NovemberfDecember 1985. Phoenix Technolo- ment set of routines which performs the emulation and 
gies also provided a simulator to simulate the Intel pro- returns back to the cell to complete execution Another 
cessor for the Apollo machine which has a Motorola 5 simulator simulates the processor of the IBM Sys- 
68000 processor. tem/370 on  the IBM R T  PC which is described in the 

Any specific CPU processor has a specific instruction following article: May, C. “Mimic: A Fast System/370 
set. When a software application program is developed Simulator”, presented Jun. 11, 1987 at the Association 
for a specific CPU processor, i t  is compiled into object of Computing Machinery Symposium on Interpreters 
code. The object code is targeted to run on any c p u  10 and Interpretive Techniques, and published in SIG- 
that supports the specific instruction set. A simulator PLAN, 1987 proceedings of ACM. 
takes object code that was written to run on a specific A first generation simulator runs 50 to 100 host ma- 
instruction St% and COnVertS it  10 run on a different chine instructions per simulated instruction, A second 
Processor which may have a similar or different instruc- generation simulator an average of 10 host machine 
tiOn Set. The more the two instruction sets of the two 15 instructions per simulated instruction, 
processors are different, the more difficult it is to simu- a k a  either 50 Or 10 instructions to 

simulate one instruction on the simulated machine, the late the other processor. 
second processor m n i n g  the shulator mmt be either 

rich insU‘uction set in that i t  provides a wide variety of 50 or 10 times 8$ fast respectively as the simulated ma- 
instructions. Each instruction is tailored specifically for 20 chine be comparable in wrfomance, It is therefore 
a particular type of situation. Additionally, each instruc- desirable to further reduce the 

the ROMP processor in the RT PC has a reduced in- than what has previously been accamplished in the art, 
struction set (RISC) processor which provides fewer For if a coutd be designed to use 
instructions and less function per instruction. As each 25 only 4 instructions per simulated instruction, and the instruction.in the Intel 80286 may be able to do several simulator processor is more than 4 times faster than the tasks, more instructions would be required with the 
ROMP RISC pracessor to accomp’lish the same rssks, simulated machine processor, the simulator will be 

faster than the original machine being simulated. A user However, the speed of a processor can be increased 

If a 

For example, the Intel 80286 processor has a 

of may be able to do In instructions per each simulated or translated instruction 

by sjmpjifying the instruction f,)though in- 30 then increased wfomance by using the 
structions are required, no additional time i s  consumed 
on complicated instructions while executing the more 

simulated 
by using the machine for which the 

to run an apptication program than 
program 

common and simpler tasks. 
created a Therefore, the overall problem to OVerCOme in Sh-m- 

subroutine that would sirnutate the effect of a instruc- 35 lating another Proc=or is to further reduce the number 
tion, E~~~~ the the machine being simulated needed to of simulator (host) instructions per simulated instruction 
run that instruction, the subroutine would be called in in order to increase the processing speed of the simula- 
order to decode and execute that instruction. The prob- tor. 
lem with this approach is that the overhead of decoding SUMMARY OF THE INVENTION 
the instruction occurs every time the subroutine is 40 
called and executed, the speed of the It i s  therefore an object of this invention to reduce the 
simulated processor is affected, average host machine instructions per simulated ma- 

Instead of calling a subroutine each time an instruc- chine instructions. 
tion needed to be executed, another software simulation The SimUlatOr Of  this invention runs applications Ong- 
approach compiled a shorter sequence of host machine 45 inally of 
instructions to simulate an instruction. AS a result, the software emufation. The software approach of simufa- 
overhead of decoding and .translating the jmtructjon tion allows the flexibility of utilizing the functions of the 
occurs only once, during the first time the instruction is operating system of the simuIatOr m ~ h i n e .  In the Pre- 

. encountered. This translation is then saved. From then fen& embodklent Of this invention, the Simulator runs 
on, every time that instruction is simulated, the transla- x) as an application on the AIX operating system of the 
tion is executed. This is often referred to as a second RT pc. It therefore can take advantage of the multi- 
generation simulator. A first generation simulator will - f i g ,  multi-user capab es of the AIX operating 
take an instruction one at a time and decode it in real system to &low multiple applications offgrnally written 
time and execute it .  The decoding is done for each for the pc AT to run concunently without any change 
instruction as each instruction is needed. A second gen- 55 to the application itself. 
eration simulator will go through the instructions one at The method of simulation of this invention provides 
a time, translate the instructions, and then reuse that faster processing capability of the simulated processor 
translation instead of going back and translating again. than the previous methods of processor simulation by 

A previous second generation simulator was the sim- reducing the number of host machine instructions per 
ulator that simulated the IBM ROMP CPU on the IBM 60 simulated machine instruction. This was achieved by 
System/370 called RSIM. This simulator reserves a identifying key processing =cas that bad used more 
fued amount of storage for each instruction (16 bytes instructions than desired, and then by crating new 
for every half word) called cells. IBM 370 instructions methods to achieve the processing tasks through fewer 
would then be generated for each one of these cells for instructions. 
each R T  instruction. If the amount of code generated is 65 To increase the CPU simulation, Le., reduce the aver- 
less than what would f i t  in one cell, which is usually the age number of host instructions per simulated instruc- 
case, then it branches to the next baundary of the next tion, several key processing areas were identified that 
cell. If the amount of code generated to simulate the were currently utilizing more instructions than desired. 

was originally written. 
Previous methods of software 

for a different Processor by 
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First, the processing task of maintaining and keeping 
the correct values of the condition codes was identified 
as disclosed in Ser. No. 07/151,136, filed Feb. 1, 1988 
for CONDITION CORE GRAPH ANALYSIS FOR 
SIMULATING A CPU PROCESSOR, currently co- 
pending, and assigned to the same assignee as the pres- 
ent invention, which is hereby incorporated by refer- 
ence. T h e  method of this invention uti1,izes a graph 
analysis technique previously applied to compiler tech- 
nology, and applies it to CPU simulator technology to 
dynamically determine whether condition codes will be 
needed by any subsequent instruction. The simufator 
saves sufficient information to generate those condition 
codes that may be needed. Otherwise, the number of 
translated instructions required are reduced for that 
instruction, if it is determined from the graph analysis 
that the condition codes are not needed. 

Another area that was addressed to reduce the aver- 
age number of instructions generated involves translat- 
ing the addresses of instructions. The addresses of se- 
quential instructions propose no great problem in trans- 
lating since the translated address will also be the next 
sequential address. The difficulty arises in those instruc- 
tions thar are not common when viewing a program 
statically, bur occur quite frequently in a dynamic mix 
of instructions. A primary example is the return from a 
subroutine instruction. 

A processing system spends a comparatively large 
amount of time executing a return from subroutine. One 
difference with this type of instruction is that the ad- 
dress of the next instruction to be executed cannot be 
determined statically by just looking at the program. 
The program has to be actually running in order to 
determine the address to which that parficular instruc- 
tion will return. Most programs would probably return 
to the same place they had returned the last time that 
instruction had executed, as frequently occurs in a pro- 
grammed loop. It is quicker for the simulator to com- 
pare the address that is loaded at run time by the return 
instruction with the return address previously executed 
by that instruction. If the last return address matches, 
the location of the return is the same. Only if it fails, are 
the more elaborate schemes of a translate look-aside 
buffer, and then binary trees, used as the look up mecha- 
nisms to determine the address of the next instruction 
after a return. 

T h e  three tier approach in determining the address of 
the next instruction simplifies the determination by 
using a compare in the case where the currently execut- 
ing instruction returns to the same address as the last 
time it executed, by using a translate look-aside buffer if 
it retums.to an address that was returned to at least once 
before, if not immediately before, and by using binary 
trees as a last resort if the preceding two cases fail. The 
return address is used in a general way to refer to an 
address of any instruction which transfers control by 
computing the next target address from a value in a 
register or memory. 

A third prime procasing area that was identified for 
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reducing the average number of host instructions per 60 
simulated instruction was the processing task of being 
able to detect what happens when an instruction stores 
to memory as disclosed in Scr. No. 07/151,135, filed 
Feb. 1, 1988 for a MEMORY MAPPING AND SPE- 
CIAL WRITE DETECTION IN A SYSTEM AND 65 

SOR, currently co-pending, and assigned to the same 
assignee as the present invention, which is hereby incor- 

METHOD FOR SIMULATING A CPU PROCES- 

6 
porated by reference. The simulator of this invention 
provides a method for checking any first processor 
instruction which updates memory, to determine i f  the 
instruction is modifying a subsequent instruction or 
performing a video buf'fer update. The method of this 
invention reduces the number of cycles, Le, instructions, 
required to detect this modification. 

BRIEF DESCRIPTION OF THE DRAWING 
FIG. 1 is a block diagram showing the processing 

system environment of the preferred embodiment of 
this invention. 

FIG. 2 is a flow chart showing the initial steps in 
starting, the simulator of this invention. 
FIG. 3A shows a graph analysis of a sample flow of 

control of fmt processor instructions that are to be 
translated by the simulator of this invention. 

FIG. 3B shows a second example of a flow of control 
of first processor instructions to be translated. 

FIG. 3C illustrates a graph analysis of the condition 
codes in the flow of control of the first processor in- 
structions shown in FIG. 3B. 

FIG. 3D illustrates the flow of control of second 
processor instructions translated from the graph analy- 
sis of FIG. 3C. 

FIG. 4 is a flow chan of the translation. 
FIG, 5 is the program code used in the first method of 

the three tier approach for determining &he translated 
instruction address of the next executable instruction. 

FIG. 6 shows the data structures of the second and 
thud approaches for determining the translated instruc- 
tion address of the next executable instruction by map- 
ping an instruction of one instruction set to a come- 
sponding translation address of a simulator having a 
different instruction set. 

FIG. 7 is a flow chart of the three tier approach for 
determining the translated instruction address of the 
next executable instruction. 
FIG. 8 is a block diagram showing the t y p e  and 

contents of the memory of a processing system. 
FIG. 9 illustrates the mapping of the memory of the 

first processing system into the memory of a second 
processing system, and a status table for indicating the 
type of contents of a store to memory. 

FIG. 10 is the program code used to find the corre- 
sponding byte in the status table of a memory location in 
either shared memory or on an adapter. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The preferred embodiment of the system and method 
of this invention simulates a processing system such as 
the IBM PC AT which utilues an Intel 80286 processor 
having a complex instruction set, on a procffsing sys- 
tem 1 as shown in FIG. 1 such as the IBM RT PC which . 
utilizes the ROMP processor having a reduced instruc- 
tion set computer (RISc) technology. Although the 
RISC processor has less function per instruction, it can 
process instructions faster. The architectures between 
an late1 80286 based machine and 8 RISC based ma- 
chine arc quite different from each other. The greater 
the differenceahere is between the architectures of two 
processing systems, the more difficult it is to simulate 
the one processor on the other processing system. 

For more information on the RT PC processing sys- 
tem, the IBM PC AT processing system, a d  Intel's 
80286 processor, the following references are sug- 
gested, and are hereby incorporated by reference. Bach, 
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M. J.  The Design of the UNIX Operaring Sysrem, Pren- register contained the 32 bit values involved in an oper- 
tice Hall, 1986. Lang, 1. G. and Mothersole, T. L., ation, and the type of operation performed. The idea 
Design of the R T  PC I'RM Nucleus, Sep. 1, 1986. AIX was to postpone the work of determining the value of 
Operating Sysrem Commands Reference, Version 2.1, the condition code until an instruction that actually 
KBM Corporation, SCU-0790. AIX Operaring Sysrem 5 requires it is simulated. Nevertheless, there is still the 
Managing the AIX  Operaring System, Version 2.1, IBM overhead of saving away these values and types. This 
Corporation, SC23-0793. AIX Operaring pro- overhead is unnecessary if all possible subsequent paths 
gramming Took; and Interfaces, Version 2.1, 1BM Cor- contain an instruction which modifies the same condi- 
Wration, SC23-0789. AIX Operating Syslem ' Technical tion codes without any intervening instruction needing 
ReJerence, Version 2.1, Volumes 1 and 2, IBM Corpora- 10 them. 
tion, SC23-0808 and SC23-0809. IBM RTPersonal Corn- In order to determine which modifications of the flag 
purer Technologv, IBM Corporation, SA23-)057, 1986. register #r actually were used by subsequent instruc- 
Virlual Resource Manager Technical Reference, Version tions, the shulator 10 of this invention relies on infor- 
2.1, Volumes 1 and 2, IBM Cowration, SC23-0816and mation provided by a graph analysis 30, FIG. 3A, or 50, SC23-0817, iAPX 286 Programmer's Reference Manual 15 FIG. x of a block of f i t  procPssor instructions i ~ ] .  
Xncluding the OiPX 286 "Vmeric Supp!emenf, Intel, me% ttchniques were previously applied in 
210498-003,1985, and IBM PC A T  Technical Reference high level language compilers. However, it is believed 
Manual, IBM Corporation, March 1984. that this is the first time that this technique has been 

As shown in FIG. 1, the simulator 10 runs as an appli- applied to the problem of processor simulation. 

cessing system 1. Referring to FIG. 2 in addition to processor instructions lM], step 131, FIG. 4, the sirnula- 
FIG. 1, as the simulator 10 is started, step 2 ,  the simula- tor a second 
tor 10 copies BIOS 13 containing 80286 instructions processor translation, step 132, The translation occurs 
from read only storage (ROS) IS, otherwise referred to in three phases, as read only memory (ROW, into the operating SYS- 25 First, a graph 50, FIG, 3c, is built, step 133, FIG, 4, 

tor 10 translates the BIOS 13, step 4, which loads the 
operating system (DOS) 18 for which the application 19 1' the graph 

translates and executes that operating system 18, step 6. M instruction decoder "' with infor- 
A user invokes the application x9 Bt the operating sys- mation about the instruction 100 including which regis- 
tern prompt, step 7, and the simulator 10 translates and ters and condition codes 21-26 the instruction 

needs, block 42, in order to execute, and which condi- executes the application program 19, step 8. 
T~ increase the performance of the cpu simulation, tion codes 23-26 the hstruction Sets, block 43, as a 

simulated instruction, several key processing areas were 42 and the set register have a =parate bit for the 
identified that were currently utilizing more instruc- Overflow flag 21 and the carry flag 26p and groups the 
tions than desired. remaining condition codes 22-25 together in one bit. 

Therefore if any of these condition codes 22-25 are used 
1. Condition Code Graph Analysis 40 or set by an instruction 100, the middle bit of registers 

First, the processing task of maintaining and keeping 427 43 
the correct values of the condition codes was identified. Second, step 134, FIG. 4, the graph 30 is analyzed to 

Many processor instructions affect the flags register determine where intempts must be Polled, how 10 
20 (FIG. 3 c )  by updating the condition codes 21-26 in order the translations So to minimize branching, and 
it to reflect the rault of an operation, There are six 45 which condition codes defined by an instruction are 
different condition codes, the overflow flag 21, the sign actually "sed, 
flag 22, the zero flag 23, arithmetic flag 24 also known Third, step 136, FIG. 4, the code generator 29 is 
as the half carry, the parity flag 25, and the carry flag b ~ k e d  to tmxdate the graph 30 into second Processor 
26. These condition codes 21-26 indicate common con- instructions 130, FIG. 3D. 
ditions such as whether the result was zero, whether it so At the time of code generation, step 136, the informa- 
was negative, whether a carry Out of a register oc. tion in the graph 50 will indicate if the condition codes 
curred, or yhether an overflow condition resulted. It 23-26 defined by an instruction are actually used. For 
also includes conditions that indicate the parity (even or example, in a majorily O f  c~ses, the condition codes 
odd) of the lower byte of the result and the carry out of defined by a shift (SHL) instruction 125, FIG. 3B, 3C 
the lower 4 bits of the operation (half carry). 55 are not actually used. The code generator 29 can use 

To simulate a first processor instruction set by keep- this knowledge and generate a single second processor 
ing an up to date version of the first processor flag instruction 135, FIG. 3 D  where four or five instructions 
register 20 would require additional cycles for every may have bem required to save the operands of the 
instruction that affects the register. This is especially operation if the condition codes were needed. It is Seen 
true if the architecture of the fmt processor defines 60 in the flow of control of the instructions 100 of FIG. 3B, 
several different combinations of condition code up- 3C that the condition codes 21-26 for the ADD instruc- 
dates. For example, the condition codes may be always tion 126 were needed in a subsequent instruction 128 in 
set or cleared, computed, left unchanged, or left unde- this example. Consequently, the translated instructions 
fined. 130, FIG. 3D, resulted in six instructions instead of just 

A previous simulator RSIM, the RT PC processor 65 one instruction had they not been needed. Nevertheless, 
.simulator on IBM S/370, used a scheme to reduce the should the graph analysis 50 indicate that the condition 
overhead of keeping track of the condition codes. Reg- codes 21-26 are not needed, the extra translated instruc- 
isters were reserved for this purpose. The reserved tions are not generated. 

cation program on the operating system l2 Of the pro- *O When the 10 reaches a new blwk of first 

invokes the translator 27 to 

shared memory segment step 3' The sirnula- which represents the Structure of the block of first pro- 

corresponds to One instruction lw~ A first processor 
instructions lWf' Each !lode 

was originally step 5,  The simulator 10 then "lS each 

i.e., reduce the average number of host instructions per 35 result ofexecuting. f t  will be noted that the register 

so indicate. 
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The simulator 10 translates first processor instruc- written for the first processor is called a depth first 
tions 100 into second processor instructions 130, but search. The depth first search means that the instruc- 
does not do the translating one instruction at a time. The tions are searched sequentially until an end node (Type 
simulator 10 examines the first instruction that is about 0); e.g., the IRET instruction 109 FIG. 3A is reached. 
to be executed, and for which there is no translation, 5 After a type zero node is reached, the search returns to 
and continues examining subsequent instructions while the last instruction that had more than one descendent. 
building a graph 30 of those instructions as shown in The order of instructions 100 FIG. 3A, stored in 
FIG. 3A. memory 120 would be compare 102, jump below 103, 

Each node 101 in the graph 30 corresponds to one jump if equal 104, increment 108, and interrupt return 
first proaxsor instruction 100. Each node 101 can have 10 109. After the interrupt return 109, the search would go 
at most two descendants. In the case of sequentiaf in- back to the jump if equal instruction 104 and examine 
structions 102,105,106, 108,110, 111,112, which trans- the second descendent. The second descendent, inter- 
fer control only to the next sequential instruction in rupt return 109 is an instruction that is already stored in 
memory, the nodes 101 have only one descendant 103, memory. Therefore, the search returns to the next pre- 
106, 107, 109, 111, 112, 113, respectively, as shown in 15 vious node that had two descendents, the jump if below 
FIG. 3A as a vertical line 114, There can be two descen- 103, and follows the second path. New code is then 
dants in the case of conditional branch instructions 103, found in this path. The next instructions are stored in 
104, which test for a condition and branch to one in- memory in order as shown in FIG. 3A. 
struction if the condition is true, and continues with the Referring to FIG. 3B and 3C, for each of the nodes 
next instruction if the condition is false. It is possible for 20 101, the simulator keeps two fields in memory, one is 
a node 101 to have no descendants, as is the case for the the condition codes 21-26 that are needed by that in- 
interrupt return instruction 109. The instruction 109 struction 100, register 42, the other is the condition 
that has no descendants illustrates an instruction that codes 21-26 that are set by that instruction 100, register 
transfers control dynamically. Also, a node 101 can 43. At that point a propagation process is performed to 
have one descendant that is not a sequential instruction. 2 5  optimize which condition codes must be set. This is 
The unconditional jump instruction 107 is an example of accomplished by going from the last instruction allo- 
this. cated to the first instruction allocated. In this order, 

As shown above, there are four types of instructions instructions are taken out of a circular queue, The regis- 
100. These types are numbered in the code as follows. A ter 42 of a node IO1 is updated by ANDing the compli- 
node 101 is numbered ‘V’ if the instruction at the node 30 ment of register 43 of that node with register 42 of all 
has no descendents, Le., the return instruction 126 FIG. descendant nodes, and then ORing this result into the 
3C, the interrupt return instruction 109, FIG. 3A, and register 42 of a node 101 being updated. The updated 
the return instruction 113, FIG. 3A. A node POP i s  num- register 42 reflects the descendants’ needs for condition 
bered “1” if it is a sequential instruction and has one codes 21-26. If all descendants are marked done, then so 
sequential descendent; e.g., compare instruction 121, 35 is this node 101 being updated, and the node 101 is taken 
decrement instruction 124, FIG. 3C, compare instruc- out of the queue. If the node is not done, the instruction 
tion 102, increment instruction 108. FIG. 3A. A node is put at the end of the queue. The queue is gone 
101 is numbered “2” if the instruction has two descen- through until the queue is empty indicating all of the 
dents ie., jump if below instruction 122, FIG. X, and nodes have been processed, or there are some remaining 
103, FIG. 3A. A node 101 is numbered “3” if the in- 40 nodes in the queue that nothing has changed, i.e. a node 
struction is not a sequential instruction, but has only one has not been updated. 
descendent, i.e. jump instruction 107, FIG. 3A. A second pass is performed through the graph. In this 

Having built a graph 50, FIG. 3C, that describes the pass, the register 43 is updated by reducing the condi- 
block of first processor instructions 100, FIG. 3B, one tion codes set to acknowledge those that are now 
node 101 per instruction lOO, the simulator does an 45 shown as being needed by its descendants. 
analysis of the graph 50. Each node 101 contains infor- At the end of this analysis, each node 101 indicates 
mstion on which condition codes 21-26 a first processor which condition codes 21-26 must be set, register 43. 
instruction 100 normally needs for execution, register The number of condition codes 21-26 could be less than 
42, and which condition codes 21-26 are set, register 43, the number initially set by that instruction. The set of 
by that instruction after executing. In the case of the 50 condition codes will include only those condition codes 
compare instruction 121, the compare instruction 121 that will be used by subsequent instructions. For exam- 
d m  not need any condition codes 21-26 to execute, but ple, the return instruction 128 indicates in register 42 
it will set all of them, register 43. The jump if below that it will use all of the condition codes 21-26 as a 
(JB) instruction 122 needs the carry condition code 26 precautionary measure since the subsequent instructions 
in order to execute because that is the condition being 55 are not known until execution. The move instruction 
tested, register 42, but the JB instruction 122 does not 127 typically does not use, register 42, the condition 
Set any condition codes after executing, register 43. The codes 21-26, but indicates a use, register 42, since the 
jump if equal (JE) 123 instdction needs the equal condi- subsequent return instruction 128 needs them. The add 
tion code bit in order to execute, but the JE instruction instruction 126 does not use the condition codes 21-24, 
lZ3 does not set any condition codes after executing. 60 register 42, but sets all of them, register 43, which then 
The decrement instruction 124 sets the overflow flag 21 can be used subsequently. The shift instruction 125 
and the arithmetic flags 24, register 43, and leaves the normally sets, register 43, all of the condition codes 
carry condition code 26 unchanged, register 43. The 21-26, but does not need to in this case since the subse- 
graph analysis continues in this fashion for each of the quent add instruction 126 does not use them. It was 
rest of the instructions 100. 65 already analyzed that the add instruction 126 would set 

The nodes 101 are allocated in storage 120 scquen- the condition codes 21-26 for subsequent use. This anal- 
tially as the application program 19 finds them. The ysis for updating the use register 42 and the set register 
search through the application program 19 originally 43 continues in reverse order through the list of instruc- 
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The simulator 10 translates first processor instruc- written for the first processor is called a depth first 
tions 100 into second processor instructions 130, but search. The depth first search means that the instruc- 
does not do the translating one instruction at a time. The tions are searched sequentially until an end node (Type 
simulator 10 examines the firsr instruction that is about 0); e.g., the IRET instruction I09 FIG. 3A is reached. 
to be executed, and for which there i s  no translation, 5 After a tyw zero node is reached, the search returns to 
and continues examining subsequent instructions while the last instruction that had more than one descendent. 
building a graph 30 of those instructions as shown in The order of instructions 100 FIG. 3A, stored in 
FIG. 3A. memory 120 would be compare 102, jump below 103, 

Each node 101 in the graph 30 corresponds to one jump if equal 104, increment 108, and interrupt return 
first processor instruction 100. Each node 101 can have 10 109. After the interrupt return 109, the search would go 
at most two descendants. In the case of sequential in- back to the jump if equal instruction 104 and examine 
structions 102,105, 106, 308,110, 111,112, which trans- the second descendent. The second descendent, inter- 
fer control only to the next sequential instruction in rupt return 109 is an instruction that is already stored in 
memory, the nodes 101 have only one descendant 103, memory. Therefore, the search returns to the next pre- 
106, 107, 109, 111, 112, 113, respectively, as shown in 15 vious node that had two descendents, the jump if below 
FIG. 3A as a vertical line 114. There can be two descen- 103, and follows the second path. New code is then 
dants in the case of conditional branch instructions 103, found in this path. The next instructions are stored in 
XO4, which test for a condition and branch to one in- memory in order as shown in FIG. 3A. 
struction if the condition is true, and continues with the Referring to FIG. 38 and 3C, for each of the nodes 
next instruction if the condition is false. f t  is possible for 20 101, the simulator keeps two fields in memory, one is 
a node 101 to have no descendants, as is the case for the the condition codes 21-26 that are needed by that in- 
interrupt return instruction 109. The instruction 109 struction 100, register 42, the other is the condition 
that has no descendants illustrates an instruction that codes 21-26 that are set by that instruction 100, register 
transfers control dynamically. Also, a node 101 can 43. At that point a propagation process is performed to 
have one descendant that is not a sequential instruction. 2 5  optimize which condition codes must be set. This is 
The unconditional jump instruction 107 i s  an example of accomplished by going from the last instruction allo- 
this. cated to the first instruction allocated. In this order, 

As shown above, there are four types of instructions instructions are taken out of a circular queue. The regis- 
100. These types are numbered in the code as follows. A ter 42 of a node 101 is  updated by ANDing the compli- 
node 101 is numbered “0” if the instruction at the node 30 ment of register 43 of that node with register 42 of all 
has no descendents, Le., the return instruction 128 FIG. descendant nodes, and then ORing this result into the 
3C, the interrupt return instruction 109, FIG. 3A, and register 42 of a node 101 being updated. The updated 
the return instruction 113, FIG. 3A. A node 101 i s  num- register 42 reflects the descendants’ needs for condition 
bered “1” if it is a sequential instruction and has one codes 21-26. If all descendants are marked done, then so 
sequential descendent; e.g., compare instruction 121, 35 is this node 101 being updated, and the node 101 is taken 
decrement instruction 124, FIG. X, compare instruc- out of the queue. If the node is not done, the instruction 
tion 102, increment instruction 108, FIG. 3A. A node is put at the end of the queue. The queue is gone 
101 is numbered “2” if the instruction has two descen- through until the queue is empty indicating all of the 
dents Le., jump if below instruction 122, FIG. 3C, and nodes have been processed, or there are some remaining 
103, FIG. 3A. A node 101 i s  numbered ”3” if the in- 40 nodes in the queue that nothing has changed, i.e. a node 
struction is not a sequential instruction, but has only one has not been updated. 
descendent, i.e. jump instruction 107, FIG. 3A. A second pass is performed through the graph. In this 

Having built a graph 50, FIG. 3C, that describes the pass, the register 43 is updated by reducing the condi- 
block of first processor instructions 100, FIG. 33, one tion codes set to acknowledge those that are now 
node 101 per instruction 100, the simulator dws  an 45 shown as being needed by its descendants. 
analysis of the graph 50. Each node 101 contains infor- At the end of this analysis, each node 101 indicates 
rnation on which condition codes 21-26 a first processor which condition codes 21-26 must be set, register 43. 
instruction 100 normally needs for execution, register The number of condition codes 21-26 could be less than 
42, and which condition codes 21-26 are set, register 43, the number initially set by that instruction. The set of 
by that instruction aft= executing, In the case of the M condition codes will include only those condition codes 
compare instruction 121, the compare instruction 121 that will be used by subsequent instructions. For exam- 
does not need any condition codes 21-26 to execute, but ple, the return instruction 128 indicates in register 42 
it will set all of them, regster 43. The jump if below that it will use all of the condition d e s  21-26 as a 
(JIB) instruction 122 needs the carry condition code 26 precautionary measure since the subsequent instructions 
in order to execute because that is the condition being 55 are not known until execution. The move instruction 
tested, register 42, but the JB instruction 122 does not 127 typ id ly  does not use, register 42, the condition 
set any condition codes after executing, register 43. The codes 21-26, but indicates a use, register 42, since the 
jump if equal (JE) 123 instniction needs the equal condi- subsequent return instruction 128 needs them. The add 
tion code bit in order to execute, but the JE instruction instruction 326 dws not use the condition codes 21-26, 
l Z 3  dots not set any condition codes after executing. 60 register 42, but sets all of them, register 43, which then 
The decrement instruction 124 sets the overflow flag 21 can be used subsequently. The shift instruction 125 
and the arithmetic flags 24, register 43, and leaves the normally sets, register 43, all of the condition codes 
carry condition code 26 unchanged, register 43. The 21-26, but does not nccd to in this case since the subse- 
graph analysis continues in this fashion for each of the quent add instruction 126 does not use them. It was 
rest of the instructions 100. 65 already analyzed that the add instruction 126 would set 

The nodes 101 are allocated in storage 120 sequen- the condition codes 21-26 for subsequent use. This anal- 
tially BS the application program 19 finds them. The ysis for updating the use register 42 and the set register 
search through the application program 19 originally (3 continues in revem order through the list of instruc- 
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tions 100 previously stored in a specified order to per- 
form the graph analysis. 

As seen in FIG. 3D, the translation 130 required only 
one instruction each for the decrement instruction W 
and the shift instruction 125, FIG. 3C. In Contrast, the 5 
add instruction 126 that set the condition codes 21-26 
for subsequent use took six instructions. 

Likewise, the graph analysis 30 of FIG. 3A would 
also show that the compare instruction, which sets all of 
the condition codes, only needs two of the six condition 10 
codes in subsequent instructions, the zero bit used by 
the jump if equal (JE) instruction 104, and the carry bit 
used by the jump if below (JB) instruction 103. None of 
the other condition codes are needed. Furthermore, no 
descendent of the conditional branches shown in FIG. I5 
3A needs the other condition codes. Therefore the sim- 
ulator can translate the block of the three instructions 
102, 103, 104 as a single unit without having to be con- 
cerned with setting the condition codes. Therefore the 
number of instructions that require the preservation of 20 
the corresponding condition codes are reduced. 

By applying the previous compiler technique of 
graph analysis to a processor simulator, essential knowl- 
edge is gained about the use of condition codes by sub- 
sequent instructions. The code generator 29 which 25 
translates first processor instructions 100 into second 
processor instructions 130 uses the condition code infor- 
mation to produce in many cases a single second proces- 
sor translated instruction. This reduces the unnecessary 
cycles if the flags register had been kept up to date after 30 
every instruction, and improves the performance of the 
simulator. 

Besides utilizing the results from a graph analysis to 
obtain fewer translated instructions to simulate the flow 
of control, the results from a graph analysis can be used 35 
in the process of minimization of interrupt polling as 
disclosed in Ser. No. 07/151,123, filed Feb. 1, 1988 for 
A SYSTEM AND METHOD FOR SIMULATING 
THE I/O O F  A PROCESSING SYSTEM, currently 
co-pending, and assigned to the same assignee as the 40 
present invention, which is hereby incorporated by 
reference. 

11. Instruction Address Translation 

invention translates the instructions of Intel's iAPX 
0286 processor (first processor) used in the IBM PC AT 
into simulator instructions of the ROMP processor (sec- 
ond processor) used in the IBM RT PC, These transla- 
tions are saved for reuse when the application program x) 
originally written for the simulated first processor trans- 
fers control to that same address again. For instructions 
that do not transfer wntrol, determining the next in- 
struction pointer (IP) is accomplished by adding the 
length of the instruction to the instruction's instruction 55 
pointer (IP). A similar sequence of sequential simulator 
instructions are generated by the simulator. Because the 
instructions foUow sequentially, locating the corre- 
sponding translations is not required. 

The simulator in the preferred embodiment of this 45 

1L 
it is loaded from a register or memory at run time. The 
RETurn from subroutine instruction i s  one of these. 
T h e  speed with which this instruction is simulated af- 
fects the overall performance of the simulator, espe- 
cially if a processing system spends more time executing 
a RETurn instruction than any other instruction. The 
other two instructions are the JuMP indirect and the 
CALL indirect (register or memory). They will be 
treated the same as the RETum instruction. 

For example, a first processor addresses instructions 
by using two registers. The code segment register 33, 
FIG. 3B describes the location of a 64K block 119 of 
memory 120, FIG. X. The instruction pointer register 
31, FIG. 3B, is an offset into that code segment 33. The 
instruction pointer 31 describes at which of the 64K 
bytes the instruction 100 is located. The first processor 
addresses instructions by indexing into a code segment 
33 with the instruction pointer 31, FIG. 3G. 

The simulator of this invention uses the data struc- 
tures shown in FIG. 6 to map fmt processor instruction 
addresses 100 which consist of a code segment 33 and an 
instruction pointer 31 to the address in memory 120 of 
the corresponding second processor where a sequence 
of second processor instructions 130 perform the same 
function. 

In the method of this invention, a new instruction 
pointer 31, and code segment 33, whose values are de- 
termined at run time, are converted into the simulator 
machine (second processor) address of the Correspond- 
ing translation for those instructions that transfer w n -  
tro! dynamicaIly, such as the RETurn from subroutine 
instruction, JuMP indirect, and the CALL indirect, or 
software interrupt instructions. 

The simulator uses a three tier approach (FIG. 7) to 
sirnufate these three instructions that transfer control 
dynamically. The three tier approach is organized in 
succession. T h e  fastest and most likely case is per- 
formed first. The second approach is used should the 
first approach fail. The third approach is the slowest 
approach which guarantees a successful conversion of 
the instruction pointer to an address of the simulator 
machine, FIG. 6 illustrates the second and third ap- 
proaches. 

Referring to FIGS. 5 and 7, the first operation per- 
formed on the new instruction pointer is to compare it 
with the value produced by the previous execution of 
that instruction, step 141. If the values match, a simula- 
tor machine relative branch is performed to the cone- 
sponding address. An exclusive OR operation deter- 
mines if the values match, step 142, and a conditional 
branch transfers control if they do, step 143. This allows 
for a fast computation of the look up addrcss. 

Referring to FIGS. 6 and 7, should the above a p  
proach fail, i.e, the instruction pointer 31 is different 
from the previous time that particular instruction had 
executed, a table look up is performed using the address 
mapping translate look-aside buffer 34 which is similar 
to a hardware translate look aside buffer. The wnver- 
sion from a fust processor instruction to a second pro- 

Another cfass of instructions transfers control stati- 60 cessor instruction uses the method described below. 
cally. That is, the new instruction pointer is computed Second processor instructions 130, when translated, 
by adding or subtracting a fixed displacement from the assume certain values of first processor registers, called 
instruction's pointer. These are known as relative attributes. Tbesc attributes can be used by the translator 
branches. The simulator generates second processor to generate more efficient code in certain cases, For 
relative branches to the corresponding translation. 65 enample, if the stack alignment is even, half word in- 

The instruction set contains three instructions that structions can be used to transfer data to and from the 
transfer control within a code segment to a new instruc- stack. Otherwise, two separate byte instructions must be 
tion pointer which cannot be determined statically since used. T h e  value of the code segment 33 and the align- 
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tions 100 previously stored in a specified order to per- 
form the graph analysis. 

As seen in FIG. 3D, the translation 130 required only 
one instruction each for the decrement instruction 124 
and the shift instruction 125, FIG. 3C. In contrast, the 
add instruction 126 that set the condition codes 21-26 
for subsequent use took six instructions. 

Likewise, the graph analysis 30 of FIG. 3A would 
aIso show that the compare instruction, which sets all of 
the condition coda ,  only needs two of the six condition 
codes in subsequent instructions, the zero bit used by 
the jump if equal (JE) instruction 104, and the carry bit 
used by the jump if below (JB) instruction 103. None of 
the other condition codes are needed. Furthermore, no 
descendent of the conditional branches shown in FIG. 
3A needs the other condition codes. Therefore the sim- 
ulator can translate the block of the three instructions 
102, 103, 104 as a single unit without having to be con- 
cerned with setting the condition codes. Therefore the 
number of instructions that require the preservation of 
the corresponding condition codes are reduced. 

By applying the previous compiler technique of 
graph analysis to a processor simulator, essential knowl- 
edge is gained about the use of condition codes by sub- 
sequent instructions. The code generator 29 which 
translates first processor instructions 100 into second 
processor instructions 130 urn the condition code infor- 
mation to produce in many cases a single second proces- 
sor translated instruction. This reduces the unnecessary 
cycles if the flags register had been kept up to date after 
every instruction, and improves the performance of the 
simulator. 

Besides utilizing the results from a graph analysis to 
obtain fewer translated instructions to simulate the flow 
of control, the results from a graph analysis can be used 
in the process of minimization of interrupt polling as 
disclosed in Ser. No. 07/151,123, filed Feb. 1, 1988 for 
A SYSTEM AND METHOD FOR SIMULATING 
THE I/O OF A PROCESSING SYSTEM, currently 
co-pending, and assigned to the same assignee as the 
present invention, which is hereby incorporated by 
reference. 

11. Instruction Address Translation 
The simulator in the preferred embodiment of this 

invention translates the instructions of Intel’s iAPX 
0286 processor (first processor) used in the 1BM PC AT 
into simulator instructions of the ROMP processor (sec- 
ond processor) used in the IBM RT PC. These transla- 
tions are saved for reuse when the application program 
originally written for the simulated first processor trans- 
fers control to that same address again. For instructions 
that do not transfer control, determining the next in- 
struction pointer (IP) is accomplished by adding the 
length of the instruction to the instruction’s instruction 
pointer (IP). A similar sequence of sequential simulator 
instructions are generated by the simulator. Because the 
instructions follow sequentially, locating the corre- 
sponding translations is not required. 

Another class of instructions transfers control stat i -  
cally. That is, the new instruction pointer is computed 
by adding or subtracting a fixed displacement from the 
instruction’s pointer. These are known as relative 
branches. The simulator generates second processor 
relative branches to the corresponding translation. 

The instruction set contains three instructions that 
transfer control within a code segment to a new instruc- 
tion pointer which cannot be determined statically since 
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it is loaded from a register or memory at run time. The 
RETurn from subroutine instruction is one of these. 
The speed with which this instruction is simulated af- 
fects the overall performance of the simulator, espe- 
cially if a processing system spends more time executing 
a RETurn instruction than any other instruction. The 
other two instructions are the JuMP indirect and the 
CALL indirect (register or memory). They will be 
treated the same as the RETum instruction. 

For example, a first processor addresses instructions 
by using two registers. The code segment register 33, 
FIG. 3B describes the location of a 64% block 119 of 
memory 120, FJG. X. The instruction pointer register 
31, FIG. 3B, is an offset into that code segment 33. The 
instruction pointer 31 describes at which of the 61K 
bytes the instruction 100 is located. The fvst processor 
addresses instructions by indexing into a code segment 
33 with the instruction pointer 31, FIG. E. 

The simulator of this invention uses the data struc- 
tures shown in FIG. 6 to map fmt processor instruction 
addresses 1w1 which consist of a code segment 33 and an 
instruction pointer 31 to the address in memory 120 of 
the corresponding second processor where B sequence 
of second processor instructions 130 perform the same 
function. 

In the method of this invention, a new instruction 
pointer 31, and code segment 33, whose values are de- 
termined at run time, are converted into the simulator 
machine (second processor) address of the correspond- 
ing translation for those instructions that transfer con-  
trol dynamicdly, such as the RETurn from subroutine 
instruction, JuMP indirect, and the CALL indirect, or 
software interrupt instructions. 

The simulator uses a three tier approach (FIG. 7) to 
simulate these three instructions that transfer control 
dynamically. The three tier approach i s  organized in 
succession. The fastest and most likely case is per- 
formed first. The second approach is used should the 
first approach fail. The third approach is the slowest 
approach which guarantees a successful conversion of 
the instruction pointer to an address of the simulator 
machine. FIG. 6 iflustrates the second and third ap- 
proaches. 

Referring to FIGS. 5 and 7, the first operation per- 
formed on the new instruction pointer is to compare it 
with the value produced by the previous execution of 
that instruction, step 141, If the values match, a simula- 
tor machine relative branch is performed to the corre- 
sponding address. An exclusive OR operation deter- 
mines if the values match, step 142, and B conditional 
branch transfers control if they do, step 143, T h i s  allows 
for a fast computation of the look up address. 

Referring to FIGS. 6 and 7, should the above ap- 
proach fail, Le, the instruction pointer 31 i s  different 
from the previous time that particular instruction had 
executed, a table look up is performed using the address 
mapping translate look-aside buffer 34 which is similar 
to a hardware translate look aside buffer. The conver- 
sion from a first processor instruction to a second pro- 
cessor instruction uses the method described below. 

W n d  processor instructions 130, when translated, 
assume certain values of first processor registers, called 
attributes. These attributes can be used by the translator 
to generate more effrcient code in certain cases. For 
example, if the stack aligmttent is cven, half word in- 
structions can be used to transfer data to and from the 
stack. Otherwise, two separate byte instructions must be 
used. The value of the code segment 33 and the align- 
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men1 of the stack pointer 35 for a block of first proces- 
s o r  instructions 100 are known as the attributes of the 
block. Both the code segment 33 and the stack pointer 
35 are 16 bit fields. The attributes occur in the code 
block header 36, and the address mapping translate 
look-aside buffer 34. Translations 130 of first processor 
instructions 100 with different attributes are kept sepa- 
rate. 

The method takes the lower thirteen bits 32 of the 
instruction pointer 31 and uses this as an index into the 
table 34 which is aligned at a 64K byte boundary at a 
fixed virtual address, step 144. The entry contains two 
words. The first word contains the attributes. The first 
16 bits CS145 are the value of the code segment 33, the 
next bit 47 contains the alignment of the stack pointer 35 
denoted as S1, the next bit 46 denoted as V1 is a valid bit 
which is zero if the entry is not valid, and one if it is a 
valid entry. There are some unused bits 51. The last 3 
bits 48 of the 32 bit word are the upper three bits 49 of 
the instruction pointer 31 denoted as IP1. 

Therefore, the method is to index the address m a p  
ping table 34 with the lower 13 bits 32 of the instruction 
pointer 31, step 144, and compare the first 16 bits CSl45 
with the current value of the code segment 33, step 145. 
This indicates that the instructions are in the Same code 
segment indicating that the previous instruction may 
have be& executed recently. If that matches, the lower 
bit 41 of the stack pointer 35 is compared with S147, to 
insure that the assumptions made in the translations 
about the alignment of the stack are not violated, step 
146. If this matches, and V1 45 is on indicating a valid 
entry, and IP1 48 matches the upper 3 bits 49 of the 
instruction pointer 31, then there is a hit in the address- 
ing mapping translate look-aside table. That is, the cur- 
rent instruction is exactly identified with an earlier 
translated second processor instruction. The next word 
52 is a 32 bit address of the second processor instruc- 
tions 130 that simulate the first prpcessor instruction 
100, step 175. If there is a miss, Le., anyone of the above 
comparisons fails, translation proceeds by accessing the 
hash table 37 as described in the third approach below, 
and the address mapping translate look-aside buffer 34 
entry is updated with the new attributes and the new 
branch address for future reference. 
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In the event that the look up is successful, the XIL 45 
and BEQ instructions are modified accordingly. The 
value to be EXCLUSIVE ORed by XIL will contain 
the new instruction pointer, and the relative offset for 
the branch instruction will indicate the new target ad- 
dress. Control is transferred to the new target. 

The third approach also is shown in FIGS. 6 and 7. 
The middle six bits 38 of the code segment 33 ere 
XORed with the concatenation of the lower file bits 39 

50 

of the code segment 33 and the lower bit 41 of the stack 
pointer 35. That gives a six bit index into the code block 
hash table 37, step 148. The code block hash table has 64 
entries, Each entry 53 points either to a null which 
indicates there is no entry, and implies a new translation 
4s needed, step 174, or contains a pointer to a code block 
hcader 36. 

Each code block header 36 describes the available 
second processor translations for a given attribute. The 
first field 55 in the code block header 36 contains a 
pointer to the next code block header 56 that hashed to 
that same entry 53 in the code block hash table 37. The 
next field 57 contains the attributes of the code block. 
The attributes include the code segment 33 in block 58 
identified as CSZ, and the alignment of the stack pointer 
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35 in block S2 59. For simplicity, the valid bit VI 46 is 
repeated as V2 60. The code block headers 36 are 
searched for the code block header 36 that has the Same 
attributes as the instruction executing at run time, step 
149. The next two fields 62, 63, contain the minimum 
and maximum Rrst processor addresses for which there 
are translations with these attributes. The next field 64 is 
a pointer to the root of a tree that describes all the code 
blocks 83 for which there are translations with the spe- 
cific attribute. 

Each of the nodes of the tree, i.e. code block 83, 
contains minimum and maximum instruction pointers 
65,66 for which there is a second processor translation 
130 within a range of first procffsor instruction pointers 
31. There is a pointer to the left and right Son 67, 68, 
respectively. The left son 67 points to a subtree 69 with 
lower or equal minimum instruction pointers 31. The 
right s o n  68 points to a subtree 70 with higher minimum 
instruction pointers 31. The nodes of the tree are 
searched to furd the subtree having a range of instruc- 
tion addresses within which the current instruction 
address falls, step 151. The next field 71 is a pointer to 
the end 73 of the code block 83 of second processor 
translations 130. 

There is an array 44 with as many entries 72 as there 
are in the range of instruction pointers 31, Le. the lower 
bound of the array 44 is the minimum instruction 
pointer, and the maximum bound of the array 44 is the 
maximum instruction pointer. Each of these entries in 
array 44 contain either 0 which indicates a first proces- 
sor instruction 100 for which there is no second proces- 
sor translation, or a pointer if i t  corresponds to a valid 
Erst processor instruction entry point. Each entry in the 

is a half-word. If there i s  a valid entry, the 
entry contains the offset from the beginning of the array 
44 to the appropriate entry point for that particular 
instruction pointer, step 173. 

In summary, the table look up fails in the unlikely 
event that two instruction pointers hash to the same 
entry in the table, or if this is the first time that the 
application program i s  transferring control to that in- 
struction pointer. In either case, the simulator will ac- 
cess slower data structures, i.e., the binary tree 83, to 
mnven the address. If not found, the translator 27 i s  
invoked to generate simulator machine (second proces- 
sor) equivalent instructions for the aew block of first 
processor instructions, step 174, and the translate look-  
aside buffer 34, and the code block 82 are updated. 

111. Memory Mapping 
Referring to FYG. 8, the memory of a processing 

system 1 can be classified by type and contents. Region 
1 is random access memory (RAM) 152. The contents of 
RAM 152 are instructions and data. The CPU 93 can 
read and write to this region of memory. 

The second region of memory is called adapter mem- 
ory (video) 153. The CPU can use explicit IN/QUT 
instructions to directly ~ccess the X/O adapter 91 con- 
nected to an output device 92, such as a display, shown 
as line 167, or the CPU 93 can use memory hstructions 
to access the p/o adapter 91 through R video buffer 153. 
Using memory instructions to a video buffer 153 for 
output to a device 92 is referred to as memory mapped 
I/O since it really is VO going to an adapter, although 
through a memory location. Memory map@ I/O al- 
lows a wider range of instructions to be usbd since the 
CPU has more instructions that go to memory than it 
has to perform explicit I/O (IN/OUT instructions}. The 
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contents of the video range of memory is output data, 
;.e. memory mapped I/O. 

The third type of memory is region I11 called read 
only storage (ROS) 154, otherwise referred to as read 
only memory (ROM). The contents of ROS 154 is 
mostly instructions, although there could be data also. 
In either case, the contents of ROS is never modified. 

The address space 150 of a processing system such as 
the IBM PC AT divides logically into these three areas. 
The first is a 640K byte region of processor ReadNri te  
storage, Le. RAM 152. The second is a 256K byte re- 
gion reserved for I/O adapters, Le. video 153. These 
include data buffers for devices and device dependent 
ROS. The third is a 128K byte region of processor ROS 
154. This ROS contains BIOS and Basic. There is mem- 
ory above the 1 meg range 166 that follows the BIOS 
area 155. Since, the simulator of this preferred embodi- 
ment does not support the 286 protected mode, this area 
176 of memory 150 is not provided for. 

In order to translate the addresses of a first processing 
system into the addresses of a second processing system, 
the memory of the first processing system must be 
mapped into the memory of the second processing sys- 
tem. 

To map memory, two shared memory segments 190, 
180 (FIG. 9) of the operating system of the second 
processing system are used. The first shared memory 
segment 190 is used to store an image 150 of the mem- 
ory of the first processing system. The second shared 
memory segment 180 indicates for each memory loca- 
tion the type of contents contained in that image. 

In the second processing system memory 190, there is 
the 640K bytes of memory 152 that would reside in the 
first processing system, followed by the video range 
153, followed by an area 154 for ROS (read only stor- 
age), followed by the area 155 for BIOS. In front of the 
first memory segment 152, the BIOS area 155 is repli- 
cated. This was done to simplify the mapping in the case 
where an application could address the BIOS 155 area 
of memory 150 such that the offset would wrap around 
to RAM 152. 

The first processing system truncates addresses to 20 
bits. Therefore, if when generating an address the result 
is greater than 1 megabyte (20 bits), the hardware sub- 
tracts 1 megabyte from the address and in effect ad- 
dresses the beginning of memory. To simulate this effi- 
ciently, when the first processing system addresses 
BIOS memory 155, these addresses are mapped to the 
first company of 155 in segment 0 x 9 ,  190. When an 
address exceeds the bounds of 155, it is simply mapped 
over to memory area 152 as it would have on the first 
processing system. Therefore, the hexadecimal ad- 
dresses 172-175 of these areas are offset into the shared 
memory segment 190, referred to as segment 0x9, by 
64K from the address of the areas in memory 150 of the 
fust processing system. 

As a result, a virtual memory segment in the process- 
ing system running the simulator is dedicated to contain 
an image of all PC AT processor storage consisting of 
region one 152, and two copies of BIOS region 155. 
Region two 153 will not be present when the second 
processing system has the output devices from the first 
processing system attached to it. If the output devices of 
the fust processing system are not attached, an image of 
region two 153 will also exist. 

The address locations 172-175 in memory segment 
190 are the location of the actual first processing system 
memory image. This area 172-175 would look like the 
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architecture of the first processing system being simu- 
lated and the memory available. 

In addition to the memory image 172-175, the trans- 
lated code 130 is stored in area 157. After the translated 
instructions are generated by the graph analysis 30 
(FIGS. 3A, 3B, X, 313) examining the instructions la0 
of the first processing system that is being simulated, the 
translated instructions 130 are stored in area 157. 

The next area 158 of the shared memory segment 190 
is an inter process communications area and run time 
environment area where routines that are called at run 
time are stored. 

In addition to the virtual shared memory segment 190 
referred to as segment 0 x 9 ,  the processing system run- 
ning the simulator reserves a special segment for I/O 
bus memory referred to as segment OXF, 181, Data is 
written into segment O X F  of the second processing 
system if the second processing system has the output 
device of the first procasing system attached to it. An 
address location of the fvst processing system that falls 
within region 11, 153, will have a corresponding mem- 
ory location in segment 0 x 9 ,  190, or to segment OX F, 
181, of the second processing system. 

The system and method of the simulator of this inven- 
tion utilizes a relocate table 195 to map the memory 150 
of the first processing system into either segment 0x9, 
190, or segment OXF, 181 of the second processing 
system. A first processing sysrem such as the PC AT 
addresses memory locations by two components, a seg- 
ment and an offset. In the PC AT, the segment is a 16 bit 
value that points to a 64K block of memory. The offset 
i s  also 16 bits, and gives the displacement within the 
segment. The address of the segment is computed by 
multiplying the segment value by 16. 

The simulator utilizes a table 1% with 16 entries 
201-216, each entry having 32 bits, to map the memory 
address of a PC AT into the 32 bit memory address of 
a IBM RT PC. The upper 4 bits of a segment of a PC 
AT memory address identifies one of the 16 entries of 
the table. The simulator separates the memory address- 
ing computation into two parts. First, at the time thar 
the segment register is loaded, the simulator multiplies 
the segment by 16 and adds it to the entry in the table 
specified by the upper 4 bits of the segment. Second, at 
the time an instruction reads or writes to memory, the 
16 bit offset is added to the 32 bit value computed in the 
previous step. T h i s  is the address used to access mem- 
ory of the second processing system. 

At simulator start up time, the relocate table 195 is 
initialized. The fust 10 entries 201-210 correspond to 
RAM 152 and are initialized to 0~9001oooO to point to 
segment Ox9 of the second processing system. Note 
that this initialization vdue includes a 64K offset that 
allows room for the fust instance of BIOS 155 mapped 
to segment 0x9, 190, preceding RAM 152. The last 
entry 216, corresponding to the segment that addresses 
BIOS 155, is initialized with 0~90000000axF0000, or 
O~8FF10000. In this fashion when the segment multi- 
plied by 16 is added, the resulting value will be 
OX 90000000 which maps the BIOS 155 at the beginning 
of segment 0 x 9 ,  290. The eleventh through fifteenth 
entries 211-215 are initialized with OXF4000000 or 
0X9001oooO to point to either segment OXF, 181 or 
segment 0x9, 190 depending on whether the corre- 
sponding output device of the first processing system is 
attached. 

The status control segment, segment 0 x 8 ,  180 is 
stored in another shared memory segment of the operat- 
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ing system. The status control segment 180 keeps track 
of the type of contents of memory of the first processing 
system for segment 0x9, 190. This information is used 
by the simulator to determine whether the memory 
location contains data, instruction code, or is a video 
entry. 

The above has described how the simulator computes 
the address that should be used when simulating an 
instruction that reads or writes to memory. In  the case 
of writing to memory, special actions may be required. 

If an instruction is being stored into memory, then the 
simulator makes note whether the instruction has been 
translated. A check for instruction modification is per- 
formed to insure that the translated code is always cor- 
rect. If an application performs instruction modifica- 
tion, the translated code for the original code instruc- 
tion is purged, and the new instruction is translated to a 
new sequence of instructions of the simulator's proces- 
sor. Other steps could be taken to guarantee that the 
correct translation of the instruction will be executed. 

Likewise, the check for video updates is necessary to 
determine if the output to the output device needs to be 
further processed by the simulator. This would occur in 
the case where the output device of the first processing 
system is not attached to the second processing system 
running the simulator, and the output device of the first 
processing system therefore must be simulated. In the 
c ~ s e  of memory mapped I/O, it must be detected at the 
time of a store whether the special hardware that is 
representing the output data is being modified. 

At the time of a store to memory, segment OX 8, 180 
i s  used to determine whether a special action is required 
on either an instruction or memory mapped I/O. Seg- 
ment OX 8, 180 has a byte to byte correspondence with 
segment register 0x9, 190. Each byte in segment OX8 
indicates the type of contents of the corresponding byte 
of segment 0x9, 190. A byte in segment 0x8, 180 will 
have a zero if the corresponding byte in segment OX 9, 
190 is computational data. The byte in segment 0x8, 
180 will have either a 1,2,4 or 6, if the corresponding 
byte in segment Ox9 contains an instruction. Every 
byte of segment 0x8, 180 which corresponds to the 
video range 153 of segment OX9 will contain a 16 if an 
output device of the first processing system is not at- 
tached. The value of 16 will be loaded into segment 
0x8, 180 at simulator start up time during configura- 
tion. 

If it is determined during configuration that an output 
device of a first processing system is attached to the 
second processing system, the corresponding bytes of 
segment 0x8, 180 will be zero. This indicates that the 
relocate pble 195, which also had entries 211-2115 ini- 
tialized during configuration, wiil map output data from 
the first processing system to segment OXF, 181, which 
requires no further action by the simulator since an 
output device of the first processing system is attached. 

Regardless of the location of the store to memory, 
tithersegmeatOx9orsegmentOxF, the32 bit valueof 
the address is ANDed with OXBOFFFFFF which re- 
sults in the corresponding address of segment OX 8,180. 

The instruction sequence shown in FIG. 10 is used on 
each translation of a first processing system instruction 
which is able to modifv memorv. It should be noted that 

18 
are overlapped with the instructions used to simulate 
the first processing system instruction, only 5 cycles are 
required to check the memory update to see if it re- 
quires special processing. However, it may be necessary 

5 to further determine whether the address of the store 
was to segment OXF to determine whether special 
action i s  required after the store to memory. 

By keeping a status byte corresponding to each byte 
in the memory image 190 or the memory mapped I/O 

10 181, video updates, memory mapped I/O, and instruc- 
tion modification, can be detected. A flag in the status 
segment 8, 180, is kept to indicate the content type of 
memory as follows: 

0-data 

2=subsequent byte of an instruction 
4=merged instruction (first byte not valid entry 

8=breakwint set on this instruction 

15 1 =instruction entry point 

point) 

20 I6=video 
As shown above, a non zero value may indicate that 

further action may be required by the simulator. A " I "  
indicates that it is an entry point, and there is a transla- 
tion of the first processing system instruction in the 

25 binary tree.  A "2" means it is a subsequent which means 
that there is a first processor instruction being simulated 
or translated that is more than one byte long. This byte 
then corresponds to a following byte. This allows for 
the fact that it may take more than one byte to represent 

30 a first processor instruction. A flag of "4" indicates that 
there is a merge. A merge means that as a result of the 
graph analysis, it was determined that it would take less 
translated simulator instructions to simulate several 
combined first processor instructions than it  would take 

35 to translate each first processor instruction separately. 
For example, the PUSH instruction 105 and the POP 
instruction 106 of FIG. 3A have been merged. As a 
result, the value in the CS register has been moved into 
the DS register. Since the graph analysis determines 

40 that this is all that these two instructions 105, 106, are 
doing, the two instructions can be combined into one, 
and executed faster than executing two separate instruc- 
tions. 

A flag of "8" indicates that a breakpoint is set. T h i s  
45 allows debuggers to work on the simulator. A Flag of 16 

indicates that the information is video data. This is how 
the simulator detects that an application has gone out 
and updated the video screen. 

The above method increases performance over previ- 
5Q ous simulators that required branching to a subroutine 

which performed an extensive, time consuming check, 
processed the memory update, and then returned. Just a 
branch to a subroutine typically requires at l e s t  5 cy- 
cles. This is exemplified since storing to memory is a 

55 very frequent operation. Therefore, any reduction in 
the overhead of a store to memory greatly increases the 
efficiency of the simulator. 

Although the foregoing invention has been particu- 
larly shown and described with reference to the pre- 

60 ferred embodiments thereof, it will be understood by 
those skilled in the art that other changes in form may 
be made without departing from the scope of the claims. 
1 PC A T  io J registered trademark of IBM C O r p r a h o  in thc United 
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the segment registers were ch&n so that the address of ; y ! d  systcm/2 w k  oflBM the 
the status byte could be calculated by ANDing the 65 UnitedSutes 
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result, both segments OXF and OX9 are mapped to 
segment 0 x 8 .  When these four instructions of FIG. 10 
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1. A method for reducing the number of translated comparing, using a single second processor instruc- 
instructions required to simulate an instruction flow of tion, at run time a new instruction pointer of a next 
control of an application running on a processing sys- instruction of said first processor with a previous 
tem, said method comprising the steps of: instruction pointer of a previous dynamic control 

converting, at run time, an instruction pointer of a 5 instruction translated for said second processor, 
next instruction of a first processor resulting from a said previous instruction pointer being produced 
dynamic control instruction to an address for a by a previous execution of said previous dynamic 
second processor translation of said firs1 proces- control instruction translation to determine a valid. 
sor's next instruction; and ity of an address for a second processor translation 

utilizing a succession of steps for said converting, said 10 for said first Processor's next instruction; 
succession of steps using a single second processor utilizing a translate look-aside buffer, having first 
instruction in a fmt  successive step, a translate processor instruction pointers fewer in number 
look-aside buffer having a limited number of fust than said plurality of fust instructions, and corre- 

sponding second processor translation addresses, IO processor instruction pointers and corresponding 
second processor translation address in a second *e address for said second processor 

translation of said f i t  processor's next instruction successive step, and a data structure having more 
if said comparison fails, and of said second processor translation addresses than 

searching a data structure, having more of said 6ec- said Look-aside buffer in a third successive step. 
ond processor translation addresses than said look- 2.  A method of simulating a first processor having a 

first instruction set having a a plurality of first instruc- 2o aside for determining said address Of said 
next instruction if said address is not found with tions by a second processing system having a second said translate look-aside buffer. processor having a second instruction set for running an 5. A method of simulating a first processor having a 

first instruction set having a plurality of fKSt instruc- application targeted for said first instruction set, said 
25 tions by a second processing system having a second second processing system method comprising: 

processor having a second instruction set for running an comparing, using a single second processor instruc- 
tion, at run time a new instruction pointer of a next application targeted for sajd first instruction set, said 

second processing system method comprising: instruction of said first processor with a previous 
instruction pointer of a previous dynamic control comparing, using a single second processor instruc- 
instruction translated for said second processor, 3o [ion, at run time, a new instruction pointer o fa  next 
said previous instruction pointer being produced instruction of said first processor -4th a previous 
by a previous executing of said previous dynamic instruction pointer of a previous dynamic control 

instruction translated for said second processor, control instruction translation to determine a valid- 
ity of an address for a second processor translation said previous instruction pointer being produced 
for said first processor's next instruction; and 35 by a of said previous dynamic 

branching to the address of the second processor control instruction translation to determine a valid- 
translation of the next instruction if said run time ity of an address for a second processor translation 
new instruction pointer matches said previous in- for said first processor's next instruction when the 
siruction pointer. next dynamic control instruction returns to a same 

3. A method of simulating a first Processor having a 40 address o f a  last time the previous dynamic control 
first instruction set having a plurality of first instruc- instruction was executed; 
tions by a second processing system having a second using, if sajd new instruction pointer i s  not the -e 
processor having a second instruction set for running an as said previous instruction pointer, a translate 
application targeted for said first instruction set, said look-aside buffer, having a limited number of first 
second processing system method comprising: processor instruction pointers and corresponding 

camparing, using a single second processor instruc- second processor translation addresses, to deter- 
tion, at run time a new instruction pointer of a next mine the address for said second processor transla- 
instruction of said first processor with a previous tion of said first processor's next instruction when 
instruction pointer of a previous dynamic control the dynamic control instruction returns to the m e  
instruction translated for said second processor, M &dress that was returned to at 1-t onm before 
said previous instruction pointer being produced other then the last time; and 
by a previous executing of said previous dynamic using, if mid address is not found with said translate 
controlinstruction translation to determine a valid- look-aside buffer, a data structure, having more of 
ity of an address for a second processor translation said second processor translation addressed than 
for said first processor's next instruction; and said look-aside buffer, to determine the address of 

utilizing a translate look-aside buffer, having fmt the next instruction when the dynaxnic control 
processor instruction pointers fewer in number instruction returns to a new address that has not be 
than said plurality of first instructions, and corre- previously returned to. 
sponding second processor translation addresses, to 6. A system having means for simulating a fmt  pro- 
determine the address for said second processor 60 CeSMr having a first instruction Set having a plurality of 
translation of said fmt processor's next instruction fmt instructions by a second processing system having 
if said comparison fails. a second processor having a second instruction set for 

4. A method of simulating a fmt processor having a running an application targeted for said fmt instruction 
fust instruction set having a plurality of first instruction set, said system comprising: 
by a second processing system having a second proces- 6.5 means for comparing, using a single second processor 
sor having a second instruction set for running an appli- instruction, at run time a new instruction pointer of 
cation targeted for said first instruction set, said second a next instruction of said first processor with a 
processing system method comprising: previous instruction pointer of a previous dynamic 

45 

55 
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control instruction translated for said second pro- 
cessor, said previous instruction pointer being pro- 
duced by a previous execution of said previous 
dynamic control instruction translation to deter- 
mine a validity of an address for a second processor 
translarion for said first processor's next instruc- 
tion; 

means for utilizing a translate look-aside buffer, hav- 
ing first processor instruction pointers fewer in 
number than said plurality of fmt  instructions, and 
corresponding second processor translation ad- 
dresses, to determine the address for said second 
processor translation of said first processor's next 
instruction if said comparison fails; and 

means for searching a data structure, having more of 
said second processor translation addresses than 
said look-aside buffer, for determining said address 
of said next instruction is said address is not found 
with said translate look-aside buffer. 

7. A computer program having means for simulating 
a first processor having a first instruction set having a 
plurality of first instructions by a second processing 
system having a second processor having a second in- 

LL 
struction set for running an application targeted for said 
first instruction set, said computer program comprising: 

means for comparing, using a single second processor 
instruction, at run time a new instruction pointer of 
a next instruction said first processor with a previ- 
ous instruction pointer of a previous dynamic con- 
trol instruction transIated for said second proces- 
sor, said previous instruction pointer being pro- 
duced by a previous execution of said previous 
dynamic control instruction translation to deter- 
mine a validity of an address for a second processor 
translation for said first processor's next instruc- 
tion; 

means for utilizing a translate look-aside buffer, bav- 
ing first processor instruction pointers fewer in 
number than said plurality of first instructions, and 
corresponding second processor translation ad- 
dresses, to determine the address for said sccond 
processor translation of said first processor's next 
instruction if said comparison fails; and 

means for searching a d a b  structure, having more of 
said second processor translation addresses than 
said look-aside buffer, for determining said address 
of said next instruction if said address is not found 
with said translate iook-aside buffer. 

* * * e *  
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