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Abstract—In this paper, we describe the use of neural networks for
vector quantization (VQ), We first show how a collection of neural units
can be used efficiently for VQ encoding, with the neural units perform-
ing the bulk of the computation in parallel. We then describe two un-
supervised neural network learning algorithms for training the vector
quantizer. A powerful feature of these new training algorithms is that
the VQ codewords are determined in an adaptive manner, as compared
to the popular LBG training algorithm (1], which requires that the
entire training data be processed in a batch mode. The neural network
approach allows for the possibility of training the vector quantizer on-
line, thus adapting to the changing statistics of the input data. Finally,
we compare the neural network VQ algorithms to the LBG algorithm
in encoding a large database of speech signals and in ding i
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I. INTRODUCTION

HERE is a great deal of interest in the low bit rate

coding of speech and images, and vector quantization
(VQ) has emerged in recent years as a powerful technique
that can provide large reductions in bit rate while preserv-
ing the essential signal characteristics [2], [3]. The most
popular algorithm for VQ codebook design has been the
so-called LBG or generalized Lloyd algorithm [1]. While
the LBG algorithms and its variants have been widely
studied [2], [4], the practical application of VQ has been
limited because of the prohibitive amounts of computa-
tion associated with both the vector encoding and the
codebook design stages [5].

The past few years have also seen a resurgence of in-
terest in neural networks [6], and their application to a
wide range of problems in clustering and pattern recog-
nition [7]-[9]. One class of neural network structures,
called self-organizing or competitive learning networks
[10], [8], appears to be particularly suited for VQ, and a
number of studies has been reported on using neural net-
works for VQ [11]-[16]. The use of neural networks for
vector quantization has a number of significant advan-
tages. First, neural networks are a highly parallel com-
puter architecture and, thus, offer the potential for real-
time VQ. Second, the large body of training techniques
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for neural networks can be adapted to yield new, and pos-
sibly better, algorithms for VQ codebook design. Finally,
most neural network training algorithms are adaptive, and
thus, neural network based VQ design algorithms can be
used to build adaptive vector quantizers [17]. This is cru-
cial in applications where the source statistics are chang-
ing over time.

This paper describes the use of neural networks for VQ.
We first show how a collection of neural units can be used
efficiently for VQ encoding, with the neural units per-
forming the bulk of the computation in parailel. We then
describe two unsupervised neural network learning algo-
rithms for training the vector quantizer. These training
algorithms are adaptive, in the sense that they process the
training data one vector at a time, as compared to the LBG
training algorithm [1], which requires that the entire train-
ing data be processed in a batch mode. Finally, we com-
pare the performance of the neural network VQ design
algorithms with the LBG algorithm in encoding a large
database of speech signals and in encoding images.

II. NEURAL NETWORKS FOR VECTOR QUANTIZATION

A. Vector Quantization

Vector quantization is a statistical method of encoding
data for transmission to a receiver. In VQ, a k-dimen-
sional data vector x that is to be encoded is represented
as one of a finite set of M symbols. Associated with each
symbol is a k-dimensional vector ¢; called a codeword.
The complete set of M codewords is called the codebook
[2]. The k values in the vector can be, for example, suc-
cessive sample values of a signal, or parameters extracted
from the signal (such as linear predictive coding param-
eters [18]). The codebook C = {¢;, i =1, -, M} is
usually obtained through a training process using a large
set of training data that is typical of the data that will be
encountered in practice,

During the encoding process, each k-dimensional vec-
tor x that is to be encoded is compared to each of the M
codewords in the codebook, and the distortion d(x, ¢;),
i =1, + + +, M between the input vector and the codeword
is computed. The input vector x is then encoded as the
index j of the codeword that yields the minimum distor-
tion, The receiver, which is assumed to have a copy of
the codebook, uses this index to look up the correspond-
ing codeword ¢;. Codeword c; is then used as the encoded
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value of the vector x. Typically, M = 2" and the rate of
the VQ is L/k bits per vector dimension. Note that the
primary computational burden during the encoding pro-
cess is that of computing the distortion between the input
vector and each of the M codewords.

B. Neural Networks

Neural networks are highly parallel computing struc-
tures consisting of a number of simple processing units,
called neural units, and a set of interconnections between
these units and the inputs to the network. The inputs to
any neural unit can be regarded as a vector x. Also asso-
ciated with the neural unit is a weight vector w, and an
activation function g (w, x) that is the output produced by
the unit. Thus, the overall input-output function of any
neural unit is determined by its weight vector, its input,
and the activation function of the unit.

In order to perform a particular task, neural nets
undergo a training process in which the weight vectors
associated with the units are modified. This process de-
pends on the networks being presented with statistically
representative data during the training process; the net-
works modify the weight vectors based on internally cal-
culated error measures derived from the training data.
There are a number of techniques used to modify the
weights [6], but all of the techniques can be classified as’
either supervised or unsupervised.

Supervised training algorithms use training data that are
labeled with the desired network output. An error measure
is calculated from the desired output and the network-cal-
culated output, and the weight vectors are consequently
modified according to the supervised learning rule being
used. One commonly used supervised learning rule is re-
ferred to as the backpropagation training algorithm 19},
which is a generalization of the LMS algorithm, Super-
vised algorithms have been extensively used in a number
of applications, including functional mapping, plant mod-
eling, classification, and data abstraction, but have not
been widely used for VQ.

Unsupervised training algorithms depend upon inter-
nally generated error measures which are derived solely
from the training data. The network has no indication of
the correct answer during training and, consequently, must
derive the error and the necessary weight modifications
directly from the statistics of the training data. In most
cases, unsupervised training algorithms attempt to ‘‘clus-
ter’’ or average portions of the training data into repre-
sentative groups, Competitive learning algorithms are a
class of such unsupervised training algorithms and they
appear to be well-suited for use in VQ applications. We
discuss the application of two such competitive learning
algorithms, Kohonen’s self-organizing feature maps
(KSFM) [8] and frequency-sensitive competitive learning
(FSCL) [16], [19), for VQ later in this paper.

It is straightforward to formulate a neural network
structure for the encoding step in VQ [20], [21] and an
example is shown in Fig. 1. Consider a neural network
with M neural units, and associate with neural unit i a
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Fig. I. Neural network structure for vector quantization.

weight vector that is the ith codeword, i.e., w; = ¢;. Given
any vector x that is to be encoded, x is fed in parallel to
all the M neural units, Each of the units computes the
distortion d(x, w;) between the input and its weight vec-
tor, i.e., the activation function g (x, w;) = d(x, w;). The
unit with the minimum distortion is called the ‘‘winning’’
neural unit, and the input vector x is encoded as the index
of the winning unit. All computations, except for deter-
mining the winning neural unit, are carried out in parallel.

The process of determining the winner can also be done
using neural networks. One of the first neural network so-
lutions to the winner-take-all problem was proposed by
Grossberg [22]. Another solution is offered by Hecht-
Nielsen [21] who proposes adding another layer of neural
units at the output of the first layer. This second layer of
units is trained to directly output the index of the winning
unit. Lippmann [6] describes neural network structures
that allow the winning unit to be determined using a bi-
nary search procedure. Finally, Winters and Rose [23]
have shown that in VLSI implementations it is possible to
determine the winning unit in log, (M) steps.

III. NEURAL NETWORK TRAINING ALGORITHMS FOR
VQ CobEBOOK DESIGN

One of the major advantages of formulating the VQ
problem in terms of neural networks is that the large body
of neural network learning methods can be applied to the
VQ task. Most of the neural network learning methods are
adaptive; consequently, the VQ training algorithms de-
rived from these are also adaptive and allow for the pos-
sibility of training the VQ codebook on line. We describe
below two possible training algorithms: the Kohonen self-
organizing feature map (KSFM) [8] and the frequency-
sensitive competitive learning method (FSCL) [19].

Both KSFM and FSCL belong to the class of competi-
tive learning (CL) training algorithms. In these algo-
rithms, the weight vectors (or codewords) w; associated
with the neural units are initialized to small random val-
ues, and the algorithm iterates through the training data a
number of times, adjusting w; after the presentation of
each input vector x. The simple competitive learning al-
gorithm can be described as follows,
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CL Training Algorithm:

1) Apply an input vector x.

2) Find the distortion D; = d(x, w;) for all output
neural units,

3) Select the output unit with the smallest distortion and
label it as the winner and its weight vector as wys.

4) Adjust the selected weight vector

wia(n + 1) = wu(n) + e(n)[x(n) = wi(n)]
(1)

where n is the training time index.
5) Repeat Steps 1) through 4) for all training vectors.

Note that the value selected for e¢(n) does not depend
upon the magnitude of the data. The training rule moves
the weight toward the training vector by some fractional
amount, ¢(n). Typically, 0 < e(n) < 1 and decreases
as training progresses.

A major problem with the basic CL algorithm is that all
the neural units are not equally utilized in representing the
input data. In fact, it is typically the case that a few units
do the bulk of the representation leading to unduly high
distortions. The next two CL algorithms that we discuss
overcome this underutilization problem, albeit in different
ways.

A. The Kohonen Self-Organizing Feature Map

The Kohonen self-organizing feature map (KSFM) is a
CL network that was proposed by Kohonen as a model for
the process by which topological feature maps form in the
brain [20]. In the KSFM network, each neural unit has an
associated topological neighborhood of other neural units.
During the training process, both the winning neural unit
as well as the neural units in the neighborhood of the win-
ner is updated. The size of the neighborhood is decreased
as training progresses until each neighborhood has only
one unit, i.e., the KSFM net becomes a CL net after suf-
ficient training, By the use of neighborhoods, the KSFM
network overcomes the problem of underutilized nodes
discussed previously.

The neighborhood of a unit in KSFM is defined by
means of a set of connections imposed on the neural units,
For example, the connections might form a linear array
or a rectangular grid. Typically, the neighborhoods are
the set of units that are less than K connection lengths
from the winning unit. Upon the receipt of a training ele-
ment, a ‘‘winning’’ unit is selected, The weight vector of
each unit in the winning unit’s neighborhood is then up-
dated as follows:

w(n + 1) = w(n) + e(n, D)[x(n) — w(n)]. (2)

The training rule is similar to the one found in the CL net
except that the learning rate is a function of distance D
from the selected unit as well as a function of training
time n. Generally, €(n, D) decreases as the distance from
the selected unit increases, Also as training progresses,
the size of the neighborhood decreases in size.

Exhibit_*

The KSFM training algorithm may be formally stated
as below; initially Dy, is chosen large enough that all
neural units are in the same neighborhood,

KSFM Training Algorithm:

1) Apply an input vector x.

2) Find the distortion D; = d(x, w;) for all output units.

3) Select the output unit i* with the smallest distortion
and label it as the winning unit,

4) Adjust the selected weight vector and its neighbor-
hood of units

wie(n + 1) = wiln) + e(n, 0)[x(n) = wa(n)].
(3)

For all units that are less than Dy, away from i*
w(n + 1) = w(n) + e(n, D)[x(n) — w(n)]

(4)

where n is the training time and 0 < e(n, D) < 1.

5) Periodically decrease the extent of the neighborhood
by decreasing D, until Dy, = 0.

6) Repeat Steps 1) through 5) for all training vectors.

Figs. 2 and 3 show an example of the formation of the
topological map for a simple case. The training set con-
sisted of 1000 samples from a uniform density function in
theregion R = {~1 <= x =<1, ~1 <= y < 1}. We show
the movement of the codewords for two different neigh-
borhood connections, a linear arrangement, and an ar-
rangement in a two-dimensional grid. The movement of
the codewords during training for the linear arrangement
is shown in Fig. 2. This figure shows that by the third
pass through the training file, the codewords have ordered
themselves in a line, As training progresses, the code-
words spread over the training space, After 25 iterations
through the training set, the codebook adequately covers
the space. In each iteration shown in Fig. 2, codewords
are ordered as defined by the line of connections. Code-
word 0 is adjacent to codeword 1, codeword 1 is adjacent
to codeword 2, etc. A mathematical study of the ordering
phenomenon is found in [8).

The movement of the codewords for the rectangular grid
connection is shown in Fig. 3. Again, as the codewords
cover the training space, they remain ordered as defined
by the set of connections. Kohonen notes that it is some-
times advantageous to order the codewords depending
upon the application [8]. _

The topological ordering imposed on the neural units in
the KSFM structure has been used to advantage by a num-
ber of researchers. For example, Bradburn [24] uses the
ordering to reduce the effects of transmission errors in a
communication system; Lee and Peterson {17] use it to
define a structurally adaptive vector quantizer that can add
or kill neurons based on the statistics of the input data.

B. The Frequency-Sensitive Competitive Learning
Network

The frequency-sensitive competitive learning (FSCL)
net directly addresses the problem of neural unit under-
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utilization with the CL network by incorporating a mea-
sure of how frequently a unit has been the winner in the
winner selection process {19]. Each neural unit maintains
a count ; of the number of times it was the winner node,
The distortion measure that is used for selecting the *‘win-
ning’’ node is now modified to be §F (u;)d (x, w;), where
¥ is a nondecreasing function called the *‘fairness’’ func-
tion. The fairness function is essentially a way of intro-
ducing a count-dependent weighting to the distortion
measure. The effect of introducing this weighting is that
if a neural unit “*wins’’ frequently, its count increases and,
consequently, its modified distortion measure also in-
creases. This gives other units a chance to win the com-
petition. Note that this is nothing but an implementation
of Grossberg’s conscience principle [22], and is similar
to the conscience method of DeSieno [25].

The FSCL training algorithm can thus be stated as fol-
lows; the update counters ; are initialized to be zero,

FSCL Training Algorithm

1) Apply an input vector x.

2) Find the distortion D; = F (u;)d (%, w;) for all out-
put units where the u; are the update counters.

3) Select the output unit i* with the smallest distortion
and label it as the winning unit and increment u;..

4) Adjust the selected weight vector

wie(n + 1) = wi(n) + e(n)[x(n) — wp(n)]
(5)

where n is the training time and 0 < e(n) < 1,
5) Repeat Steps 1) through 4) for all training vectors,

The fairness function & (u;) provides a simple way to
control the behavior of the FSCL training procedure. For
example, choosing & (#;) = 1 reduces FSCL to the stan-
dard CL algorithm. The choice F (u;) = ; is one we have
used frequently and appears to provide a good compro-
mise between minimizing distortion and ensuring uniform
codeword usage. It is also possible to make & (u;) train-
ing iteration dependent, for example F(w;) = u?"“'”
where t is the training iteration number and T is a con-
stant, This choice for & (;) initially emphasizes uniform-
ity of codeword usage, but emphasizes minimizing the
distortion as training progresses.

In the next section, we demonstrate the application of
the FSCL network to the vector quantization of speech
and images. The results obtained from the FSCL net are
compared to those generated by the LBG algorithm.

IV. ExampLeEs oF VQ Copesook DEesign UsiNG
NEURAL NETWORKS

A. Vector Quantizarion of Speech

We have used the KSFM and the FSCL training algo-
rithms for the vector quantization of linear predictive cod-
ing (LPC) parameters of speech signals [26]. The LPC
parameters used were the autocorrelation coefficients
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{R(0), -+ ., R(p)} from short-time windows of the
speech signal. During the voiced speech segments, a form
of pitch-synchronous analysis was done. The LPC resid-
ual signal was used to locate the pitch periods [27]. Dur-
ing unvoiced segments, the autocorrelation coeflicients
were computed over a 20 ms time window, with succes-
sive windows being overlapped by 10 ms. The speech
sampling rate was 10 kHz. We performed both speaker-
dependent and speaker-independent coding experiments,
and these are described below.

1) Speaker-Dependent V(Q: In this experiment, we
compared the performance of the LBG, KSFM, and FSCL
algorithms in encoding the speech data from a single male
speaker. The training data consisted of about 14 000 vec-
tors, where each vector was the 10 autocorrelation coef-
ficients from an analysis frame. These data were from the
analysis of 24 sentences, with each sentence being about
3 5 in duration. The Itakura-Saito distortion measure [26]
was used during both training and encoding.

Fig. 4 shows the average distortion in encoding the
training data set as a function of the codebook size for the
LBG, KSFM, and FSCL algorithms. The fairness func-
tion for the FSCL algorithm was chosen to be § (u;) =
u;. The neighborhood for the KSFM method was chosen
to be an arbitrary rectangular grid; for the size 128 code-
book, for example, it was a 16 X 8 grid. Fig. 4 shows
that the performance of the FSCL and LBG algorithms are
very close; the KSFM method, in general, shows a higher
distortion for all codebook sizes.

We compare the codeword utilization for all three
methods for the size 128 codebooks in Figs. 5-7. Also
shown in these figures is the average Itakura-Saito dis-
tortion in encoding the training data set for each of the
methods, and the codebook entropy. The codebook en-
tropy is computed as

128

E=- E’l piloga(py) (6)

s

where p; is the relative frequency with which codeword i

was used in encoding the data set. Note that'in the ideal
case, where all codewords are utilized equally often, the
value of the entropy is 7. The closer this value is to 7, the
more uniform is the codeword usage. The FSCL network
not only yields the highest entropy but also the lowest
Itakura-Saito distortion among all of the methods. Thus,
for this realistic application, the FSCL method yields a
codebook design that is comparable to the codebook which
is produced with the LBG method.

2) Speaker-Independent VQ: Only the FSCL algo-
rithm was used in the speaker-independent speech coding
experiments. The training data consisted of six sentences
from each of six speakers, three male and three female,
Each sentence was roughly 2 s in duration. The LPC anal-
ysis procedure was similar to that for the speaker-inde-
pendent experiments, except that 15 autocorrelation coef-
ficients were used for cach analysis frame. Also, the
Euclidean distance between the autocorrelation coefficient

Average Distortion vs. Number of Codewords

Algorithms
0 FSCL Net
] x KSFM Net |
250 + LBG Algorithm J

liakura-Saito distortion
Net Training Tterations : 10

Average Distortion
in
T

0.5F

Number of Codewords

Fig. 4. Average distortion versus number of codewords, speaker-depen-
dent VQ of speech.

Codeword Utilization

6

LBG Algorithm
128 Codewords
Itakura-Saito distortion ; 0.359
5| Entropy : 6477

Percent Use

ol Rt i {H el LA
0 20 40 60 80 100 120 140
Codeword index

Fig. 5. Codeword utilization, LBG algorithm, speaker-dependent VQ of
speech,

Codeword Utilization

T

KSFM Algorithm

128 Codewords

Ltakura-Saito distortion ; 0.394
5L Entropy : 6,574

Percent Use

Codeword Index

Fig. 6. Codeword wutilization, Kohonen seif-organizing feature map,
speaker-dependent VQ.
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Fig. 7. Codeword utilization, frequency-sensitive competilive learning,
speaker-dependent VQ.

vectors was used as the distortion measure. The size of
the codebook was 128.

Table I shows the average Itakura—-Saito distortion be-
tween the original and vector quantized autocorrelation
parameters. Six sentences' that were used in training the
VQ were encoded using the FSCL codebook. The average
distortion in encoding these sentences is shown for the
male and female speakers separately in the table. Six sen-
tences from the same speakers that were not used in the
training were also encoded, and the Itakura-Saito distor-
tion for this case is also shown in the table. The results
indicate that the performance is only slightly inferior as
compared to the speaker-dependent case. Also, the per-
formance is clearly better for the data used in training.

Fig. 8 shows the codeword utilization in encoding the
training data set. The entropy for this case is 6,78, once
again indicating uniform codeword usage.

Informal listening tests of speech synthesized using both
the speaker-dependent and speaker-independent code-
books show that for the speaker-dependent case, the LPC
synthesized and the vector-quantized and LPC synthe-
sized speech sound almost identical; for the speaker-
independent case, some additional distortion due to the
VQ is evident.?

B, Vector Quantization of Images

In this section, we compare the LBG and FSCL algo-
rithms applied to the task of designing codebooks for im-
ages. The techniques are applied to two images and the
distortion and SNR are measured for various size code-
books. The results show that the neural network technique
yields results that are very close to the optimal LBG de-
sign,

: One sentence from cach of the speakers,
“ Note that a codeboak size of 128 is probably 100 small for the speaker-
independent VQ.

TABLE |
ITAKURA-SAITO DISTORTION FOR SPEAKER-INDEPENDENT VQ OF SPEECH
Included in Training | Not included in training
MALE 0.2169 0,3302
FEMALE 0.3826 0.6733
OVERALL 0.2997 0.5018

Codeword Utilization using Euclidean Distance
25 v v T T -

Percentage Use

0 20 40 60 80 100 120 140
Number of Codewords

Fig. 8. Codeword utilization, frequency-sensitive competitive learning,
speaker-independent VQ,

The images used in the experiments had a resolution of
500 x 482 pixels with 8 gray levels per pixel, A rectan-
gular block of four pixels (2 X 2) was used as the vector
to be quantized and codebook sizes were varied to provide
performance comparisons between the two methods.

The convergence ration € of the LBG algorithm was set
to 0.01. The learning rate of the FSCL net was (1) =
0.01¢™ @/ 1000 4pd the distortion measure was modified
by the inclusion of a **faimess’’ function ¥ (u;), which
depends on the number of times a particular unit wins the
competition, ¥ (4;) is nominally chosen to be u; because
of its simplicity and because reasonable results are exper-
imentally obtained.

In Fig. 9, the original image is shown at 8 b /pixel. Fig.
10 shows the encoded images obtained when the bit rate
is 1 b/pixel, with the LBG algorithm results in Fig. 10(a),
and the FSCL algorithm results in Fig. 10(b). Finally,
Fig. 11 shows the encoded images at a bit rate of 1.5
b/pixel, which is almost indistinguishable from the orig-
inal image. Table Il shows the mean-square-error and the
signal-to-noise ratio as a function of codebook size for the
FSCL and the LBG algorithms.

A second image containing significant edges was also
used to study the encoding performance, Codebooks were
designed with 16, 32, and 64 codewords. The “*fairness’’
function was set to be F (&;) = u;, but the results obtained
using the FSCL net are worse than those obtained using
the LBG algorithm (Table III), We conjecture that the
cause is that the image consists of nonuniform cluster sizes
and choosing a faimess function of F (#;) = u; results in
undesirable uniformity in the use of the weight vectors,
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TABLE 11
MEAN-SQUARE ERROR AND SIGNAL-TO-NOISE RATIO AS A FUNCTION OF
CopEBOOK SIZE FOR THE LBG AND FSCL ALGORITHMS

Code- Bit LBG Algorithm FSCL Net

book | Rate MSE SNR{ MSE| SNR

Size | bits/pix (4B) (dB)
4 0.50 166.95 | 23.02 || 167.28 | 23.01
8 0.75 47.81 2845 || 48.27 | 28.41
16 1.00 19.50 | 32.35 | 20.39 | 32.16
32 1,25 1285 3416 13.49 | 33.95
64 1.50 10.03 35.24 10.38 | 35.09

TABLE 111
MEAN-8QUARE ERROR A5 A FUNCTION OF CODEBOOK SIZE FOR FIXED AND
DECREASING F (u;)

Tode | Bit | LBG | FSCL Net Flu)=
book | Rate Je=001] et
Size | bits/pix | MSE | MSB | MSE

16 | L0 | 17403 | 197.62] 180.64
32 | 125 | 0328 [11641! 9367
64 | 150 || 465 | 739 | 4919

Fig, 10. Restored image using (a) LBG algorithm and (b) FSCL at Fig. 12. Original image, 500 x 482 pixels, 8 b/pixel,
1 b/pixel.

To determine if alternative fairness functions could im- §
prove the performance of the FSCL net, we repeated the 2
experiment with a decreasing power function for u; of the
form § (u;) = u?"“'”, where ¢ is the global count of train-
ing vectors presented to the net. This ensures mobility of
the reference vectors at the beginning of the learning phase
and as training proceeds the FSCL net gradually turns into
competitive learning since lim, ., ., #® " = 1. Conse-
quently, as training progresses, the net eventually chooses
the winner node with only the square error determining
the error, In this case, 8 has been set to 1 and the value
T has been set such that § (i;) = ¢’ when the FSCL net
has completed half of the learning process. The mean
square error for this case also is shown in Table III.

Fig. 12 shows the original image. In Fig. 13 we show
the restored image using the LBG algorithm [Fig. 13(a)]
and the two versions of the FSCL net [Fig. 13(b), (¢)].

We observe that the fairness function has a significant
effect on the performance of the FSCL net. Rather than
using a fixed power of 8 for the fairness function uf, a
Fig. 11. Restored image using (a) LBG algorithm and (b) FSCL at decreasing power allows for better adaptation to the un-

1.5 b/pixel, derlying distribution. We believe that this allows for a

- page >3
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Fig. 13. Restored image using (a) LBG algorithm; (b) FSCL net with
F (4;) = u;; and (c) FSCL net with & () = u®™", all at 1 b /pixel bit
rate.

high mobility of the reference vectors during the initial
stages of learning and then allows the FSCL net to turn
into a competitive learning net. Further studies are un-
derway to completely describe the effects of the faimess
function.

V. CONCLUSIONS

This paper described the application of neural networks
for vector quantization. The Kohonen self-organizing fea-
ture map and the frequency-sensitive competitive learning
algorithms were discussed and shown to be useful for vec-
tor quantization codebook design. An important feature
of the neural network approach to vector quantization is
that the codebook design process is adaptive, and can
consequently lead to adaptive VQ techniques.

We applied the neural network VQ methods for encod-
ing speech and image data. The results of the algorithm
were compared to the commonly used LBG design algo-
rithm, and indicate that neural network VQ methods yield

Exhibit !
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comparable results. We are presently investigating an
adaptive VQ technique using neural networks.
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