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where A = 2719 > 1, This is sufficient to ensure convergence of (3.26), for any
¢ € R. It immediately follows from (3.28) that the convergence is. uniform on
compact sets.

Remark. 'While being more restrictive than (3.1), the condition (3.27) is still
very mild. In practice one requires much stronger decay for the h(n). For filter
construction purposes, one even restricts oneself to the case where only finitely
many k(n) are different from zero.

It is however not sufficient to know that 4, is well defined. In order to avoid
situations such as depicted in Figure 4, we require that (i) %, has sufficient
decay, so that n, is sufficiently regular (at least continuous), and (ii) 1, converges
to 1, pointwise, for / — oco.

To ensure the decay, for |§| — o, of §_(£), we shall use the same trick as in
subsection 2B, i.e., we shall require that my(§) is divisible by (1 + ¢%)¥, for
some N >.0. The precise statement is given in the following lemma, using an
estimation technique of P. Tchamitchian [5].

LemMaA 3.2, If mo(§) = (1 + e®)|Y F(£), where F(£) = L, f(n)e'™ satisfies

(3.29) Y1/(n)|nlf < 0  forsome &3>0
and
(3.30) sup |#(¢)| = B,

(R

then there exists C > O such that, for all ¢ € R,

o

H mo(277%)

i=1

(3.31) < C(1 + [g)~VHUes B/ log2)

Remarks. 1. It follows from (3.31) that 7, is continuous if H satisfies all

" the above conditions, and if B < 2¥~1,

2. The condition (3.29) will automatically be satisfied if

. (3:32) Tla(m) I+ < oo
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Proof: Since I1%,,c08(2 /x) = x~sin x, we have

jﬁlmo(z"f.s) = [e"‘/’ jﬁcos(z"f-'s)] ﬁf(ws)

j=1

(3.33)
- o 288)"
Jj=1
where the right~hand side converges uniformly on compact sets because of (3.29).

There exists therefore a constant C such that, for all |§] g 1,

(3.34) sC.

ﬁ m0(2’1£)
j=1

Take now {£| > 1. Determine j; € N such that
27hjE| < 1 5 270,
ie., i
log|él/log2 < jo £ 1 + logjéi/log 2.
Then

b
7| = HI#@)

s BRTL(1+ 277K 7() 1nl)
j=1 n

g Cexp{log B * log|é|/log 2},

To estimate Hf’_lﬁ‘ (2‘12 ~/o¢) we have used the same argument as in the proof
of Lemma 3.1, This is allowed since Lf(n) =% (0) = my(0) = 1. Together,
(3.35), (3.34) and (3.33) imply (3.31).

In our search for “regularity” we have, so far, only used one of the special
conditions on the h(n), derived in subsection 3A, namely (3.4), L,h(n) = V2.
And even that has not played a critical role, since it was oaly used for
normalization purposes, and we could have as easily normalized by any other
constant which happened to be the sum of the k(n). For our last step, the proof
that the histograms , converge pointwise to the continuous function 7,, (assum-
ing B is not too large), we need an extra ingredient, namely {my(£)| < 1. Since,
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w7 however (see (3.20)), as a consequence of (3.2)-(3.3), [mo(£)[2 + Imo(¢ + m)|> =
X 1, this condition is automatically fulfilled for #(n) satisfying (3.18)-(3.19).
Z PROPOSITION 3.3. Define my(§) = 2-Y2% _h(n)e'™, where the h(n) satisfy
b

(3.18), (3.19). Suppose moreover that

i
ﬂﬁ: (3.36) my(£) = [3(1 + e®)]"# (8),
. I : with # () = L, f(n)e'™* such that
4 (3.37) Tl(n) |Inf* < oo forsome €> 0
K‘; and
% (3.38) . sup | F(§)| = B <21,
teR

Then ihe piecewise constant functions v, defined recursively by

(3.39) ‘ ' m(x) = w/Z—Zh(N)n/_;(Zx - n),
with'
* ';g no(x) = XI—I/Z,I/Z((x)y
;\v converge pointwise to the continuous function v, defined by
ial8) = @)™ [T mo(27%).

Proof: 1. As an intermediate step, we prove g, — 7, pointwise, where the
p, are defined in the same recursive way as the 7, but starting from a different
initial function,

1+x, ~-1gx<0,
FO(x)= l_x’ 0§X§l,
0, otherwise,

2, Taking Fourier transforms, we find

2—/-—1&

B(8) = (z«)"‘/’[ﬁmo(z~fs)}[w]z.

From Lemma 3.1 it follows that fi, — #_, uniformly on 'compact sets, This
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implies that, for all 8 > 0, and for all R > 0, we can find /, such that, for all

4, We
121, | :

fwde 8,(8) ~ 4,(6)] 5 8.

On the other hand, 4, € I* since B < 2¥~! It follows that for all § > 0 there
exists R such that . :

A ' ﬁ
fyanehiu(@] 58 i}

L-convergence of §, 1o i, which implies pointwise convergence of p, to 1, will X
then follow if we can prove that, for all § > 0, there exist R and /, large enough, {,<
so that, for all / = IO’ P i

A -Rdﬂd
[ GIEE Gin
=R )\&
' . : Now ,
3. We need thus to evaluate the integral ;
in(2-1¢) a g
sim N N
dE P, —_—A] iy E
f ool |22

where P,(§) = I'I}_lmo(Z“ff). To do this, we split the integral into two parts, '(
namely |€] 2 2% and R £ |¢| £ 2r. To cvaluate thesc two parts, we shall use the N 3
following three properties of P;: sl

At h b
@ (2] =1, (since |mo(£)] 5 1), < where C;;

=S

S —

’.\. @) |P(6) s [jl:’lllcos(fj&)i] in[l\g'(z—jg)\

ﬁ'-,u*

N -~

(1 +En”,

27 'sind¢
o2~ )

Py

<C

where 8 = log B /log2 (use the proof of Lemuma 3.2) and

(iii) P, is periodic, with period 2'* . . (3.41)

‘ ,,Pageoq 75
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4. We concentrate first oﬁ 1| = 2%z. Using the periodicity of P,, we find

sin(2-/-1¢) *

leﬂvdeipl(e)l 2—/—-1£

- Lsin2=g) [
e T

' fn—i-1gY [
scf , dlp(®ljsnegf,

Choose A = 27 with a €)0,1[ to be fixed later. Then

(3.40)

Now

e famia1eh |2
Joz, S IPAO) [sin271-1¢) |

<vf

RO

sibis 2

d¢|p,(£)].

[ e 4E1BA8)]

<
€1

dg|p(§)| + C'/llslﬂsw\ds 1+ if[)ﬂl2’sin(2"“1£) |—N

<1+ 2”C/1wdx(1 + x)fxN = C,,

where C, is finite because N - 8 > 1.
On the other hand, -

Putting it all together, and choosing
implies that (3.40) is

(3.41)

fms.ﬂgz’,"‘ 1P,(£)]

£ €271+ 2)*2' 7 dx sin x| ¥
A

& C2I0HB-N)) =N,

< G2 UV =B-1)/(N+2),
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This clearly tends to zero for I — . : : . . ‘

5. We now evaluate the integral of || over R g |¢| < 2/, Since jsin x| 2
2|x|/7 for |x| s &m, we find
| ' sin(2-'-%¢ :
[ el

slélg2' 2714

N-~2
2-1

sin(2-7-7¢)

A

4C jR dt (1 + |&)7|¢*sindg|™

SIEl=2w

s 4CaN-? f:dx (14 x)Px¥,

Since N — B8 — 1 > 0, this tends to zero for R — oo, uniformly in /. Together
with (3.41) this proves that

jlmdelﬁ,(e)l

can be made as small as wanted, by choosing / and R large enough. As pointed
out in point 2, this proves ||fi; ~ 9,2 ~/= 4 0-
6. We have thus proved that s, — 7, pointwise. In fact, we can even show a

little bit more, The same arguments (points 2 — 5) as above can be stretched a

little 1o prove
J A& (1 + 16D M (6) | < o0
and

[ d (1 + 1E) A (8) ~ B,(6)] 2 0,

-5
where
A=HN-8-1)>0.
Consequently, y,, is A-Lipschitz,

(%) = 10()| < Clx = ¥,

-~

and the convergence p, — v, is uniform on compact sets.
7. Finally, we only need to show that pointwise convergence of the p, implies
pointwise convergence of the 7, The two functions pg and 7, agree on integers,

po(k) =mo(k) =0 for ke Z, k+0.
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Using the recursion relation (3.39), which both the p, and the 7, satisfy, one sees
that this implies, for all / € N,

n,(2”k) = p.,(2“’k) forall ke Z,.
let xR be arbitrary.‘For any & > 0, there exists § > 0 such that

X =yl 58 =]n,(x) —n(¥)| < $=.
There also exists /, such that, for all / 2 [y, and all y € [x — §, x + §], one has

11 (¥) — B(¥)| 5 te.
Choose ! 2 1, = max(l,, —~In8/In2). Since n, is piecewise constant, with step
width 277, it follows that there exists & € Z such that
x~2"%k)g2"'< 8
and
m(x) =27 '%) = u,(27%).
Hence '

'Tl/(x) - 'flm(x)| §|“I(2—Ik) - T’w(Z_’k)l +|T’uo(2—1k) - noo(x)l s &
Since ¢ was arbitrary, thié shows that v, converges pointwise to 1., for { — oo,

Remarks. 1. Using only slightly modified arguments, one proves, under the
same conditions (in fact, only B < 2V-1/2 is needed) that y, ~ n,, in L2, for
I = co. One simply replaces the L'-estimates for n,, — p, by L’-estimates for
N — M (no intermediary p, are needed). .

2. As noted above, it is sufficient that

Zir(n)In¥** <

n

to ensure (3.37). ‘
3. The h(n) of Example 3.1 do not satisfy the conditions of the proposition,
since in this case

mo(£) = 3(1 + %), -

hence N =1, B = |#({)| = 1, and therefore B = 2¥~%, However, in this case
one checks directly that

M= X(—2-=Y 12y

. The limit 7, is not continuous in this case, 7, = xjo 1, but the pointwise

convergence 7, ~ 7, still holds a.e.
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4, The coefficients h(n) defined by
h(0) = h(3) = 2717,

h(n) =0 otherwise,

satisfy all the “discrete” conditions of subsection 3A, but do not satisfy the
conditions in the last proposition (for the same reason as the k(n) of Example
3.1). In this case, however, the pointwise convergence of the 9, fails on a whole
interval, It is easy to check that, for any /, the 7, take only two values, 0 and 1.
(The easiest way to check this is to use the “graphical” construction (2.40) of the
7,—see subsection 2B and Figure 3.) On the other hand, ’

mo(€) = 3(1 + &%),

hence

B(E) = (2m)"2 ﬁl ma(29E) = (2m) V22 s—‘gﬁ
L

or
e = 3X [0,3}"

There is therefore no pointwise convergence for any x between 0 and 3. The
L*convergence fails too, since |7,l|32 = 3, whereas for all finite J, 9, is the
characteristic function of a union of intervals, and hence ||9,)|32 = ||n,|| p = #,(0)
= 1.

5. Only two values of », in Example 3.2, lead to coefficients h(n) that satisfy
the conditions of the proposition. They correspond to my(§) divisible by
(1 + €)% As noted above, all my(¢) satisfying the discrete conditions in
subsection 3A are divisible by (1 + €*) (see Remark 5 at the end of subsection
3A). In Example 3.2, extra divisibility by another factor (1 + e) leads to the
condition

k(1) — &(3) = 24(0),

v=+1/y3.
The corresponding h(0Q),- - -, A(3) are
(@) = (1 ¥ V3)/(#2),
h(1) = (37 V3)/(42),
h(2) = (3 £ V3)/(42),
h(3) = (L £ V3)/(4/2).

We shall come back 1o these A(n) later,

(3.42)
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With Proposition 3.3 we have completed our program of writing a set of
explicit conditions on the h(n), g(n), without reference to a multiresolution

analysis background, which make Mallat’s algorithm work, and which moreover b
lead to filters with sufficient “regularity”. LN
In the case where the h(n), g(n) are calculated starting from a multiresolu- .
satisfy the tion analysis (see subsection 2C), one has .
1 g
?)an::frggI: h(n) = <¢10!, ¢0n>' !
es, 0 and 1. or .
2.40) of the i
b= Lh(n) o, 1
n i
ie., L5
¢(1x) = 272 Lh(n)o(x - n). il
L] i
This is equivalent to ' '
$(£) = 272 L h(n)e™7* (1£) = mo(4£)6(3¢)-
n
and 3. The 1t follows that
I m; 1s the
Wp = #,0) - i " |
(3.43) $(¢) = | I1mo(277¢) |6(0),
that satisfy j=1 4B
f;;‘ig‘;fs R4 or, since $(0) = (27) V3 dx $(x) = @7)"1/2 (see (2.18)), s
{ subsection '

(3.44) o(x) = 1,(x). i

As pointed out in subsection 2B, the m, = T'x;_, 5,1, ¢an also be computed via R
a different recursion, (2.40), which we shall call the “graphical” recursion, and
: which lies at the basis of the graphical construction technique illustrated by v R
5 Figure 3, It follows from (3.44) that, in the case where the h(n) are derived from AN
. a multiresolution analysis framework, the graphical construction by iteration (see L

\ Figure 3, where the h(n) now play the role of the w(n)) is therefore nothing but I :
a recomnstruction of the function ¢; in the himit for ] - oo, finer and finer detail is N
achieved for increasing /. . : ‘

leads to the j
er

-~

3.C. Egquivalence between the discrete conditions and multiresolution analy- ]
sis. So far we have formulated conditions, directly on the A(n), which ensure !
that S. Mallat's algorithm works (with these coefficients), and has regularity (in T4
the sense given to it at the end of subsection 2B, or in subsection 3B). We have %
seen for every condition how the coefficients A(n) computed from a multiresolu- :

& tion analysis fit into the picture. The main result of this subsection is that these 1
.o {1 multiresolution-based examples are the only ones. It turns out that any sequence
|
|
3
1
]
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of h(n) satisfying the conditions in subsections 3A and 3B corresponds to a
multiresolution analysis, The function 7,, defined by (3.26) is then exactly the
function ¢ from the multiresolution structure.

To prove this equivalence, we start from a sequence h(n) satisfying (3.18),
(3.19) and (3.27). We also assume that the function my(§) = 27/2E h(n)e'?
satisfies all the conditions in Proposition 3.3. We then define, as in'(3.17),

(3.45) g(n) = (-1)"h(—n + 1),
and, as in (3.49),
$(x) = 1,(x),
or
(3.46) 3(£) = (2m)™ f[1 ma(277¢).

From the proof of Proposition 3.3 we know that ¢ is a bounded, uniformly
continuous function; since ¢ € L! N L*®, one also has ¢ € L% We define, in
accordance with (2.16),

(3.47) ¥(x) =2 Lg(n)¢(2x ~ n).

Since L, (g(n)]| = L h(n){ < 00, it follows thal
¥ (&) s 272 Zla(m)| - $(3¢) .

All the estimates of subsection 3B on 7, carry over, therefore, to y, and one
finds that ¥ is a bounded, uniformly continuous L-function. As before, we
define W, (x) = 272 ¢(27/x ~ k), and ¢, (x) = 22 ¢(27/x — k). The defi-
nitions (3,46) and (3.47) immediately imply

(3.48) : P = Z}'(” = Zk)‘i’j—lm
(3.49) Vvp= Taln = 2644,

We shall prove that the ¢ constitute an orthonormal basis of L¥R). In a first
step we prove some orthogonality relations.

Lemma 3.4, Let h(n) satisfy (3.18), (3.19), (3.28) and the conditions in
Proposition 3.3. Let g(n), &, V¥ be defined by (3.45), (3.46), (3.47), respectively.
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Then ¢, ¢ € LR), and, forallj, &, &' € Z,

(3.50) i Vi) = By
(3.51) <\Pﬁ¢a ‘i’]k'} =0,
(3.52) (Pinr ) = S

Remark. WNote that (3.50)—(3.52) are restricted to one j-level at a time. The
orthogonality between j-levels will follow from Lemma 3.5.

Proof: 1. Let %, be defined as in Proposition 3.3,
m= TIX[—I/:J.,I/Z['
with

(3.53) (T7)(x) = VI L h(n)f(2x — n).

For reasons which will become obvious, we add an index 0 to 7,
Mo = M
For arbitrary k € Z, we define

{
Nk = (T0) Xi=1/24k, 124k

with (T, f}(x) = Y2 L,h(n)f(2x ~ n — k). Due to the translations over &, built
into g, . as well as into T}, 0, , is just a translated version of 17 o. This can easily
be checked by induction, ‘

"Io,k(x) = X[—1/2+'k,1/2+k[(x) = "lo,o(x - k)

and

"h.k(x) = \/Z—Zh(")’?/~1,k(2x ~n—k)
= ﬁZh(m)m-1,o(2x -2k —n)

= "1/,0(7‘ - k)-
Since (see Remark 1 following Proposition 3.3) |9, — ¢|l2 = 0 for / = oo, it
follows that |, , — dgll 2~ 0 for 7 — oo,

2. Since A (¢) = [H}_lmo&'/&)]-?10’0(2"5), and since |my(€)| <1 and
No,0 € L2, it follows that all the 7, , are in L2,

Page 0?69\
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v

3. For fixed /, the different , , are orthonormal. This can again be proved by
induction. By translation invariance, it is sufficient to prove that (w4, W4 =
8, for k' = 0. We have ‘

.,v—-iﬁ;—\ "

S

1/2
(Mo, k> M,0) = f_lﬂdxX{-—l/2+k,1/2+k[(x) = 8o

and

Er—,

¥

(M, kv Mo) =2 by h(n)h(m)fdx*q,_l’k(Zx —n- k)"h—l,o(zx - m)

>
t

=2Y% h(n)h(m)fdxvn,_1,2k+,,_m(2x)m—1(2x)

n,m

= Y h(n)h(m) 8 2ksn-m = T h(n)h(m +2k)

n,m
=80 (by (3.18)).

By induction it follows that {7 x, W, &) = 84 forall I, k, k'
4, 1t follows immediately that

(B by = 27 [ dx 9 (27x = k)4 (275 — )

= [axo(x)o(x - k' + k)

= lim (0, Mr—k) = Dixr
{— 0

5. With g(n) defined by (3.45), the conditions (3.18), (3.19) on the h(n)
imply (see subsection 3A) .

(3.54) Y g(n —2k)h(n~21) =0,
(3.55) Yg(n —2k)g(n—21) = 8.

_ Hence, by (3.48) and (3.49),
(x> 4’]&') = 2'3(" = 2k)h(n’ — 2k')<¢j—1m ¢'j—1n'>

= Y g(n ~ 2k)h(n ~ 2k') = 0,
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and

<“’jki \b_]k'> = Z,g(m - 2k)g("’ - 2k')<¢j-—lm ¢j-r-l n')
= Yg(n— 2k)g(n = 2k’) = by

The “discrete orthogonality condition” (3.18) plays a crucial role in this
proof. In the terminology of subsection 3A, (3.18) is equivalent to HH* = 1,
where H* is the bounded /%-operator (se¢ subsection 3A)

(H*a)" = L h(n - 2k)ay.
k

This implies that H*, as an operator from [? to 1%, preserves orthogonality of
sequences. The operator T, defined by (3.24) was in fact constructed to exactly
reproduce, when acting on x_, » - and its iterates, the action of H* on the
sequence e (e, = §,) and its iterates (se¢ subsection 2B). This implies that
repeated application of T}, preserves the orthogonality of the %, ,. This is what
makes the above proof work.

In the following lemma we prove that the , constitute a tight frame (see
Section 1, or (3.57) below), Again, the crucial ingredient will be one of the
discrete identities which follow from the conditions on A(n), g(n). From subsec-
tion 3A we know that, with g(n) as defined by (3.45), and with h(n) satisfying
all the conditions above,

S [h(n = 2k)b(m — 2k) + g(n — 2k)g(m — 2k)] = &8,
k

(this can also be derived directly from (3.18) and (3.45)). It follows that (use
(3.48), (3.49)

(3.56) : Z[h(m — 2k )y + g(m 2")‘1‘;‘1:] = $—1m:
E

This, of course, already points towards multiresolution analysis (see subsection
24).

LeMMA 35. Leth(n), g(n), &, ¥ be as in Lemma 3.4. Then, for all f € L*(R),

(3.57) Y KN =171

S keZ
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Proof: 1. Take any f € CP. Then, since ¢ € L%, T, K¢, [)|* converges, " 4. WE’:
for any j € Z. Moreover, by (3.56), § can be
Y K borm 1] = )% [A(n — 2k)h(n = 20)djes SXS s i) >,,:
n n, k1 H
‘ 4
+2h(n - 2k)g(n — 21) Ra({yur LY+ ¥0)) 1
+g n— 2k n—2! il’vf (fr"p
( )g( )< ik > L ,rl)] (3.60)
2 2
= jk? + jk 3 ’
(I 1T #1040 1] e
where we have used (3.18), (3.54) and (3.55). 1
2. By iteration, one has, for all N € N, Ayt ;
d ' 2 1 because |<$
(3'58) Z|<¢—Nmf>‘2= E:K‘#’Nk'f)‘z'*' Z ),:‘:K"";k’f)‘ . é /E Cgo’w
n j=-
In this expression we shall let N tend to o,
3. We first -concentrate on L,|(dx /)% Let us suppose, for the sake of

definiteness, that supp f C [—2",2"%], Take N 2z ny + 1, so that the translation
steps in the $y,(x) = dyo(x — 27k) are Jarger than |supp f|, On the other hand,
for any & > O there exists ko € N such that

j dx|$(x) |2 <&
1%z ko

Then

guwpnf

=X I<¢Nk’f>!2+ )y Wowior 11

k= ko Ikl ko+1

< (ko + D2 MGILUAE + AT T |6 @M = k) [}
. ||z kg+1 “IxI=2"

< 272y + )I9l% I11E + #ll 13-

By choosing & and N appropriately, this can be made arbitrarily small, Hence

(3.59) T lbwe HF 552 0.
% > 2]
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4. We now concentrate on Zk{((tz wi )12 By means of the Poisson formula
this can be rewritten as

);_‘I(4>—m»f)|2

=an ¥ [de$(27e)6(27"% + 201) f(£) (€ + 2m12")

e

(3.60) = 20 [ ag$ ) [1/(&) [ + R.
Here

IRis T [aelf©)11f& +2a0)],

because [$(£)| = (2m) *TIf,m(2/E)| < )71/, since e Imo(6)] 5 1. Since
f € C§, we can find C such that

(&)l s e+ -

An easy estimation then Jeads to

IRI < Cr2—-3N/?.'

This tends to zero for N — co.
5. We now examine the first term in (3.60). One has

56~ $0)| = em) A T mo(2) = [me(®) B

s@n Y [mo(2778) — my(0)],

=1 I
 since |my(8)| < 1 for all ¢ & R. But B

|mo($) = mo(0)] s 272 L [h(n)le™ — 1

< CRIs, )

where we have used (3.19) and |’ - 1| g CJa|® (we assume 0 < g < 1), Hence,

[6(§) - $(0)| < 2n)™Y ’ij_'flrz"fer < ClEl

Exhibit ’\/ Page 9‘8(0
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Consequently, using $(0) = (27)" V2, we find
21 [ dt B [IAD

s [ag) AR + 2n [ alacprir + o ]| A0

= 1117 + 27 [ dg(1 + )| Ao
This converges to || f{|* as N — oo. Hence

(3.61) ;l(#’—Nkaf)l hr112.

N~ w
6. Putting together (3.58), (3.60) and (3.61) shows that, for all f € CP(R),
(3.62) % [ 1) =111
i

Since CP(R) is dense in LX(R), (3.62) extends to all f € L*(R).

Since ||| = 1 (this is a special case of (3.50), with j =k = k" = 0), (3.57)
. implies that the y;, constitute an orthonormal basis. This completes the proof of
L the main theorem of this section.

THEOREM 3.6. Let h(n) be a sequence such that
(D Z,|h(m)]In|* < oo for some e > 0,
(i) £, k(n = 2k)h(n — 20) = 8,
(iii) Th(n) = 2/2,
Suppose also that my(§) = 27/%%, h(n)e”" can be written as

mo(£) = [301 + e“)}”[)":f(n)e“*],

. Where
v i) T if(m)]n|* < oo for some & > 0,
(v) SUPg e n|Znf (n)e™] < 241,

Define
g(n) = (-1)"h(-n +1),

(&) = 2m) 7 ﬁ mo(2-%E),

P(x) =

272 Y.8(n)o(2x — n).
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Then the ¢,(x) =22 ¢27/x ~ k) define a multiresolution analysis (in the
sense of subsection 2A); the b, are the associated orthonormal wavelet basis.

_Remarks. 1. As we already said in the introduction, this theorem is also
proved in [19], under slightly different conditions, The growth restrictions (3.37)
and (3.38) on the h(n) are replaced, in [19], by the condition that

infig <opalmo(§)] > 0. Together with |mo(E))? + Img(§ + 7)P = 1, mo(0) =1, .

this condition implies that the ¢, with ¢ defined as above, define a multiresolu-
tion analysis. The function ¢ may, however, still be very irregular; the coefficients
h(n) used in Figure 4, e.g., salisfy the positivity condition of [19], but are clearly
not associated with a regular ¢. In the present paper, we emphasized regularity of
the discrete filters; once regularity is ensured by means of conditions (3.36)—(3.38),
equivalence with regular multiresolution analysis follows. Consequently, the
techniques of our proofs and the proofs in [19] are quite different. The basic
intuition for the present proof was mainly graphical. As explained above, the
orthogonality of the ¢, follows naturally, given our “graphical” construction,
from the discrete conditions, Similarly, (3.60) can be understood graphically,

2. At the end of subsection 3B (Remark 3) we mentioned the link between
the present construction and the “conjugated quadrature filters” of Smith and
Barnwell [24]. Any of their conjugated gquadrature fillers will sausfy all the
conditions in subsection 3A. Provided they also satisfy the regularity condition in
subsection 3B, they can be used to construct orthonormal wavelet bases. Since
the goals of [24] are completely different however, most of the examples in [24] do
not satisfy our regularity condition,

4, Orthonormal Bases of Wavelets with Compact Support

In subsection 2A we reviewed how orthonormal bases of wavelets can be
constructed, starting from a multiresolution analysis framework. The basic in-
gredient there was a function ¢ such that (2.15) held, for some ¢, without even
requiring the ¢,, to be orthogonal. Theorem 3.6 gives another recipe for con-
structing an orthonormal basis of wavelets (and the associated mulliresolution
analysis), this time from a sequence (A(n)), ¢ 2.

If this sequence has finite length, i(n) = 0 for n < N_, or n > N, then the
corresponding basic wavelet has compact support. This can be checked very

easily from the graphical construction of ¢ (see Figures 2,4), or from the
recursive definition of the %,

(4.1) #(x) = lim y;(x),
(4.2) m(x) = V2 Lh(n)n,,(2x - n),
(4.3) Mo = X(-1/2,1/2"
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The recursive definition of the 7, implies that all the 5, have compact support,
sopp 1 € 1Y, N o) with Ny~ WNi_y+ N_), and N, = 3Ny o+ N,
while Ny _= — 4, Ny 4= 1. Hence H _—~ N_, N ,— N, for I > o, which
implies that ¢ ‘has compact support < IN_, N ,,] Since only finitely many g(n)
are non-zero (g(n) = 0for n < =N, + lor n > —N_+ 1), ¢y also has compact

support,
supp ¢ © [$(1 ~ N,~ N_),3(1 + N~ N.)].
In order to construct orthonormal bases of compactly supported wavelets, it
suffices, therefore, to construct finite-length sequences h(n) satisfying all the
conditions of Theorem 3.6, An example of such a finite-length sequence is

Example 3.2, with » = +1/v3 (see Remark 5 following Proposmon 3.3). In this
case one finds (see (3.42)) N_=0, N,= 3, and

(44)

Since

(€)= [3(0+ S FVE) + (12 V)et].

'esugﬂ(l FVI)+ (14 V3)ek|=V3 <2,

the example (3.42) satisfies all the required conditions. The h(n) given by (3.42)
correspond, therefore, to an orthonormal basis of continuous wavelets. The basic
wavelet has support width equal to N, — N_= 3. Figure 5 shows the graphs of ¢,
¢ and their Fourier transforms, for this example. There are several striking
features in Figure S. First of all, it is obvious that even though ¢ and ¢ are
continuocus, they are not very regular, There exist other constructions of com-
pactly supported wavelet bases, in which ¢ and ¢ have more regularity, at the
cost of larger numbers of non-zero cocfficients h(n), which results in larger
support widths for , ¢. For the family of examples we shall examine below, the
support width of , ¢ increases linearly with their regularity. Another striking
feature of Figure 5 is the lack of any symmetry or antisymmetry axis for ¢, ¢,
This is quite unlike the Meyer wavelets (see [4]) or the Battle-Lemarié wavelets
(see 16]). In all these (non-compactly supported) examples, ¢ is an even
function, and ¢ is symmetric around x = %, We shall see below that, except for
the Haar basis (see (1.9) or Example 3.1), there exist no compactly supported
wavelet bases in which ¢ is either symmetric or antisymmetric around any axis.
The plots of Y and ¢ in Figure 5 (and later figuses, for other examples) are

' made by direct implementation of the “graphical recursion algorithm” equivalent
with (4.1)—(4.3) (see subsection 2B). This is much more efficient than Fourier
. transform of the infinite product (3.46) (see [26]). To plot Figure 5, only 8
iterations of type (2.40) were needed (i.e., 7y is plotted rather than ¢; the
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pact support, difference is not detectable at the scale of the figure). If more detail is wanted at

Voot Ny, any point (see Figure 6), it is possible to restrict to a nelghborhood and to locally

— oo, which iterate a few times more to obtain this detail.

ly many g(n) In the following subsections we describe families of examples of compactly i
has compact supported wavelet bases, and their properties. Henceforth, we shall always o

assume that only finitely many h(n) are non-zero. o
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' Since |a(;
0o implies
(4.5)
, ] On the oti
500 o :
&
Together v
' 0. 51,00 1lo.o 15.0 20.0 ' W J’V+
(46)
! . ‘ ‘ In any cag
g ] If the f
. : h(-=n) wo
L 750 ! N, (mp) u
1 X with (4.6),
p 500 ) wavelets w]
3 ‘ What g
X 4
) .250 i l
where we é I
follows thaj
1 1 1 .,& e ‘I
0. 5,00 10.0 15.0 20.0 : '.
® l' Because of | |
Figure 5. Continued t’r '
\ 4.A. Lack of symmetry, Here we shall use again the notations a(n), - -, | one possibl
d(n) (see (3.7) and a(£),: - -, 6(£) (see (3.9)) introduced in subsection 3A. Let us N symmetric.y
define, for any trigonometric polynomial P(£) = X, p,e'™, the two numbers 1[' :
N.(P) = max{n; p, # 0}, %;' Then

N_(P) = min{n; p, + 0}.
One easily checks that

N.(|P?) = ~N_(|P|’) =N,(P)-N_(P).

z§|j> Since both
|
\
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Since [a(€))? + (B(E)? =1 (see (3.14)), and o # 0, B +# 0 (see (3.15)), this
implies .
(45) N.(a) = N_(a) = N,(B) ~ N_(B).
On the other hand, the definition (3.7) of the a(n), b(n), gives
N (mo) = max(2N, (), 2N .(B) + 1),
N_(mg) = min(2N_(a),2N_(B) + 1),
Together with (4.5) this leads to

46) N, {mg) = N_(mo)
' = max(ZN, (a) = 2N_(B) = 1, 2N ,(B) — 2N_(a) + 1).

In any case, N,(my) — N_(m,) is an odd number.

If the function ¢ were symmetric around zero, ¢(x) = ¢{—x), then h(n) =
h{—n) would follow. This would however imply N {mg) = —N_(m,), i.e,
N.(mg) — N_(mg) = 2N (m,) would be even. Since this is in contradiction
with (4.6), it follows that the function ¢, associated with an orthonormal basis of
wavelets with compact support, can never be an even function,

What about symmetry with respect to another point A # 0?7 Suppose

¢(A +x) =¢(A ~x),

where we can, without loss of generality, shift A to the interval [0,1]. Then it
follows that

$(£) = e™MG(~¢).
Because of the definition of ¢ as the infinite product (3.46), this implies
m,(£) = 92"“’”0(“’5)-

Since both my(§) and my(~¢§) are trigonometric polynomials, this leaves only
one possible value for A, namely A = {. Let us, therefore, assume that ¢ is
symmetric with respect to 1,

¢(x +1) = ¢(~x). -
Then
‘ h(2n +1) = A(-2n),
or

b(n) = a(—n).
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0.2
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A

(a)

Figure 6, The function ¢ of Figure $, and 6 local blow-ups
() The different zoom-in zones are shown on the graph of ¢
(b)" The blow-ups around 1) x = .5, Dx=1LPx=154)x=2,5 x= 2.5, 6) x + 2,75,
The detail in these blow-ups illustrates the fractal, self-similar nature of this function ¢.

Hence
, B(§) = a(§) . )
Together with (3.14) this implies

correspl
waveleg

2la($)lz= 1, 4B

a(n) = £27'%,, =b(—n) forsome keN.
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4)

[ o ).} U N,

245 25 255 210 275 280
®

Figure 6. Continued

We can, again without loss of generality, choose k£ =0 (this amounts 1o a
translation of ¢ by an integer). The corresponding A(n) are then exactly given by
Example 3.1, resulting in ¢ = xo,1).

All these arguments prove the following propesition.

PROPOSITION 4.1, The Haar basis (1.9) is the only orthonormal basis of

compactly supported wavelets for which the associated averaging function ¢ has a
symmelry axis,

-~

In the following subsection we explicitly characterize all the functions m,
corresponding to orthonormal wavelet bases with compacily supported basic
wavelet.

4.B, Characterization of all orthonormal, compactly supported wavelet bases.
The basic condition (3.18) on the #(n) can be rewritten as (see subsection 3A)

4.7) | |mg(€)F +|mo(t + m) " = 1.

h j NG
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On the other hand, we have imposed, in Propasition 3.3, the following structure
on mgy: .
N N
(4.8) mq(£) = [3(1 + e©)] " Q(e"),

where Q is a polynomial, since only finitely many k(n) are non zero. Moreover,
since all the h(n) are real, all the coefficients in Q are real as well. From (4.8) we
have

Imo(€) ) = [cos?3¢] ¥|Q(e®) [

Since Q(e™)= Q(e™ "), the polynomial |Q(e’*)}* can be rewritten as a poly-
nomial in cos ¢, or, equivalently, as a polynomial in sin’3¢. Introducing the
shorthand y = cos?}¢, (4.7) becomes

(4.9) yP(L—y)+ L ~y)'P(y)=1.

Any myg of type (4.8) which solves (4.7) corresponds therefore to a polynomial P
solving (4.9) and satisfying

(4.10) P(»)20 for yelo,1],

Conversely, every polynomial P satisfying both (4.9) and.(4.10) leads to
solutions of (4.7), with real coefficients h(n).This is due to the following lemma

of Riesz [27]. ‘

LeMMA 4.2. Let A be a positive trigonometric polynomial containing only
cosines, A(&) = LN_,a,cosnt (with a, € R), Then there exists a trigonometric
polynomial B, of order N, B(£) = LN b,e'™, with real coefficients b,, such that

(4.11) IB(E) = A(%).

The proof of this lemma (see {27]) is simple and elegant. It constructs B

. explicitly; this construction is now widely used by engineers when designing

v filters, We include the proof here, because we shall come back to the construction
later.

Proof: To

1 ¥ ,
A(E) =ay+ 3 Y a,(e™ + ein¢)

p=1
—~INk 1! iné iNE 1 N+ -
= e 3% ay et +age™+ 3 Lae |
n=0 nw~l1 ' g
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we associate the polynomial

Py(z)= 5 X ay_n2"+agz¥ + 5 ¥ a ¥,

n=0 n=1

This polynomial has 2NV zeros (counting multiplicity). Since P, (') = e'™A(§),
it follows that the two polynomials P,(z) and z?VP,(z~') agree on the unit
circle, and therefore on the whole complex plane. They have therefore the same
zeros. This means that if z, is a zero of P(z), P,(zo) = 0, then sois z5'. On the
other hand, since the a,, are real, P,(z) = P,(Z). This implies that if z, is a zero
of P,(2), then so is its complex conjugate Z,. The zeros of P(z) therefore come
in quadruplets, z,, 7y, z5* and Z%, or (if zo = r, is real) in duplets, r,, 75 € R.
Let z;, 7, 27}, Z;* be the quadruplets of complex zeros of P,(z), and ry, ry * the
real duplets,

p2) = -;a,,[ (A )]

J
’ L”( BRASRE Gt Gt 7 "]'
For z = ¢'¢ on the unit circle, one finds
(65~ 206 =257 = (e~ 22 - )

=y -1 2 i
. = |zl e’ — zyf%, Hy
Consequently, 1B

A()) =1A©)] =)
. 1

1 X J K J ]
= 7la~|Hlfkl" J]:[l|zj|_2] }1(8'5 -n) I (e" - :!j)(f:'e - Ej)

j=1

i
E
=|B(‘E)‘2> g" |
where » I' :

1 K J . 172 . !

B(¢) = {j‘anin |7~ nizjrz] |

k=1 j=1
X J

-";[:Il(e’f — rk)H(eZiE —_ 28"@4 zj -+ |zj12)

is clearly a trigonometric polynomial of order N with only real coefficients.
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sup [Q(e’) [ =
¢

Y

orthonormal wavelet basis.

solution of (4.9).

LEMMA 4.3,

s::("+f)a("+k+1
jmo\ I k

Proof: Define S, , = }:’;_0(_" 7 f). Then

k
+2
i )+S,,,,¢+ )M

=(k
=(k

a4

= +

)

|o(e)[* = P(sin?d4) = P((1 - cos §)).

1t follows that mq(£) = [3(1 + €')]¥Q(e*) satisfies (4.7). If, moreover,

sup [P(p)|* < 2%t
€[0,1] '

k +n+2)! k ) .
Sntt k41 = (k(+ 1)?(:+)1)z * Eo‘(‘f?i}lj)%(" AEARY
(n+ )

n+2\,
+1 )+ Sn.k+ [Sn‘+1,k+1 - (k+ "

Exhibit ALPage;&ﬂ

Remarks. 1. Note that B is generally not unique. Out of any quadruplet of
zero0s z,, Zo. 25, Zg' ome can choose the pair of zeros to retain, for the
construction of B, in four different ways. For every duplet of real zeros of P, two
choices are possible, This results in 2% different possibilities for B.

2. All these different possibilities, corresponding to different ¢
zeros of P, to retain for B, constitute, however, the only solutions to (4.11), One
can show (see [27]) that, up to an arbitrary phase factor +e'*¢, K € Z, all the
polynomials B satisfying (4.11) are necessarily of the form (4.12).

hoices of the

If P is a polynomial satisfying (4.9) and (4.10), then Lemma 4.2 tells us that
there exists a trigonometric polynomial of the same order such that

then al] the conditions of Theorem 3.6 are satisfied, and there exists an associated

To construct compactly supported orthonormal wavelet bases, with m, of
type (4.8), it is therefore necessary and sufficient (o find polynomials P solving
(4.9) and (4.10), which are moreover strictly bounded above by 2X¥-D),

The following two combinatorial lemmas allow one to “guess” a particular

b

S

‘
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X
3
a
1
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.2‘

e

Hence .

SRRSO SR




druplet of
3, for the
of P, two
ces of the

4.11), One
Z, all the

s us that

1ssociated

th m, of
P solving

particular

ORTHONORMAL BASES OF WAVELETS

LemMa 4.4.

(77 -y -

Proof: Define A, , = ("Jf’). Then, by Lemma 43, o A, ;= Aper, i
Define -

S.(y) = éﬂ(" ;-Lj][y’(l —y)" ey - y)Y],

Clearly,
Sa(a)=(1"‘a)+a=1-

We shall prove that §,(a) = §,_,(a), which proves the lemma. By repeatedly
inserting factors [(1 — a) + a] = 1, we find

Spla) = ’i:Anq_j[(l - a)'a/l +Ia"(1 - a)-’]

= Au-1,0[(1 —-a)" 4+ a"”]
+(Ayy 0+ An—l,l)[(l —a)'a+a"(1- a)]

n—1
+ ng,,_l,j[(l —a)"a’ +a"(1 - a)j]

n-11 J

= 2 [ z::An-l,k:’[(l - a)"'”af + an+1(1 - a)/]

. j=0 [ k=0

n—-1
+2[ A,,_I',‘](l -a)"a"
k=0 :

n~1
= Z An.j[(l — a)"+1aj+ an+l(1 — a)j]
=0 v

+24, o [(1 = a)"*'a" + am2(1 - a)"]

- Sn(a) (since 2An,n~1 = An.n)'
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1t follows that the polynomial of order N — 1, ‘

, NN -1+
(413) Py(y) = ,}.30[ } )yf,

solves (4.9). Since all the coefficients in this polynomial are positive, (4.10) is
clearly also satisfied.

The two explicit examples of compactly supported wavelet bases we have seen
so far, ie., Example 3.1 and (3.42), correspond exactly to a polynomial of type
(4.13), with N = 1, 2, respectively. For Example 3.1 one has mq(§) = (1 + e't),
ie., N =1, and Q(e) = 1, hence P(y) = 1 = Py(y). For the second example
(3.42), we find (see (4.4)) mo(£) = [4(1 + €))L F V3 )e*], corresponding to
N =2and |Q(e®)* =2 ~ cos £ = 1 + 2sin*4¢; hence P(y) =1+ 2y = Pp(»).

In fact, for givea N, Py is the only polynomial of order less than N which
solves (4.9). Bven more is true: for any polynomial P solving (4.9), the first N
terms (orders O up till N — 1) are exactly given by Py. This is because (4.9)
completely determines the first N coefficients py, - -, py_; in P(y) = Zhoop,y™
Since the first term in (4.9) is already of order N, only the second term plays a
role in the cancellations for y¥, k = 0,--+, N — 1. This leads to

=1,
(4.14) k=1 -
D = Z(*l)k Md(kljn)pm k=1 ,N-1,
n=0

from which the p,, k = 1,-++, N — 1, can be determined recussively. Since Py
solves (4.9), it follows from (4.13) that

N+k-
=)
Consequently, any polynomial P solving (4.9) is of the form
(4.15) P(y) = Py(y) + y"R(y).

Substitution of (4.15) into (4.9) leads to the following equation for the poly-
nomial R:

YY1~ p)"R(1L - y) + (1 = )"y R(y) = 0,
or -
| R(1 ~y)+R(y)=0.
The polynomial R is therefore antisymmetric with respect to y = %, or
R(y) = R(4 - y),
where R is an odd polynomial.
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To summarize, we have the following explicit characterization of all solutions
mg of (4,7), corresponding to ouly finitely many non-zero h(n).

PROPOSITION 4.5. Any trigonometric polynomial solution my of (4.7) is of the
form )

(4.16) mo(£) = [4(1 + )] "Q(e"),

where N € N, N > 1, and where Q is a polynomial such that

- N—1
(417) |@(e®) |2 = 3 (N —; + k)sinz" 1t + [sin®V1¢] R(dcos £),
k=0

where R is an odd polynomial.

Remarks,. 1. Since the proof of Lemma 4.2 shows explicitly how to construct
all possible polynomials @ once |Q(e*))* is known, this proposition is indeed an
explicit characterization of all the solutions m, of (4.7).

2. In constructing m,, there are therefore 3 steps at which choices can be
made, : .

(i) choosing N € N\ {0},
(ii) choosing an odd polynomial R (with some restrictions),
(ili) choosing pairs of zeros out of each quadruplet of complex zeros, and one
zero out of each duplet of real zeros, of Py(z) + z"R(z — 1) (sce the
proof of Lemma 4,2),

The odd polynomial R cannot be chosen completely freely. One needs, of course,
the fact that
(4.18) Py(y)+y"R(3-y)20 for 0sys1.

Moreover, condition (v) in Theorem 3.6 requires that

(4.19) sup [Py(y) +y"R(} ~ y)] < 224¥-D,
D5yl

3. For N =1, (416), (4.17) and (4.18) reduce to
(4.20) mo(£) = 3(1+ €%)Q(e")
with b
(4.21) |Q(e®* = 1 + sin?4¢ R(Lcos ),
where R is an odd polynomial such that

2 2 L
TT= 2] éR(x)éTm for |x|s 1.
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These conditions can already be found in the construction of conjugate quadra- Table 1
ture mirror filters in [24]. The condition (4,19) is impossible to satisfy, however, values ¢
because Pi(0) = 1. ; :

4. Using a different method, Y. Meyer constructs in [28] another polynmomial

solving (4.7). The solutions to (4.7) proposed in [28] are and
2N - 1)! 3
. 4.22 mo(E)F =1 — — — [sin?¥1x dx.
, ( ) | 0(£)l ((N"' 1)!]222}"_1‘{) X ax
This is clearly an even trigonometric polynomial of order 2N — 1. It turns out {0
be divisible by (2(1 + cos £))¥ = (cos24£) ", Therefore, by Proposition 4.5, (4.22) ‘
is exactly equal to : For larg
N . Sinc
_ (cos’3¢) " Py (sin’}¢). : associat
. 4.C. A family of examples with arbitrarily high regularity, In the remainder every i
of this section, we shall concern ourselves with a special family of functions my, hy(n) =
and the corresponding wavelet bases. We follow the prescriptions of Remark 2 of Secti
after Proposition 4.5, For every N € N, N = 1, we choose ¢ of minimal order, i
ie, R=0, |Q(e®)|?= Py(sin®Lf). This choice satisfies both the conditions i
(4.18) and (4.19). From (4.13) the positivity of Py(y) for 0 < y < 1 is immediate. ]
Since P, is strictly increasing for y 2 0, it follows that .
X is there{
2N -1 2N — 1 2N -1 Kel,
Pu) =2 = (3 = 3350+ (5] ,,
yzlllgll w(¥) = Fx( ) N-1 2I\N-1 N funcﬁo.‘
(4.23) - construi
< 1 Y (2N* 1) = QUN-D), Fro
2 Pry k functiot
we sh
where we have used Lemma 4.3 in the second equality. This fixes |Q(% In the li
construction (via Lemma 4.2) of Q from |Q|? we systematically retain all the LEM
zeros inside the unit circle (this corresponds to a *“ minimal phase” choice in filter 5
design), For N € N, N > 1 fixed, this determines Q unambiguously, up to a (4.25) :
phase factor e'*€, K e Z. For the sake of definiteness we fix this phase factor so :
that Q contains only positive frequencies, starting from zero, ie., (4.26) s
‘ N-1 <873
' (4.24) Qy(e*) = X gy(n)e™ with go# 0. !
nw=0 then y
These choices uniquely determine Q. We shall denote the corresponding m by |
~Mo, h (4.27) ;

vro(®) = 11 + )" E ay(n)ern

V-1
=272 ¥ hy(n)e™,

n=0
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Table 1 lists the coefficients h,(n) for the cases N = 2,3, +,10. For the lowest ‘ f
values of N, Qy(£) can be determined analytically. One has, e.g., '

2,(¢) = 4l + 3) + (1 - V3) €] (see (4.4))

and

0(¢) = 4[(1 + V10 + {5 ¥ 200 ) + 201 ~ VI0) et
+(1+ V10 ~ 5 + 2/10 ) e%%].

For larger values of N, the coefficients in Table 1 were computed numerically.
Since the ym, satisfy all the conditions of Theorem 3.6, there exists an
associated orthonormal basis of continuous wavelets with compact support for
every ,m, Let us denote the corresponding ¢, ¢ functions by y¢, y¥. Since o K
hy(n) =0 for n <0and n > 2N — 1, it follows (see the discussion at the start o
of Section 4) that supp(y¢) = [0,2N — 1]. The support of 4y, )

N~

GUNE) = T (1) (= + 1)y (2x = n),

n=9

is therefore given by [—(N = 1), N]. Note that an additional phase factor e'%¢,
K € Z, in (4.24) would amount to shifting the h,(n) by X, i.e., to shifting the
function y¢ by an integer, which does not affect the multiresolution analysis
construction. The wavelet 5y is unaffected by this shift.

From Theorem 3.6, we know that ,¢ and 4y are bounded, continvous
functions. For large N, y¢ and ,y are, in fact, much more regular. To see this,
we shall need the following generalization of Lemma 3.2.

LEMMA 4.6, If mo(€) = [3(1 + e®)]N¥ F (&), where F() = L, f,e"™ satisfies i

(4.25) TiflInlf < oo forsome >0,

(4.26) St;plf(f)g"(%f) o FQOE)] = By,

then

(4.27) I mo(rfé)l S CQ1 + g~ NriB/kinD) )
. j=1

Proof: Define

F.(¢) = If]()gr(z-fe).
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Table 1. The coeflicients hy (1) (n = 0,-++,2N = 1) for N = 2,3, -+, 10,

n hy(n) n hy(n) Then
N=2 0 482962913145 N=8 0 054415842243
' 1 836516303738 1 312871590914
2 224143868042 2 675630736297
3 — 129409522551 3 585354683654
N=3 0 332670552950 4 — 015829105256
1 806891509311 5 — 284015542962 Repea
2 459877502118 6 000472484574 leads |
3 — 135011020010 7 128747426620 :
4 — 085441273882 8 — 017369301002 -
5 035226291882 9 — 044088253931
N=4 0 230377813309 : 10 013981027917 ]
1 714846570553 11 008746094047 L
2 630880767930 12 - 004870352993 This in
3 — 027983768417 13 — 000391740373 i
4 187034811719 14 000675449406 To
5 .030841381836 15 — 000117476784 differe
6 032883011667 N=9 0 038077947364 !
7 — 010597401785 : 1 243834674613 3
N=5 0 160102397974 2 604823123690 (4.28) } |
1 603829269797 3 657288078051 ;
2 724308528438 4 133197385825 %
3 .138428145901 5 — 293273783279 Note {
4 — 242294887066 6 — 096840783223 necessa
5 — 032244869585 7 148540749338 We
6 077571493840 8 030725681479 i
7 ~ 006241490213 9 — 067632829061
8 ~ 012580751999 10 1000250947115 , Prg
9 003335725285 11 022361662124
N=6 0 111540743350 12 ~ 004723204758 (4.29),
1 494623890398 : 13 — 004281503682 b
2 751133908021 14 001847646883 Pro: \
3 315250351709 15 000230385764 of term
4 — 226264693965 16 — 000251963189 ! |
5 ~ 129766867567 17 000039347320 |
6 097501605587 N =10 0 026670057901 |
7 027522865530 1 188176800078
8 — 031582039318 2 527201188932
9 000553842201 3 688459039454
10 004777257511 4 281172343661 |
11 — 001077301085 5 — 249846424327 First, n |
N=17 0 077852054085 6 — 195946274377 i
) 1 396539319482 7 127369340336 p
' 2 1729132090846 8 093057364604 ]
3 469782287405 9 — 071394147166 ;
4 — 143506003929 10 ~ 029457536822 Second]
5 — 224036184994 11 1033212674059 3
6 071309219267 12 003606553567
7 080612609151 13 — 010733175483
8 — 038029936935 14 001395351747
9 — 016574541631 15 1001992405295
10 012550998556 16 — 000685856695
1 000429577973 17 — 000116466855
12 — 001801640704 18 000093588670
13 000353713800 19 — 000013264203
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e ooyl

ll::mﬁng the proof of Lemma 3.2, with multiplication factor 2* instead of 2
(o]

,1:10 #[(2%) 7] , s Cexp{log Bylog|¢l/Tog(2*) ).
This implies (4.27).

_ To interpolate between the standard spaces C* of k times continuously
differentiable functions, we shall use, for o & N, .« > 0, the spaces defined by

(4.28) rece e faxlf(&)|(1 + )" < .

Note that, for a = k & N, the condition (4.28) implies /& C¥* but is not
necessary,

We then have the following

PROPOSITION 4.7, There exists X > O such thar, forall Ne N, N 2 2,
(4.29) NPy y¥ € CM,

Proof: We shall apply Lemma 4.6, Since Qy(e'¢) has only a finite number
of terms, (4.25) is obviously satisfied. We compute

B, = S“PlQN(eit)QN(eie/z)‘ = s‘;P lPN(Sinsz)PN(Siﬂzﬂ) ]

= sup [Py(4p(1 - »)By ().
O=yst

First, note that (see (4.28))

sup By(y) = Py(1) < 2%,
0syz1 =

Secondly,
| PNk —1
PN()’) = E ( k )yk
k=0

N-1

s ¥ 2Vl pk <o~ v max(1, (25) 7).
k=0

200
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Hence, for y 5 4, (gi[télox
Py(y) Py (4p(1 = y)) 5 N2#-1228-D = 23D, 21
, argume
For y 2 32+ V2),ordy(l-y)s 4, |
: Py(3) Py (4p(1 = y)) 5 2X¥DNINE = NPND,
ith
Finally, for < < 32 +V2), vt
N
Py(»)Py(4y(1 - y)) < N22‘”"( sup [4y2(1 —y)]) ;
Osyst
- The san
= N4V z(%)h” largera:
%
i
B, s NziN—l(%g’_)N/z' §
Consequently, Since ﬂi
IGre) ()] = W’”" “,mo(z""ﬂl ]
’ - One can
<Cc(l+ |£|)[lozN—Nlos(3v/3-/4)V2bsz_

This exponent is smaller than —1 for N ;16. For smaller values of N, one can l Even foi
use the explicit estimate ' limited |
2N - 1] 3 ]

Bl . [( N )] v- Ani
to prove that ¥ ;
- ~1~kN 3 U
[(v#)™ (£)] = €1+ K& Meyer |2
for some x > 0, for all N < 16. Hence (4.29) holds for ¢, for some A > 0, and ‘
for all N 2 2. Since ,¢ is always a finite linear combination of translated and ;
dilated versions of y¢, the same holds for y¢. with g ﬂ
4, F¢
Remarks. 1. Since |supp(y¢))| = supp(y¥)| = 2N — 1, (4.29) shows that the of the N

regularity of y¢, 4 increases linearly with their support width, as announced in
the introduction. It turns out that linear increase of the support width with the
regularity of ¢, ¢ is the best one can do, More precisely, if a C*-function ¢
satisfies an equation of the type

a techni
continug)
introdugy
'z¢r 24’ E

N

¢(x) = Z c,,4>(2x - n)

n=0
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(without necessarily being connected to multires

c [(2). A’I,'l{’ then & < N — 2. For a proof, see [30),
- The estimate for A obtained in this proof is, of course, not very good: th

argument is too simple, Asymptotically, for large N, one fmcis v pood e

olution analysis), and if supp ¢

NG,y € Cl-ON
with

log(3/3) log N log N
y~—§T6§T+O( ]gV )g.1887+0( o%, )

The same technique, with a little more work, leads to slightly better estimates if
larger values of k are used. Using & = 4, e.g., leads to

Bz 1936 + O(N~'log N).
Since the map y - 4y(1 — y) has a fixed point, at y = 3, one finds

B,z [By(})]*”.
One can show that '
Pn(%) ~ CSN-

Even for arbitrarily large &, the values of g obtained by this method are therefore
limited by

log 3 . -
p<l- ﬁ‘%ﬁ + O(N~Yog N) = 2075 + O(N~'log N).

3. Using a more sophisticated method than the brutal estimates above, Y.
Meyer {28} showed that, again asymptotically for large N,

NP ny € ClB—aN

with u = log(4/w)/log 2 = .3485. His proof uses (4.22) rather than Py.

4. For small values of N, better estimates can be obtained for the regularity
of the y&, y¥ by yet a third method. This method is based on a generalization of
a technique used by Riesz in the proof that “Riesz products” can lead to
continuous, nowhere differentiable functions. I would like to thank Y. Meyer for
introducing me to this technique, and for showing me how to use it to prove
26,9 € C>% The proof, and a generalization for N 2 3, are given in the
Appendix, It works very well for small values of N, but does not, however, give
good asymptotic results. For large N, it leads to logarithmic rather than linear
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; Table 2. Regularity estimates,
'Q For N = 2,++,10, we give a,, 50 that v, y ¥ € C™

£

AR Ay
) S—
915
1,275
1.596
1.888
2.158
2.415
2,661
2.902

OOV LWL

-

To conclude this paper, we give in Figure 7 the graphs of y¢, 4 and their
Fourier transforms (4¢)", (y¥)", for N = 3, 5, 7, 9. (For N = 2, these graphs
were given in Figure 5.) The graphs were plotted by means of the “graphical
algorithm” explained in subsection 2B, using the coefficients hy(n) of Table 1.
One clearly sees that the y¢, ¢ become more regular as N increases. Also

2qr = 6.28. This is a direct consequence of (4.7) and (4.8). By (4.3), (ym}(€) has
a zero of order N at ¢ = . It follows that, by (4.7), (ymo)X0) = 1, and that the
fitst N — 1 derivatives (ym,){)(£) of ym, are zero in £ = 0. Since (this follows

from (3.45)) (v¥)" (§) = ymo(7 + 3£) (v4)" (16), this means that [(y¥#)"19(0)
=0 for k=0,r--,N—1, or fdxx*(4¢)x)=0 for k=0, .-, N—1. The
present construction leads thus also to orthonormal bases of compactly sup-
ported wavelets with an arbitrarily high number of zero moments. This property
could be useful for quantum field theory (see [18)).

It is also quite striking that the “effective support” (where [(yy}x)| =
01y ¥lleos $2Y) Of N is quite a bit smaller than its total support, for N not too
small, This is due to the very small value of the ky(n) for large n (see Table 1),

N AT T RIS
TR LA 6.

for N = 2,3,.-+,10, computed using the method explained in the Apperidix,

Remark., Using a different approach (see [30]), these estimates for the
+  regularity index ap can be sharpened. For N = 2 one finds, eg., ay =2 —
' In(l + v3)/In2 = 550 -+ . This is the best possible exponent for N = 2 (see

[30]).

Appendix N
Sharper Regularity Estimates for v, y{
The estimates given here are based on a different way of calculating (4.28).
Using the facts that y$) () = 27) VIR (ymo)2/¢)] is even (because
~Mg is a trigonometric polynomial with real coefficients) and that ymoX§)| < 1

noticeable is that Ky o), Ky¥) become “flatter” as N increases, around 0 and .

Table 2 lists the estimates for the “regularity index” a) (where y¢, y¢ € CW) -

Figure 7,’:3
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Figure 7. The functions y¢, y¥ and the modulus of their Fourier transforms [y 4), (v )i, for
increasing values of N {sec text), We have each time shifted ,¢ by N — 1, so that supp(y¢) =
supp(y¥) = [—(N — 1), N]. One clearly sees that the v ¢, ¢ become more regular as N increases.
The function y¢ bhas been plotied using the “graphical construction algorithm” explained in
subsection 2B, with the weighting coefficients yh(n) given in Table 1. Oaly 7 iterations were needed.
The plot of ¥ then follows from (y ¥)(x) = Y2 L,(~1)"hy(~n + I}y $)2x ~ n).

(see (4.7)), we find "

JaEGo) (O] + 1) "5 (2m) 72791 + a)*
(A1)

m=0

. {a + Z 2(m+1)(q+1).[2::”ad$‘,I-.I()'(Nmo)(z_jE)I}s
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) V|t 1 v00

B

R

52

o
R
oy

o. 5.90 10.0 15.0 20.0

Figure 7. For the piots of {y9)|" the infinite product (3.46) was computed (truncated at j = 10),
C @MV 8) (O] =TTyl me@ I, With ymo(E) = 2712E, by (n)e™t, where the hy(n) are
\ given in Table 1. The plot of Ky¥) (§) then follows from .

K#)" (61 = 27T, (1) R (=n + 1)/ (ud)" (61

where a > 0 is arbitrary for the moment. Using (ymo)§) = [3(1 + e )Mo (e™),
we find

{imo)a)| - | g | filente= 9}
J=0

2m+1lsin(2-m—l$)‘ j=0
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- 1.00

-.500

-4.00 -2.00 0. 2.00 4.00

~1.00
]

—4.00 ~2.00 0. 2,00 4.00

Figure 7. Continued

4 .800

If we choose a = 7, then [sin(2=""1¢)| 2 \/}_ for 2™a < |€| < 2% 4. Hence

S delGe)™ (8)|(1 + 1)

o0 - m
sG+GY 2<«+1>m2—~(m+1)f2 *12n/3 IQN(ew/e)’
m_0 W/ je0

b mt m -
SG+GY 2‘““""2‘”"”“’(2'"”70"2[] “at T1 ow(en™)|
0

mw=0 J=
12

m=0

SG+C )E 2'"“-“1)[ fo e [m]pN (sinz(21§e))]
=0
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Figure 7. Continued Et
3
where we have used |@y(€")|> = Py(sin’}§) (see subsection 4C). It follows that 4Q> ;
i

1 \ (A.1) is convergent, hence y¢, Ny € Coif

o

py
It
Sall: I

in
(A2) limsup(2m log2)_llog{f“d€ ]—IPN(sinz(Zf"g))] <N-1-a

m—s o 0 0

:.‘. We know P, explicitly (see (4.13)),

N- ' ' ;
(A3) P (sit) = T (M E (i) ST ()
ke0

Pl oW X
P~~~

e > ;

i ™ 17

¥ i e e O

E%th'ébit___f\_!waage %(l



ollows that

ORTHONORMAL BASES OF WAVELETS

T ~— T T T
b !
L ‘ i 4 1.00
1
4
X i
r | J 500
1
i
i
AR, e e e e e o e et e e e} Q.
i
i
i
L | d~.500
R . i . ,
~5.00 ~2.50 0. 2.50 5.00 7.50
T
4 1.00
i
. O S, 2]
; .
1
I
i
i
. J~-1.00
i
Il 1 1 ' v
-500  -2.50 0 2.50 500 7.50

Figure 7. Continued

This can be rewritten as

(A4)

where the a, , are symmetric, a, ;= a Mo and can be calculated explicitly
from (A.3). The product I1 j..oPN(smz(Zf 1¢)) is therefore a symmetric trigono-

N-1
Py(sin?38) = ¥ ay e,
fm —(N~1)

metric polynomial of order 2"(N — 1),

. (A5)

(N—1)2m

I:!)PN(sin’(2f"‘$)) = Y Ivme!
=

= —(N=1)2"
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‘Figure 7. Continued

‘One easily checks that

Iy, my2x = ):"N,z/-’N, m—1; k=1
!

(A.6) (A7)

"N.m;2k+1 = ZaN,ZI-HJN,m—l',k—I’
1

One can

with Jy .« = @y 4, and where we implicitly make the assumption ay, , = 0 for
|k] 2 N. The recursion (A.6) can be represented graphically, in a construction
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Figure 7. Continued

1.00

-.500

500

-.500

~1.00

. 991

analogous to Figure 1. At level 0 we start with J, o; each successive Jy, , is
calculated from Jy ,., by a tree algorithin (see Figure 8), To evaluate the

left-hand side of (A.2) we need to compute

2w z
(AT d in*(2/71¢)) =
(A7) [ € TLPu(sin(2/726) = o

One can check directly from the recursion (A.6), or one can verify on the
graphical representation (see Figure 8b) that only the Iy, mp 0 S m' < m, with
Il = N — 2 play a role in the computation of Iy, m 0 Define dyy = 2N — 3, Then
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Figure 7. Continued

the set of relevant Jy ;e M S N~ 20+, define a vector jy ,» in R,

(A,ﬂ) (jN,"{)k=JN.m’;k' -

Note that dy is always odd, dy = 2my + 1, and that we index vectors v & R¥
by j= —my, —m,+ 1, .,0,0++, my (see (A.8).) The recursion (A.6) defines a
matrix Ty such that, for all m,

(A.9) jN,m+l = TNjN,m‘
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o)
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Figure 8. a. The tree algorithm for the construction of the JIn, m For the sake of simplicity, we have
taken N = 3, The index N is dropped on the figure,

b. Although the number of non-zero J3, m; & more than doubles {sec a)) at every step, only 3

points, at any level, ultimately contribute to /3, m;0- These are the points which can be reached from 0
by the. tree, starting from the botiom.

This matrix has the following form, for N even:

(A.10)

An-2 An-4 An-g 't 4y 4y a3 v ay_, O

AN-1 N~y dn-s 't 43 a4 ap v ay_y N1

c oS
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A cdmpletely analogous matrix is obtained for N odd. From (A.B)-(A.9) we have
JN, 0 = (Tl\'l"jN,O)o'
Hence

lim sup m~1og(Jy, o)

nt— 00

5 limsup m~Mog [Ty ) ™I+ Niw,ol]

< timsup log[(Zy ) "1™] = log(p(Ty)),

m=x

where p(Ty) is the spectral radius of Ty. In view of (A.7) it then follows that
(A.1) is convergent, ie., y¢ € C%, if a.<N —1 — tog,[p(Ty)) It suffices
therefore to compute p(Ty), which can be done numerically, provided N is not
too large. Note that the problem can be reduced considerably by using the fact

that 7, comrutes with the involution I,

I,=8,_,

LF

(where, as before, §, j = —my, ++,0,-- -, my). This effectively reduces the prob-
lem of 2 dy X dy mairix 1o a (my + 1) X (m, + 1) matrix.

If N =2, then dy =1, and the matrix 7, is given by a single number,
Ty = ay,p = 2. Therefore one finds ;¢ € C* if « < }. The cause of this simplifi-
cation can be understood by looking at Figure 8b. For N = 2, the “tree” reduces
to a single vertical line: only one possible path leads from Jy .o t0 Jy, .o if
N = 2, This is equivalent to saying that in the product Hf_oPN(sinz(Z/ ~1£)) only
one possible combination of terms has frequency zero. This is the idea which was
borrowed from Riesz’s lemma (see Remark 4 following Proposition 4.7).
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