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Orthonormal Bases of Compactly Supported Wavelets

INGRID DAUBECHIES
AT&T Bell Laboratories

Abstract

We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regular-
ity. The order of regularity increases lincarly with the support width, We start by reviewing the
concept of multivesolution analysis as well as several algorithms in vision decomposition and
reconstruction, The construction then follows from a synthesis of these different approaches,

1. Introduction

In recent years, families of functions 4, ,,

(1.1) he,s(%) =l 252), a,bER, a#0,

generated from one single function A by thie operation of dilations and transla-
tions, bave turned out to be a useful tool in many different fields of mathematics,
pure as well as applied. Following Grossmann and Morlet [1], we shall call such
families “wavelets”,

Techniques based on the use of translations and dilations are certainly not
new. They can be traced back to the work of° A. Calder6n [2] on singular integral
operators, or to renrormalization group ideas (see [3]) in quantum field theory and
statistical mechanics. Even in these two disciplines, however, the explicit intro-
duction of special families of wavelets seems to have led to new results (see, e.g.
[4),[5), [6]). Moreover, wavelets are useful in many other applications as well,
They are used for e.g. sound analysis and reconstruction in [7], and have led to a
new algorithm, with many attractive features, for the decomposition of visual
data in [8]. They seem to hold great promise for the detection of edges and
singularities; see [9]. It is therefore fair to surmise that they will have applications
in yet other directions.

Depending on the type of application, different families of wavelets may be
chosen. One can choose, e.g., to let the parameters a, b in (1.1) vary continuously
on their range R* X R (where R* = R\ {0}). One can then, for instance,
represent functions f € LY(R) by the functions Uf,

a

(12)  (U)Na,B) = (hypr 1 =1al faxh{ 222) ().
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If h satisfies the condition

(1.3) Jaer Al < o,

where " denotes the Fourier transform,

B8 = = [ dmeh(x),

then U (as defined by (1.2)) is an isometry (up to a constant) from L*(R) into
L*R* X R; a~? dadb). The map U is called the “continuous wavelet transform”;
see [1],[10]. In this form, wavelets are closest to the original work of Calderén.
The continuous wavelet transform is also closely related to the “affine coherent
state représentation” of quantum mechanics (first constructed in [11), see also
[12]); in fact, for appropriate choices of 4, the h, , are “affine coherent states”,
and have been used in the study of some quantum mechanics problems in
[11}[12). .

Note that the “admissibility condition” (1.3) implies, if & has sufficient decay
which we shall always assume in practice, that 4 has mean zero,

(1.4) fdxh(x) =0,

Typically, the function h will therefore bave at least some oscillations. A
standard example is

(1.5) h(x) = (2/¥3) 7141 — x2)e ¥/,

For other applications, including those in signal analysis, one may choose 10
restrict the values of the parameters a, b in (1.1) to a discrete sublattice. In this .
case one fixes a dilation step a4, > 1, and a translation step b, % 0. The family of
wavelets of interest becomes then, for m,n € Z,

(1.6) hma(x) = ag™"*h(ag™x — nd,). ’

Note that this corresponds to the choices R 4
a=a,
b = nbyal,

indicating that the translation parameter b depends on the chosen dilation rate.
For m large and positive, the oscillating function 4, is very much spread out,
and the large translation steps byaf' are adapted to this wide width. For large but
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ORTHONORMAL BASES OF WAVELETS 911

negative m the opposite happens; the function k4, is very much concentrated, g
and the small translation steps bya{' are necessary to still cover the whole range. "

A “discrete wavelet transform” T is associated with the discrete wavelets S
(1.6). It maps functions f to sequences indexed by Z?, f

(Tf)mn = <hmn’ f) ) j
(17) _ o

ATt e, -

LR ey

=a;,"”/2fdxh(a§"'x ~ nby) f(x). ' ‘}
ki
ot N
L*R) into If A is “admissible”, 1., if k satisfies the condition (1.3), and if 4 has sufficient i ; 1,
transform”: decay, then T maps L*(R) into /*(Z?). In general, T does not have a bounded BN
»f Calderdn, inverse on its range. If it does, Le., if, for some A4 > 0, B < oo, b £
ine coherent ) : j:[. ;{;‘1
11}, see also A< L K NI < BISIP, ¥ F
;rent states”, mynel (I |
problems in ‘ i §
for all f in L%R), then the set {h,,,; m, n € Z} is called a “frame”. In this case BEIR
Ticient decay one can construct numerically stable algorithms to reconstruct f from its wavelet } ;}]
coefficients (A,,,, /). In particular, e L
2 Y h (h i
(1'8) f= A+ B mz‘ln mn< 'mn? j) + R’ ‘ S
willations. A with ' ; |
B 5 ‘ k. i
IRi s 0 ~ i), y 1 i
R |
1ay choose 10 For B/A close to 1, which is the case in the decompositions and reconstructions ‘ '!"'fi%; |
attice. In this of music and other sound signals, as done by A. Grossmann, R. Kronland and J. e |
The family of Morlet [7}, the “error term™ R can be omitted. In practice, with e.g. the basic i
wavelet (1.5), and with a, = 2'/%, b, = .5, one finds B/4 — 1 < 107% and the éﬁ‘
reconstruction formula (1.8) restricted to its first term gives excellent results. In B gI
' fact, even for the larger value ay = 2, corresponding to B/A4 — 1 = .08, the | ;‘1
truncated reconstruction formula, when applied to the wavelet decomposition of iy {;
speech signals, leads to a clearly understandable reconstruction; see [13), R f’]
In the use of wavelet frames for sound analysis, and reconstruction, as studied O
: by the Marseilles group (7], the families of wavelets 4,,, considered are highly ’ ik
, redundant, i.e,, they are not independent, in the sense that any finite number of Rl g
them lies in the closed linear span generated by the others. Consequently, the [
! range of the discrete wavelet transform 7' is a proper subspace of {*(Z2). The L
1 dilation rate. ‘ higher the redundancy of the frame, the smaller this subspace, which is a c
ch spread out, Ik desirable feature for some purposes (e.g. the reduction of calculational noise). 1f Rl
. For large but 1 ag, by are chosen very close to 1,0, respectively, then the resulting frame is very :
- .
1 h
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912 ' I. DAUBECHIES

redundant and very close to the continuous family of wavelets (1.1); this type of
frame was used in the “edge detection” study mentioned earlier; see {9].

For other applications, as e.g. in S. Mallat's vision decomposition algorithm
in [8], it is preferable to work with the other extremum, and to reduce re-
dundancy as much as possible. In this case, one can turn to choices of 4 and
aq, by (typically a, = 2) for which the k,,, constitute an orthonormal basis. This
is the case to which we shall be restricting ourselves in the remainder of (this
paper. For a more detailed study-of general (non-orthonormal) wavelet frames,
and a discussion of the similarities and the differences between wavelet transform
and windowed Fourier transform, the reader is referred to [14],[15].

One example of an orthonormal basis of wavelets* for L*(R) is the well-known
Haar basis, For the Haar basis one chooses

| 1, 0sx<i,
(19 . A(x)={-1, btzgx<],
0, otherwise,

and a, = 2, b, = 1. The resulting 4,,,,

(1.10) Bop(x) = 2" 227 ™x — n), mneZ,

constitute an orthonormal basis for L*(R). The h,,, also constitute an uncondi-
tional basis for all LP(R), 1 <p < 0.

Recently, some much more surprising examples of orthonormal wavelet bases
have surfaced. The first one was constructed by Y. Meyer [4] in the summer of
1985. He constructed a C*-function h of rapid decay (in fact h, in his example,
is a compactly supported C*-function) such that the k,,,, as defined by (1.10)
(i.e., with @, = 2, by = 1), constitute an orthonormal basis for L*([R). As in the
case of the Haar basis, Y. Meyer's basis is also an unconditional basis for all the
L7 spaces, 1 < p < oo. Much more is true, however. The Meyer basis turns out
to be an unconditional basis for all the Sobolev spaces, for the Hardy-Littlewood
space H,, for the Besov spaces, etc.; see [4). The Meyer basis is therefore a much
more powerful too! than the Haar basis.

Some time later, in 1986, another interesting orthonormal basis of wavelets
was constructed, independently, by P, G. Lemarié [17] and G. Battle [18]. In their
construction the function k is only C*, but it has exponential decay (as compared

'Following Grossmann and Morlet [1) we call “wavelet”” any L%-function h satisfying, the admissibil-
ity condition (1,3). This is less restriclive than Y, Meyer [16], who, in keeping with the tradition in
harmonic analysis, also imposes some regularity, In the terminology of [16}, the Haar basis function
(1.9) is not & waveler.
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ORTHONORMAL BASES OF WAVELETS 913

with decay faster than any power in Y. Meyer's case). It also has k¥ vanishing
moments, i.e.,

fdxx"h(x)=0, J=01, k-1,

which makes these ,,, an unconditional basis for all the Sobolev spaces #, with
s<k-—-1.

In all these constructions the choices a, = 2, b, = 1 were made. The choice
for b, is of course arbitrary, a simple dilation of the function A allows one to fix
any non-zero choice for by; it is convenient to choose b, = 1. The choice of a, is
far less arbitrary., We shall restrict ourselves here to a, = 2, although it is
possible to consider other, though by no means arbitrary, choices for a, (see
[4], [21]).

In the fall of 1986, S. Mallat and Y. Meyer [16],[19] realized that these
different wavelet basis constructions can all be realized by a “multiresolution
analysis”. This is a framework in which functions f € L>(R?) can be considered
as a limit of successive approximations, f = lim,, , _.P,f, where the different
P f, me I, correspond to smoothed versions of f, with a “smoothing out
action radius” of the order of 2. The wavelet coefficients {h,,,, f), with fixed m,
then correspond to the difference between the two successive approximations
P,_.f and P, f. A more detailed description of multiresolution analysis will be
given in Section 2,

The concept of multiresolution analysis plays a central role in S. Mallat's
algorithm for the decomposition and reconstruction of images in [8]. In fact,
ideas related to multiresolution analysis (a hierarchy of averages, and the study of
their differences) were already present in an older algorithm for image analysis
and reconstruction, namely the Laplacian pyramid scheme of P. Burt and E.
Adelson [20], The Laplacian pyramid ideas triggered S. Mallat to view the
orthonormal bases of wavelets as a vehicle for multiresolution analysis. Together,
S. Mallat and Y. Meyer then carried out a more detailed mathematical analysis,
showing how all the “accidental” previous constructions found their natural
framework in multiresolution analysis; see [16],[19]. By the use of multiresolution
analysis and orthonormal wavelet bases, S, Mallat constructed an algorithm that

_ is both more economical and more powerful in its orientation seleetivity. On the

other hand, by a curious feedback, the combination of Mallat’s ideas and of the
restrictions on “filters” imposed in [20] led to my construction of orthonormal
wavelet bases of compact support, which is the main 1opic of this paper.

Because of the important role, in the present construction, of the intétplay of
all these different concepts, and also to give a wider publicity to them, an
extensive review will be given in Section 2 of multiresolution analysis (subsection
2A), of the Laplacian pyramid scheme (subsection 2B) and of Mallat's algorithm
{subsection 2C).

Seetions 3 and 4 comtain the new results of this paper. A closer look at
Mallat’s work shows that he uses the intermediary of orthonormal wavelet bases

‘Exhibit N page 3¢
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914 1. DAUBECHIES

for function spaces to build an essentially discrete algorithm, It scemed therefore
natural to wonder whether similar, and as powerful, discrete algorithms could be
built directly, without using function spaces as an intermediate step, It turns out
that it is very easy to write a set of necessary and sufficient conditions, on the
“discrete side”, ensuring that an algorithm similar to Mallat's works. This is done
in subsection 3A. In order to have a useful algorithm, however, an exira
regularity condition has to be imposed (this condition is already satisfied in e.g.
Burt and Adelsen’s Laplacian pyramid scheme). This is done in subsection 3B.
The combination of the discrete conditions and the regularity condition on the
discrete algorithm turns out, however, to be strong enough to impose an underly-
ing multiresolution analysis of functions, with associated orthonormal wavelet
basis. Provided the regularity condition is satisfied, there is therefore a one-to-one
correspondence between orthonormal wavelet bases and discrete multiresolution
decompositions, in the sense of Mallat’s algorithm. This equivalence is proved in
subsection 3C. Another proof of the same result, using different techniques, can
be found in [19]; the proof presented here is more “graphical”, and closer to the
“filter” point of view of {201.

In Section 4, we exploit the equivalence between discrete and function
schemes to build orthonormal bases of wavelets with compact support. Using this
equivalence, it turns out that it is sufficient to build a discrete scheme using filters
with a finite number of taps. This can be done explicitly, as shown in subsection
4B. As a result one can construct, for any £ &€ N, a C*-function ¢ with compact
support, such that the corresponding .,

Yma(%) = 27N (27"x — n),

constitute an orthonormal basis. The size of the support increases linearly with
the regularity. Moreover, ¥ has K consecutive moments cqual to zero,

fdxxf¢(x)=0, j=01,---,K~1,

where K also increases linearly with k. All these properties of the construction
are proved in subsection 4C. Finally, the “‘graphical” approach which, as ex-
plained in subsection 3B, was the guideline to the proof of the link between the
“regularity” condition of Burt and Adelson (see subsection 2B) and multiresolu-
tion analysis, can also be used to plot the functions Y, We conclude this paper
with the plots of a few of the compactly supported wavelets constructed here.

2. Multiresolution Analysis and Image Decomposition and Reconstruction

2.A. A review of muliiresolution analysis and orthonormal wavelet bases. In
this subsection we review the definition of multiresolution analysis, and show
how orthonormal bases of wavelets can be constructed starting from a multireso-
lution analysis. We illustrate this construction with examples. No proofs will be
given; for proofs, more details and generalizations we refer to [16],[19] or [21).
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ORTHONORMAL BASES OF WAVELETS 915

The idea of a multiresolution analysis is to write L>-functions f as a limit of
successive approximations, each of which is a smoothed version of f, with more
and more concentrated smoothing functions. The successive approximations thus
use a different resolution, whence the name multiresolution analysis, The succes-
sive approximation schemes are also required to have some translational invarni-
ance. More precisely, a multiresolution analysis consists of

(i) a family of embedded closed subspaces V,, ¢ L*(R), m € Z,

(2.1) o cViccV_ cV_,c .

such that (ii)

(22) nz V= {0}, EJz V= LA(R),
and (iil) -
(2.3) feVoef2)eV, i

moreover, there is a ¢ € V; such that, for all m € Z, the ¢, constitute an
unconditional basis for V,,, that is, (iv)

(2.4a) V,, = linear span (¢,,,, n € Z}

and there exist 0 < 4 < B < co such that, for all (¢,), .y € /%Z),

(2.4b) AV ) =

2
ch¢mn = BZ|C,‘|2.
n n

Here ¢,,,(x) = 27™/2p(2""x — n), Let P, denote the orthogonal projection
onto V. It is then clear from (2.1), (2.2) thatlim,, , _ P,.f =/, forall f € LYR).
The condition (2.3) ensures that the V,, correspond to different scales, while the
translational invanance

fev,-f(+~2™)e V¥, forall neZ
is a consequence of (2.4),

ExAaMPLE 2.1. A typical though crude example is the followmg Take the V,,
to be spaces of piecewise constant functions,

= {f € LA(R); fconstanton {27n,2"(n + 1) [forall n € Z}.

The conditions (2.1)-(2.3) are clearly satisfied. The projections P, are defined by

—m {2031
mej(Z”n,Z'(n+l){=2 f " df( )
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916 1. DAUBECHIES

The successive P, f (as m decreases) do thercfore correspond to approximations
of f on a finer and finer scale, Finally, we can choose for ¢ the characteristic

function of the interval [0, 1],

_[L O0szx<l,
#(x) {0, otherwise,

Clearly, ¢ € V, and V,, = span(¢,,,} -

In what follows, we shall revisit this example to iltustrate the construction of
an orthonormal wavclet basis from multiresolution analysis.

Note that, in view of (2.3), the condition (2.4a) may be replaced by the weaker
condition ¥, = span{¢,}. Moreover, one may, without loss of generality,
assume that the ¢, are orthonormal (which automatically implies that the ¢,
are orthonormal for every fixed m). If the ¢, are not orthonormal to start with,
then one defines ¢ by

AR L ~ > 2 -
(2.5) ()" (&) = C¢(§)(k§zl¢(§ + 2km)| )

(where we implicitly assume that & has sufficient decay to make the infinite sum
converge). One finds that

span{¢o,} = span{do,} ,
while, moreover, the ¢, are orthonormal. See [16] for a detailed proof.

ExaMPLE 2.1 (continued). In this case the ¢, are orthonormal from the
start, If we define :

(2.6) cmn(f) = <¢mn' j> = 2*’"/2.[

then

2(n+1)

df()

me= zcmn(f)¢mn’

Let us look at the difference between P, f and the next coarser approximation
P .1f. One easily checks that

1
¢m+1n = ﬁ(‘bﬂﬂﬁ + ¢m2n+l);

cm-Hn(f) = 71_2—"07"'2"(-{) + cm2n+1(f)] .
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ORTHONORMAL BASES OF WAVELETS 917

This again exhibits P, ,,f as an averaged version of P, f, i.e, as a larger scale
approximation. The difference between these two successive approximations: is
given by

me— Pm+1f= }fz[cmbl(f) - Cm2n+1(f)][¢m2n '"' ¢m2n+1]'

The remarkable fact about this expression is that it can be rewritten under a form
very similar 1o (2.6), Define )

1, 0sgx<i,
(2.7) $(x) =¢(2x) - ¢2x 1) ={ -1, Lgx<1,
0, otherwise.

Then

¥ma(X) =27"/3(27"x ~ n)
(2.8)

1
—/2:'(¢m—12n - ¢m—l2n+1)'

and

Quarf = Ppf— Frif
(2-9) = Zd.,,“..(f)'l’mm’
where

dm+ln(f) = <‘Pm+1n’ f) = %[CMZW(.I') - cm2n+l(f)]‘

What is so remarkable about this? Note first, as can easily be checked from (2.7),
that for fixed m the ¢, are orthonormal. The decomposition (2.9) is thus the
expansion, with respect to an orthonormal basis, of @, _,f, the orthogonai
projection of f onto W,,,, = P, L? - P, . ,L? ie., onto the orthogonal comple-

_ment of V, ., inV,. The surprising fact is that, as is clear from (2.9), the W, are

also (as are the V,)) generated by the tramslates and dilates ¢, of a single
function . Once this is realized, building a wavelet basis becomes trivial. Clearly
(2.1)-(2.2), together with W, L ¥V, . V,, , =V, & W, imply that the W, are all
mutually orthogonal, and that their direct sum is L*(R). Since, for each m, the
set {Y¥,..c n € Z} constitutes an orthonormal basis for W, it follows that the
whole collection {V,,,; m, n € Z} is an orthonormal wavelet basis for LX(R).

In the example above the function ¢ .is nothing but the Haar function (see
(1.9)), and it is therefore no surprise that the y_, constitute an orthonormal

Exhibit M Page C;Z ({Q

SNSRI S
s

E U ——




918 1. DAUBECHIES ;

basis. The example does however clearly show how this basis can be constructed
from a multiresolution analysis, Let us sketch now how the general case works;

For a multiresolution analysis, ie., a family of spaces ¥, and a function ¢
satisfying -(2.1)-(2.4), one defines (as in Example 2.1) W, as the orthogonal
“complement, in V,,_;, of V,,

(2.10) Vo i=Ve@ W, W, LV,

Equivalently,

(2.11) W, = 0, [*(R) with Q,=F,_,~ P,

1t follows immediately that all the W,, are scaled versions of Wj,

(212) - fe W, = f2")eW,

and that the W,, are orthogonal spaces which sum to L%(R),

(2.13) LXR)= @ W,.

meg

Because of the properties (2.1)—(2.4) of the V,, it turns out (see [16], [19)) that in
W, also (as in V) there exists a vector ¢ such that its integer translates span W,

ie.,

(214) SPan{‘pOn} = WIO’

where, as before, ¥, ,(x)=2""%(2"™x — n) for m,n € Z. It follows im-
mediately from (2.12) that then

span{#:,j =W,

forall m € Z.
¢ Intuitively one may understand this similarity between W, and ¥, by the fact
that V/_, is " twice as large” as V,, since ¥} is generated by the integer translates
of a single function ¢, while V_, is generated by the integer translates of two
functions, namely ¢_,, and ¢ _;;. It therefore seems natural that the orthogonal
complement W, of ¥, in V_, is also generated by the integer transiates of a
single function. This hand-waving argument can easily be made rigorous by using
group representation arguments. Mere proof of existence of a function { satisfy-
ing (2.14) would however not be enough for practical purposes. A more detailed
analysis leads to the following algorithm for the construction of ¥ (see [16],[19)).
We start from a function ¢ such that the ¢, are an orthonormal basis for ¥, (if
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ORTHONORMAL BASES OF WAVELETS 919

necessary, we apply (2.5)). Since ¢ € ¥, C ¥_, = span{¢(2* - n)}, there

, exist ¢, such that

(2.15) ¢(x) = Lep(2x —n).
Define then
(2.16) Y(x) = 3 (=1)"c,.19(2x + n).

The corresponding y,, will constitute an orthonormal basis of W, see [16},[19].
Consequently the ,,,, for fixed m, will constitute an orthonormal basis of W,,.
It follows then from (2.12) that the {y,,,, m, n € Z) constitute an orthonormal
basis of wavelets for L%(R). This completes the explicit construction, in the
general case, of an orthonormal wavelet basis from a multiresolution analysis.

ExampLE 2.1 (final visit). As we already noted above, the ¢,, are orthonor-
mal in this example, and

¢(x) = ¢(2x) + ¢(2x ~ 1).
Applying the recipe (2.15)-(2.16) then leads to

¥(x) = ¢(2x) — ¢(2x - 1),
which corresponds to (2.7).

Remarks, 1, One can show (see [16]) that the functions ¢, ¢ having all the
above properties necessarily satisfy

(2.17) fdx Y(x) =0

and
fdx¢(x) #0,

where we implicitly assume that ¢, | are sufficiently well-behaved for these
integrals to make sense (in all examples of practieal interest, ¢, y € L'). In"fact,
one does not even need to assume that the ¢, or ¥, are orthonormal to derive
(2.17)—(2.18). In [15] it is shown that (2,17) bhas to be satisfied even if the V.,
constitute only a frame (see the introduction). Note also that the transition (2.5)
from ¢ to ¢, orthonormalizing the ¢,,, preserves fdx $(x) + 0.

2. If one restricts oneself 1o the case where ¢ is a real function (as in all the
examples above), then ¢ is determined uniquely, up to a sign, by the requirement

Exhibit N Pageﬁg}
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that the ¢, be orthonormat. One then also has [ dx ¢(x) = +1; we shall fix the
sign of ¢ so that

(2.18) [axa(x) =1.

In pract:ce, one can often start the whole construction by choosing an appro-
priate ¢, i.e., a function ¢ satisfying (2.15) for some c,,. Provided ¢ is * reason-
able” (it sufﬁocs, eg, that inf . |$(£)|>0 and that Liez|b(€+ 2k-rr)|
is bounded), the closed linear spans V,, of the ¢,,, (m fixed) then automatically
satisfy (2.1)-(2.4) and there exists an assoclated orthonormal basis of wavelets,
Two typical examples are

EXAMPLE 2.2,
X, 0gxxgl,
‘p(x)"—— 2-x, 1§X§21
0, otherwise.

This is a linear spline function; the spaces V,, consist of continuous, piecewise
linear functions, The ¢, are given by

o(x) = 1o(2x) + ¢(2x — 1) + 3o(2x - 2).

ExaMpPLE 2.3,
x2, T0gxxg],
o(x) = —-2x¥4+6x—-3, 1gx<2,
, (3 -x), 25sx53,
0, otherwise,

This is a quadratic spline function; the spaces V,, consist of C!, piecewise
quadratic functions. The ¢, are given by

o(x) =30(2x) + 39 (2x — 1) + 36(2x — 2) + 4¢(2x ~3).

In these last two examples the corresponding ¢ will be, respectively, continu-
ous and piecewise linear, or C! and piecewise quadratic. Starting from spline
functions one can, in fact, construct orthonormal bases of wavelets with an
arbitrarily high number of continuous derivatives. These bases are the Battle-
Lemarié bases (see [17], (18], [16]). In these constructions the initial function ¢ is
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compactly supported, but the ¢, are not orthogonal, as illustrated by the two
examples above, One therefore has to apply (2.5) before using (2.15), (2.16); the
transition ¢ — ¢ in (2.5) leads to a non-compactly supported $, resulting in a

- non-compactly supported . Typically the Batile-Lemarié wavelets have ex-

ponential decay.

We shall see below that for the construction of orthonormal bases of com-
pactly supported wavelets it is more natural to start from the coefficients ¢, than
from the function ¢.

Up to now, we have restricted ourselves to one dimension. It is very easy,
however, to extend the multiresolution analysis to more dimensions, As poixted
out by R. Coifman and Y. Meyer [22], this extension was already inherent in the
first construction by P. G. Lemarié and Y. Meyer [23] of an n-dimensional
wavelet basis. It becomes much more transparent, however, from the multiresolu-
tion analysis point of view. Let us illustrate this for e.g. two dimensions, The case
of n dimensions, » arbitrary, is completely similar. Assume that we dispose of a
one-dimensional multiresolution analysis, i.e,, we have at hand a ladder of spaces
V., and functions ¢, ¥ satisfying (2.1)—(2.4) and (2.14), where the ¢, and the
Yo, are assumed to be orthonormal, Define

V.=V, eV,

Clearly, the V,, define a ladder of subspaces of L%(R?), satisfying (2.1) and the
equivalent, for R?, of (2.2). Moreover, (2.3) holds, and if we define

®(xy, x3) = ¢(x1)9(x,),

then this two-dimensional function satisfics the analogue of (2.4),

V,, = linear span {®,,,; n € Z°},
where @_ _ is defined by
D, (%), x;) = 2770 (27"x; — 1y, 27 ™x, — n4)
= Grusy (31) B, (302).

Note that we use the same dilation for both arguments. Because of the definition

. (2.10) of W,,, we find immediately that

a=V,e[(V,eW,)e (W, eV,)e (W, e W)

This implies that an orthonormal basis for the orthogonal complement W, of V,,
in V, _, is given by the functions 4,,, ¥y, gbm,@m:, VoamWmnp With ny, 1, € Z,
or equivalently, by the two-dimensional wavelets ¥/

mn?

(2.19) V(X1 X2} = 27" (27 — 0y, 27", — ny),

o
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where I = 1,2,3,n € Z2, and

(2.20) ¥(x;, X5) = ¢(x)¥(x2),
(2.21) Y2(xp, x2) =9 (%) $(x2),
(2.22) ¥3(xy, %5) = §(x,) ¥ (%),

It follows that the ¥/ . /=1,2,3, m € Z, n € Z? constitute an orthonormal
basis of wavelets for LR ?2).

The above construction shows how any multiresolution analysis + associated
wavelet basis in one dimension can be extended to d dimensions. The decomposi-
tion + reconstruction algorithm constructed by S. Mallat for visual data in [8)
uses such a two-dimensional basis.

2B. The Laplacian pyramid scheme of P. Burt and E. Adelson. In this
subsection we review some aspects, relevant for the present paper, of Burt and
Adelson’s algorithm for the decomposition and reconstruction of images. For a
more detailed presentation, and for applications, we refer the reader to [20],

One of the goals of a decomposition scheme for images is to remove the very
high correlations existing between neighboring pixels, in order to achieve data
compression, Several different schemes have been proposed to achieve this.
Typically they use a prediction method, in which the value at a pixel is predicted
(by a weighted average) from either previously encoded or neighboring pixels,
and only the difference between the actual pixel value and the predicted value is
encoded, Using the neighboring pixels for prediction is more natural and should
lead to more accurate prediction (and therefore to greater data compression), but
is much harder to implement than the easy causal prediction scheme, using only
previously encoded pixels. The scheme proposed by Burt and Adelson combines
the ease of computation of a causal scheme with the advantages and elegance of a
neighborhood-based (noncausal) scheme. The result is——we quote directly {rom
[20a)—

“...a technique for image encoding in which local
operators of many scales but identical shape serve as
the basis functions.”

The analogy with multiresolution analysis is evident from this quote.

Images are two-dimensional, and the Laplacian pyramid scheme is a two-
dimensional algorithm. For simplicity, the review below will be restricted to one
dimension. This does not really matter, except in details (which will be pointed
out). Moreover, the two-dimensional schemes used in [20] are in fact obtained
(for simplicity reasons) as a tensor product of two one-dimensional schemes,

Our presentation will be already adapted to later use in this paper, and
slightly different in notation from [20]. Except for this difference, what follows is
the construction in [20]. '
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The original (one-dimensional) data can be represented as a sequence of real
numbers, (¢,), <z, representing the pixel values, For later convenience, we givé
this sequence the index 0,

0

Cp =0,

The main idea is to decompose ¢® into different sequences corresponding to
distinct ranges of spatial frequency. The highest level, with only the high
frequency content of ¢, is obtained by computing the difference between ¢® and
a blurred version &%, The remainder, i.e., the blurred version, contains only lower
spatial frequencies, and can therefore be sampled more sparsely than ¢? itself,
without loss of information. The Laplacian pyramid algorithm provides an
elegant and easily implementable scheme for doing all this. The whole process is
repeated several times in order to achieve the desired decomposition.

One starts by transforming the sequence ¢® into a sequence ¢' by means of an
operator which both averages and decimates,

(2.23) o= Yow(n —2k)cd.
n
The weighing coefficients w(n) are always real; in [20] they are chosen to be
symmetric and normalized, i.e., .
w(n) = w(~n),
(2:24) Yw(n)=1.

n

They are also required to satisfy an “equal contribution constraint”, stipulating
that the sum of all the contributions from a given node n is independent of n,
i.e., all the nodes contribute the same total amount,

Y w(n = 2k) is independent of n.
x

This can be rewritten as

(2.25) Yw2n) = Yw(2n +1).

We shall come back below to the mathematical significance of this requirement.

Examples given in [20] are

w(n) =0 if |n|>2,
w(2) =w(-2) =} - ia,
w(l) = w(-1) = 1,
w(0) = a;

(2.26)

the different values considered for a are a = .6, .5, 4 and .3,
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The sequence ¢' plays a double role: it will serve as the input sequence
(instead of ¢?) for the next level of the pyramid, and it is also an intermediate
step for the computation of the blurred version &° to be subtracted from c°,
(Note that we cannot have ¢' itself as this blurred version: ¢! and ¢®*“live” on
different scales—see Figure 1). More precisely,

(2.27) &= Y wln—2k)c,
k

or
& = Lw(n,1)c},
/
where
(2.28) win, 1) = Y win—2k)w{l— 2k).
k
Notice that this does not quite define a convolution; from (2.28) one sees that

win, 1) =w(n~—2,1~-2), but w(n, 1)+ w(n~1,1—-1) in general. The se-
quence &7 is clearly a blurred version of ¢% one then defines the difference 4° by

(2.29) dl=¢2 - &,

Knowing this difference sequence (the high spatial frequency content of ¢%) and
¢! (a low-pass filtered version of ¢, sampled at a sparser rate) is clearly sufficient
to reconstruct the data ¢°, since

cd=d?+ Y w(n—2k)ch.
P

The whole process is then iterated. From ¢! one computes ¢2 and ¢, d* is the
difference ¢* — &, ete. A graphical representation of the transitions c? — ¢f ~
¢*—> . and ¢! = & is given in Figures 1a and 1b.

A more condensed notation for all the above is the following. Define the
operator F: [2(Z) - I*(Z) (F for “filter”) by

(2.30) (Fa), = Yw(n —~ 2k)a,.

Then (2.23), (2.27) and (2.29) become b

(2.31) ¢t = Fcb,
(2.32) &= Frcl = FrFO,
(2.33) d°=c" - =1 - FPF)°
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Figure 1. Graphical representation of the Laplacian pyramid scheme (redrawn from [20]),

a, The iransition ¢® — & — ¢* For simplicity’s sake we have restricted ourselves to the case
w(n) = O if |n] > 2, and only the computation of c§ and c} are depicted.

b. The transition ¢! — &

Here we use the standard notation F* for the adjoint of the (bounded) operator
F. Note that we implieitly assume that ¢® € [%(Z), or, in signal analysis terms,
that the data sequence ¢° has finite energy. In practice, the sequence c® is finite,
and this constraint does not matter,

The total decomposition consists thus in L consecutive steps (in practice
L =5 or 6), with

¢l = Fe'1, I=1,--,L,
(2.34)
At =t Prel= (1 = FrR)
From the sequences d9,- -+, d%71, ¢* one then reconstructs ¢° recursively by
(2.35) ol=t = @l=1 4 Frel,
At every step, in the decomposition (2.34) as well as in the reconstruction

(2.35) the same filter coefficients are used, and all the operations involved are
direct and linear (no solving of complicated systems of equations!). This makes
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this algorithm very easy to implement. The decimation aspect in the operator F,
which reduces the number of entries in the ¢/ by a factor 2 at every step, makes
the whole decomposition algorithm as fast as a fast Fourier transform (see (20)).

Let N be the total number of non-zero entries in ¢°. Then the total number of
entries in d% -+, d¥7%, ¢t (except for edge effects) is

N+ N/2+ .+ +N/2F" L N2b = 2N(1 = 27570,

After the Laplacian pyramid decomposition there is thus a larger number of
entries (almost twice as many) than in the original data sequence. However, it
turns out that, because of the removal of correlations, the decomposed data can
be greatly compressed (see [20a]). The net effect is still an appreciable data
compression, We shall not go into this here, however. Note that the increase of
the number of entries is less pronounced in two dimensions (a factor 4 instead of
2). !

The similarity between the Laplacian pyramid algorithm and a multiresolu~
tion analysis is now clear, In both approaches, the data (a function in multireso-
lution analysis, a sequence in the Laplacian pyramid) are decomposed into a
“pyramid” of approximations, corresponding to less and less detail. Moreover,
the differences between each two successive approximations are computed (corre-
sponding to the wavelet decomposition in the multiresolution analysis). However,
it is also clear that the schemes are quite different in the details of the computa-
tion of the decomposition. The algorithm developed by S. Mallat, described in
the next subsection, retains the atiractive features of the Laplacian pyramid
scheme, but is much closer to the analysis described in subsection 2A.

The filter coefficients w(#n), or equivalently the filter operator F, are associ-
ated in [20] with “equivalent weighting functions”. Only the limit of these
functions will be relevant for us; we conclude this subsection by its definition and
a few of its properties. One may wonder which kind of input sequence c°
corresponds to the “simplest” decomposition sequence, ie., to d% = ... = 4L~}
= 0, and (¢%), = §,;- The answer is obviously (use the reconstruction algorithm)

(2.36) = ()l

where e is the sequence e, = §,q. If, €.g, L = 1, then the entries of ¢° are exactly
the w(n). Since any sequence can be considered as a sum of translated versions
of e, the sequence ¢® = (F*)Le gives the basic building block for the subspace
(F¥*(Z), i.e., for the L-th level component sequences, It is therefore important
that these sequences ¢ do not look messy, which they well might, for L large
enough (for a “messy” example, see Figure 4 in subsection 3B). One can make a
graphical representation of the ¢® defined by (2.36), for successive L. We
represent the sequence e by a simple histogram, with value 1 for — 1< x < 3,0
otherwise (see Figure 2). The sequence F*e “lives” on a scale twice as small, and
will therefore be represented by a histogram with step widths 4 (as opposed to 1
for e); its different amplitudes are given by 2( F*e), = 2w(n). Similarly, (F*)'e is
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represented by a histogram with step width 27 the successive amplitudes are
given by 2/((F*)e),. We have introduced an extra factor 2 at every step in our
representation for normalization purposes: the area under each histogram is
always 1. This normalization will be convenient in Section 3, The example plotted
in Figure 2 corresponds to the w(n) given by (2.26), with @ = .375. Plots for
a =.6,.5, 4 and .3, with slightly diflerent conventions, can be found in {20]; our
choice a = .375 shall become clear below, One finds a very rapid convergence of
these histograms to a rather nice function. This surprising feature is in fact due,
in large part, to the special form (2.26) of the coefficients w(n), and in particular,
to condition (2.25). The following argument shows why, The “representation” of
e in Figure 2 is the characteristic function of the interval [— %, 3[, which we

~1/2

fi
/\ |

Figure 2, ‘The successive sequences e, F*e, (F*)%, (F*)% represented by histograms, and the limit
function A, (sce text). We have taken the w(m) as defined by (2.26), with a = 375,
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denote by h,. The representations hy, h, of, respectively, F*e,(F*)% are given
by

(2.37) hy(x) = 22w(n)x(_,/4’,/4[(x - J2"’)
and
(2-33) hz(x) = 4):“’(")[):W(m)xi-a/a.us[(x -~ %" - ﬁm)]

To make the transition from h;_, to h; one
(i) divides h;_,, a step function with step width 2~U~Y, into its compo-
nents

(2.39) ’ hiy= Zk‘:aj—l,kxn""“’)(k‘1/2),2"7“)(k+l/2)(

{(see Figure 3c), ’
(ii) replaces every component by a suitably scaled and recentered version of

hy,
X ige-1m27 errya > M(277% < k)

= 22“’("))(1*1/4,1/4{(2"1" —k — in),
n

(see Figure 3d),
(i) sums it all up,

h!(") = 2;"1-1. k Zw(n)X[Z“f(2k+n—1/2),2'1(2k+n+1/2)(
n

(see Figure 3e),
These different steps are iltustrated by Figure 3. The construction amounts to

defining

(2.40) hy=Th;_, or h;=TT_, -+ Tih,,
where N
2.41)
(ﬁf)(x) = 2§ gw(”)(xp."“'(k-1/2),2""*'(fc+1/2)[f)(2x - 2—”1(" + ”))

The iterative algorithm (2.40), (2.41) is extremely easy to implement numerically,

RN
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b) hy(x) = 2Lw(Rn)X(n 214, n /241741 K XD T
¢) hy is deecomposed into its “components™; cach component is a multiple of the characteristic li
function of an interval of length 4. (The “components” of h; would have width 27), i
d) Each “component" is replaced by a proportional version of hy, centered around the same .
point as the component, and scaled down by a factor i, (This scaling factor would be 277 for ;). !
¢) The functions in d) are added to constitute ky (or by, if one starts from h; in o) i
i
\'«.
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The k, can, however, also be written differently. Let us go back to expressions Since (se
(2.36), (2.37) for hy, h,. These can be rewritten as

(2.42) h(x) = 2L w(n)ho(2x = n),

|

_ i
h;(x) = 42”’(”)2“’("‘)7([—1/4,1/4{(2-‘7 - n- %m) jl
n m i

S SR

(2.43)
=2)> win 2x—n). i i
); (n)hy( ) P whlch ord
' We ha
2 shows 1]
jo oo, t
subsecIJo;
the functi
the convy
moment.
The L
(and the’
(2.40) hi
Of h ‘1+l(
24N
ue of h
27NN +
construcd
wants tQ
section "4
hy(x) =}
each oth
The usef
formula
hoo , et
Intrc

This suggests
(2.44) hjz Thj_1= s = T"ho,
where

(2.45) (T7)(x) = 2L w(n)f(2x = n).

The following argument shows that (2.44) is indeed true:
(T71)(x)
=43 w(m)w(n)
m,n

* g(X[T'”l(k-l/2),2"'“(k+l/2)|f)(4x —2m~2""(n+ k)).

(ﬁ+le)(x)
=4} W(m)w(")ler'(k 12,2 ’(k+l/1)[(2x —27(n + k))

m,n

« f(dx —m — 27" (n + k).

' Substituting k = k’ + 2/~Vm into this last sum, we find
(j:HITY)(x)

=4 Z W('")W(”)Z[X[z k' ~1/2), 2“(k'+l/2)l(2x -2 (” + k ) m)

m,n

where 3'

f(4x — 2m — 27" (n + k)]

= (7T f)(x).

2%
Exhibit M Page 52




A

xpressions

~.Jﬁ$—¢!‘s-\_ P

POR'S

K.

F k),

-

+ k))

& x

PS5

—

k') —m)

(n + k)]

’<
?" N '%‘7; ? » - .
e A e et Loy RNPEURCIET o v

ORTHONORMAL BASES OF WAVELETS 931

Since (see (2.42), (2.43)) hy = Thy, hy = T?hy, it follows that

k= 'ﬁhz"ﬁ“'fa”ﬁ

\.‘hﬂl

7'} oo TTTihy = q'j - T,TT,Tik,

¢ = Tjj__ Tlho Th, j-1

which proves (2.44).

We have thus two different ways, (2.44) and (2.40), to compute the k. Figure
2 shows that, at least for some choices of the w(n), the functions 4, converge, for
J = o0, to a “nice” function k. The explicit proofs which will be given in
subsection 3B show that, at least for the examples (2.26) with ,125 < a < .625,
the function k  is continuous (see (2.46) below), has compact support, and that
the convergence h; - h, is uniform, Let us just accepl these facts for the
moment.

The two formulas (2.40) and (2.44) are both extremely useful in the study
(and the proof) of this convergence. The construction of h = him Jlty via
(2.40) has the following mice localization feature. To compute the value
of hiﬂ(x) the recursion h;,, = Th uses only values h;(y) for |y — x| 5

277"YN + 1), where we assume w(n) =0 for n> 2N. Conscquently, the val-
ue of h,(x) can be computed using only the values of h;(y) for |y — x| 5

2-/(N + 1). For increasing J, this lends a “zoom-in” quahty to the graphical
construction of which Figure 2 is an example. This is extremely useful when one
wants to focus on details of the behavior of h,, (see, e.g. Figure 6 in sub-
section 4B). This localization feature is not present in (2.44). The formula
hi(x) = (Th,_,)(x) uses values of &,_, at points which stay at fixed distance of
each other (Le., 2x, 2(x & 4), Ax -_t n,-+4), mdependently of how large j is.
The usefulness of (2.44) is therefore not “graphical”, Tt is, however, this less local
formula which will be most useful in proving convergence of the h ), continuity of
h, etc. :

Introducing Fourier transforms, (2.45) can be rewritten as

(T7)" (§) = w(3£) f(34),
where

W(g) = Tw(n)e. ~

Consequently, from (2.45), one obtains

)= @ [T w2250
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932 1. DAUBECHIES

For I — oo, this converges, pointwise, 10
~1/2 had :
hu6) = @)™ T W),

provided this infinite product makes sense. (We shall come back 1o this, and
other convergence problems, in subsection 3B. It turns out that, for w(n) as

chosen in (2.26), the convergence h, —» h, holds in all L?.spaces, 1 £ p < o0.) ~

Because of the constraint (2.25), one finds that W(¢) is divisible by (1 + e'¢),
W) = (1 + e*)0(¢)
= /%08 3£0(£).
Combining this with
jlicos(rf&) -2t

we find
; = -172, 40 2803E X 0
ol = 2m) e B [T o2,

The constraint (2.25) leads thus to a factor £ in A, i.e., to some regularity in
h_,! Without this constraint, as can be easily checked, the graphical procedure in
Figure 2 can lead to rather horrible (fractal) functions k, (see e.g. Figure 4). In
fact, for the examples (2.26) one even finds two factors cosié,

W(¢) = (cosh€)’[(8a - 3) + 4(1 - 2a)(cosi£)’].

Using an estimation technique due to P. Tchamitchian (see Lemma 3.2 below)
one finds that this leads to

(2.46) ]f;m(g)! sc(l+ ]gl)"“‘%‘m“(l»l3°—3l>].
For 125 < a < 625, which includes all the choices in [20}, this implies that A, is

continuous, For ¢ = 4= ,375 (the example chosen in Figure 2), the decay of 5“,
is even stronger, -

W(£) = (cost)’,

RONCOREE )
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In this case, h, is thus a fourth-order convolution of xo 1 With itself, which
results in a C3~* function.

The above remarks show that constraints on the w(n), corresponding to
divisibility of W(£) by (1 + €€, result in regularity of k. Constructions similar
1o (2.44) will be used in Section 3, where the above “trick” for imposing
regularity on k, will turn up again.

This concludes our review of the Laplacian pyramid scheme. The above is by
no means a complete review; only those aspects relevant to the present paper
have been highlighted. For more details, and especially for applications (data
compression, image splining) the reader should consult [20a] and {20b].

Remark. During the last revision of this paper before publication, Y. Mcyer
drew my attention to related work by G. Deslauriers and S, Dubuc [29], They are
interested in functions defined recursively by the following interpolation scheme.
At the /-th step, the values of f at the points 27/(2k + 1), k € Z, are computed
from the f(k2~'*1) via the formula

f(@k+1)27) = ¥ a,f((k~m)2-"*1),

mel

In many applications considered by Deslauriers and Dubuc, the interpolation
procedure is symmetric, i.e, a_,, = a,,,, for all m € Z, For suitable choices of
the a,, the functions f constructed via this dyadic interpolation scheme, starting
from the f(k), k € Z, are continuous, and are therefore completely characterized
by their values at the dyadic rational points x = k2™, k € Z, I € N, A typical
function f can be written as

(x) = kng(k)g(x ~ k),

where g is the function obtained by interpolation from g(0) = 1, g(k) = 0 for
k € Z\ {0}. The definition of g via the dyadic interpolation scheme is exactly
the same as our “graphical recursion” (2.40), with the choice w(0) = %, w(2n) = 0
for n+ 0, w@n + 1) = 3a,,,, n € Z. The analysis of the properties of g in
[29]is then carried out by means of the same correspondence between “graphical
recursion” and the iterative formula (2.44). Imposing La,, = 1 (e, Zw(n) = 1)
immediately leads to w(§) = [1(1 + ¢%)]*Q(¢), which is then exploitcd, in [29],
to impose continuity on g. There is therefore a clear similarity between the
techniques used here and those exposed in [29]. The applications are_different,
however. Moreover, the proofs given in Section 3 apply to more general cases
than those in [29), since we do not impose w(2Zn) = ( for n + 0, nor w(2Zn + 1)
= w(—2n — 1),

2.C. The wavelet based decomposition and reconstruetion algorithm of S.
Mallat. In [8], Stéphane Mallat exploits the attractive features of multiresolu-
tion analysis to construct a decomposition and reconstruction algorithm for
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934 1. DAUBECHIES

2-d-images that has the same philosophy as the Laplacian pyramid scheme, but is
more efficient and orientation selective. It is interesting to remark that the
development of the concept of multiresolution analysis was triggered by the
multiresolution methods, and in particular by the Laplacian pyramid, The full
mathematical study of the concept, by S. Mallat and Y. Meyer, was done more or
less simultancously with the practical development, by S. Mallat, of his algorithm
for vision analysis and reconstruction. This is not the only instance in which
theoretical developments concerning wavelets find their inspiration in applica-
tions: the last few years have seen a constant feedback between theory and
applications. In fact, this paper is another such instance.

Let us start by a review of the algorithm in one dimension. As in the previous
subsection, we want 1o decompose a sequence ¢® = (c), € /*%(Z) into levels
corresponding to different spatial frequency bands. To achieve this, we shall nse a
multiresolution analysis, which can be chosen freely (as long as (2.1)—(2.4) are
satisfied), but has to be kept fixed for the whole algorithm, We suppose thus that
we have chosen spaces V,, and a function ¢ such that (2.1)~(2.4) are satisfied.
We assume (if necessary, we apply (2.5) first) that the ¢, are orthonormal. Let
{¥mms ™, n € L) he the associated orthonormal wavelet basis (we shall keep the
same notations as in subsection 2A), The multiresolution analysis and orthonor-
mal basis chosen in [8) is one in which the ¥V, consist of cubic spline functions (cf.
Examples 2.2 and 2.3, corresponding to linear and quadratic splines, respectively);
the corresponding orthonormal basis is one of the Battle-Lemarié bases. In what
follows we shall assume that both ¢ and ¢ are real, as they are in [8) and indeed
in most practical examples. '

Form the data sequence ¢® & [*(Z) we construct a function f,

f= Z Cg%a ’
n

or

J(x) = Xep(x = n).

This function is clearly an element of V. We can now use the whole multiresolu-
tion analysis apparatus on this function, We shall compute the successive P, f,
corresponding to more and more “blurred” versions of f (and hence of the data
sequence ¢°), and also the Q,f, corresponding to the difference in information
between the *“ versions” of f at two successive resolution levels. Eventually, of
course, this has to be translated back to a “sequence” (as opposed to a
“function”) language, but this turns out to be very easy,

As element of V=V, @ W,, f can be decomposed into its components
along V| and W,

=P f+Qf.
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Each of these components can be expanded with respect to the orthonormal
bases ¢;,, ¥, respectively, :

Plf= zclltd’llé)
k

Q1f= Zdt%k-
k

The sequence ¢! represents a smoothed version of the original data sequence ¢°,
while 4! represents the difference in information between ¢® and ¢! (cf. the
discussion of P, Q, in subsection 2A). The sequences c', d' can be computed as

a function of ¢ in the following way. Since the ¢,,, are orthonormal bases of V;,
one has

k= (P Puf) = (bues f)
= 22X b1ir Pon)s

where

(b1 bon) = 2717 [dx ¢ (3x — k)¢ (x — n)

=272 [ ax (4x)$(x ~ (n — 2k)).
This can be rewritten as |
(2.47) = 2 h(n—2k)c?
with
h(n) =272 [dx¢(4x)$(x ~ n).

Note that these h(n) are, up to a normalization factor 2712, exactly the
coefficients ¢(n) appearing in (2.15), Similarly,
(2.48) di= Y g(n—2k)ct
n
with

8(n) =277 [ dx p(4x)(x ~ ).
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936 1. DAUBECHIES

It follows that the expressions for ¢!, d" as a function of ¢% are of exactly the
same type as (2.23) in the Laplacian pyramid scheme. The main difference
between the two schemes is that borh the blurred, lower resolution ¢' and the
“difference” sequence d’ are now obtained via a filter of type (2.23). The filter
coefficients h(n), g(n) are fixed by the chosen multiresolution analysis frame-
work. It turns out that the s(n) have many properties in common with the w(n)
in subsection 2B; for instance, the h(n) satisfy a normalization condition, i.e.,
T,h(n) = V2 (see subsection 3A for an explanation of the difference in normal-
ization with the w(n)). The requirement ¥, h(2n) = L h(2n-+ 1) is also satisfied
by most interesting examples, and in particular in [8] (we shall come back to this
later). The filter coefficients g(n) are of a different nature, as one would expect;
in particular, 2, g(n) = 0.

Introducing a shorthand notation similar to (2.30), we rewrite (2.47), (2.48) as

¢! = Hco,
d! = Ge°,
where H, G are bounded operators from ! 2(2)'t.0 itself,
(Ha)y = X h{n - 2k)a,,
n

(2.49)
(Ga), = Lg(n — 2k)a,

The procedure can now be iterated; since P, f € V) = V, ® W,, we have
Pif=Pf+Qyf,
Pf= %ci%k,
Q= zk:dlfll’zk-
One finds then
et = (Pags Poy) = (bpr P

= Zc}t<¢2k’ 4’1»)' -

It is very easy 1o check, however, that

(P14 bjn) = h(n - 2k),
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independently of j. It follows that
¢i= Y. h(n~-2k)c)
n

or
¢t = Hc,
Similarly,
d* =G

Clearly this can now be iterated as many times as wanted. At every step one
finds

Paf=Pf+Q,f

= Yelop + L,
k k

with
(2.50) o/ = Hei 1,
(2.51) d/ = GeI™t,

This is the desired decomposition, The successive ¢/ are lower and lower
resolution versions of the original ¢°, each sampled twice as sparsely as their
predecessor (due to the factor 2 in the filter coefficients in (2.47)), and the 4/
contain the difference in information between ¢/~! and ¢/, Moreover, the ¢/, d/
are computed via a tree algorithm (2,50), (2.51). This computation is therefore as
easy to implement as the Laplacian pyramid scheme.

Note that Mallat's algorithm is more economical than the Laplacian pyramid
scheme, In practice, one will again stop the decomposition after a finite number
L of steps, i.e., ¢° will be decomposed into d*,- -+, d% and %, If ¢° has initially
N non-zero entries, then (neglecting edge effects) the total number of non-
zero entries in the decomposition is N/2 + N/4 + -+ +N/2L7 1 + N/25 +
N/2% = N. This shows that, unlike the Laplacian pyramid schemc (see subsec-
tion 2B), Mallat’s algorithm preserves, at every step, the number of non-zero
entries (as was to be expected from an algorithm based on an orthonormal basis
decomposition). -

So far we have only described the decomposition part of the algorithm. The
reconstruction part is just as easy. Suppose we know ¢/ and 4/, Then

Piyf= P/f+ Qo

= Zk:"@’jk + zh:di‘i’jkr
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and hence

eI =1 Baf)

= Zk:cK‘Pj—lns%k) + 2 di(di_1n Vi)

= Zk:h(n - 2k)c] + z;;g(m - 2k)d],

or
(2.52) ¢!V = H%/ + G*d/,

The reconstruction algorithm is therefore also a tree algorithm, using the same
filter coefficients as the decomposition.

Remark. In fact, the transition ¢/~! — ¢/, 4/ corresponds to a change of
basis in V77, {¢,_14 k € Z} = {9, Y3 k € Z). Because of the underlying
wavelet structure the orthogonal matrix associated to this basis change has a
peculiar structure. The transition ¢/, d/ — ¢/~ is given by the transposed
matrix; this is the reason why the adjoints H*, G* of H and G turn up in (2.52).

All the above is one-dimensional. As an image decomposition and reconstruc-
tion algorithm, Mallat’s scheme is of course two-dimensional, and corresponds to
a two-dimensional multiresolution analysis (see subsection 2A). Since the corre-
sponding wavelet basis vectors can all be written as products of one-dimensional
Y O (see (219)~(2.22)), the two-dimensional algorithm itself can also be
generated by a “tensor product” of the one-dimensional algorithm (see [8]). More
specifically, the sequences to be decompesed are now elements of / ¥z?),

0 _ 0
¢ = (Cmn)m.nel’

and one defines G,, H, and G, H, as the filters G, H defined by (2.49), but acting
only on the first, respectively, the second, coefficient (r for *“rows”, ¢ for
“columns”), Then ¢® is decomposed into ¢! and fhree difference sequences
(corresponding to the ¥/, j = 1,2, 3,—see (2.20)-(2.22)) d*}, d>? and d*?,
ot = H HcO,
d11 = G.H.,
d" = HG.(O,
at? = GGc®

The operator G H, “smooths” over the column index, and looks at the “dif-
ference” (— high frequency information) for the row index; typically, d%! will
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be large when a horizontal edge is present. Similarly, d L2 detects vertical edges.
Tt follows that, at no extra cost, Mallat’s algorithm is orientation sensitive, which
the two-dimensional Laplacian pyramid scheme of [20] was not. In [8], S. Mallat
gives a very striking graphical representation of the whole two-dimensional
scheme, illustrated with several examples, which clearly show, in particular, the
orientation specificity of his algorithm.

3. Equivalence Retween Mallat’s Discrete Algorithm
and Multiresolution Analysis

3,A. Weaning Mallat’s algorithm from its multiresolution parent. Ulti-
mately, Malla’s decomposition and reconstruction algorithm, ie., (2.50), (2.51)
and (2.52), deals only with sequences; the underlying multiresolution analysis is
only used in the computation of the filter operators H and G. In this subsection
we extract the properties of H and G that make the scheme work, without
reference to multiresolution analysis.

These properties are very easy to deduce from subsection 2C. First of all, we
impose

Y1a(n)] < o,
Yle(n)| < .

This implies that the operators H, G, defined by
(Ha)y= YL h(n - 2k)a,,
"

(3.)

(Ga), = Lg(n - 2k)a,,

are bounded operators on /%(Z). This condition is satisfied by the h(n), g(n) in
subsection 2C; it corresponds to a rather weak decay condition on ¢. At later
stages, we shall impose much stronger decay conditions on the A(n).

A second condition follows from the decomposition formulas (2.50), (2.51)
and the reconstruction formula (2.52). The scheme will only work if

(3.2) H*H + G*G = 1.

The third condition expresses orthogonality. Essentially, the decomposition
splits the original /%(Z) into a sum of subspaces. After the first step, we have

1X(Z) = H*1*(Z) @ G*I*(2);
after L iterations, one finds

1(z) = jé:(m)fom(z) + (B Y (Z).
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940

In order to make the décomposition as sharp as possible, ie, to remove
correlations in the original sequence as much as possible, we require that these
subspaces be orthogonal. That is, we require

(3.3) HG* = 0.
This condition is verified by the filter operators in subsection 2C, One finds

(HG*) = oh(n —2k)g(n — 21)
= 2 (b1 Don){bon Y1)

= ($us Y1) = 0.

So far, H and G play symmetrical roles in our conditions, The final condition
will break that symmetry, and identify G as a “difference’ operator, and H as an
“averaging” operator. Let a be the sequence

a = 1 for |nlg N,
" \0 for |n|>N,

where N is large compared to n,, with

L |a(n)] 5.

|tz gy

> le(n)] <,

{nlz g

for some small ¢, If H averages, iec., corresponds to a low pass filter, and G
corresponds to a band pass filter, then we expect (in regions away from the
“edges” of a)

C for k| < 4N ~ ny,

0 for |kl IN + ng,

(Ha)y = {

(Ga), =0 for |k|<iN-n, and for |k|2 N + n,.

-~

This implies that we require

2g(n) =0,
Yhr(n) =cC.
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The constant C can be determined as follows. For N — co, the edge effects
become negligible, and

Gall*/la)l* — 0,

I Hall*/lal* ~ 3, C%/2N-4cC2,

|klsN/2
But

| Ha||* + |Gal|* = a,(H*H + G*G)a) = a|]%,
hence C = 2. Thus our final conditions read
Lh(n) =2,
(3.4) '
Yg(n)=0.
n .
These conditions are satisfied in subsection 2C. One has

b0 = 2 A(n)dy,

hence, by integration,

2 [ara(dx) = [Sh(n) f o (a),

or
Y h(n) = V2, since fdxcp(x)#:O

(see (2.18)), Similarly,
Yo = 28(")%"?
n

since (see (2.17)) fdx y(x) = 0, it follows that Y.g(n)=0, -

We have identified four conditions, (3.1)-(3.4), which guarantee that an
algorithm “3 la Mallat” works, and corresponds to averaging, respectively
difference operations, followed by exact reconstruction, In terms of the h(n),
g(n), conditions (3.2) and (3.3) can be rewritten as

(3.5) Yh(m—2k)r(n ~2k) + g(m — 2k)g(n—2k)) =6,
k
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and ! 5 and to rew
i
(3.6) Y h(n - 2k)g(n — 20) = 0. ; (3.10a)
n i
In the remainder of this subsection, we shall rewrite the conditions (3.1)~(3.4) in . i (3.106)
various ways which make them more tractable to analysis, H
In order to get rid of the factors 2 in (3.5), (3.6), we define 4 (3.10¢)
a(n) = h(2n), ! (3.10d)
‘~
b(n) = h(2n + 1), ,3% These con
(3.7) ! which wov
e(n) = g(2n), )
’ (3.11a)
d(n) =g(2n + 1). -
% (3.11b)
Rewriting (3.5}, (3.6) in terms of functions of a, b, ¢, 4 leads to "ie -
' B we find frc
(3.82) Yla{m ~k)a(n — k) + c(m — k)e(n — k)] =8, )}
k 5
5:1 (3.12)
(3.8b)  X[b(m - k)b(n— k) +d(m~k)d(n - k)] =8,,, %
k a
(3.8¢) Y la(m = k)b(n~ k) + c(m—k)d(n ~ k)] =0, ' . where ) is
k , ) sake of si
thus choos
(3.84) Yla(n—k)e(n—1)+ b(n - k)d(n—1)] =0,
n Y, {
&
(3.13)
the sequences a, b, ¢, 4. It is therefore natural to introduce the 2#-periodie {
functions \ :
The only ¢

" a(§) = Xa(n)e™, A
" 3" (3.14)

{

i

= ing |

B(£) )n:b(n)e , ~ The choic,}

(3.9)
7(§) = Xe(n)e™, : i
n %& Q)
45 Hence (fr
8(¢) = ;d(n)e‘"‘, ; (3.15)

|
|
In this form the conditions are cbmpletely expressed in terms of convolutions of A ';

N5

—
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and to rewrite the conditions in terms of these functions. We obtain

(3.102) la(&)* +1v( =1,
(3.100) B +l8()" =1,
(3.10c) a(£)B(E) +v(£)8(¢) =0,
(3.109) a(§)v(€) + B(£)8(£) = 0.

These conditions are obviously not independent, Except for trivial solu'tions,
which would be in contradiction with (3.4), i.e., with

(3.11a) a(0) + B(0) = v2,
(3.11b) (0) + 8(0) = 0,
we find from (3.10¢) and (3.10d)

= e™MOg(E)
(512) v(£) B(£)

8(¢) = —e™®a(¢),
where A is a real function such that A(§ + 2w) — A(£) € 24Z for all £ For the

sake of simplicity we shall restrict ourselves to A(£) = 0 for the moment. We
thus choose

(3.13) v(§) =8(8),

8(¢) = —a(f).

The only equation remaining from the system (3.10) is then
(3.14) | la(&) " +18(H " = 1.
The choice (3.13), together with (3.11b), also implies

a(0) — B(0) = 0.
Hence (from (3.11a)),

(3.15) a(0) = A(0) = 27172,
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which agrees with (3.14) for £ = 0. It follows that any choice of 2w-periodic
functions « and 8 satisfying (3.14), (3.15) and Xja,| < 00, L,]b,| < o0, leads, via
(3.13), (3.9) and (3.7), to two filter operators H and G satisfying (3.1)-(3.4).
These flter operators can then be used for a decomposition and reconstruction
algorithm “4 la Mallat™, without reference to multiresolution analysis.

Remarks. 1. The system of equations (3.10) can also be rewritten as one
matrix equation, If we define the 2 X 2 matrix-valued 2-periodic function M(§)
by

a(f) y(s))
B(%) (&)

then (3.10) states that M(£) should be unitary, for all &,
2. Note that, in view of (3.9) and (3.7), the choice (3.13) is equivalent to

(3.17) g(n)=(-1)"h{-n+1).
The equations (3.14) and (3.15) involve only the h(n). They can be rewritten as

(3.16) M(¢) = (

(3.18) Y h(n = 2kYh(n—21) =8,

and
Ya(2n) = Y h(2n+1) =272
This last condition is implied by (3.18) and
(3.19) Y h(n) = 272,
3. If one introduces the 2o-periodic function H(¢),

H(g) = Lh(n)e™,

then the conditions (3.14), (3.15) can also be written in terms of H, C}early,
H(E) = a(28) + e#B(2E), |
or
a(2¢) = [ #H(g) + H(E+ 7)),
B(28) = te [ H(E) - H(§+ 7)),
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Then (3.14), (3.15) are equivalent with

(3.20) |H@) P +|H(E+ m)[ =2
and
(3.21) H(0)=+2.

Under the form (3.20) this condition is not new. It can be found in [16], where
my(£) = 27Y2H(£) is used, rather than H, While this paper was being written,
S. Mallat pointed out to me that (3.20) is very similar to a condition derived by
M. Smith and T. Barnwell [24] in the construction of “conjugate quadrature
filters”, In fact, (3.20) is identical to their condition. Smith and Barnwell were
looking for, and found, a tree-structured two-band coding scheme with exact
reconstruction, which is exactly what this subsection is about! The constructions
given later (at least insofar as they describe discrete filters) are therefore, in fact,
special cases of their construction. Ultimately, however, our aim here is to
construct orthonormal wavelet bases of compact support, which is a very differ-
ent point of view. Even from the filter point of view, our results go further than
Smith and Barnwell’s, in that we give complete characterization of the possible
filters, We shall however not go into this here.

4. Similarly one can introduce G(£) =T,g(n)e'™. The matrix statement
(3.16) is then equivalent to the requirement that the matrix

(3.22) 1 H(E) G(¢)

V2 |H(E+7) G(¢+m)

be unitary. This is the form under which this requirement appears in [16],
Depending on what one wants to do, (3.22) and (3.20) may or may not be more
useful than (3.16) and (3.14), The advantage of (3.14), (3.16) is that no correla-
tions are introduced, as in (3.20), (3.22), linking the behavior of H at § + = with
its values at £ The conditions (3.16) or (3.22) can be generalized to situations
where three or more band filters are considered (corresponding to decimations
with factors 3,4, - - - rather than 2), or even more complicated structures, in more
than one dimension (associated with lattices in Z% see [21]). It was pointed out
to me by P. Auscher (25] that in these cases the generalization of (3,16) is more
useful, for practical comstruction, than the generalization of (3.22), precisely
because it avoids introducing correlations.

5. Note that £ h(2n) = L h(2n + 1), which is a consequence of (3.18)-(3.19)
(see Remark 2 above) implies that all the possible H(§), satisfying all the above
conditions, necessarily are divisible by (1 + e') (see subsection 2B).

Finally, let us conclude this subsection with some simple examples.
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ExamPLE 3.1. The simplest possible example is
a(g) = B(g) =277,
corresponding to .
R CE A ORE S
A1) =277, g(1) = -2717%,
all the other h(n), g(n) being zero,
ExampLE 3.2. The next simplest example is
a(g) = 2772 [p(v — 1) + (v + 1)e¥] /(2* + 1),
B(§) = 272(1 = ») +¥(v + 1)e¥] /(3? + 1),
where » is an arbitrary real number, This corresponds to
h(0) =272 (» = 1)/(»* + 1),  g(0) =272 (v + 1)/(»* + 1),
B(1) =271 = »)/(¥* + 1), g1y = =271 2(y + 1) /(»2 4+ 1),
B(2) = 27120+ 1)/(P 1), g(2) =271 = w02 +1),
B =2+ /(A4 D), g3) = 27 (- 1)/0% + 1),
all the other A(n), g{n) being zero.
Note. We have here taken
g(n) = (-1)"h(3 - n)

rather than (3.17); this shift corresponds simply to choosing A(§) = £ instead of
0 in (3.12).

3B. Introducing a regularity condition. In the preceding subsection we

" derived and discussed a set of necessary and sufficient conditions, directly on the
filter operators, for Mallat’s algorithm to work. All these conditions ¢oncerned

only what happened in one step of decomposition /reconstruction. In the discus-

sion, in subsection 2B, of the Laplacian pyramid scheme, we saw that it is also

important that the iterated reconstruction, applied to a sequence consisting of

only one non-zero entry, looks still reasonably nice, even after several iterations,

Exhibit /\} Page X6

In Mallat’

d) = GH/
|
|

The iteraty
1B) to st
one npon-z
{with histc
which exy
function.
To she
histogram

Figure 4. |
regularity |

i




d of
v we
1 the

rmed
icus-

g-of

ons.

i

A
]

|
I
\
3
%
¥

D e

5y

ORTHONORMAL BASES OF WAVELETS 947

In Mallat’s algorithm, a sequence ¢° is decomposed into d,---, d%, ¢*, with
d/ = GHI~%°, and ¢ = H%Y the reconstruction formula is then (cf. (2.52))

L
= Y (H*)'7'G*d’/ + (H*) et
j=1

The iterated filter operator is thus H*, It is therefore important (see subsection
2B) to study the behavior of (H*)’, for large /, where e is a sequence with only
one non-zero entry, e.g. ¢, = 8,,. Ideally we want the graphical representation
(with histograms—see Figures 2, 3 in subsection 2B) of (H*)% to look “nice”,
which expresses itself by convergence, for / — oo, to a reasonably regular
function. :
To show that this is a genuine concern, we have plotted, in Figure 4, the
histogram representation of (H*e)," - +,(H*)%, for H* chosen as in Example 3.2

Figure 4. The histogram representations of (H*)%e, j=1,--+,6, for h(n) which do not satisfy a
regularity condition (see text).
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(subsection 3A), with » = —1.5. For increasing I, (H*)%e becomes increasingly
messy; in fact, (H*)%e converges, for { — o0, to a discontinuous, fractal function,

As in subsection 2B, we represent (H*)’e by a histogram 7, with step width
2-!, and with amplitudes given by the successive 2'/%((H*)'e),. The normaliza.
tion, different from that in subsection 2B (because Lh(n) = v2 and not 1), is
again chosen so that the area under the histogram remains 1 for every /. The
stepfunction 7, can be written as (see subsection 2B)

(3-23) "l/(x) = (T;’:x[-m. —1/2{)(-"):
where
(3.24) (Taf Nx) = VZ L h(n)f(2x — n).
By taking Fourier transforms, (3.23) ard (3.24) lead to
{ . —I-
(3.25) wu(€) = (2w)"‘”[11mo(2‘fe)]§~°§—,—-_'1;ﬂ.
e

where mo(£) = 27172L h(n)e'™, Hence, at least in a formal sense, 1, = 1, for
{ — 0, with

(3.26) hu(8) = (2m) ™7 T mo(2).

The following lemma ensures that 4 is well defined, ie., that the infinite
product in (3,26) converges, at least pointwise,

LeMMA 3.1.  Suppose that, jor some & > 0,

(3.27) Yla(n)|inl* < 0.

n

Then (3.26) converges pointwise, for all § € R. The convergence is uniform on
compact sels.

Proof: Since Th(n) =v2, we have my(£) =1+ 27V*% h(n)(e™ - 1),
hence |mo(£) — 1 5 V2L, |h(n)||sininé|. For any 0 < § £ 1 there exists Cy
such that, for all a € R, |sina} 5 Cyla]®. It follows that

-~

[mo(€) - 1| < C{Z[h(n)Hn["“"a»'?] « [ mintts o),

hence

|mo(277¢) — 1| = CAjgymind. 0,
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