Goodard v. Google, Inc. Doc. 163 Att. 10

EXHIBIT 11

Dockets.Justia.com

http://dockets.justia.com/docket/court-candce/case_no-5:2008cv02738/case_id-203854/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2008cv02738/203854/163/10.html
http://dockets.justia.com/

United States Patent [
Mintz

US005999860A

5,999,860
Dec. 7, 1999

(111 Patent Number:
451 Date of Patent:

[54] METHOD AND APPARATUS FOR
OPTIMIZING DIGITAL PROCESSING
[75] Inventor: Michael F. Mintz, Harraril, Mass.

[73] Assignee: ATI Technologies, Inc., Thornhill,

Canada
[21] Appl. No.: 08/895,140
[22] Filed: Jul. 16, 1997
[51] Int. CLS ... GO5B 19/042; GO5B 19/05
[52] U.S. Clu o 700/40; 712/226
[58] Field of Search ... 364/160; 395/567,
395/800.32, 500, 568, 500.03; 712/129
[56] References Cited
U.S. PATENT DOCUMENTS

3,577,190 5/1971 Cocke et al. ...cccecevvvcrceruencnnee 395/567

5,790,843 8/1998 Borkenhagen et al.

5,794,066 8/1998 Dreyer et al.ccoeenenne. 395/800.32

Primary Examiner—William Grant
Assistant Examiner—Kidest Bahta
Attorney, Agent, or Firm—Markison & Reckamp, PC

A execution request
stack #1 #1
B 50
result
(o}
A
B
A
executioij
request #2
N
result N
217 N
D ~
Cc
B execute
D
stack #2

processing

controlling DPO
Ly

[57] ABSTRACT

A method and apparatus for optimizing digital processing in
a computer system is accomplished when at least one of a
plurality of digital processing operations (i.e., a set of
programming instructions) receives a user request. The user
request may include a request to execute the set of program-
ming instructions and may further include data which would
be operated upon by the digital processing operation. Upon
receiving the request, the addressed digital processing
operation (DPO) informs a controlling digital processing
operation of the request, such that the controlling DPO may
determine whether the addressed digital processing opera-
tion is of a first type. A first type digital processing operation
is one that may produce a hang-up, an error, or is not
optimized when executed alone or when executed in parallel
with another digital processing operation. When the digital
processing operation is of the first type, the controlling
digital processing operation determines whether the
addressed digital processing operation can be executed
without alteration. Such a determination is based on whether
the addressed digital processing operation will be executed
individually or in parallel with others. When the addressed
digital processing operation is not executable without
alterations, the controlling digital processing operation
selects at least one alternate digital processing operation
(i.e., work around software) to be executed instead of the
digital processing operation.

23 Claims, 5 Drawing Sheets

execute

5,999,860

Sheet 1 of 5

Dec. 7, 1999

U.S. Patent

0c
(1dv) aoepsjul
Buiwweibosd
uonesidde

P

A 4

14"
(1dV) eoepajul
Buluwesboud
uonjeoi|dde

(Aowaw)
L] @102
< > Z1 Jun Buissaosoid < > >
A

A A

A

A A

8l 9l
(Idv) soepajul (1dv) edoeusyul
Buiwweiboud Buiwwesboud

uonesijdde uoneoldde

U.S. Patent Dec. 7, 1999 Sheet 2 of 5 5,999,860

user request

A

AP| 14 - 20

conversion of
application language #1
to API language

Core 12
(includes processing
operations)

- interpret user request and altered processing

.type of prgcessi_ng unit operation 34
- if processing unit able to

process user request without
error, process the request > altered processing
- if not able to process operation 32

request without error, evoke

an altered processing
operation altered processing

operation 30

conversion of API
language to processing
unit language

#2

processing unit 12 [«
10

Figure 2

5,999,860

Sheet 3 of 5

Dec. 7, 1999

U.S. Patent

€ ainbig]

[44
8-0dd

anoaxe .
s|qeus
il
G-l

Buissaooid

QINoaXd

)nse.

L#
1sanbal uonoaxa

[4°]
oS

a

oo | m

ynsal
Z# 1senbal
ﬁ\ uonnooXa

om

O | <

0S
L# Yoels

o

U.S. Patent

Dec. 7, 1999

visual 60

optmization 62

Sheet 4 of 5

5,999,860

hang up 64

alternate #1

DN

7

alternate #2

A

alternate #3 ///////
Figure 4

receive a user request
for at least one digital
processing operation

Figure 5

72

digital processing
operation of a
first type

digital processing
operation executable
without alteration

enable execution of the
digital processing
operation for the user
request

enable execution of the
digital processing
operation for the user
request

78

select at least one
altered digital
processing operation to
be executed

80

\ 4

enable execution of the
altered digital
processing operation
for the user request

U.S. Patent

Dec. 7, 1999

receive an
execution reques

92

A

first state is a hang up
condition, non-optimal

94

inform controlling

digital processing
operation (DPO) of the

execution request

controlling
DPO determines whether

Sheet 5 of 5

5,999,860

112

altered digital
processing operation |[4—
begins execution

106

accessed method is ina Jes
first state

98

digital processing

controlling DPO sends

alter the digital
processing operation to
"l eliminate the first state,
when possible

operation begins
execution

< an enabling sigani to
the DPO

execution include
branch to another
DPO

102

send access message
to the another digital
processing operation

condition

116 over

complete execution of
DPQ's programming
instructions

condition ove
or alteration
possible

alteration

possible

alteration
possible

alter the digital
processing operation
and enable execution —
of the altered digital
processing operation

114

wait until condition
causing the first state

is over or alteration

becomes possible

Figure 6

5,999,860

1

METHOD AND APPARATUS FOR
OPTIMIZING DIGITAL PROCESSING

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to processing digital
information and more particularly to an optimized technique
for processing digital information.

BACKGROUND OF THE INVENTION

Computers are known to include a central processing unit
(“CPU”), memory, audio processing circuitry, video pro-
cessing circuitry, and peripheral interfaces such that the
computer may interface with a keyboard, printer, mouse, etc.
The memory may be in a variety of forms; such as cache,
hard drive, magnetic tape, floppy disk, RAM (Random
Access Memory), ROM(Read Only Memory), CDROM
(Cassette Disc Read Only Memory), etc. Such memory
temporarily or permanently stores programming
instructions, that when read by the CPU causes the CPU to
manipulate digital information based on the programming
instructions.

While the CPU is executing one set of programming
instructions (E.g., for a particular application), the CPU may
receive a request to execute another set of programming
instructions (i.e., another application). If the CPU grants the
request, it may be performing a plurality of applications
simultaneously. The CPU may deny, or suspend, the request
when parallel execution of the particular applications, or
algorithms, have overlapping operations. For example, if
each of the particular algorithms require the same registers
to be dedicated thereto, the CPU must allocate the registers
in a controlled manner. Without controlling access to these
registers, the algorithms may not be executed properly. The
CPU must further control the registers when the currently
executing applications, or algorithms, generate inter-
dependent data, i.e., the data generated by one application is
needed by another application.

The CPU needs to further control the registers, and overall
execution of applications, because of design flaws of newly
released applications and/or newly released Application
Specific Integrated Circuits (ASIC). The design flaws may
be relatively minor causing the application, or the ASIC, to
malfunction occasionally or may be somewhat severe causes
the application, or the ASIC to hang up. To correct the flaws
of new applications or ASICs, a system is expanded to
include work around software. Work-around software is
most predominately used for new ASIC releases and corrects
deficiencies in the ASIC such that the desired performance
is achieved.

While work around software overcomes the design flaws
of newly released applications and/or ASICs, it does so with
some cost to the overall efficiency of the computer system.
The decrease in efficiency occurs because the core memory
is expanded to include the work-around software, which
slows access to the core memory. As is known, when the size
of memory increases, especially for ROM, the accessing of
such a memory slows, thereby slowing the overall efficiency
of the system.

Therefore, a need exists for a method and apparatus that
optimizes execution of digital processing operations.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 illustrates a schematic block diagram of a system
that is in accordance with the present invention;

FIG. 2 illustrates a graphical representation of processing
flow in the system of FIG. 1;

10

15

20

25

30

40

50

55

60

65

2

FIG. 3 illustrates a state diagram which is in accordance
with the present invention;

FIG. 4 illustrates a graphical representation of alterations
to a digital processing operation which is in accordance with
the present invention;

FIG. 5 illustrates a logic diagram that may be used to
optimized digital processing in accordance with the present
invention; and

FIG. 6 illustrates a logic diagram which may be used to
optimized digital processing which is in accordance with the
present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

Generally, the present invention provides a method and
apparatus for optimizing digital processing in a computer
system. This may be accomplished when at least one of a
plurality of digital processing operations (i.c., a set of
programming instructions) receives a user request. The user
request may include a request to execute the set of program-
ming instructions and may further include data which would
be operated upon by the digital processing operation. Upon
receiving the request, the addressed digital processing
operation (DPO) informs a controlling digital processing
operation of the request, such that the controlling DPO may
determine whether the addressed digital processing opera-
tion is of a first type. A first type digital processing operation
is one that may produce a hang-up, an error, or is not
optimized when executed alone or when executed in parallel
with another digital processing operation.

When the digital processing operation is of the first type,
the controlling digital processing operation determines
whether the addressed digital processing operation can be
executed without alteration. Such a determination is based
on whether the addressed digital processing operation will
be executed individually or in parallel with others. When the
addressed digital processing operation is not executable
without alterations, the controlling digital processing opera-
tion selects at least one alternate digital processing operation
(i.e., work around software) to be executed instead of the
digital processing operation. With such a method and
apparatus, processing of digital information within a com-
puter system can be optimized, especially when the altered
digital processing operations are stored externally to the core
memory which enables the core to operate at its optimal
level. In addition, the controlling digital processing
operation, which is stored in the core, controls other digital
processing operations to ensure that errors, hang-ups or
other adverse effects are avoided.

The present invention can be more fully described with
reference to FIGS. 1 through 6. FIG. 1 illustrates a schematic
block diagram of a computer system 10 that includes a
processing unit 12, core memory 11, and a plurality of
application programming interfaces (“API”) 14-20. The
processing unit 12 may be an Application Specific Integrated
Circuit (ASIC), such as a video graphics processor,
microprocessor, digital signal processor, micro-controller, or
any ASIC that manipulates digital information based on
programming instructions. The core memory 11 may be a
read-only memory, RAM, hard drive, CD ROM, or any other
type of means for storing digital information. Typically, the
core memory will store digital processing operations (E.g.,
particular applications) and the controlling digital process-
ing operation.

The applications, or digital processing operations, stored
by the core memory 11 are typically evoked by a user via a
user request that is received by one of the application

5,999,860

3

programming interfaces 14-20. The API’s 14-20 may be a
RAVE interface (an Apple-based interface), a direct X (a
Microsoft-based interface), an open GL interface, or a video
graphics interface.

In operation, any of the API’s 14-20 may receive a user
request which includes a request for execution of a particular
application, or digital processing operation, and data that the
particular application is to execute upon. Having received
the user request, the application interface provides it to the
processing unit 12 which evokes the addressed applications
(i.e., the digital processing operations) from the core
memory 11. When the system 10 is operating properly, the
processing unit 12 will perform the application as requested
by the user without an error, a hang-up, or adverse effects
one the application. But, when the processing unit 12 is a
new ASIC, which may include design flaws, corrective
measures need to be taken. As such, work around software
that corrects, repairs, and/or optimizes design flaws of the
ASIC and/or application is included in the computer system.
In addition, a controlling digital processing operation is
included to control execution of the work-around software,
to control execution of the digital processing operations, and
to prioritize user requests when such requests are incompat-
ible with currently executing applications.

FIG. 2 illustrates the processing of a user request in the
system 10. The user request is received by one of the API’s
14-20 which converts the user requests into an API lan-
guage. The particular API language is dependent on the type
of API being incorporated as is generally understood in the
art. The converted API language is then provided to the core
memory 11, which stores the digital processing operations,
or applications, and the controlling digital processing opera-
tion.

Upon receiving the API language converted user request
by a digital processing operation (i.e., the addressed digital
processing operation), it informs the controlling digital
processing operation of the request. The controlling digital
processing operation interprets the user request, the type of
the processing unit, and the identity of the addressed digital
processing operation. The type of processing unit may
include various revision levels of the ASIC, various feature
sets, or any other differing characteristics of the particular
processing unit. For example, if the processing unit is a
video graphics chip, such as those produced by ATI
Technologies, the type of the processing unit may be a
RAGE 1, RAGE 2, RAGE 2X, RAGE LT1, RAGE LT2,
RAGE 3, RAGE LT3, or RAGE 2C. Each of these video
graphics processing chips have different performance
characteristics, which the controlling digital processing
operation needs to determine such that it may determine
whether the particular request can be performed by the
particular processing unit 12.

If the processing unit is able to optimally process the user
request without error, the controlling processing operation
passes the request to the processing unit 12. This is done by
converting the API language to a processing unit language,
which is generally understood in the art. Once the processing
unit 12 has obtained the user requests, which again includes
a request for execution of a particular application and the
data to be manipulated, the processing unit executes the
addressed digital processing operation upon the data.

If, however, the processing unit is not able to process the
request without error or the process is not optimal, the
controlling digital processing operation evokes an altered
processing operation, or work-around software. Note that
the alternate digital processing operation may entirely

10

15

20

25

40

45

50

55

60

65

4

replace the addressed digital processing operation or a
portion thereof. Further note that an error may result in the
corruption of the data, an incompatibility with a currently
executed digital processing operation, or the addressed digi-
tal processing operation would produce a hang-up condition.
For example, if the processing unit 12 is a video graphics
processor, the error condition may be poor visual quality, the
ability to do an optimization, or a resulting hang-up condi-
tion.

When the controlling digital processing operation evokes
an altered processing operation 30, 32, 34, the request to
evoke the particular altered processing operation is routed to
the particular API 14-20. The API treats the altered digital
processing operation as a new user request and provides an
API converted language representation thereof to the con-
trolling digital processing operation. Upon receipt, the con-
trolling digital processing operation performs the previously
discussed operations to determine whether the altered digital
processing operation can be executed error free. Once the
controlling processing operations determines that the altered
processing operation can be executed without error, the
altered processing operation is executed by the processing
unit 12. Note that the altered processing operations 30, 32
and 34 are separately stored from the core memory 11. This
enables the core memory 11 to store only the digital pro-
cessing operations and not the fixes, i.e., the work around
software, which may change several times to correct for
repairs, optimizations and/or to add enhancements to the
system. When the core memory is used more efficiently, the
overall efficiency of the system 10 is improved.

For example, if the processing unit 12 is a video graphics
circuit, an incompatibility exists between a fog application,
or fog digital processing operation, and an alpha-blending
application. As is generally understood, alpha-blending
imposes a translucent quality to a particular image. The fog
application provides a translucent overlay of a particular
image. As such, both the alpha-blending and fog application
cannot be done simultaneously due to their similar affects on
a scene. Thus, the fog application is typically evoked when
both have been requested.

FIG. 3 illustrates a state diagram of two user requests
being processed simultaneously. As shown, a plurality of
digital processing operations (“DPO”) A, B, C, D, and E, a
controlling DPO 48 are involved in at least one of the two
processes. The figure also depicts a first stack 50 and a
second stack 52, which are used to keep track of the
respective processes. In operation, digital processing opera-
tion A receives execution request number 1 from any of the
APIs. Upon receiving this request, the DPO 40 provides an
enable request to the controlling DPO 48. The enabling
request identifies the particular DPO and the particular type
of request. To determine whether to enable the DPO 40, the
controlling DPO 48 includes a list of problem conditions, the
DPOs that are of the first type, and the associated work-
around software (i.e., altered digital processing operations).

In addition, the controlling DPO 48, upon receiving the
enable request from DPO A, identifies each of the DPOs
involved in the operation and may enable them all at the
same time, or when individually addressed. Assuming that
DPO A does not have a conflict and is thus capable of
performing the user requests, the controlling DPO enables
the digital processing operation 40. Such enablement allows
the digital processing operation A to execute its program-
ming instructions. Having executed its programming
instructions upon the data of the execution request #1, the
manipulated data is provided to the DPO B for its execution.
If, the controlling DPO had enabled all of the DPOs

5,999,860

5

involved in the particular process at the beginning of the
process, DPO B would execute its particular programming
instructions. If, however, the controlling DPO 48 did not
enable all of the DPOs at the beginning of the process, upon
receiving the data from DPO A, DPO B would send an
enabling request to the controlling DPO 48. Upon receiving
enablement, DPO B would execute its programming instruc-
tions upon the data received from DPO A. This process
would continue following the 1-2, 1-3, 1-4, and 1-5 paths.

To assist in the controlling of the DPOs, the controlling
DPO controls the first stack 50. As such, as each DPO is
addressed, the first stack, which may be a first in last out
buffer, is updated. As shown, the stack includes the list of
DPOs that are accessed during this particular request and are
stored in the order of execution.

FIG. 3 also shows a second process which is initiated via
execution request #2. DPO D receives the second execution
request and provides an indication thereof to the controlling
DPO 48 which determines whether this particular request
can be executed without error while the first request is being
executed. Also, the controlling DPO 48 may enable each of
the DPOs involved in the process simultaneously, or when
addressed by another DPO.

As shown, the processing flow follows the path of 2-1,
2-2, and 2-3. Also shown is the second stack 52 which is
updated by the controlling DPO as information is being
manipulated by the respective DPOs. As one skill in the art
would readily appreciate, the first and second stacks 50 and
52 ensure that the logic flow of the execution of the DPOs
are done in the order prescribed by the particular request.
Note that more DPOs may be involved in the processes and
the flow paths could be different depending on the operation
being performed.

FIG. 4 illustrates a graphical representation for a video
graphics circuit wherein an altered digital processing opera-
tion is involved. As shown, the graphical representation
includes a column for visual effects 60, optimizations 62,
and hang-up conditions 64. The cross-sectioned areas in
each of the columns represents particular alterations that
would produce a corresponding error. The clear portions of
the column represents altered processing operations that
would not produce an error. For an altered processing
operations to be selected, the particular path has to be able
to flow from the left side of the diagram to the right side
without encountering an error condition. As shown, alter-
native 1 is shown to utilize the particular alternate digital
processing operation of the visual effects 60 and the opti-
mization effects 62. But there is not a clear connection to an
alternate digital processing operation in the corresponding
hang-up column 64. As such, alternate 1 is not usable by the
particular processing unit and the particular unit would have
to wait until the particular condition that is causing the error
condition, which has placed the DOP in a first state, is
removed.

Alternate 2 utilizes the first portion of the visual column
as the alternate digital processing operation, and passes
through the optimization column to the altered digital pro-
cessing operations for the hang-ups 64. As one skilled in the
art would readily appreciate, the altered digital processing
operations for optimization are an option. As such, if a path
between the visual altered digital processing operation and
a hang-up altered processing operation exists, the control-
ling digital processing operation may evoke such altered
digital processing operations.

The third alternative is shown to utilize the altered digital
processing operations of the visual effects, the

10

15

35

40

45

50

55

60

65

6

optimizations, and hang-up conditions which are all com-
patible. Note that the visual effects and the optimization
DPO are performed in any order followed by the execution
of the hang-up DPO. As such, the processing unit may be
altered utilizing these three different altered processing
operations to perform the user requests.

FIG. 5 illustrates a logic diagram for optimizing digital
processing in a system The process begins at step 70 where
a user request is received for at least one digital processing
operation, which may be programmed using C++ lan-
guage™. The process then proceeds to step 72 where a
determination is made as to whether the digital processing
operation is of a first type. A digital processing operation is
of the first type when it has certain operational limitations.
Such limitations include the potential for producing a hang-
up condition, an adverse visual effect condition (for video
graphics processing), is not optimized, or any other type of
error, either operating alone, or in parallel operation with
another digital processing operation. If the digital processing
operation is not of the first type, the process proceeds to step
74 where the digital processing operation is enabled to
execute the user request. As previously mentioned, the user
request includes data to be manipulated and/or a request for
execution.

If, however, the digital processing operation is of the first
type, the process proceeds to step 76. At step 76, a deter-
mination is made as to whether the digital processing
operation is executable without alterations. A digital pro-
cessing operation is executable without alterations when
operating alone, it does not produce an error but may when
operating in conjunction with another. Thus, if this particular
digital processing operation is the only operation being
performed, it can be done so without alteration. As such, the
process proceeds to step 82 where the digital processing
operation is enabled to execute the user request.

If, however, the digital processing operation is not execut-
able without alteration, the process proceeds to step 78. At
step 78, at least one altered digital processing operation is
selected to be executed in place of the desired digital
processing operation or a portion thereof. The altered digital
processing operation will substantially fulfill the user
requirements, while doing so in an error free manner. The
process then proceeds to step 80 where the altered digital
processing operation is enabled to execute the user requests.

FIG. 6 illustrates a logic diagram for optimizing digital
processing within a system. The process begins at step 90
where a determination is made as to whether an execution
request has been received. Once the request has been
received, the process proceeds to step 92 where a digital
processing operation informs a controlling digital process-
ing operation that it has received an execution request. Note
that a digital processing operation is in a disabled mode
unless enabled by the controlling digital processing opera-
tion. As such, when any of the digital processing operations
receive an execution request, it cannot act upon it without
first being enabled by the controlling digital processing
operation.

Having informed the controlling digital processing
operation, the process proceeds to step 94 where a determi-
nation is made as to whether the addressed digital processing
operation is in a first state. As previously mentioned, a
digital processing operation may be in a first state when its
stand-alone execution would produce an error such as being
non-optimal, or, when the digital processing operation is
being executed in parallel with another digital processing
operation, it produces an error condition such as a hang-up,
is non-optimal, or would produce some other error.

5,999,860

7

If the addressed digital processing operation is not in a
first state, the process proceeds to step 96 where the con-
trolling digital processing operation sends an enabling signal
to the addressed digital processing operation. Next, the
process proceeds to step 98 where the digital processing
operation begins its execution. The process then proceeds to
step 100 where a determination is made as to whether the
execution of the digital processing operation includes a
branch to another digital processing operation. If not, the
digital processing operation completes its execution and
supplies the results back to the appropriate application
program interface.

If, however, the execution of the digital processing opera-
tion includes a branch to another digital processing
operation, the process proceeds to step 102. At step 102, the
addressed digital processing operation sends an execution
request to the other digital processing operation. Having
done this, the other digital processing operation performs the
process beginning at step 92. This nesting, or recursion, of
digital processing operations continues until the user
request, or execution request, has been completely satisfied.
Note that while nesting of digital processing operations is
being performed, the controlling digital processing opera-
tion updates a stack to monitor such nesting.

If, at step 94, the controlling digital processing operation
determine that the addressed DPO is in the first state, the
process proceeds to step 106. At step 106, the digital
processing operation, when possible, is altered, or an altered
digital processing operation is selected. The process then
proceeds to step 108, where a determination is made as to
whether the alteration was possible. If so, the process
proceeds to step 110 where the digital processing operation
is altered, or one of the alternate digital processing opera-
tions is selected. In addition, execution of the altered digital
processing operation is enabled. Having done this, the
process proceeds to step 112 where the altered digital
processing operation begins execution. While executing, the
altered digital processing operation proceeds to step 100
where it makes a determination as to whether it has a nested
digital processing operation. Such nesting, or recursion, was
previously discussed in the preceding paragraph.

If, however, alterations to the digital processing operation
are not available, the process proceeds to step 114. At step
114, the process waits until the condition causing the first
state is over or an alteration becomes possible. As previously
mentioned, the addressed digital processing operation may
be in the first state due to the fact that it cannot simulta-
neously or contemporaneously be executed with another
digital processing operation. As such, the other digital
processing operation may have been selected first, or has a
higher priority, and, once it is completed, the addressed
digital processing operation may begin execution.

The process then proceeds to step 116 where a determi-
nation is made as to whether the condition is over or an
alteration is possible. If the condition is over, the process
proceeds to step 96 where the controlling digital processing
operation enables the addressed digital processing operation.
If, however, an alteration has become possible, the process
proceeds to step 110 where the digital processing operation
is altered or an altered digital processing operation is
selected.

The preceding discussion has presented a method and
apparatus for optimizing the processing of digital informa-
tion in a computer system. This is accomplished by provid-
ing alternate digital processing operations, or work-around
software, as a separate entity from the core memory. Thus,

10

15

20

25

30

35

40

50

55

60

65

8

when a new ASIC is incorporated into the system, the core
memory will include the particular long-term applications
while the altered processing operations will be included in
the work-around software. As such, the core memory can be
optimized thereby improving the overall efficiency of the
computer system

What is claimed is:

1. A method for optimizing digital processing, the method
comprising the steps of:

a) receiving a user request for at least one digital pro-

cessing operation;

b) determining whether the at least one digital processing
operation is of a first type;

c) when the at least one digital processing operation is of
the first type, providing the at least one digital process-
ing operation to an operational object;

d) determining, by the operational object, whether the at
least one digital processing operation is executable
without alteration; and

¢) when the at least one digital processing operation is not
executable without alteration, altering, by the opera-
tional object, the at least one digital processing opera-
tion to produce at least one altered digital processing
operation.

2. The method of claim 1 further comprises, within step
(a), receiving the user request for a video graphics operation,
wherein the video graphics operation is fog.

3. The method of claim 1 further comprises, within step
(b), determining the at least one digital processing operation
is of the first type when execution of the at least one digital
processing operation would produce a hang condition.

4. The method of claim 1 further comprises, within step
(b), determining that the at least one digital processing
operation is of the first type when execution of the at least
one digital processing operation is non-optimal.

5. The method of claim 1 further comprises, within step
(b),

executing, as part of the operational object, a visual object
to detect visual corruption;

executing, as part of the operational object, a hang-
condition object to determine whether execution of the
at least one digital processing object would produce a
hang condition; and

executing, as part of the operational object, an optimizing
object to determine whether execution of the at least
one digital processing object can be optimized.

6. The method of claim 1 further comprises, within step
(e), altering the digital processing operation by at least one
of: temporarily prohibiting execution, approximating
attributes of the at least one digital processing operation,
processing data communication with at least one digital
processing operation in an alternate manner.

7. The method of claim 1 further comprises, within step
(a), receiving the user request for a video graphics operation,
wherein the video graphics operation is alpha blending.

8. The method of claim 1 further comprises, within step
(b), determining the at least one digital processing operation
is of the first type when execution of the at least one digital
processing operation would produce a visual corruption.

9. The method of claim 1, wherein the step d) further
includes the determination being based on whether the
addressed digital processing operation will be executed
individually or in parallel with others.

10. A method for a controlling operation to control
execution of a plurality of processing operations, the method
comprising the steps of:

5,999,860

9

a) receiving an indication of an execution request from
one of the plurality of processing operations while the
one of the plurality of processing operations is in a
disabled mode;

b) determining whether current execution of the one of the
plurality of processing operations would produce an
error;

¢) when current execution of the one of the plurality of
processing operations would produce an error, deter-
mining whether the one of the plurality of processing
operations could be altered to eliminate the error; and

d) when the one of the plurality of processing operations
can be altered to eliminate the error, altering the one of
the plurality of processing operations to produce an
altered one of the plurality of processing operations.

11. The method of claim 10 further comprises enabling
execution of the one of the plurality of processing operations
when the current execution of the one of the plurality of
processing operations would not produce the error.

12. The method of claim 10 further comprises enabling
execution of the altered one of the plurality of processing
operations.

13. A method for executing a plurality of processing
operations, the method comprising the steps of:

a) while in a disabled mode, receiving, by one of the
plurality of processing operations, an execution
request;

b) providing, by the one of the plurality of processing
operations, the execution request to a controlling pro-
cessing operation;

¢) determining, by the controlling processing operation,
whether the plurality of processing operations can
perform the execution request without error; and

d) when the plurality of operations can perform the
execution request without error, enabling, by the con-
trolling processing operation, execution of the plurality
of processing operations based on the execution
request.

14. The method of claim 13 further comprises, when the
plurality of processing operations cannot perform the execu-
tion request without error,

identifying, by the controlling processing operation, at
least one of the plurality of processing operations as a
cause for the error;

determining, by the controlling processing operation,
whether the at lest one of the plurality of processing
operations can be altered to eliminate the error; and

when the at least one of the plurality of processing
operations can be altered to eliminate the error, altering,
by the controlling processing operation, the at least one
of the plurality of processing operations.

15. A processing circuit comprising:

a processing unit; and

memory operably coupled to the processing unit, wherein
the memory stores programming instructions that,
when read by the processing unit, causes the processing
unit to (a) receive a user request for at least one digital
processing operation; (b) determine whether the at least
one digital processing operation is of a first type; (c)
provide the at least one digital processing operation to
an operational object when the at least one digital
processing operation is of the first type; (d)determine
whether the at least one digital processing operation is
executable without alteration; and (e) alter the at least
one digital processing operation to produce at least one

10

15

20

25

30

35

40

45

50

55

60

65

10

altered digital processing operation when the at least
one digital processing operation is not executable with-
out alteration.

16. The processing circuit of claim 15 further comprises,
within the memory, programming instructions that, when
read by the processing unit, causes the processing unit to
determine the at least one digital processing operation is of
the first type when execution of the at least one digital
processing operation would produce at least one of: a hang
condition and visual corruption.

17. The processing circuit of claim 15 further comprises,
within the memory, programming instructions that, when
read by the processing unit, causes the processing unit to
determine that the at least one digital processing operation is
of the first type when execution of the at least one digital
processing operation is non-optimal.

18. The processing circuit of claim 15 further comprises,
within the memory, programming instructions that, when
read by the processing unit, causes the processing unit to (i)
execute a visual object to detect visual corruption; (ii)
execute a hang-condition object to determine whether
execution of the at least one digital processing object would
produce a hang condition; and (iii) execute an optimizing
object to determine whether execution of the at least one
digital processing object can be optimized.

19. A processing circuit comprising:

a processing unit; and

memory operably coupled to the processing unit, wherein

the memory stores programming instructions that,
when read by the processing unit, causes the processing
unit to () receive an indication of an execution request
from one of the plurality of processing operations while
the one of the plurality of processing operations is in a
disabled mode; (b) determine whether current execu-
tion of the one of the plurality of processing operations
would produce an error; (c) determine whether the one
of the plurality of processing operations could be
altered to eliminate the error when current execution of
the one of the plurality of processing operations would
produce an error; and (d) alter the one of the plurality
of processing operations to produce an altered one of
the plurality of processing operations when the one of
the plurality of processing operations can be altered to
eliminate the error.

20. The processing circuit of claim 19 further comprises,
within the memory, programming instructions that, when
read by the processing unit, causes the processing unit to
enable execution of the one of the plurality of processing
operations when the current execution of the one of the
plurality of processing operations would not produce the
€r1or.

21. The processing circuit of claim 19 further comprises,
within the memory, programming instructions that, when
read by the processing unit, causes the processing unit to
enable execution of the altered one of the plurality of
processing operations.

22. The processing circuit of claim 19 further comprises,
within the memory, programming instructions that, when
read by the processing unit, causes the processing unit to (i)
identify at least one of the plurality of processing operations
as a cause for the error; (i) determine whether the at lest one
of the plurality of processing operations can be altered to
eliminate the error; and (iii) alter the at least one of the
plurality of processing operations when the at least one of
the plurality of processing operations can be altered to
eliminate the error.

5,999,860
1 12

23. A processing circuit comprising: processing operations is in a disabled mode; (b) deter-
mine whether the plurality of processing operations can

a processing unit; and h :
P & ’ perform the execution request without error; and (c),

memory operably coupled to the processing unit, wherein enable execution of the plurality of processing opera-
the memory stores programming instructions that, s tions based on the execution request when the plurality
when read by the processing unit, causes the processing of operations can perform the execution request with-

unit to (a) receive, from one of plurality of processing out error.
operations, an execution request to a controlling pro-
cessing operation, wherein the one of the plurality of LI B B B

