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Quantization, the process of approximating continuous-amplF
tude signals by digital (discrete-amplitude) signals, is an important
aspect of data compression or coding, the field concerned with the
reduction of the number of bits necessary to transmit or store
analog data, subject to a distortion or fidelity criterion. The inde-
pendent quantization of each signal value or parameter is termed
scalar quantization, while the joint quantization of a block of
parameters is termed block or vector quantization. This tutorial
review presents the basic concepts employed in vector quantization
and gives a realistic assessment of its benefits and costs when
compared to scalar quantization, Vector quantization is presented
as a process of redundancy removal that makes effective use of four
interrelated properties of vector parameters: linear dependency
(correlation), nonlinear dependency, shape of the probability den-
sity function (pdf), and vector dimensionality itself. In contrast,
scalar quantization can utilize effectively only linear dependency
and pdf shape. The basic concepts are illustrated by means of
simple examples and the theoretical limits of vector quantizer
performance are reviewed, based on results from rate-distortion
theory. Practical issues relating to quantizer design, implementa
tion, and performance in actual applications are explored. While
many of the methods presented are quite general and can be used
for the coding of arbitrary signals, this paper focuses primarily on
the coding of speech signals and parameters.

I.  INTRODUCTION

Current projections for world-wide communications in
the 1990s and beyond, point to a proliferation of digital
transmission as a dominant means of communication for
voice and data, Digital transiission is expected to provide
flexibility, reliability, and cost effectiveness, with the added
potential for communication privacy and security through
encryption. The costs of digital storage and transmission
media are generally proportional to the amount of digital
data that can be stored or transmitted. While the cost of
such media decreases every year, the demand for their use
increases at an even higher rate. Therefore, there is a
continuing need to minimize the number of bits necessary
to transmit signals while maintaining acceptable signal
fidelity or quality. The branch of electrical engineering that
deals with the latter problem is termed data compression or
coding. When applied to speech, it is known as speech
compression or speech coding.

The conversion of an analog (continuous-time, continu-
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ous-amplitude) source into a digital (discrete-time, discrete-
amplitude) source, consists of two parts: sampling and
quantization. Sampling converts a continuous-time signal
into a discrete-time signal by measuring the signal value at
regular intervals of time, Quantization converts a continu-
ous-amplitude signal into one of a set of discrete ampli-
tudes, thus resulting in a discrete-amplitude signal that is
different from the continuous-amplitude signal by the
quantization error or noise. In this paper, we shall assume
that our signals are adequately sampled (see, for example,
[107]) so that the only loss in fidelity is attributable to
quantization,

When each of a set of parameters (or a sequence of
signal values) is quantized separately, the process is known
as scalar quantization. When the set of parameters is quan-
tized jointly as a single vector, the process is known as
vector quantization (also known as block quantization or
pattern-matching quantization). We shall often abbreviate
vector quantization in this paper as. VQ.

A. Purpose and Scope

The main purpose of this paper is to present the reader
with information that can be used in making a realistic
assessment of the benefits and costs of vector quantization
relative to scalar quantization, especially in speech coding
applications. The emphasis is on the exposition of basic
principles rather than the elaboration of various techniques
and their variations for which references to the literature
are provided. Vector quantization is presented as a process
of redundancy removal that makes effective use of four
interrelated properties of vector parameters: linear depen-
dency (correlation), nonlinear dependency, shape of the
probability density function {pdf), and vector dimensional-
ity itself. We shall see that linear dependency and pdf
shape can be employed quite effectively with scalar quanti-
zation while the other two properties cannot. Nonlinear
dependency plays a significant role in the quantization of
speech spectral parameters, while dimensionality is im-
portant for waveform quantization. Because of the relatively
large cost of vector quantization (generally exponential in
the number of dimensions and the number of bits per
dimension), given today’s computation and storage tech-
nologies, the major benefits of vector quantization are
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realized largely at transmission rates of about 1 bit per
parameter or less, which is exactly the range where the
performance of scalar quantizers degrades sharply, While
the concepts presented are quite general, we shall focus in
this paper on the low-rate coding of speech (below 8
kbits/s) as an application.

Vector quantization for the purpose of speech coding
was used by Dudley [31] in the 1950s and Smith [127] in the
1960s. However, it was not until the introduction of linear
predictive coding (LPC) [8), [71], [86], [90] to speech coding
that VQ has had significant activity, starting with the work

of Kang and Coulter [77], but spurred on mainly by the -

work of Buzo et al. [18], [81]. Until recently, the main
purpose for the use of VQ in speech coding has been to
reduce the transmission rate of 2400-bit/s vocoders (voice
coders) to operate at much lower rates while maintaining
acceptable speech intelligibility and quality. Speech coding
at very low rates, in the range of 200-800 bits/s, has
attracted substantial interest [18], [32], [53], [56], [76], (77),
[98], [100], [111], [119}, [137], [138] for use in both govern-
ment and commercial applications, At such low rates, it is
important to maximize the cost effectiveness of every bit
that is transmitted. Vector quantization has been instrumen-
tal in retaining sufficient speech intelligibility to make such
systems of actual utility. Today, very-low-rate coding of
speech remains one of the major successful applications of
VQ. More recently, a mushrooming research activity in the
application of VQ to speech waveform coding at somewhat
higher data rates has been taking place. While much of the
activity has focused on the 8-16-kbit/s range [1], {24], [25)],
(34], 137], [42], [49), [50), [56], [63], [83], [109), [124], some
work has started at data rates below 8 kbits/s [7], [117},
which points to exciting possibilities for high-quality speech
coding at low rates.

We should point out that, in a sense, VQ has been used
regularly and effectively in pattern-recognition type of
speech applications, such as in speech and speaker recogni-
tion (see, for example, [27], [80], [95], [104], [106}, [118],
[126]). After all, the VQ problem is part of the general
pattern-recognition problem of the classification of data
into a discrete number of categories that optimize some
fidelity criterion, Indeed, in the design of vector quantizers,
one often employs well-known techniques from pattern
recognition. However, the basic theory underlying VQ stems
from information theory and has wider implications for the
transmission of information.

The theoretical foundations of data compression and
vector quantization lie in a branch of information theory
known as rate-distortion theory, originally set forth by
Shannon [122]. Also, most of the theoretical developments
since Shannon have taken place as part of the information
theory discipline. Of particular relevance is the book by
Berger [14] on rate-distortion theory, as well as other infor-
mation theory texts, such as [46], [92]. Because a full devel-
opment of vector quantization theory would be highly
mathematical, we have chosen in this paper to concentrate
on presenting the basic notions and the major results with
just enough mathematics that would allow us to be com-
plete without being obscure, we hope.

For further reading, we list a few key references which
also contain other references to the literature. The books of
collected papers edited by Jayant [73] and Davisson and
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Gray [26) are devoted to data compression and cover aspects
of speech compression. Two relatively recent special issues,
the |EEE TRANSACTIONS ON INFORMATION THEORY of March
1982 and the {EEE TRANSACTIONS ON COMMUNICATIONS of
April 1982, are devoted to quantization and to speech
coding, respectively. The most comprehensive treatment of
waveform coding, with applications to speech and video, is
the recent book by Jayant and Noll {74]. The review articles
by Gold [52], Flanagan et al. [39], and Makhoul [87] cover
various aspects of speech coding, while the review articles
by Gersho and Cuperman [49] and Gray [56] describe some
recent work in vector quantization.

B. Paper Outline

In Section Il we present the basic VQ problem and
several distortion measures that are utilized, along with the
basic system design and associated computational and stor-
age costs, The section ends with a VQ model that is
introduced, with examples, to aid the reader in visualizing
the different processes at work in VQ and in assessing the
relative merits of vector and scalar quantization. The re-
mainder of the paper can be viewed as an elaboration of
the basic model, supported by theoretical and practical
results. Section Ill contains some of the major theoretical
results known about VQ performance from rate-distortion
theory. Section IV is devoted to the design of scalar quan-
tizers for vector sources; it includes a comparison between
scalar and vector quantization for low-rate speech coding.
in Section V we present important practical considerations
for vector quantizer design, including methods for reducing
computational and storage costs at some loss in perfor-
mance, and issues of robustness in terms of expected dif-
ferences between design performance and operational
performance. One can take advantage of long-term time-
related signal dependencies to reduce the bit rate further
without sacrificing signal fidelity; several time-dependent
VQ methods are summarized in Section V1. The main paper
ends in Section VI with a brief discussion of VQ in speech
waveform coding and an outlook to the future,

C. Speech Coding

Before we start the main presentation, we describe the
main components of a general speech coding system and
two paradigms that we shall use in this paper as a basis for
our examples from speech coding.

Fig. 1 shows the basic components of a data compression
system appropriate for speech coding. The first component
analyzes the discrete-time signal s(n)' and extracts a vector
of unquantized parameters x(n). The set of parameters
x(n) is quantized into the vector y(n), which is then
encoded into a sequence of bits ¢(n) and transmitted
through the transmission channel or stored in some storage
medium. (The quantizer includes any prediction and feed-
back loops that are an integral part of the quantization
process.) In general, the output of the channel ¢/(n) will be
different from ¢(n) if there are channel errors, At the
receiver, the decoder converts the sequence of bits ¢(n)
into parameter values y’(n), which are then used as input

"The dependence of the discrete-time signals on the sampling
period will be assumed but not shown explicitly.
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Fig. 1. Basic components of a data compression system for speech coding.

to the synthesizer. The output r(n) is the reconstructed
signal which will be an approximation to the input signal
s(n).

If there are no channel errors, then ¢’(n) = ¢(n) and
y'(n) = y(n). The subject of channel errors is important,
but will be treated only briefly in this paper, Unless other-
wise noted, we shall assume no channel errors,

The nature of the synthesizer in Fig. 1 determines the
type of voice coder and dictates the type of analysis to be
performed. Fig. 2 shows an example of a synthesis mode|
that is in general use. The model has two major compo-
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Fig. 2. Major components of the synthesizer in many
speech coding systems,

nents: an excitation (or source) and a spectral shaping filter.
Having chosen a particular synthesis model, any reduction
in transmission rate is accomplished by the quantizer and
the encoder in Fig. 1, The encoder? is assumed to be
noiseless, i.e., it does not introduce any additional noise or
loss in fidelity. It assigns bits to y(n) in such a way as to
minimize the transmission rate, without any loss in fidelity,
and may include additional bits to protect the transmitted
bit stream against channel errors.

The distortion in the output r(n) relative to the input
5(n) may be the result of two processes: modeling and
quantization. The modeling effected by the analysis/
synthesis system in Fig. 1 may introduce a certain amount of
distortion, even in the absence of any quantization (see, for
example, the pitch-excited model described below). in this
paper, we shall focus only on the distortion caused by the
quantization process.

The speech coding task then is to design a system that
minimizes the transmission rate while maintaining a certain
speech quality, or conversely to maximize speech quality
(minimize distortion) for a given transmission rate, subject
to certain system cost constraints, For a given choice of

2The terms “encoder” and “coding” are often used to refer to
the whole compression process, as in speech coding. The noiseless
encoder in Fig. 1 refers to a very specific part of the compression
process. It is hoped that it will be clear from the context which of
the two usages is meant,
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analysis/synthesis system, the distortion and transmission
rates are determined by the quantizer and the encoder,

Speech coding paradigms: We shall employ two basic
paradigms as representative of the applications in speech
coding, a low-rate coding paradigm and a medium-rate
paradigm, The terms low-rate (or narrow-band) and
medium-rate (or medium-band) have been used in the
literature to denote a wide variety of systems. We shall use
the term medium-rate for systems operating in the range
8-16 kbits/s, and low-rate for systems operating below that
range, typically at or below 2400 bits/s. The term very~
low-rate is often used to denote low-rate systems operating
below about 1000 bits/s, Below, we give the basic para-
digms that are used in this paper as examples of current
systems that operate in the two main ranges.

In our paradigms, the synthesis model shown in Fig. 2 is
based on a short-term spectral analysis of speech, where
the speech signal is modeled as the output of an all-pole
spectral shaping filter

G G
H(z)=A(Z) = N (M

14+ Y a(k)z *
k=1

which is excited by a source with a flat spectral envelope.
This is the well-known linear-predictive coding (LPC) model
for speech. The gain G and the predictor coefficients
{a(k),1 < k < N} are computed on a short-term basis over
a frame of about 20-30 ms in which the speech signal can
be considered to be approximately stationary. The coeffi-
cients are obtained as a result of minimizing the energy of
the prediction residual obtained by filtering the input signal
s(n) through the all-zero filter A(z). Ideally, the excitation
signal u(n) in Fig. 2 should match the residual signal so that
the reconstructed signal r(n) will match the input s(n). In
many medium-rate systems, the excitation used is exactly a
quantized version of the prediction residual. This is true of
many predictive waveform coding systems such as adaptive
predictive coding (APC) [10}, [89] and certain implementa-
tions of adaptive transform coding (ATC) [16). We shali refer
to such systems as residual-excited systems. (In Section VI,
we shall include another filter that models the periodicity
in the speech signal.)

At low rates, without using VQ it becomes necessary to
have a simple model of the residual to maintain adequate
speech intelligibility and quality. The most popular model is
the pitch-excited model, where the speech in each frame is
declared as either voiced or unvoiced. (Vowels and nasals
are examples of voiced sounds, while consonants such as p,
t, k, f, s, are unvoiced.) If a voiced determination is made,
i.e., the sound is quasi-periodic at that point, the pitch, or
fundamental frequency is measured and transmitted as well.
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At the receiver, voiced sounds are synthesized by exciting
the spectral shaping filter by a sequence of pulses separated
by the period (Fig. 2 depicts that situation). For unvoiced
sounds, a white random noise source is used as excitation,
In either case, the gain G of the filter H(z) is set such that
the short-term energy in the output is equal to that of the
input speech, Note that the pitch-excited model causes a
certain amount of modeling distortion in the output, which
can be heard even with no quantization of the model
parameters.

Il. VECTOR QUANTIZATION

This section begins with a formulation of the vector
quantization problem, followed by a discussion of the more
common distortion measures that are employed. Next we
present the basic VQ system design and its associated
computational and storage costs. The section ends with the
introduction of a VQ model that is aimed at giving the
reader a view of the various processes at work in vector
quantization, ‘

A. Problem Formulation

We assume that x =[x, x, ++ x5]" is an N-dimensional
vector whose components {x,,1 < k < N} are real-valued,
continuous-amplitude random variables. (The superscript T
denotes transpose.) In vector quantization, the vector x is
mapped onto another real-valued, discrete-amplitude, N-
dimensional vector y. We say that x is quantized as y, and y
is the quantized value of x. We write

y=q(x)

where g(+) is the quantization operator. y is also called the
reconstruction vector or the output vector corresponding to
x. Typically, y takes on one of a finite set of values ¥ =
{1 <i< L), where yy=[w ¥ - ynl" The set ¥ is
referred to as the reconstruction codebook, or simply the
codebook, L is the size of the codebook, and {y;} are the
set of code vectors. The vectors y are also known in the
pattern-recognition literature as the reference patterns or
templates. The size L of the codebook is also called the
number of levels, a term borrowed from scalar quantization
terminology. Thus one talks about an L-level codebook or
L-level quantizer, To design such a codebook, we partition
the N-dimensional space of the random vector x into L
regions or cells {C;,1 € i € L} and associate with each cell
C; a vector y. The quantizer then assigns the code vector ¥
if xisin C;

a(x)=y, ifxeC. ()

The codebook design process is also known as training or
populating the codebook. A method for designing the
codebook will be presented in Section II-C,

Fig. 3 shows an example of a partitioning of two-dimen-
sional space (N = 2) for the purpose of vector quantization,
" The region enclosed by the bold lines is the cell C;. Any
input vector x that lies in the cell C; is quantized as y. The
positions of the code vectors corresponding to the other
cells are shown by dots. The total number of code vectors
in the example of Fig. 3is L = 18.

For N = 1, vector quantization reduces to scalar quantiza-
tion. Fig. 4 shows an example of a partitioning of the real
line for scalar quantization. The code values (output or

X2

Xy

Fig. 3. Paititioning of two-dimensional space (N = 2) into
L = 18 cells. All input vectors in cell C; will be quantized as
the code vector y. The shapes of the various cells can be
very different,

C.
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Fig. 4. Partitioning of the real line into L =10 cells or *
intervals for scalar quantization (N = 1),

reconstruction levels) are shown by dots. Here, also, any
input value x that lies in the interval C; is quantized as y.
The number of levels in Fig. 4 is L = 10. Scalar quantization
has the very special property that while cells may have
different sizes, they all have the same shape, namely, they
are all intervals on the real line. In comparison, note how in
Fig. 3 the cells in two dimensions actually have different
shapes. This freedom of having various cell shapes in multi-
dimensional space gives vector quantization an advantage
over scalar quantization, as we shall see below.

When x is quantized as y, a quantization error results and
a distortion measure d(x, y) can be defined between x and
y. d(x,y) is also known as a dissimilarity measure or dis-
tance measure, As the vectors y(n) at different times n are
transmitted, one can define an overall average distortion

D= lim ¥ dlx(n) ()] )

Nt
If the vector process x(n) is stationary and ergodic® the
sample average in (3) tends in the limit to the expectation

D =¢&[d(x,y)] ’

L
=2 P(’E C)eld(x,y)xe C]

i

L
=Y AxeC)[ dxpp(xd (4
= xe
where P(x & C)) is the discrete probability that x is in
C;, p(x) is the multidimensiona! probability density func-
tion (pdf) of x, and the integral is taken over all compo-
nents of the vector x.

For purposes of transmission, each vector y; is encoded

3Ergodicity allows us to substitute sample (or time) averages for
ensemble averages [28].
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into a codeword of binary digits (bits) ¢; of length B, bits, In

general, the different codewords will have different lengths.

The transmission rate T is then given by
T = BF. bits/s (5)

where

1 M
B ,\4|'.Enm v ng B(n)  bits/vector (6)
is the average codeword length, B(n) is the number of bits
used to code the vector x(n) at time n, and F. is the
number of codewords transmitted per second. It will also
be useful to define the average number of bits per parame-
ter or per dimension®

B
R = ~ bits /dimension. %)

For a codebook of size L, the maximum number of bits
needed to code each vector is

Bmax e logZ L. (8)

In designing a data compression system, one attempts to
design the quantizer such that the distortion in the output
is minimized for a given transmission rate. One major
decision in designing a quantizer is what distortion measure
to use. This is discussed next,

B. Distortion Measures

To be useful, a distortion measure must be tractable, so
that one can analyze it and compute it, and be subjectively
relevant, so that differences in distortion values can be used
as indicating similar differences in speech quality. Most
distortion measures in use today are certainly tractable and,
to some extent, subjectively relevant, However, many re-
searchers have experienced the frustration which accompa-
nies their discovery that a few decibels of decrease in the
distortion is quite perceivable by the ear in one situation
but not in another. The careful researcher has learned that,
while objective distortion measures are necessary and use-
ful tools in the design of speech coding systems, periodic
subjective quality testing is indispensable to making an
informed decision on directions for improving system per-
formance, Below we list some of the major distortion mea-
sures in use today.

1) Mean-Square Error: By far the most common distor-
tion measure is the mean-square error (mse)

hix ) =g (x= ) (x=9) =7 T (= 0

©)
where the distortion is defined per dimension. The popular-
ity of the mse lies mainly in its simplicity and mathematical
tractability. A more general distortion measure based on the
L, norm is defined by

1 N
d(x,y) = N k21 [xx = Yal”. (10)

“Note that R is the bit rate per dimension, 8 is the bit rate per
vector, and T is the bit rate per second. We shall often use the
generic term bit rate to refer to any or all of the three meanings.
We trust the intended meaning will be clear from the context.
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Note that (10) is equal to (9) for r = 2. The two other most
popular values of rare r="1 and r = o0, d, represents the
average absolute error and d, tends towards the maximum
error. In fact, one can show that

lim [d,(x, )] = max {|x; = wl.1 < k< N}.
r—o0
(1)

Minimizing D for r = o0 would be equivalent to minimiz-
ing the maximum quantization error.

For speech coding, d, has been the most popular distor-
tion measure, with d, and d,, being used occasionally.

2) Weighted Mean-Square Error: In the mse d, we
assumed that the distortions contributed by quantizing the
different parameters {x,} were weighted equally. in gen-
eral, unequal weights can be introduced to render certain
contributions to the distortion more important than others.
A general weighted mse is then defined by

dw(x.y) = (x=y) ' W(x~y) (12)
where W is a positive-definite weighting matrix, W= N7/,
where [ is the identity matrix, results in d\, = d,.

One choice for W that is popular in many pattern classifi-
cation applications is W =T"", 'where T is the covariance
matrix of the random vector x

T=e(x-%(x-8"], x=¢[x]. (13
In this case, d,, reduces to
du(x,y) = (x=y) T (x-y) (14)

and is known as the Mahalanobis distance [85].

If, in addition to being positive definite, the weighting
matrix W is symmetric (as in the Mahalanobis distance), one
can factor W as follows:

w=Pp, (15)

The vectors x and y can be transformed into a new set of
vectors ¥ and §

R=pPx §="ry (16)
and

dw(x,¥) = (Px— Py)"(Px - Py)
=(%¥-9)(£-7)
= dz(X',y). (17)

Thus the weighted mse between the original vectors is
equal to the mse between the transformed vectors. There-
fore, for computational purposes, it may be advantageous
to perform the transformation in (16) on all the data before
vector quantization is performed.

3) Linear Prediction Distortion Measures: In LPC analy-
sis, the predictor coefficients { a(k)} are obtained as a result
of minimizing the energy of the prediction residual. One
can show [86] that the solution for the optimum A(z) in (1)
is unique and is computed from the set of simultaneous
linear equations

N

Yoa(k)e(i-k)=—o(i), 1<i<N (18)

kw1

where {¢(), 0 € i € N} are the short-term autocorrelation
coefficients of the speech signal over a single frame. (For a
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speech signal band-limited to 5 kHz, for example, the
number of coefficients N is typically set to 12-14.) The gain
G of the filter H(Z) is set so that when excited by a unit-
variance source the output energy will be equal to ¢(0).
That can be accomplished by setting

N

G =e(0) + T a(K#(K) (19)

-
which is equal to the minimum residual energy. The param-
eters of the filter H(z) are computed every frame, quan-
tized, and transmitted.

The gain G is usually quantized on a logarithmic scale
and transmitted separately. (Some work has been done in
joint quantization of the gain and the LPC parameters
[108]) Because the quantization of predictor coefficients
can lead to instability of the resulting all-pole filter, they are
usually transformed to another set of parameters known as
the reflection coefficients {K;,1 < k < N} or partial corre-
Jation (PARCOR) coefficients [69]. Reflection coefficients
result as a byproduct of solving (18) or can be computed
recursively from the predictor coefficients (see, for example
[86], [90]). For a stable H(z), the reflection coefficients have
the property

|Kd <1, 1<ksN. (20)

Because for values of |K,| approaching 1 the poles approach
the unit circle, small changes in K, can result in large
changes in the spectrum. Therefore, for quantization pur-
poses, the reflection coefficients are usually transformed to
another set of coefficients that exhibit lower spectral sensi-
tivity as K approaches 1. Two popular transformations are
(78]

2
Sk=;sin‘1l<k, 1<ks N (21)
1 1+ K,
G, =~ log =tanh™'K,, 1<k<N.
2 1 - k
(22)

The parameters G, are known as log-area-ratios (LARs)
from the acoustic tube analogy of the vocal tract [8], [90]
and possess the property that small changes in G, are
approximately proportional to corresponding changes in
the log spectrum of H(z) [131]. The mse d, as well as the
minimax error d,, have been used to quantize $, and G,.
The quantization properties of K,, S, and G, have been
studied by several researchers [61], [72], [131],

An alternative distortion measure used in quantizing pre-
dictor coefficients was proposed by ltakura and Saito [68],
[70); it derives from maximum-likelihood principles. A mod-
ified form of the ltakura-Saito distortion between one
‘vector of predictor coefficients x =[a(1) a(2) -+ a(N)]"
and another vector of predictor coefficients y is given by
(see [57] for variations on the Itakura-Saito distortion)

d(x,y) = (x—y) ®(x~y) (23)
where

® = {6(i-Kk)/$(0),0<si ks N=1} (24

is the normalized autocorrelation matrix whose coefficients
¢(/ — k) were used in computing the vector of predictor
coefficients x in (18). Since the autocorrelation coefficients
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in (24) are normalized by ¢(0), one can show that the matrix
®, and the vector x uniquely determine each other. It is
important to note that @, in (23) is effectively a weighting
matrix but, unlike in (12) where W is fixed, here ®, changes
value as x changes. Since @, #®, for x#y, the
Itakura-Saito distortion is not symmetric with respect to its
arguments, i.e., d(x,y)# d,(y,x). The distortion measure
is not a distance or a metric, By contrast, the weighted mse
distortion is a symmetric distance and metric.

Even though the computation of d, in (23) implies a
matrix multiply, the computation can be simplified consid-
erably and reduced to a scalar (dot) product [68].

4) Perceptually, Motivated Distortion Measures: For
very small distortions, and therefore high bit rates, most
reasonable distortion measures, including those mentioned
above, all exhibit similar behavior, by linearity arguments.
Furthermore, they would all be expected to correlate well
with subjective judgements of speech quality. However, as
bit rate decreases and distortion increases, simple distortion
measures have not always correlated well with perceptual
judgements. Since VQ is expected to be especially useful at
low bit rates, it becomes more important to develop and
use distortion measures that are correlated better with
human auditory behavior. A number of perceptually based
distortion measures, and others that correlate well with
subjective judgements, have been used in speech coding
(see, for example, [74, Appendix E}, [11], [12], [94}, [10Q),
[101], [134)]). If high speech quality at a given bit rate is the
most important consideration in a coder design, then one
would do well to consider the use of a distortion measure
that correlates well with human perception,

C.  Codebook Design

As mentioned above, to design our L-level codebook, we
partition N-dimensional space into L cells {C;,1 < i< L)}
and associate with each cell C; a vector y. The quantizer
then assigns the code vector y if x is in C;. A quantizer is
said to be an optimal (minimum-distortion) quantizer if the
distortion in (4) is minimized over all L-level quantizers.
There are two necessary conditions for optimality. The first
condition is that the optimal quéntizer is realized by using a
minimum-distortion or nearest neighbor seiection rule

qg(x) =y, iff d(x,y) <d(x,y), j#i, 1<j<L.
(25)

That is, the quantizer chooses the code vector that results
in the minimum distortion with respect to x. (Ties are
decided by some rule.) The second necessary condition for
optimality is that each code vector y; is chosen to minimize
the average distortion in cell C,. That is, y is that vector y
which minimizes

D, =&[d(x,y)|xe C] =fxec‘d(x,y)p(X) dx.

(26)

We call such a vector the centroid of the cell C;, and we

© write

y = cent(C;). (27)

Computing the centroid for a particular region will depend
on the definition of the distortion measure. (The cells thus
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defined are known as nearest neighbor cells, Voronoi cells,
or Dirichlet regions [48])

In practice, we are given a set of training vectors. { x(n),
1< n< M}, A subset M, of those vectors will be in cell
C;. The average distortion D, is then given by

D=+ T d(xn), (28)

ixeC;

For either the mse or the weighted mse criterion, one can
show that D; is minimized by

p= T x(r) ()

i xeC;

or y is simply the sample mean of all the training vectors
contained in C;. For the Itakura-Saito distortion d;, one can
show that y is computed by first averaging the normalized
autocorrelations corresponding to the sample vectors

¢,,(k)=%):¢x(k), O<k<sN  (30)

ixeC

where ¢,(k) are normalized such that ¢,(0) = 1. The vector
¥. is then obtained as the solution to (18) with ¢,(k) as the
autocorrelation coefficients,

One method for codebook design is an iterative cluster-
ing algorithm known in the pattern-recognition literature as
the K-means algorithm3 In our problem here, K = L. The
algorithm divides the set of training vectors { x(n)} into L
clusters® C; in such a way that the two necessary conditions
for optimality are satisfied. Below, m is the iteration index
and C,(m) is the ith cluster at iteration m, with y(m) its
centroid. The algorithm is as follows:

K-Means Algorithm

Step 1: Initialization: Set m = 0. Choose by an adequate
method a set of initial code vectors y(0), 1 </
< L. (See Section V-E)

Step 2: Classification: Classify the set of training vectors
{x(n), 1 € n< M} into the clusters C; by the
nearest neighbor rule

xe C(m), iffd[x,y(m)] < d[x,);( m)].
all j# 1.

5The algorithm presented here was described by Forgy in 1965
[41] and is the clustering algorithm described most in the pattern-
recognition literature [5], [30], {64), {99], [129]. The name K-means
comes from MacQueen [84], who actually describes a different
algorithm. In an unpublished paper in 1957, Lloyd had indepen-
dently developed the same algorithm as Forgy's but for the scalar
quantization problem and a known distribution (Lloyd's paper has
recently been published {82].) The application of this algorithm to a
training sequence and the VQ case has been termed in some of the
information theory literature as the generalized Lloyd algorithm
[56). Linde, Buzo, and Gray {81] have shown that the algorithm
works with a large class of distortion measures, including measures
that are not metric, and so the algorithm has also been called the
LBG algorithm.

5We use the same symbol C; to represent both the cluster and
the cell corresponding to code vector y. Cell C; is that region of
N-dimensional space that is closest to y based on the nearest
neighbor rule, while cluster C; is that subset of training vectors
which are closest to y; based on the same rule, i.e., cluster C; is the
set of training vectors contained in cell C;.
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Step 3: Code Vector Updating: m « m + 1. Update the
code vector of every cluster by computing the
centroid of the training vectors in each cluster

y(m)=cent(C(m)), 1<i<lL.

Step 4: Termination Test: If the decrease in the overall
distortion D(m) at iteration nm relative to D(m
— 1) is below a certain threshold, stop; other-
wise go to Step 2,

Any other reasonable termination test may be substituted
for Step 4 above.

The above algorithm can be shown to converge to a local
optimum (see, for example, [5], [81]). Furthermore, any such
solution is, in general, not unique [33], [58]. Global optimal-
ity may be achieved approximately by initializing the code
vectors to different values and repeating the above al-
gorithm for several sets of initializations and then choosing
the codebook that results in the minimum overall distor-
tion. In Section V-E we shall discuss methods for perform-
ing initialization,

D. Computational and Storage Costs

Having designed a codebook as described above, one can
then use it to quantize each input vector x(n). The quanti-
zation is performed as shown in (25) by computing the
distortion between x(n) and each of the code vectors, then
choosing the code vector with the minimum distortion as
the quantized value of x(n). This type of quantization is
known as a full search since all code vectors are tested for
guantizing each input vector. For an L-level quantizer, the
number of distortion computations needed to quantize a
single input vector is L. While a distortion computation can
be arbitrarily complex, we shall assume here that each
distortion computation requires a total of N multiply-adds
(this is true for the mse and one version of the takura-Saito
distortion). Therefore, the computational cost for quantiz-
ing each input vector is

€= NL. (31)

If we encode each code vector into B = RN = log, L bits
for transmission, then

F= N2FN, (32)

Thus computation cost grows exponentially with the num-
ber of dimensions and the number of bits per dimension.

Another important part of the quantization cost is mem-
ory or storage cost, i.e., how much storage is needed to
store the code vectors. We shall measure storage assuming
one storage location per vector parameter. It is clear that
storage cost is then given by

M= NL=N2®N, o (33)

Like computational cost, storage cost is exponential in the
number of dimensions and the number of bits per di-
mension.

The costs given above are for the full search algorithm. In
Section V we shall present methods that reduce computa-
tional costs substantially at the cost of relatively small loss
in performance and/or increase in storage.

While we place heavy emphasis on the costs associated
with the quantization process itself, it is also important to
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keep in mind the costs associated with design of the
codebook in the first place. In the K-means algorithm
described above, most of the computations result from the
classification step; code vector updating presents a negligi-
ble amount of computation by comparison. For an L-level
quantizer, M training vectors, and / iterations, the computa-
tional cost for training is

Fr = NIMI = N2NRM1, (34

The storage cost, including the storage needed to store all
the training vectors, is

M= N(L+ M), (35)

For reliable design of the codebook, it has been our experi-

ence that one needs at least 10 and preferably about 50

training vectors per code vector, so that M is on the order
of 10L or more (see Section V-E). So, storage cost for

training is largely dominated by the amount of training

vectors needed.

E. Vector Quantization Model

Before we delve into more mathematics and examine the
detailed workings of vector quantization, we shall present a
simple model of vector quantization, which we hope will
give the reader a basic understanding of the various pro-
cesses at work. The concepts presented will be illus-
trated by simplified examples.

1} Basic Model: Our VQ model identifies four proper-
ties of vector components which, when utilized appro-
. priately in codebook design, result in optimal performance.
The four properties of vector components are: linear de-
pendency, nonlinear dependency, pdf shape, and dimen-
sionality. These four properties are interrelated to a certain
extent, For example, even though the multidimensional pdf
shape completely specifies any dependencies among vector
components, we shall see that pdf shape still plays an
important role in determining optimal performance, even
when all dependencies among components are removed.
For a given codebook size, VQ takes advantage of the four
properties above by proper placement of the code vectors
in N-dimensional space. By code vector placement we
mean having the freedom to place code vectors where they
are needed most so as to minimize the given distortion
measure. For example, one would not place code vectors in
regions of zero probability. There are two aspects of code
vector placement that are of interest: code vector spacing
or density and cell shape. Code vector spacing refers to
how close the code vectors are to each other. In general,
one would expect closer spacing (higher density) in high
pdf regions (i.e., where p(x) is large) and wider spacing of
code vectors in regions of low pdf. Once the code vectors
are specified, then the cell shapes are automatically de-
termined by the distortion measure, Conversely, once all
the cell shapes and positions are specified, then the code
vectors are automatically determined as the cell centroids.
We shall see below that it will be beneficial to think in
terms of cell shapes to gain a better understanding of the
workings of VQ, for it is the freedom we have to choose
different cell shapes in higher dimensions (N > 1) that
allows us to exploit dimensionality to minimize distortion
in a way that is not possible with scalar quantization.
Below, we demonstrate how a vector quantizer chooses its
code vector placements and cell shapes, taking advantage
of the four vector properties to optimize performance. The
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examples are designed to expose the processes at work in
VQ in a simple way and to show how they may differ from
scalar quantization,

2) Dependency: Data compression is largely a process
of redundancy removal; it is not necessary to waste bits in
transmitting redundant information. Redundancy usually
implies some sort of dependency among transmission
parameters, We shall classify statistical dependency into
two types: linear dependency and nonlinear dependency.
These terms are explained below.

Linear dependency is what we normally think of as corre-
lation. Two random variables that are correlated are linearly
dependent. If the variables are uncorrelated, they are no
longer linearly dependent, but they may still be statistically
dependent. The latter “residual’” dependency we call non-
linear dependency; it is whatever dependency remains after
the linear dependency is removed. Two (zero-mean) vari-
ables x, and x, are uncorrelated if the expected value of
their product is zero :

&[x;x,] =0 (uncorrelated). (36)

But x, and x, are independent if and only if their joint pdf
is equal to the product of the individual (marginal) densities
of x, and x,

p(x, %) = p(x)p(x;),  forall x;,x, (independent).

(37)
if x, and x, are uncorrelated but dependent (i.e., (36)
applies but not (37)), then that dependency we call nonlin-
ear. We shall now demonstrate how one can take ad-
vantage of both types of dependency in reducing the nec-
essary bit rate for transmission. In the examples below we
shall use the mse as our distortion measure,

EXAMPLE 1

x, and x, are two random variables whose joint pdf
p(%,,%,) is shown in Fig. 5. The density is uniform and
nonzero inside the rectangle and zero outside the rectan-

alxy)

d
)

;4 Jﬂ-; zﬁ IV

ath

fig. 5. An example of a uniform pdf p(x;, x;) in two di-
mensions; the density is zero outside the region C. Shown
also are the marginal densities p(x,) and p(x;). x; and x; in
this example are correlated.
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gle. Let the region inside the rectangle be denoted by C,
then

1
p(a, ) =p() = {2 *€€ (38)
0, otherwise,

The rectangle has sides a and b, and is oriented at an angle
¢ = m/4. Shown also in Fig. 5 are the marginal densities
p(x;) and p(x,), which in this example happen to be equal.
It is clear from (38) and the marginal densities in Fig. 5 that
(37) does not apply, and so x, and x, are dependent. One
can also show that x, and x, are correlated, so that (36) is
not true either.

Now, let us use a scalar uniform quantizer to quantize x,
and x, independently. A uniform quantizer is one whose
quantizing intervals C; are of equal length. (Such a quan-
tizer minimizes the mse only for a uniform density and,
therefore, would not be optimal for quantizing x; and x, in
this example.) We shall quantize x; and x, using quantiz-
ing intervals equal to A, Since x; and x, have values that
range between —(a + b)/2y2 and (a + b)/2y2, the num-
ber of levels needed to quantize each of x; and x, is equal
to

a+b

L= by = (39)

x, and x, can be coded using R, = log, L, bits and R, =
log, L, bits, respectively. The vector x can be coded, then,
using

(a+b)?
207

The two scalar quantizers correspond to using a vector
quantizer with a total number of levels

(a+ b)2 '
Lx=L1L2-T' (41)

Indeed, such a quantizer can be obtained by first demarking
the extreme values of x, and x, by the dashed rectangle (it
is a square in this example) enclosing the region Q in Fig. 5,
and then drawing a rectangular grid with the separation
between grid lines equal to A in both directions (see Fig. 8).
Such a quantizer would have quantization cells in the form
of squares, each of area A% Clearly, the total number of
such squares inside the dotted region Q is obtained by
dividing the total area by A%, The result is equal to L, in (41).
Such a vector quantization code is known as a product
code because it is the Cartesian product of the codes for
quantizing x, and x, separately. The use of a product code
for this example is clearly wastefu! of bits since regions of
zero probability are assigned some of the bits, ,
We have seen above that, with a product code, the total
number of quantization levels is proportional to the area of
the whole quantization region (region Q in Fig. 5). There-
fore, if the area of the guantization region can somehow be
reduced, the number of quantization levels and the corre-
sponding bit rate will also be reduced. For our example,
one can perform a coordinate transformation via a rotation
that transforms Fig. S into Fig. 6. The vector x is transformed
into another vector u. One can show that the new coordi-
nates u, and u, are, in fact, uncorrelated. With the proper
rotation, any set of random variables can be rendered
uncorrelated, as we shall see in Section IV. In the special
case of the.example in Fig. 6, we see from the marginal

B,= R, + R, = log, L,L, = log, bits. (40)
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Fig. 6. The pdf in Fig. 5 after a rotation of coordinates, u,
and u, are now uncorrelated and independent.

densities shown in the figure that

p(u, up) = p(w)p(wy),  forall uy,u,

and, therefore, u, and u, are also statistically independent,
Performing uniform scalar quantization in this case with a
quantizing interval of length A yields a number of levels
equal to

a b
L-| ="A_ Lz"""'K
ab
L,= L, = R (42)

The corresponding number of bits is

ab
B, = log, e (43)

The difference in the number of bits needed to code x and
u can be seen from (40) and (43) to be

B, — B, = log E—t—b—)—z- (44)
X ("] 2 Zab .
For example, for a = 2b ‘
B,— B,=1.17bits  (a=2b). (45)

Therefore, the rotation saves us in excess of 1 bit per
transmitted vector, Such a difference can become signifi-
cant at low data rates.

In comparing bit rates in (43) we made an implicit as-
sumption that the total quantization distortion is the same
for both examples of Figs. 5 and 6. Otherwise, comparing
bit rates as such is not meaningful. In fact, for small A and,
hence, large B, and large B,, one can show from (4) that the
total distortion in both cases is about the same. Differences
in distortion arise as A increases and boundary effects near
the edges of the rectangle become significant. Under such
circumstances one must be careful to equalize the distor-
tions before comparing bit rates. At such low bit rates, (45)
would not be expected to hold; it would most likely de-
crease,

EXAMPLE 2

Example 1 demonstrated how one can take advantage of
decorrelation through rotation to reduce the bit rate in
scalar quantization of a vector. In this example, we shall
demonstrate how, through vector quantization, one can
take advantage of nonlinear dependencies to reduce the bit
rate,
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Fig. 7. An example where u, and u, are uncorrelated but
dependent; this type of dependency is termed nonlinear.

~le
b

Fig. 7 shows a different example of a pdf that is nonzero
and uniform inside the hatched region C and zero other-
wise. Since the area of the hatched region is 5ab/8, we
have

8
plu)={55" Y€€ (46)
0, otherwise.

One can show that, like the example in Fig. 6, u; and u, are
uncorrelated but, unlike in Fig. 6, u, and u, here are not
independent, as is clear from (46) and the marginal densi-
ties in Fig. 7. Such statistical dependency is'termed nonlin-
ear; it cannot be removed by a process of decorrelation. A
scalar quantizer designed for u, and u, in Fig. 7 will yield
the same bit rate B, in (43). To take advantage of the
nontinear dependency we must use a different vector
quantizer that partitions only the hatched area in Fig. 7 and
does not waste bits inside the small rectangle. One such
quantizer would divide only the hatched area into squares
of equal area A% (Such a guantizer would yield the same
distortion as the scalar quantizer for small A.) The number
of levels and bits for this vector quantizer would be

5 ab 5ab
—‘=-5-Ki- B = 'OSZEA_Z' (47)

The reduction in bit rate between a scalar quantizer and a
vector quantizer in this case is the difference between (43)
and (47)

v,

8
8, ~ B, = log, T 0.68 bits. (48)

Therefore, taking advantage of nonlinear dependency in
this case saved us 0.68 bits/vector.

We have seen how, with proper cell or code vector
placement, a vector quantizer was able to take advantage of
nonlinear dependencies to reduce the bit rate. It should be
clear that any vector rotation will not affect the vector
quantizer’s ability to locate its cells properly. Therefore, VQ
can make effective use of all dependencies (linear or non-
linear) simply by proper code vector placement,

3) Dimensionality:

EXAMPLE 3

The vector quantizer in Example 2 employed the square
as the shape of all its cells. The square shape was inspired
from the scalar quantizers used earlier. But one property of
vector quantizers in higher dimensions is that one has the

freedom to choose other cell shapes and not be restricted
to the N-dimensional cubes suggested by scalar quantiza-
tion. Let us examine the effect of using a different shape,
such as the hexagon, to partition our two-dimensional
space. Fig. 8 shows a covering of space by squares and Fig. 9
shows a space covering by regular hexagons. Let each

o s

[}

. . . . . . . A

¥
. . . . . . .
. . L[] . L] . .
* L] . . 1 L] *
. . . . . 0 .

Fig. 9. Packing of two-dimensional space with regu
hexagons. For the same number of cells in a given area w
a uniform pdf, hexagons have a lower mse than squares.

hexagon have sides of size 8. The area of the hexagon is
then
33

Ay = —5—82. (49
To compare the performance of the square quantizer to the
hexagon quantizer, we must compare the quantization mse
for both quantizers. If we assume that the code vectors are
jocated in the center of the square and the hexagon in each-
case (as shown by the dots in Figs. 8 and 9), one can show
that the mse for each cell is given by

A4

Eg = ° (square) (50)
5v3

Ey = —‘;——8“ (hexagon) (51

where the subscripts denote the respective quantizers. The
total mse is then obtained by multiplying (50) and (51) by
the number of cells (levels). If we make the area of the
hexagon equal to the area of the square, i.e., set Ag = & =
Ay in (49), then, neglecting edge effects, both quantizers
will have the same number of cells covering any given area
and, therefore, they will have the same bit rate. However,
the ratio of the distortions can be shown to be

(As=An) (52)
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which is' equivalent to —0.167 dB. That is, the hexagon
quantizer will yield a lower mse than the square quantizer
by a fraction of a decibel. Conversely, if we equalize the
distortions, i.e., set Es = £y, then the ratio of the areas will
be

AH

A s

This means that, for the same distortion, the hexagon has a
slightly larger area than the square and, therefore, will
require proportionately fewer cells to cover the same space.
Therefore, the bit rate for the hexagon will be lower by an
amount equal to log, Ay,/As, which from (53) is equal to
0.028 bits. -

The gain of 0.028 bits resulting from the use of a hexagon
quantizer can be obtained in the examples of Figs. 6 and 7
in addition to any other gains obtained by taking advantage
of linear and nonlinear dependencies. This means that,
even in the case when two random variables are indepen-
dent, as in Fig. &, vector quantization can squeeze out an
additional small fraction of a bit by taking advantage of the
higher dimensionality using an appropriate cell shape.

4) PDF Shape: In the examples above, the cells always
had not only the same shape throughout the quantization
region but also the same size. Effectively, the cell spacing
was uniform, Uniform cell spacing is certainly a reasonable
choice with a uniform pdf. However, for nonuniform pdf
shapes, one would expect that some form of nonuniform
cell spacing would be needed for optimal performance. We
shall see in Section Il how scalar and vector quantizers
make effective use of pdf shape to reduce the bit rate.

In this section, we presented a model for vector quantiza-
tion and gave a few examples to illustrate some of the basic
principles. In the following sections, we shall review some
of the theoretical foundations of vector quantization and
give practical examples from speech coding. However, the
basic concepts presented in the vector guantization model
above and in the simplified examples will still hold when
we deal with real-world data.

=1.0194 (E=E,). (53)

I, THEORETICAL VECTOR QUANTIZER PERFORMANCE

In this section we review some of the important theoreti-
cal tools that are used to help estimate the performance of
vector quantizers, along with some of the known results.
The presentation is under three headings: rate-distortion
theory, scalar quantization, and asymptotic vector quantiza-
tion. Rate-distortion theory and scalar quantization will give
us lower and upper bounds, respectively, on the mini-
mum bit rate achievable by vector quantizers for any given
distortion.

This section is theoretical in nature and is rather long. At
first reading, we recommend that the reader take only a
cursory look at the contents of this section to gain familiar-
ity with the basic definitions and concepts presented, and
move quickly to Section IV and the remainder of the paper.

A. Rate-Distortion Theory

Since a major purpose in performing data compression is
to minimize the bit rate for a desired level of distortion, it is
important in a particular situation to know the theoretical
lower bound on the bit rate for any quantizer. By knowing
such a bound, one can compare the performance of differ-
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ent quantizers to that bound and decide whether to search
for other possibly more complex quantizers that might
approach that bound more closely. Rate-distortion theory, a
branch of information theory, deals with obtaining such
lower bounds without requiring the design of actual quan-
tizers. For a given distortion D, one can compute either
R(D), the rate-distortion function, defined as the minimum
achievable rate (per dimension) for a given distortion D, or
its inverse D(R), the distortion-rate function, defined as
the minimum achievable distortion for a given rate R. The
performance limit provided by D(R) or R(D) applies to all
methods of source coding, not just vector quantization. It
specifically allows for coders that incorporate arbitrarily
long delays. In light of the complexity of encoding per-
mitted by this theory, not being able to come very close to
the optimal performance when investigating practical vec-
tor quantizers may not be indicative of a meaningful dispar-
ity. It is when the performance of practical coders is rela-
tively close to the rate-distortion limits that the theory is
most useful. Below, we present a summary of the relevant
results from rate-distortion theory, preceded by an intro-
duction to the concept of entropy from information theory,

1) Coding of Quantizer Output: We mentioned in
Section |l that one can code the guantizer output vectors
{y,1 <i< L} withlog, 1 bits each. If L is a power of 2, the
coding is very simple, but if L is not a power of 2, then one
can group several vectors together and then perform the
coding. For example, if L = 5, then to code a single vector
would require 3 bits instead of the desired log, 5 = 2.32
bits, since one cannot transmit a fractional number of bits
as such, However, if we group three vectors together, the
total number of levels is equal to > = 125 & 27, then each
triplet can be coded using 7 bits, for an average of 2.33 bits
which is close to the desired average. Henceforth, we shall
disregard the problem of fractional bits and simply assume
that values can be grouped together, if desired, to achieve
the needed rate.

in general, coding L vectors with log, L bits each is
actually the maximum rate needed for coding. The mini-
mum average achievable rate to code the vectors {y} is
given by the entropy of {y} [46], defined as

H(y) = = X P(y)log, P(x) | (59

i=1

where H(y) is the entropy of the discrete-amplitude vari-
able y and P(y) is the discrete probability of y. H(y) is also
called self-information, and it is a measure in bits of the
information in {y)}. Since all discrete probabilities must
obey
L
0< P(y) < Z1P(yf)=1 (55)
i

one can show [46] that entropy is bounded by

0 < H(y) <log, L. (56)
Each vector y is coded using
B.= —log, P(y) bits (57)

5o that vectors with different probabilities will have differ-
ent wordlengths. The resulting code will be a variable-length
code, with an average rate equal to the entropy H(y) in
(54). This type of coding is known as entropy coding. The
Huffman code [66] is a well-known, straightforward method
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for performing entropy coding. With variable-length cod-
ing, appropriate buffering schemes would need to be im-
plemented if transmission is over a fixed-rate channel, Any
such buffering would, of course, introduce a delay in the
system. Also, variable-length coding is particularly sensitive
to channel errors. Permutation codes [15] offer an alterna-
tive for entropy coding using fixed-length codes; however,
the codewords can be very long, which also results in
delays. In practice, variable-length codes with buffering are
used.

One can show that maximum entropy is achieved when
all vectors y have equal probability [46], i.e., P(y) =1/L,in
which case

Hmax(") = B . = log,L Dbits. (58)

For this special case, a fixed-length code is, in fact, optimal.

Entropy coding is one form of noiseless coding in that
the coding does not introduce any additional noise or
distortion beyond that introduced by the quantization pro-
cess; it merely takes advantage of the probability distri-
bution to minimize the bit rate, (The purpose of the noise-
less encoding box in Fig. 1 is to minimize the bit rate
without introducing extra distortion.)

One important and useful property of entropy coding is
that, even if the number of levels L is infinite, the entropy
can still be finite. (Values with very small probability con-
tribute very little to the entropy since the limit as P — 0 of
— Plog, P is zero.) Therefore, one can partition N-dimen-
sional space into a countably infinite number of finite
(nonzero) cells, and the entropy of the resultant codebook
will be finite, In practice, L must be finite, but it could be
made large without substantially increasing the bit rate,
provided entropy coding is used.

As the cells in the quantization process are made smaller
so that their size goes to zero, the quantizer discrete out-
puts { %} tend to the original continuous-amplitude source
x; the quantization distortion goes to zero; and the entropy
becomes infinite, In other words, it takes infinitely many
bits to transmit a continuous-amplitude source. For such a
source, it will prove useful to define its differential entropy
[14]

h(x) = - L p(x) log, p( x) dx (59)

where h(x) is the differential entropy of the vector x and
the integral is over all the components of x. Unlike ab-
solute entropy, which was defined in (54), differential en-
tropy may be positive or negative, As such, differential
entropy values are not meaningful in and of themselves;
they are meaningful only relative to other differential entro-
pies. Thus the difference between two differential entro-
pies is a meaningful measure of the difference in informa-
tion (in bits) between the corresponding sources.

For a random variable x with a given variance ¢, one can
show that h(x) is bounded above by [122)

h(x) < h(x) =1 log, (2ec?) (60)

where hg(x) is the differential entropy of a Gaussian pdf
with variance o2, We shall see that Gaussian sources play a
special role in bounding the performance of coding sys-
tems,

2) Rate-Distortion Theory Results: Most of the results
of rate-distortion theory have been obtained for a scalar
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source that is defined as a function of a discrete variable
(such as sampled time). Let x(n) be a discrete-time, con-
tinuous-amplitude random source, i.e,, a stochastic se-
quence. If all samples of x(n) are independent and identi-
cally distributed, we say that the source is memoryless and
is completely specified by a single pdf, p(x). It would
appear that in quantizing a memoryless source, vector
quantization should not have any advantages over scalar
quantization. However, we have already seen in Example 3

“that VQ indeed can achieve better performance even in the

case of a memoryless source. Therefore, in investigating
rate-distortion limits we group samples of the source in
blocks or vectors and determine the conditions that achieve
those limits.

We shall group N consecutive values of x(n) into a
single vector x, so that x is a random vector. The vector x is
then quantized into a vector y = g(x), where y is one of
the vectors in the set {y,1 < /< L}, with L possibly in-
finite. The average distortion D in representing x as y is
given by &[d(x,y)], where d(x,y) is the distortion per
dimension (i.e., per sample of x(n)). The vectors y can be
transmitted at an average bit rate of R = H(y)/N bits per
sample, where H(y) is the entropy of y as defined in (54).
The minimum achievable distortion Dy (R) for a given rate
R is given by

1
Dn(R) = min#[d(x,y)], with—H(y) <R
q(x) N

(61)

where the minimum is taken over all possible mappings
q(x). The distortion-rate function D(R) is obtained in the
limit as N — oo

D(R) = lim Dy(R). (62)

D(R) is the minimum attainable distortion in coding the
source x(n) at a rate R; it is a lower bound on the perfor-
mance of any quantization scheme, The rate-distortion
function R(D) is the inverse of D(R) and is defined simi-
Jarly.” We shall have occasion to use both functions in this
paper, although D(R) Is used more in practice since we are
typically given the rate R and we design our quantizer to
minimize the distortion,

The main result of rate-distortion theory that relates to
VvQ is that, by using a vector quantizer, one can in principle
approach the distortion-rate function arbitrarily closely by
increasing the vector size N. This is essentially implied in
the definition of D(R) in (62). Therefore, D(R) is not mere-
ly a lower bound for any quantizer, it is actually achiev-
able, in theory, by a vector quantizer of high dimension.

The distortion-rate function D(R) has two important.
_ properties: it is monotone decreasing with R and it is con-

vex. Furthermore, for the mse distortion, D(R) decreases at
the rate of about 6 dB/bit for large R. We shall exhibit
these properties in specific examples below.

While defining R(D) or D(R) is straightforward, neither
is simple to evaluate analytically, except for a few special
cases, For a memoryless (zero-mean) Gaussian source with
variance o2 and a mse distortion, R(D) and D(R) are

7The general definition of R(D) in rate-distortion theory is given
in terms of the concept of mutual information [14]. We have
chosen here a somewhat narrower definition that is sufficient for
our purposes,
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given by [14]

02
Rs(D) = max {0,% log, —D->

1 2 2
={zlogza /D, 0<D<o (63)
0, D > o?
Dg(R) = 272, (64)

if D > o? is given, then we need not transmit any informa-
tion (R = 0) because we can always obtain D = &2 by using
zeros for the quantized values of x(n), since the quantiza-
tion error is then equal to x(n). By dividing (64) by ¢? we
obtain the normalized distortion which can be measured in
decibels

2 Dg(R) ‘

where script 2 is the normalized distortion in decibels. The
negative of 2 is just the signal-to-noise ratio (SNR) in
decibels of the quantizer
02
SNR = —2 = 10log,q 5 dB. (66)

For much of this paper we shall use 2 instead of SNR to
measure quantizer mse distortion.

There are scant explicit D(R) results for memoryless
non-Gaussian sources (see the result for Laplacian densities
by Berger [14]). However, lower and upper bounds exist

D*(R) € D(R) < Dg(R). (67)
Thus D(R) is upper bounded by the distortion-rate func-
tion for a Gaussian source. The lower bound D*(R), known
as the Shannon lower bound, for a mse distortion is given

by
D*( R) = _l_zlh(X)z—ZR (68)

2me

R*( D) = h(x) — }log, 2meD (69)

where h(x) is the differential entropy of the memoryless

source. The Shannon lower bound is achievable for many
sources only as R — oo, From (60) and (68), we can write
2*(R) as a normalized distortion in decibels

D*(R) = —6.02R — 6.02[ hg(x) — h(x)] dB (70)
or
Dc(R) — 2*(R) = 6.02[ he(x) — h(x)] dB
*6.02[R(D) — R*(D)] dB.
(71)

Since hg(x) > h(x), @*(R) is less than the Gaussian distor-
tion-rate function by an amount equal to the difference
between the source and Gaussian differential -entropies (in
bits) multiplied by 6.02 dB/bit. Equation (70) makes it very
clear that the asymptotic behavior of the distortion-rate
function for many sources is expected to decrease at a rate
of —6.02 dB/bit as R — 0.

Table 1 shows four pdfs that are common models used
for certain signal distributions. Shown are the differential
entropies, the difference R;(D) — R*(D), and the corre-
sponding difference in distortion. The Gamma pdf shows
the greatest deviation from the Gaussian; it is by far the
sharpest or most peaked of the four pdfs, and it becomes
unbounded at x =0, The Gamma density is often men-
tioned as a good mode! for the first-order pdf of speech [74,
p. 32]. However, this model is only good for long-term
statistics. Medium-term statistics (on the order of 100 ms),
where the speech amplitudes are normalized with respect
to the medium-term energy, show that the Laplacian pdf
becomes a better model of speech [96]. Short-term statistics
{on the order of 20 ms) show the Gaussian pdf to be a good
first-order model [96]. The Gaussian pdf also appears to be a
good short-term first-order model for the prediction resid-
val in adaptive predictive coding [7], [74]. Since any speech
coding system operating at 2 bits/sample or less would
need to be normalized with respect to short-term energy to
minimize distortion, we shall assume in this paper that the
first-order pdf for speech and the prediction residual is
essentially Gaussian.

Table 1 Four Common PDFs and their Differential Entropies h(x). Column 4 gives the
difference in bits between the Gaussian rate-distortion function R(D) and the Shannon
lower bound R¥(D) for each pdf. Column 5 shows the corresponding difference in
distortion in decibels; it is obtained by multiplying column 4 by 6.02. Column 6 is the
asymptotic (high bit rate) difference in bits between the rate of a Lloyd-Max quantizer R ,,
and the Shannon lower bound, and column 7 is the corresponding difference for the

distortion. (From Jayant and Noll [74].)

pdf (x) h(x)

Rg(D)— R¥D) =
hg(x) — h(x) D(R) — D¥*(R) Rypy— R* Dypy — D*
(dB)

7
Gaussian ‘/——2;1:'- exp[—x2/20%] 1log, (2nev?)

1
Uniform Tie’ x<V3o 1log, (120%)

0, otherwise

1
Laplacian Tie exp[—v2|xl/0] 1iog, (26%?)

4

Gamma
8mo}x|

= 05772

exp[~V3|xl/20] 7 log, (47~ a?/3)

C = Euler's constant

(bits) (bits) (dB)

0 0 0.722 435
0.255 1.53 0.255 153
0.104 0.63 1190 717
0.709 427 1.963 11.82

MAKHOUL et al.: VECTOR QUANTIZATION IN SPEECH CODING

Exhibit \(/ Page "HL 1563

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 18, 2008 at 15:45 from IEEE Xplore. Restrictions apply.



0 1 2 3
R (bits} 0700
bits

Fig. 10. Distortion-rate function D(R) for a memoryless
Gamma source and a mse distortion measure, bounded
above by the Gaussian distortion-rate function Dg(R) and
below by the Shannon lower bound D*(R), from Noll and
Zelinski [97]. Dg(R) and D*(R) are always parallel straight
lines in the decibel scale with a slope of —6.02 dB/bit. D(R)
tends toward a slope of —6.02 dB/bit at high bit rates
(usually R > 3 bits).

Fig. 10 shows a plot of D(R) for the Gamma pdf along
with the Gaussian upper bound D;(R) and the Shannon
lower bound D*(R). (The reason for choosing the Gamma
pdf is because it shows very clearly the departure from the
Gaussian.) The D(R) plot was obtained using Blahut's al-
gorithm [17). Note that the D(R) curve is monotone de-
creasing and convex. Also, as R increases beyond a few bits,
D(R) decreases at the rate of about 6.02 dB/bit which is
the slope of the upper and lower bounds. The slope of
—6.02 dB/bit will recur over and over again for many types
of quantizers as R increases.

Thus far we have considered only memoryless sources.
For sources with memory, where the samples are depen-
dent, explicit D(R) results are even more meager. What
little is known is for the Gaussian case where the depen-
dence is linear and can be specified completely by the
spectral density ®(w) of the stochastic sequence x(n). For
this special case, D(R) is given parametrically by [14]

T
Ds(8) =§;f_’m|n{0,¢(w)} dw (72)
T 1 o (w)
Rc(o) = -2—"- f—" max {0, '2‘ '082 ] } dw. (73)
For the case of small distortions defined by
8 < min {®(w)} (74)
Dg(R) is given by
Dg(R) = y272Rg? (75)
where
1 T
Y =—gexp -{;/_"Iog¢(w) dw
GM {®(w)}
ITIOR (76)

CM and AM are the geometric mean and arithmetic mean,
respectively, (62 = arithmetic mean of the spectrum.) v is a
spectral flatness measure which is a nonnegative quantity
that is equal to one if and only if the spectrum is flat [86),
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[90]. For a flat spectrum, i.e., a white source, the Gaussian
signal values are independent and Dg(R) in (75) becomes
equal to (64). Therefore,

DG( R) 'correlated source Y DG( R)lwhi(e source (77)

for distortions obeying (74). Note that for this case of smai!
distortions, the distortion in (72) is equal to # for all
frequencies, which means that the reconstruction error will
have a flat spectral density: a resuit that we shall meet again
below.

Equation (77) states that D(R) for a correlated Gaussian
source -is less than that for the corresponding white (mem-
oryless) source. The difference for small distortions (or high
rates) is equal to —10log,, y decibels. Equation (77) quanti-
fies the intuitive notion that one can transmit dependent
sources at a lower distortion than independent sources.
This general notion applies to non-Gaussian sources as
well, The D(R) function for such sources is still bounded
above and below as in (67), where the Shannon lower
bound is still defined by (68). However, h(x) is now the
differential entropy for the dependent source, defined as

h(x) = Nll_r:';° %/h(x)

which will be smaller than the differential entropy for the
corresponding memoryless source,

B. Scalar Quantization

We showed above how the distortion-rate function D(R)
provides a Jower bound on the minimum distortion
achievable by a vector quantizer at a given bit rate. Scalar
quantizers provide us with an upper bound on the mini-
mum achievable distortion. The difference between the
two bounds gives the reduction in distortion that is poten-
tially attainable by vector quantization. In this section we
shall consider the scalar quantization of memoryless sources.
The scalar quantization of correlated sources is discussed in
Section IV.

1) Llloyd-Max Quantization: A scalar quantizer may be
designed using the K-means algorithm described in Section
1-C. However, because in one dimension the cells are
restricted to be adjacent line segments, as shown in Fig. 4,
one can instead use the well-known Lioyd-Max quantizer®
[82), [91]). Given a pdf p(x) and a number of levels L, this
quantizer determines the intervals C; and the reconstruc-
tion values y that minimize the average mse. The necessary
conditions for the minimum are obtained by straightfor-
ward differentiation with respect to y and the interval
boundary values g;. The necessary conditions for optimality
can be shown to be

g=3(n+yn) 2<isl (78)
& = —x, Bi41 ™= ®
y = cent(Cy), 15i<l (79)

where the centroid of C; is simply the mean value of x in
that interval, Equation (78) states that the interval boundaries
must lie halfway between the reconstruction values. Note
that (78) corresponds to (25) in the general case and (79) is
the same as (27). For L > 3, (78) and (79) are solved itera-

SAlso known as the Lloyd quantizer or the Max quantizer.
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tively to obtain a set of optimal values. Those values may
indicate only a local optimum. For the case when p(x) is
log-concave, the above necessary conditions are also suffi-
cient for optimality [40] and the optimum will be global. In
general, the optimum quantizer will not be uniform, ie.,
the interval lengths will not be the same’ The interval
spacing tends to be smaller where the pdf is larger, Perfor-
mance, typically, must be evaluated by numerical methods,
except when the number of quantization levels is large
there is the asymptotic formula given by Algazi [4] for the
rth-power distortion

~ L"[f [p(x)]V('“)dx]r+1 (Lloyd-Max).

2]
-0

D =
r+1

v (80)

For R = log, L and r = 2, (80) can be written in decibels as
9D, =10log,u D, = —6.02R+ F p(p) dB  (81)

where script 2, is the distortion in decibels and F, ,,(p) is a
constant that depends on the pdf shape. Note again the
—6.02-dB/bit behavior for large R.

Fig. 11 shows the normalized mse obtained by the
Lloyd-Max quantizer as a function of the rate R = log, L for
four pdfs. While the Gamma pdf has the lowest D(R) of

1.0

03

0.1

E)

0.03

NORMALIZED WSE {dB}

0.0t

0.003

R = logy L * b (bits)

Fig. 11, Normalized mse for four memoryless sources using
Lloyd-Max quantization (R = log, L), plotted from Jayant
and Noll [74, Table 4.4].

the four pdfs, it results in the highest distortion when using
the Lloyd—Max quantizer. Columns 6 and 7 of Table 1 show
the asymptotic difference between the Lloyd—Max quan-
tizer and the distortion-rate function. These differences are
the maximum that can be gained potentially from vector
quantization.

2) Constrained-Entropy Quantization: In Lloyd—Max
quantization, the number of levels L is fixed and the bit rate
is defined simply as log, L. However, if the reconstruction
values y are not equally probable, we can use entropy
coding to reduce the rate below log, L to H(y). One can go
even further and restate the optimization problem to mini-
mize the distortion subject to a given entropy H(y)= R.
We shall call the resulting quantizer a constrained-entropy
quantizer. The number of levels L can now be any desired

PNote that a uniform quantizer is one whose interval lengths are
equal, However, depending on the pdf shape and the distortion
measure, the output levels of a minimum-distortion uniform quan-
tizer will not be equally spaced, in general.

MAKHQUL et al.; VECTOR QUANTIZATION IN SPEECH CODING

value including infinity. Gish and Pierce [51] have shown
that, at high bit rates, the uniform quantizer is the optimum
constrained-entropy quantizer. With very mild restrictions,
this result is true for all pdfs and distortion measures. More
recently, Farvardin and Modestino [33] showed experimen-
tally that, with mse distortion, the uniform quantizer is very
close to optimal even at very low rates. The obvious conclu-
sion is that, if one is willing to perform variable-rate en-
tropy coding, then the uniform quantizer is always the
scalar quantizer of choice,

The asymptotic (high bit rate) performance for the con-
strained-entropy quantizer is given in [51], and can be
written for an rth-power distortion measure as

=-r

D. = 2h00 = Hmin (constrained entropy) (82)

r+1
where H,,, is the entropy of the constrained-entropy
quantizer outputs and h(x) is the differential entropy of the
source, Equation (82) can be written in decibels for r =2

D, = —6.02Hy, + Fe(p) dB (83)

where Fce is another constant that depends on the pdf
shape.

It is interesting that, for the mse distortion, there is a
simple relationship between log, L of the Lloyd-Max quan-
tizer and H,,,. In particular, we have from [51] that, for
large L

Him = Hepin =3 (lOSZ [~ Hmin) (84)

where H,,, is the entropy of the Lloyd-Max quantizer
outputs, This relation shows the additional benefit of con-
strained-entropy quantization over entropy coding the out-
puts of the Lloyd-Max quantizer.

Another significant result obtained by Gish and Pierce
[57] is that the constrained-entropy quantizer approaches
the rate-distortion bound within a fixed constant that is
dependent only on the distortion measure and not on the
pdf. This constant, derived for an rth-power distortion
measure, is given by

1 re 1
Hoin = R( D,) = 7 log, ;r;—; + log, I‘(1 + *r') (85)

where T is the Gamma (factorial) function. For the mse
distortion, (85) reduces to

1 me .
Henin = R( Dz) = '2' |ng "é‘ = 0.255 bits. (86)

Fig. 12 shows a plot of (85) as a function of r. The horizon-
tal scale has been chosen to illustrate the important result
that for r = oo, which corresponds to the minimax criterion,
the curve goes to zero, and H,,, = R(D,). Therefore, a
uniform scalar quantizer with entropy coding can achieve
the rate-distortion function for the minimax criterion, For
r =1, the constrained-entropy quantizer can approach R(D)
within 0.443 bits, and within 0.255 bits for r = 2.

The low-rate region (R < 3 bits) has been explored by a
number of researchers (see [74]), with the results of
Farvardin and Modestino [33] being the most useful for our
purposes. For the mse distortion, the constrained-entropy
quantizer at low rates is even closer to D(R) than 0.255 bits,
especially for the more peaked pdfs such as the Laplacian
and the Gamma densities. In fact, of all the nonuniform
pdfs tested, the Gaussian pdf registers the least gain and
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Fig. 12, The difference between the entropy of a con-
strained-entropy (uniform) quantizer and the rate-distortion
function at high bit rates for an rth-power distortion func-
tion, This difference is independent of the pdf of the mem-
oryless source; it depends only on r. For r = o, the minimax
distortion, that difference is zero. The data for the plot were
taken from Gish and Pierce [51].

lies the furthest away from its D(R) function at low rates,
Figs. 13 and 14 show plots of the mse distortion with the
constrained-entropy quantizer (solid curves) compared to
Lloyd-Max quantization and the distortion-rate functions
for the Gaussian (Fig. 13) and the Laplacian (Fig. 14) mem-
oryless sources. The constrained-entropy curve for the

NORMALIZED MSE (dB}

N
Y s
3 4
R bits}

Fig. 13. Constrained-entropy quantization for a memory-
less Gaussian source, compared to Lioyd—Max quantization
and the distortion-rate function. (From Farvardin and
Modestino [33).)

NORMALIZED MSE (48]
)
=

1 1
20, 1 2

N .
D L.
3 4
R {bit))

Fig. 14, Same as Fig. 13 for a memoryless Laplacian source,
(From Farvardin and Modestino [33).)

Laplacian pdf is much closer to its distortion-rate function
than the Gaussian curve is to its D(R), while the opposite is
true for the Lloyd—Max curves,

We saw above how constrained-entropy quantization
(with entropy coding) takes advantage of the pdf shape to
minimize the bit rate at a given distortion, The difference
between the solid curves and the D(R) curves in Figs. 13
and 14 is what is not achievable by scalar quantization,
Vector quantization with very large N is capable of closing
that gap without the need for entropy coding. At the low
data rate of R =1 bit in Fig. 13, being able to reach the
distortion-rate bound for a Gaussian source would mean a
reduction of about 25 percent in bit rate over the scalar
quantizers. This result will be important for the coding of
the speech prediction residual since it is modeled well as a
memoryless Gaussian source.

C. Asymptotic Vector Quantization

We now present some of the known theoretical results
for vector quantization. Most of the results below were
derived under asymptotic conditions: either L is large (i.e.,
small distortion) and the vector size N is arbitrary, or N is
large and L is arbitrary. We begin by discussing the opti-
mum L-level quantizer in N dimensions, which is analogous
to Lloyd~Max quantization in the scalar case, followed by
constrained-entropy quantization in the vector case. It is
important to notice that, unlike the results of the previous
section which applied only to memoryless sources, the VQ
results below apply to sources with arbitrary pdfs, including
linear and nonlinear dependencies, unless noted otherwise.

The asymptotic formulas for scalar quantizer performance
mentioned in Section HI-B have analogues for vector quan-
tizers. Zador {141} showed that, for large L, the optimum
(minimum rth-power distortion) L-level quantizer in N di-
mensions has a distortion

. (N+0)/N
D= AC, N 7 (0] o

(87)

where p(x) is the N-dimensional pdf of the vector process
x, and A(r, N) is a term that is independent of the pdf; it
represents how well cells can be packed in N-dimensional
space for the rth-power distortion measure, Equation (87) is
analogous to (80) in the scalar case, but it is important to
note that (80) was derived for a memoryless source while
(87) is true for an arbitrary source. For the mse distortion,
(87) may be written in decibels as

6.02
92 = “—N_B'-’- FVQ(pr) dB

= —6.02R + Fyq(p,N) dB (88)

where B = |og, L is the number of bits per vector, R is the
number of bits per dimension, and Fyo(p, N) is a term that
depends on the pdf p(x) and the number of dimensions.
The difficulty in utilizing the above expressions is that
A(r, N) is known exactly for very few cases, For other than
N =1, only A(2,2) is known exactly. For two dimensions
and the mse criterion [35], [47], optimal vector quantizer
performance (without entropy coding) is obtained with
hexagonal regions, for large L, Note that, except for a
uniform pdf, these hexagons will not be regular and will
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not have the same size in general. For higher dimensions,
there are a number of upper and lower bounds on A(r, N),
but such bounds, though theoretically interesting, appear to
be of little practical value. Recently, Conway and Sloane
[23] conjectured a lower bound on A(2,N) that seems
interesting and useful (see Fig. 15). Other useful informa-
tion on performance bounds is contained in [47), [139).

018

rTrr 7111 T T YT T T T T T

014
012+

010

8(TS

1|

N OO TURORS WUON N NS N W UG N D SUR S T N N |
] 8 10 12 14 16 18 20 2 4
DIMENSION N

Fig. 15. The savings in bits when using certain N-dimen-
sional lattice quantizers compared to quantization with N-
dimensional cubes for a uniform pdf and high bit rate. The
?a'tla were computed from Conway and Sloane [23, Table 1] as
ollows:

BITS = [1010g,,0.08333/G,]/6.02

where G, is as defined in [23]. The solid curve is a conjec-
tured bound given by Conway and Sloane [23] and the dots
are the savings for the best known lattice quantizer for
each N,

Although the optimal N-dimensional quantizer and its
performance are not known in most cases, some under-
standing has been obtained about its structure. Zador [141]
has shown that the optimum density of output values to
use for random quantizer selection is proportional to
pN/(N+D where p is the pdf of the vector x. (A related
result is also obtained by Gersho [47]) For very large N
(N > 1), therefore, the output values should have a density
similar to p(x) for optimum performance.

In a manner similar to scalar quantizer design, one can
constrain the entropy rather than the number of levels for
the vector quantizer; we call the resulting quantizer the
constrained-entropy vector quantizer. For such a quantizer,
Zador [141] gives the asymptotic rth-power distortion as .

Dr = B(I‘, N)Z'h(“)/NZ"Hmm/N (89)

where B(r, N) is a term similar to A(r, N) in (87). Equation
(89) is analogous to (82) in the scalar case. One could write
(89) for r = 2 to show the —6.02-dB/bit behavior.

Again, values of B(r, N) are known for only a few cases.
However, if entropy coding is to be used, there are subopti-
mal solutions for which the performance is known for large
L. One solution, considered by Gish and Pierce [51], is
analogous to the solution in the scalar case; namely, apply a
uniform scalar quantizer to each of the vector dimensions
and perform joint entropy coding on the vector outputs.
The quantization interval should be the same in all dimen-
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sions, which is equivalent to specifying an N-dimensional
cube for the cells of the vector quantizer. The result for this
coding procedure is that the bit rate will differ from the
rate-distortion function by an amount equal to that shown
in Fig. 12 for an rth-power distortion measure, independent
of the shape of the multidimensional pdf. For the mse, this
difference is again 0.255 bits per dimension, This result is
true at high bit rates; experiments similar to those per-
formed by Farvardin and Modestino [33] for the scalar case
will need to be done for the vector case to test the perfor-
mance at low bit rates. The 0.255-bit differential that exists
for the mse criterion when quantizing with cubes can be
reduced by using different cell shapes for different dimen-
sions, as we shall see below in the discussion under space
packing.

While the VQ method outlined above is very simple
indeed and requires a minimum amount of design and
computations, it requires a very large amount of storage.
Note that the entropy coding needs to be performed in
N-dimensional space. Now, when we use entropy coding
we typically use a large number of levels per dimension,
therefore, the total mumber of levels in N-dimensional
space will be very large, and the entropy coding will require
a storage location for each of the codewords. In essence,
we are substituting storage for computation and the amount
of storage needed may be excessive for many applications.

Another important resuit from rate-distortion theory is
that, for fixed L and for very large N, the entropy of the
vector quantizer approaches log, L [123). This implies that
the output values y must have equal probability. (Note that
the output values may have a density proportional to p(x)
but still have discrete probabilities that are equal) This
result is satisfying in that it confirms the fact that a vector
quantizer can achieve its optimal performance for high
dimensions without the need for entropy coding. In other
words, the fixed-L and constrained-entropy quantizers
achieve the same performance for high dimensions, This
staterent is in sharp contrast to the scalar case (N = 1)
where the two types of quantizers give different perfor-
mance.

Space packing: An interesting set of results have been
obtained in studying the benefits of packing N-dimensional
space with different types of polytopes (volumes bounded
by planes) for the mse criterion. In fact, in a manner similar
to the hexagon result mentioned above for N =2, it has
been conjectured by Gersho [47] that, asymptotically for
large L and for any pdf, the optimum fixed-L vector quan-
tizer partitions the space into cells whose shapes are derived
from a specific polytope for each N.

A special set of polytopes, known as parallelohedra, have
been studied by Gersho [47] and by Conway and Sloane [21]
for the purpose of quantizing a uniform pdf in N dimen-
sions, The centers of these parallelohedra lie on a /attice in
N-dimensional space.'® The lattice points are the output
values of the gquantizer (i.e., they constitute the codebook),
and they form a regularly spaced array of points in N-
dimensional space. Such a quantizer is termed a lattice
quantizer. One very attractive feature of lattice quantizers is

%The concept of a lattice is of importance in a number of diverse
areas, including the geometry of numbers [19], solid-state physics
[143], and image processing [29].
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that, given an input vector x, it is relatively straightforward
to compute the nearest lattice output value [22], without
having to compare x against all codebook values and
without having to store all codebook values. Conway and
Sloane [23] have investigated the use of a number of lattices
in the vector quantization of a uniform pdf for large L and
using the mse criterion, Fig. 15 shows the saving in bits
when those lattices are used relative to using cubes as
guantization regions. For each dimension, the lattice used is
different. For N =1 we have, of course, the uniform cube
quantizer. For N = 2, it is the hexagonal lattice, and for
N =3, the polyhedron is known as the truncated oc-
tahedron, Note that the saving in bit rate increases with N
for the different lattices except for N =9 and N =10 for
which no lattices have been found that perform better than
N = B, The value of 0.028 bits for N = 2 is the same as that
obtained in Example 3 earlier,

Although the results in Fig. 15 were obtained for a uni-
form pdf, they have wider applicability. One can show that,
if entropy coding is used, then for any pdf, the lattice
quantizers with large L achieve an entropy less than the
cube quantizer by an amount equal to the rates shown in
Fig. 15. Since from the results of Gish and Pierce the bit rate
of the cube quantizer is 0.255 bits above the rate-distortion
function, the bit rate for the lattice quantizers is even closer
to R(D) by an amount equal to that shown in Fig. 15 for
different dimensions. For example, for N = 8, the lattice
quantizer with entropy coding will have a bit rate that is
only 0.255 — 0,109 = 0.146 bits greater than R(D) for large
L. However, because of the potentially excessive amount of
storage needed for the codewords, this method may not be
practical. In the remainder of the paper we shall discuss
methods that do not require entropy coding.

Experimental results: Much of this section has been
devoted to theoretical asymptotic vector quantization re-
sults. Few attempts have been made to see how these
results may apply in practice and for relatively small values
of L and N. For a memoryless Gaussian source, the best VQ
results with R = 1 bit/sample show practically no improve-
ment over scalar quantization for N = 2, a reduction in mse
of 0.09 dB (about 0.015 bits) for N = 3, and a reduction of
about 052 dB (about 0.087 bits) for N = 6 [36], [58], [81],
which is a good improvement for R =1 bit. These results
were obtained with no entropy coding.

Much greater gains are achievable for certain non-Gauss-
jan sources. For example, for a memoryless Gamma source
and R = 1 bit/sample, Fischer and Dicharry [36] obtained a
substantial reduction in mse for N = 6. However, the result-
ing mse was still approximately 2 dB higher than D(R) and
well above the distortion of the constrained-entropy uni-
form quantizer, which was found by Granzow and Noll [55]
to be only 0.7 dB above D(R). However, this result serves
to illustrate that, for cases where Lloyd-Max quantization
performs poorly relative to D(R), and entropy coding is not
desired or cannot be used, one can make good use of
vector quantization to improve performance substantially.

Results with a single-pole Caussian source have also
been obtained at R =1 bit/sample, which show that VQ
could outperform differential PCM (DPCM) coding with
vector lengths N > 3 [60]. But, for N = 7, the VQQ mse was
still 1.6 dB higher than D(R).

IV. SCALAR VERSUS VECTOR QUANTIZATION OF VECTOR
SOURCES

We indicated in Section Il that the redundancy owing to
linear dependency (correlation) can ‘be utilized effectively
by vector as well as scalar quantization, provided the latter
is performed after the appropriate coordinate transforma-
tion. In this section we show how best to use scalar quan-
tizers in the quantization of vector components. The pur-
pose for this presentation is twofold. We wish to give the
reader tools to help assess how much of the vector quanti-
zation performance in a particular application takes advan-
tage of linear dependencies, and to help evaluate whether

a scalar or a vector quantizer is more cost effective in that -

application, given other real-world constraints,

Throughout this section we use the mse as the distortion
measure. The first two subsections are devoted to the scalar
quantization of vector sources and the Jast subsection com-
pares scalar to vector quantization. First, we show that,
given a total number of bits to allocate to scalar coding of
the various vector components, it is best (minimum mse) to
allocate different number of bits to components with differ-
ent variances. A bit-allocation procedure is described which
yields the minimum mse, We then show that, if the vector
components are correlated, one can reduce the mse further
by first- performing a decorrelating transformation or rota-
tion on the vector, followed by independent (scalar) quanti-
zation of the components of the rotated vector, utilizing
the bit-allocation procedure. Finally, we compare the per-
formance of scalar and vector quantizers in a particular
application.

The subject matter of this section is very applicable to the
coding of linear prediction parameters (such as log-area
ratios), which are generally correlated and have different
probability distributions and different variances (see Section
IV-C). It is also applicable to the transform coding of speech

_and other waveforms.

A. Bit Allocation

We are given a random vector x whose components x;

have identical pdf shapes but generally unequal variances

of. (The case of different pdf shapes will be treated below.)
We wish to allocate a given number of bits B among the
components and use scalar quantizers to quantize each
component x, independently, in such a way as to minimize
the average vector distortion. Let R, be the number of bits
allocated to component x, and let the distortion in quantiz-
ing that component be

D= &(x — n)’ (%0)

where y, is the quantized value of x,. The problem then is
to determine the set {R,} so as to minimize the average
distortion

1 N
b=y L D, (9
k=1
subject to
1N B
— R e ——
N ‘21 TN R (92)

where R is the average bit rate per component.
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Let us assume for the present that we are operating in the
high bit-rate region of the quantization distortion curve for
each of the components (usually R > 3). Then we can write
from the results of Section Iil-B

R, = p 4L log, = 93
k=P ZngDk ()

where p is a constant value that depends on the pdf shape
and on the particular scalar quantization method used. (For
example, for a Lloyd-Max quantizer, we see from Fig. 11
that p = 0 for a uniform pdf and p = 0.722 for a Gaussian
pdf.) From (91) and (93) we have

N
D= l Z 0,32“2(”“"). (94)
k=1
(Note that D in (94) has a slope of —6,02/N decibels/bit,
as expected for high bit rates.) The problem now is to find
the R, values that minimize D in (94) subject to (92). Using
Lagrange multipliers, one can show that the distortions D,
must be equal

N 1N
Drin = Dy = Z_Z(R—")[ I1 Gf] , forall k (95)
k=1 :

and the bit allocation is given by

1 o}
Rk"R'*"i'lng"T_'W- (%)
[Hﬂf]

k=1

If the components have different variances, the result im-
plies that the number of bits used to quantize each compo-
nent will be different,

By allocating a different number of bits to different
components we realize a lower distortion than we would,
had we used an equal number of bits R to quantize each
component. In the latter case the total distortion would be

1 N
Dy = 2700 kZ o. (97)
-

Therefore, the ratio of the minimum distortion D, to the
equal allocation distortion D, is

B - TR, T Aameg) TS

which is the ratio of the geometric mean to the arithmetic
mean of the component variances, with equality iff all
variances are equal. Thus with bit allocation, one would
have an increase in SNR of —10log,qy decibels. (Note that
(98) was derived assuming the same pdf and high bit rates
for all components.) :

If vy <« 1, implying that the component variances have a
large dynamic range, then the bit-allocation scheme in (96)
would result in a wide range of bit rates R,. Some of these
may be very low (even though the average may be high)
and some may even be negative. Low rates would violate
our assumption of high rates that allowed us to write (93),
and negative rates are, of course, unallowable. The latter
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condition results for components whose variances are less
than D,;, in (95). For such cases, one would not transmit
anything because by simply using the mean value at the
receiver one would have at worst a distortion equal to the
signal variance. If such negative bit rates are obtained from
the bit-allocation scheme, the corresponding components
are allocated zero bits, When negative values of R, are thus
increased to zero, the rates of other components will have
to be modified to maintain the same average rate R. Several
procedures have been developed which reoptimize the
allocation, Segall [120] has solved the above optimal com
tinuous bit allocation problem, assuming independent
Gaussian components, Fox [43] had earlier presented an
algorithm for optimal integer bit allocation in the general
case where the pdfs of the components may be different.
Below we give a brief description of the algorithm and the
conditions for its applicability.

Optimum Integer Bit Allocation: Let us assume that we
wish to have a bit allocation where all rates R, are integers,
We associate with each component x, a normalized (unit-
variance) quantization distortion function £,(b), which gives
the distortion as a function of the number of bits b,
assuming x, has unit variance. (We assume that each x,
may have a different pdf.) Clearly then, the distortion of x,
is given by

D,(b) = oiEc(b). (99)

E,(b) is an actual curve obtained by applying a specific
quantizer to the random variable x, with its specific pdf.
The quantizer can be a Lloyd-Max quantizer or a con-
strained-entropy quantizer or any other quantizer of inter-
est. The main thing is to generate the curve E (b) for each
component. Of course, if E,(b) is not optimized in any way
to the component x,, then the results may be suboptimal.
(Fig. 11 shows E(b) for a Lloyd-Max quantizer for four
different pdfs.)

The bit-allocation procedure simply assigns the next bit
to the component that causes the maximum incremental
decrease in the overall distortion. The procedure is as
follows:

Step 1: For each bit rate b, calculate the incremental
decrease in the distortion when a bit is added to
each component:

A (b) = o[ E(b— 1) — E(b)],
1€k N, b=1,2,., (100)

Step 2: Sort the values A, (b) in decreasing order.
Step 3: Assign the given bits one by one according to
the resulting order.

(In actual implementation, the values A,(b) are computed
sequentially as they are needed in allocating the bits.) This
algorithm can also be applied to assigning an integral num-
ber of levels to each component. The variable b would
then refer to the number of levels.

The above algorithm gives the optimal solution when all
quantization distortion functions E,(b) are monotone de-
creasing and convex, i.e., successive bits decrease the quan-
tization error by an amount smaller than earlier bits allo-
cated to that component. For the general case, where the
quantization distortion functions are nonconvex or even
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