EXHIBIT BB

TO DECLARATION OF S. MERRILL WEISS IN
SUPPORT OF PLAINTIFF ACACIA MEDIA
TECHNOLOGIES CORPORATION’S MEMORANDUM
OF POINTS AND AUTHORITIES IN OPPOSITION TO
ROUND 3 DEFENDANTS’ MOTION FOR SUMMARY
JUDGMENT OF INVALIDITY UNDER 35 U.S.C. § 112
OF THE ‘992, ‘863, AND ‘702 PATENTS; AND
SATELLITE DEFENDANTS’ MOTION FOR
SUMMARY JUDGMENT OF INVALIDITY OF THE
‘992, ‘863, AND ‘720 PATENTS

http://dockets.justia.com/docket/court-candce/case_no-5:2008cv05788/case_id-210107/
http://docs.justia.com/cases/federal/district-courts/california/candce/5:2008cv05788/210107/325/29.html
http://dockets.justia.com/

1458 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 8. NO. 8, OCTOBER 1990

Adaptive Vector Quantization Using a Self-
‘ Development Neural Network

TSU-CHANG LEE anp ALLEN M. PETERSON, LIFE FELLOW, IEEE

Abstract—A novel neural network model, called SPAN (space par-
tition network), is presented, This model differs from most of the cur-
rently seen neural networks in that it allows a network to adapt its
structure by adding neurons, Killing neurons, and modifying the struc-
tural relationships between neurons in the network. An adaptive vector
quantization source coding system based on SPAN is proposed. The
basic idea is to use SPAN as an active codebook that can adapt its struc-
ture to follow the source signal statistics, The major advantage of using
SPAN as the codebook of a vector quantizer is that SPAN can capture
the local context of the source signal space and map onto a lattice strue-
ture, A fast codebook searching method utilizing the local context of
the lattice is proposed and a novel coding scheme, called the path cod-
ing method, 1o eliminate the correlation buried in the source sequence
is introduced. The perfor of our proposed coder is compared to
an LBG coder on synthesized Gauss—Markov sources, Simulation re-
sults show that, without using the path coding method, SPAN yields a
similar performance to an LBG coder; however, if the path coding
method is used, SPAN displays a much better performance than the
LBG for highly correlated signal sources. Because the training method
is smooth and incremental, SPAN is suitable as the basis for an adap-
tive vector quantization system,

1. INTRODUCTION

N recent years, there has been much interest focused

on vector quantization for different physical signal
sources, especially speech and image signals [15], [27],
[11]. The driving force behind this trend is listed in the
following.

* According to Shannon’s rate-distortion theory, a bet-
ter performance is always achievable in theory by coding
a block of signals (i.e., vectors) instead of coding each
signal individually [31], [32], [10], [2], [35], [16], [14].

® Technological improvements, especially progress in
VLSI computation ability and memory capacity, make
more sophisticated coding/decoding systems possible.

* As technological enhancement advances, the require-
ments placed on communication subsystems become more
and more demanding. Several key driving technologies
strongly require data compression techniques; among
these are high-definition TV and integrated service data
networks.

Manuscript received September 5, 1989; revised February 15, 1990.
This paper was supported in part by the NASA CASIS program under Con-
tract NAGW 419 and by a gift fund from the Ford Aerospace and Com-
munication Company. This paper was presented in part at the 6th IEEE
International Workshop on Microelectronics and Photonics in Communi-
cations, New Seabury, Cape Cod, MA, June 7-9, 1989,

The authors are with STAR Laboratory, Depariment of Electrical En-
gineering, Stanford University, Stanford, CA 94305-4055,

IEEE Log Number 9036210,

* The nature of the signals to be represented in com-
puters moves from artificial signals (like symbols, texts,
etc.) to signals closer to those in the physical world (e.g.,
sound, images, etc.), which tend to be more unpredictable
and hard to characterize analytically. Because of this,
flexible and adaptable signal representation schemes will
become more and more important in the near future.

A. Vector Quantization Problem

" Vector quantization can be viewed as a mapping & from
a k-dimensional vector space R® into a finite subset W of
Rk

QR =W (1)

where W = {w,|i= 1,2, , M} is the set of repro-
duction vectors and M is the number of vectors in W. Each
w; in Wis called a codeword and W is called the codebook
for the vector quantizer. For every source vector x, a
codeword w; in W is selected as the representation for x.
This process is called the quantization phase (or the code-
book search phase) of the vector quantizer, denoted by
Q(x) = w;. Then, the codeword w; is represented by some
symbols (normally the address of the codeword in the
codebook) and transmitted through the channel. This pro-
cess is called the encoding phase of the vector quantizer.
On the other side of the channel, the received symbols are
used to select the codewords from the codebook to repro-
duce the source signals. This process is called the decod-
ing phase of the vector quantizer. The average number of
bits required to represent the symbols in the encoding
phase is the rate of the quantizer, and the average quan-
tization error between input source signals and their re-
production codewords is the distortion of the vector quan-
tizer. Increasing the number of codewords in the codebook
can decrease the distortion of a vector quantizer and, nor-
mally, will increase the rate also. One major concern for
vector quantizer design is the trade-off between distortion
and rate,

Linde, Buzo, and Gray [25] pointed out that the nec-
essary condition for an optimum codebook is that each
codeword is the centroid of the set of source signals it is
representing, This suggests a fixed point method to gen-
erate the codebook. The idea is shown in the following.

¢ The codewords partition the source signal space into
regions according to the closest neighbor relationship.

* The centroids of the partitions generate another set
of codewords.

0733-8716/90/1000-1458%01.00 © 1990 IEEE

. Exhibit Q)@ Page 5i5

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 15:51 from IEEE Xplore, Restrictions apply.

LEE AND PETERSON: ADAPTIVE VECTOR QUANTIZ.ATION

¢ The above process continues until the codebook con-
verges to a fixed point in the solution space of codebooks.

In most cases, it seems that the codebooks generated by
this algorithm display at least local op * m distortion
rate performance if the algorithm converges during the
codebook generation process [25], [14]. This algorithm is
commonly referred as the LBG algorithm or generalized
Lloyd algorithm because it is a generalized version of the
scalar quantization algorithm proposed by Lloyd {26} in
1957.

A second important issue in vector quantizer design is
codebook search efficiency. The major concern in this as-
pect is how to develop efficient ways of searching through
the codebook to find the optimum reproduction code-
words for the source signals. This is normally done by
incorporating some structure irto the codebook to help the
search process. For examp!~, if we incorporate a tree
structure into the codebook, the search time is a logarithm
function of the size of the codebook [5], [14]).

B. Vector Quantization Using Neural Network
Paradigm

There are several important problems not addressed by
the LBG algorithm.

¢ Some codewords might be underused. In the LBG
algorithm, all the codewords share the same rate (i.e,, all
of them are represented by the same number of bits), but
not each of them contributes equally to the average system
distortion. That means some codewords are not sharing
the same representation load as others. In the extreme
case, some codewords might never be accessed.

» If the statistics of the source signal change, how does
one modify the codebooks on both sides of the channel to
reflect the changes? The desirable adaptation should be in
a smooth and incremental manner.

Several researchers tried to tackle the problems above
using neural network paradigms. For example, Kohonen
[19] proposed a self-organization neural network vector
quantizer that incorporates local interactions between
codewords to form a topological feature map that ropo-
logically sorts the codewords on a lattice. Kohonen’s vec-
tor quantizer has also been used to code images and shows
a similar performance to the LBG algorithm [28], [29],
[1}. Krishnamurthy [1] proposed using an access fre-
quency-sensitive distortion measure to select the code-
words in order to avoid the codebook underuse problem.

In this paper, we describe a self-development neural
network codebook that can grow from scratch to follow
the statistics of source signals, and to capture the local
context of the source signal space to map onto the struc-
ture of the network. When the statistics of the source sig-
nals change, the network can dynamically modify its
structure to follow the change. We then introduce a cod-
ing scheme that utilizes the context of the network to guide
the codebook search process (hence, to enhance the
searching efficiency) during the quantization phase and to
eliminate the correlation between adjacent signal sources
(hence, to reduce the rate) during the encoding phase. The

1459

last section describes the system structure of a fully adap-
tive source coding/decoding system,

II, NeuraL NETWORK CODEBOOK
A. Basic Framework

The codebook of our proposed neural network coder/
decoder is a lattice-structured neural network called SPAN
(space partition network). Each codeword in the code-
book is represented by a neuron. The neurons in the net-
work are arranged in a lattice structure with each neuron
assigned a position in the lattice. In general, a

k-dimensional lattice £ is defined as £ = {Lf_,
biv;| (b, by, »+ v, b)) € Z", Zis the set of integers },
where v;, v5, * -, v, are a set of linear independent

vectors called the primitive translation vectors (PTV's) of
the lattice [18]. With the PTV’s defined, any point in the
lattice can be represented by an index vector (b, by,
+»+, by). In this paper, we are interested only in rect-
angular lattices;' however, the ideas can be extended to
more general lattices.

Each neuron { has a neighborhood 91;, which is a set
containing a group of neurons around / in the lattice, If 8
is the set of neurons and 9 = {91, |i € § } is the set of
neuron neighborhoods, then the pair {8, 9} forms a
graph in the usual sense.

The input signals to the network are the source signals
to be represented by the network. Each neuron in the net-
work contains a group of variables, constituting the state
of the neuron. Every neuron updates its state according to
the input signal and the context of neuron states within its
neighborhood. One important state variable of a neuron,
called the input weight vector, is the reproduction code-
word for this neuron.

The network dynamics are characterized by the state
transition behavior of all the neurons in the network.
There are two different levels of adaptation in SPAN,

® Parameter Level Adaptation: Take the structure of
the network as fixed and adapt the state variables of the
neurons in the network. This corresponds to the weight
adjustment process in most of the commonly seen neural
network models.

e Structure Level Adapration: Adapt the structure of
the network by changing the number of neurons and the
structural relationship between neurons in the network.

Notice that the general conceptual architecture of SPAN
is similar to that of a cellular automata {37}, [30], [36].
However, the difference between SPAN and traditional
cellular automata is that the structure of SPAN is adapt-
able.

B. Weight Adjustment Process of SPAN
We follow Kohonen's learning algorithm [19], [20],

" [22] to adjust the input weight vectors of neurons in the

network:

‘In a rectangular lattice, the PTV's form an orthonorma) set,

Exhibit D paged |

Authorized licensed use fimited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 15:51 from IEEE Xplore. Restrictions apply. v

1460 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 8. NO. 8. OCTOBER 1990

for (for each index n) do
fetch source x[n]
select i: lxin} — wiin — 11l = |xn] = wiln —
1N, vkes
for (vj e O1;) do
wiln} = w;[n — 1] + ag[n — 1] ("lj 1))
(x[n] — wiln — 1])
end
end

where x[n] is the input source signal of the network at
time n; w;[n] is the input weight vector of neuron j at
time index n; 8 is the set of neurons; «, called the learn-
ing rate, is a constant used to control the rate of conver-
gence in the leaming process; I; is the position of neuron
i in the lattice, and ¢ [n] (d), called the spatial mask, is
a time-varying function used to control the range of influ-
ence of a neuron to other neurons in the lattice. Kohonen
[20] showed that, if ¢[] () is selected in such a way that
the influence range is wide in the beginning and gradually
decreases to a minimum value close to the end of the
training process, then both fast convergence and final rep-
resentation accuracy of the input weight vectors to source
signals can be achieved.
The ¢[] () used by Kohonen is

oln] (a) = {1 ifa = R[n) (2)

0 otherwise

where R[] is a positive definite monotonic decreasing
function, the minimum value for R[] is | for the network
to retain organizational capability. In general, ¢[n]() can
be of the form

oln] (a) = {g(a/d[n]) if a < R[n] 3)

0 otherwise

where both g() and d[] are positive definite monotonic
decreasing functions. Notice that R[n] in (3) and (2) de-
fines a time-varying HNS, with the size of neighborhoods
decreasing with time. A homogeneous neighborhood sys-
tem (HNS) is of the form (see Fig. 1)

= {3 |ies) o, ={jl|t-t4]>=rjes)
(4)

where § is the set of neurons, ; and ; are the lattice po-
sitions for neuron i and j, respectively.

Kohonen's learning algorithm creates a topological
neighboring relationship-preserving vector quantizer,
After enough input training vectors have been presented,
the input weight vectors of the neurons will specify clus-
ters or vector centers that sample the input space, such
that the point density function of the vector centers tend
to approximate the probability density function of the in-
put vectors, Besides, the weights will be organized such
that neighboring neurons on the network wiil tend to have
similar input weight vectors, representing the neighboring

00000
o 000 00000
©®0 0®0 00O®0O0
o 000 00000
00000
r=1 r=2 r=8
(a) (b) (c)

Fig. 1. Homogeneous neighborhood systems (HNS), (a) Minimum HNS.
each neighborhood contains only the closest neighbors: (b) r = 2 case,
each neighborhood includes neighbors no farther than the second closest
neighbors; (¢) r = 8 case, each neighborhood contains neighbors no
farther than the fifth closest neighbors.,

regions in the input pattern space. In particular, it can be
shown that the asymptotic values of the weight vectors
will tend to be the weighted centroid of their influence
regions. The influence region for neuron i is the region Q;
in the input pattern space such that, during the training
process, whenever an input pattern falls in Q;, w; will be
modified. To be more specific, &; = U;cq V}, where V is
the Voronoi region for neuron j.

This idea is formalized in the following theorem (see
the Appendix for proof of this theorem).

Theorem I: Lety; (x) = ¢ (I, — C(x)|}), where I; is
the lattice position for neuron i and C(x) = [; is the lattice
position for neuron j that has the input weight vector clos-
est to the input signal x. For sufficiently small learning
rate «, the asymptotical value of the weight vector for
neuron i is

[, ()32 s
W = lim w,[n] = ——mm— (5)
e [, P61) ax

where p(x) is the probability density function for input
patterns. ‘

This property makes the network capable of catching
the local context of incoming source vectors and thus sug-
gests that the network can be used for the following pur-
poses: ‘

® as an associated memory to restore the original sig-
nals from incomplete or degraded input patterns [20];

® as a sequence classier to catch the patterns buried in
the context of a sequence of input vectors [21], [34];

® as a context-sensitive VQ to eliminate the correlation
between adjacent vectors in the input source signal
streams. We will explore this idea further in Section HI.

C. Structure Level Adaptation Processes for SPAN

In Kohonen's network model, the structure is usually
an N X M array of neurons, The network tries to catch
the statistical distribution of input source signals by ad-
justing the input weight vectors of neurons in the net-
work. However, the structure of the network is fixed by
the network designer in the beginning of the training pro-
cess. In view of this limitation, one must think of the fol-
lowing questions.

Exhibit (bﬁ’) Pageﬁi /

Authorized licensed use limited to: Univ of Calif Los Angeles, Downloaded on November 19, 2008 at 15:51 from IEEE Xplore. Restrictions apply.

LEE AND PETERSON: ADAPTIVE VECTOR QUANTIZATION

s How do we decide the initial structure of the net-
work, especially when the statistics of the source signals
are unknown?

¢ Even if we can figure out the initial structure of the
network, if the statistics of the source signals gradually
change with time, how do we modify the structure of the
network to reflect the change?

The general version of the above questions poses what
we call the frame problem of artificial neural networks
[24]. To tackle the frame problem of neural networks, we
propose adapting the structure of the network by modi-
fying the following:

¢ the number of neurons in the network;

e the structural relationship between neurons in the
network.

Through structure-level adaptation, SPAN can dynam-
ically modify the frame that neurons reside in, so that the
structure of the network always reflects that of the input
pattern space.

1) Neuron Generation Process: As for any vector
quantizer, there is a trade-off between quantization error
and representation complexity in SPAN. Since increasing
the number of neurons in SPAN will decrease the quan-
tization error (or distortion) of the network, we can use
quantization error as a measure to determine when to gen-
erate new neurons. If a nevron / contributes too much to
the average distortion of the nv. work, that means its Vo-
ronoi region? V; in the input pattern space is underrepre-
sented by neuron i, hence, a new neuron should be gen-
erated to share some of the representation load of neuron
i, so that the average system distortion can be decreased,

The average system distortion is

E[|x - a|]

1l

D

i

Ie-ewlea

where ¥V = U5 V; is the input space,

Whenever the source signal x falls into the Voronoi re-
gion V;, neuron i is selected to represent the input signal,
and the vector quantizer replaces x by Q (x) = w;; hence,
we may write

p=3 | lr-wlpma @

i=1

where M is the number of neurons in the network.
The probability that neuron 7 is selected is

p= | ptx)ax (8)

*As suggested by the name SPAN (space partition network), the neuron
input weight vectors partition the input patiern space into regions, called
Voronoi regions, with cach region represented by one neuron. All the points
in & region are closer to the input weight vector of the corresponding neuron
than any other neurons in the network,

1461
Equation (7) may then be replaced by
M
- LYAC)) ,
D= E] <Sv,. [l* = wi 2 dx> P,
= .§ E[|x - w,|| | xin V] P;
M .
= »Z. d (9)

where d, is the average distortion seen by neuron i,
From (9), we know that the contribution of neuron | to
the overall system distortion is d; P;. This can be used as
the measure to guide the neuron generation process. Our
proposed criterion for neuron generation is the following.
Suppose the allowable average system distortion is €,
then neuron i should be split into two neurons if

€
P > —A;’ (10)
Now the question becomes how to measure d; and P;
dynamically. To handle this, we define an operational
measure of d; as

] = yd[nf + (1= y) Jxlaf] = welnd)
(11)

where nf is the time index when neuron i is the kth time
being selected; d; [m] is the distortion measure for neuron
i at time index m; and v, a factor between 0 and 1, is used
to control the effective temporal window size for the av-
eragmg process. Notice that d; is updated only when neu-
ron i is selected, and between nf~' and nf, d; stays the
same. Notice also that (11) defines a moving average filter
with an infinite window size [17]. The input signal to the
filter is the process D; [k] = d;[n¥]. This idea is justified
by the following algebraic manipulation.

If we repeatedly apply (11) to substitute d, by the r|ght~
hand side of (11), d;[n;] can be rewritten as

41t = (1 =) (| *[n4] = wiInt 1)
+’Y“x["i 1
R Lt | SRR 10T
- w [0]])

k-1
=(1-1) <I_§0 v/ x[nf~'] - W:[n,"“’”‘]||2>
k-1
5 o xlnf] = wilnf =)
={1- ’Yk)l“ 1 .

(12)

Notice in (12), v* — 0 for large k, hence d; represents
a weighted average of the distortion for neuron i. The

Exhibit &@) Page 6‘g

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 15:51 from IEEE Xplore. Restrictions apply.

1462

weights { v/} are set up such that more recent distortion
measures are emphasized in the averaging process. Notice
also, by adjusting the value of vy, we can control the rem-
poral window size in the averaging process. The closer
is to 1, the wider the effective window size; hence, more
samples are taken into the averaging process.

Similar to (1), we define the operational measure of P,
as

Biln) = vP [n — 1] + (1 =) In(x[n], ¥;[n - 1])
(13)

where

1 ifx[n]linVi[n — 1]

0 otherwise .

In(x[n], Vi[n - 1]) = {
(14)

Every time a neuron { is selected, d; and P, are checked
to see if (10) is satisfied. If so, then a new neuron will be
generated.

Now comes the second question: where to put the newly
generated neuron in the lattice?

The procedure we use to place the new neuron is as
follows.

Step 1: Find acceptable empty lattice sites within the
neighborhood region of the parent neuron and list them in
order of preference.

Step 2: 1f the list generated in Step 1 is not empty, place
the new neuron on the position specified by the top entry
of the list.

Step 3: 1f the list is empty, move the lattice toward the
desired direction to make room for the new neuron (this
operation is called lattice expansion, see Fig. 2). Go to
Step 1.

Since we want to preserve the structure of the input pat-
tern space on the network, when generating new neurons
we must be careful about selecting lattice sites. The cri-
terion for selecting a new site is that it must be at a po-
sition where better representation power is needed, This
criterion can be evaluated based on the distribution of dis-
tortion on different local lattice directions. For each neu-
ron {, we can define the local axes by looking into the
context of neuron input weight vectors in the neighbor-
hood of neuron i. For example, if neuron j is the positive
x direction neighbor of neuron / on the lattice, then we
can define the local +x direction for neuron i/ as

x5 = Alw —w;) (15)
where A () is the vector normalization operator
def’ y
Aly) = . (16)
M|

With the local axes defined for a given neuron, we can
then define the distribution of average distortion on dif-
ferent local axes. For example, the average distortion on

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 8. NO. 8. OCTOBER 1990

o@o
O®E
OJOJO) ®6 6

OJOXO) ®E G

Fig. 2. Lattice expansion, In this example, neuron 5 wants to generate a
new neuron in the +y direction and, since there is no empty site within
the neighborhood of neuron 5, the lattice is expanded toward the +y
direction to accommodate the newly. generated neuron 10,

Neuron 5 generates
neuron 10
in Y direction

lo¥olo)

Expand Lattice
in ¥ direction

the +x axis for neuron i can be defined as
d . oxt[nf] = yd x4 (1 =) (r((x[nff]

—w a1 1)) (17)

where 7 () is the unit ramp function®* d; . x~, d; . y*, d; .
y~ can be defined likewise.

Sometimes the local axis along a given direction can be
inferred from other lattice directions, even if the neigh-
bors along that direction are missing. For example, if neu-
ron { does not have —x direction neighbors, but it has +x
direction neighbors, then x; « —x;" by inference,

Each neuron also keeps track of a measure called alias
energy, which is the average distortion along the axes per-
pendicular to all of the current axes. The operational def-
inition of the alias energy of neuron / is as follows:

it [nf] = vd [nf '] + (1 =)

I prog* ((xlnf] ~ wilnt=1),)] (18)

where

Proj* (1) Sy = X (y.ahal (19)
is called the alias operator, which maps the vector y (in
this case x — w;) to its alias component related to all the
local axes {a/} of neuron i, d/* is used as a measure to ‘
determine whether current axes for neuron { are sufficient
to represent the input patterns, If 4/ is high, a new axis
needs to be generated. When a new axis is generated for
neuron {, the new direction a;* is set to be A (Proj* ((x
- W), i)).

Whenever a new neuron is generated, its input weight
vector is set to be

Wiew = W; + 5Vd,' . aja’,'i

where ai, the a/ axis for neuron i, is the local direction
to put the new neuron; d; . a’ is the average distortion
along axis a” for neuron i; 8, a number between 0 and 1,
is used to control the similarity between the newborn neu-
ron and its parent,

(20)

A unit ramp function r(x) is defined to be r(x) =x Ifx =0
=0 otherwise,

Exhibit (%*P) Pageé?lcl

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 15:51 from |EEE Xplore. Restrictions apply.

LEE AND PETERSON: ADAPTIVE VECTOR QUANTIZATION

2) Neuron Annihilation and Coalition Process: In two
circumstances, the number of neurons in SPAN need to
be decreased.

* A neuron is not active for a long period of time,

» A group of neurons are very similar to one another,
such that all of them together overrepresent the patterns
in their Voronoi regions.

In the first case, the virtually dead neuron can be kitled
because it is not contributing to the overall system output,
An example of this case is when no input pattern falls into
the Voronoi region of a neuran. The process of killing this
neuron is called neuron annihilation.

To determine whether a neuron is active or not, we de-
fine a state variable called activity measure for neurons,
which is an operational definition of the average output
activity of a neuron.

Aety[n] = vAet[n — 11+ (1~ y) v [r] (21)

where y; is the output level for neuron i, in SPAN y; (n]
is emulated by ¢ (| C(x[n]) — L), where C(x[n)) is
the lattice position of the neuron which is the closest
neighbor to the source signal x[n].

If after a long training period, Act is very low for a
particular neuron, then that neuron should be deleted.
Similar to (10), neuron i will be deleted if

Py €,
Act; < I—M‘i (22}

For the second case, if a set of neurons are very similar
to each other, then the group of neurons need to be merged
to form a less populated group with the members in the
new group inheriting attributes from the members in the
old one. The merge process can be performed pairwise;
that is, check the similarity between neighboring neuron
pairs periodically, if the input weight vectors of them are
too close, one of the neurons can be eliminated and the
remaining one will have the weight vector set to be the
average of the two neurons. This process is called neuron
coalition.

In both neuron annihilation and coalition, one neuron
needs to be removed from the network. Before removing
this neuron, a criterion needs to be satisfied, that is, re-
moving the neuron should not cause the graph {8, N }
to become disconnected (where 8 is the set of neurons
and 9V is the set of neighborhood for the network). This
criterion is a necessary condition for the network to retain
self-organizing capability.

If deleting a neuron would empty a whole column or
row in the lattice, then that column or row can be de-
leted—this operation is called lattice shrinkage (see Fig.
3). The purpose of lattice shrinkage is to keep the repre-
sentation simple and to retain as much local interaction
between neurons as possible.’

*The self-organization ability of the network increases with the degree
of local interaction between neurons, Lattice shrinkage may cause original
noninteractive neurons to become neighbors, hence, increasing the degree
of interactions in the network.

1463

@ @ @ Delete neuron 10
[} L

N ———
@ @ Shrink Lattice
@ in Y direction

Fig. 3. Latiice shrinkage, Neuron 10 is the last element in a row. Afier
neuron 10 is killed, the whole row becomes empty. The row is then
deleted to keep the representation minimium,

Neuren Inpyl Welght Vector Meuron Positions
Distributlon in Pattern Space in Lettice

Nevron 3 merges Lo X axis

>N
(a) (b)

Fig. 4. Axis merging process. (a) Neuron [and neuron 3 are the +x and
+y direction neighbors of neuron 2, respectively. As the local +y axis
(defined by the relative weight vector between neuron 3 and neuron 2)
approaches the +x axis (defined by the relative weight vector between
neuron 1 and 2), the local dimension of the signal source distribution
around neuron 2 decreases from 2 10 {: (b) neuron 3 is merged to the ¥
axis to reflect the change in local dimension,

3) Axes Merge Process: As the statistics of the source
signal evolve, the local dimension of a neuron might
change. For example, as shown in Fig. 4(a), within the
context of the neighborhood of neuron 2, the orientation
of the +y axis is very close to that of the +x axis, If this
happens, one of the neurons (in this case, neuron 3) should
be moved to the local axis that the other neuron resides in
(in this case, +.x axis), as depicted in Fig. 4(b). This
process is called axes merge. Notice that after the axes
merge, the local dimension of neuron 2 decreases from 2
to 1.

The criterion for deciding when to make axes merge for
neuron i is to check the directional cosine between the
relative input weight vectors from neuron i to the neigh-
boring neurons, For example, if neuron j is a neighbor on
the + x axis and neuron & is a neighbor on the +y axis of
neuron {, then for every certain period of time, check

0" = ¢os™! (A(Wj —w;) o Alwe — w,-)) (23)

if the value is too small, then one of the neighbors should
be moved to the other axis.

In general, the criterion governing the axes merge gro-
cess of neuron / is: for every pair of local axes a%, a” on
different dimensions,® if there exist closest neighbors,
neurons j and &, in both directions, then check

04"’ = cos™ (A(w; — w) * Alw, — w)) (24)

*Not all local axes are on different dimensions, e.g., +.x and —x are on
the same dimension.

p

Exhibit @% Page! _5_90

Authorized licensed use imited to: Univ of Calif Los Angeles. Downloaded on November 18, 2008 at 15:51 from |EEE Xplore. Restrictions apply.

1464 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 8, NO, 8, OCTOBER 1990

09" < ¢ (25)

then one of the neighbors (in this case, neuron j or neuron
k) should be moved to the other axis.

4) Other Lattice Structure Modification Processes:
We can define other lattice-structure modification opera-
tions for SPAN. For example, a neuron could jump to an
empty site in its neighborhood if the context within the
neighborhood of the new site is berter than the old one in
representing the pattern space. We call this process neu-
ron migration. Two neurons can also switch positions if
that is better for both of them, and this process is called
neuron swapping. We can define some structural merit
criterion, which is a function of the neuron weight vectors
within the neighborhood of a neuron. Then, this merit cri-
terion can be used as an energy function to guide the neu-
ron migration and swapping processes. Some desirable
features are: more interaction between neighboring neu-
rons, local axes in good relative orientation (e.g., x and
y axes should be perpendicular to each other), etc.

D. Simulation Res‘ults

A simulator for SPAN is implemented using doubly
linked lists [23]. We will show the network evolution pro-
cess of a simple test example here to demonstrate the ideas
presented so far.

The network in this example is a 2-D SPAN with a
MHNS (minimum homogencous neighborhood system), 8
The input pattern space is also two-dimensional. We show
the network evolution process for two test cases.

Case 1: The signal in the x, direction (corresponding
to the w, direction of the neuron input weight vector) is
uniformly distributed between 0.0 and 10.0. The signal
in the x, direction (corresponding to the w, direction of
the neuron input weight vector) gradually increases in
distribution range and is uniformly distributed within that
range. The following summarizes the time-varying statis-
tics of the input pattern distribution.

Time

Frame Iteration Range X, Range x; Range
1 i — 5000 0.0=ux <100 5.0= x50
2 5001 - 15000 0.0 = x, < 10,0 405 x 560
3 15001 — 25000 0.0 = x = 10,0 30sx, 7.0
4 25001 — 290000 0.0 < x, <100 00 =sx <100

We initialize the lattice with one neuron. The neuron-
generating threshold ¢, is set to be 0.25 in this case,

Fig. 5 shows the distribution of neuron input weight
vectors in the source signal space and the lattice structure
during the network evolution process. In each graph, the
circles represent neurons and the number inside each cir-
cle is the neuron ID. Neuron ID’s are ordered according
to the sequence of generation.

Initially, the source signals are distributed along one

®A minimum homogeneous neighborhood system (MHNS) is an HNS
with r = 1 (see Fig. 1),

dimension (time frame 1), the lattice also only grows
along one dimension. Notice also that the neuron se-
quence in the lattice preserves the order of neuron input
weight vectors in the pattern space. Later on, as the signal
distribution in the x, direction is turning wide, neurons
start growing on the second lattice dimension to follow
the change in input pattern space. Finally, as the source
signal distribution becomes to cover the region (0, 0) =<
(x), X3) < (10, 10), the network structure also grows to
become a perfect rectangle lattice to cover the whole sig-
nal distribution range,

Case 2: The network is initialized with the final con-
figuration of Case 1, i.e., 100 neurons arranged in a 10
X 10 lattice with their weight vectors distributed evenly
in the range (0, 0) < (w, wp) < (10, 10).

The time-varying statistics of the signal source follow
the reverse path as Case 1, that is, x, distribution spans
through the whole range and x; distribution shrinks to zero
size. The following summarizes the time-varying statis-
tics of the source signals.

Frame No, Iteration Range x, Range x; Range
i I = 5000 00=<uy, <100 10=x=90
2 50001 — 250000 00=<yx <100 50=<x,<35.0

Fig. 6 shows the network reduction process for this
case. As we can see from the graphs, redundant neurons
are killed and axes are merged, and finally the lattice is
reduced to a one-dimensional structure as the source sig-
nal space becomes one-dimensional, We use ¢, = 0,2 and
€o = /6 for this case,

1lI. CopiNG SCHEME

Based on the simulation results presented in the pre-
vious section, we know that SPAN has the following fea-
tures.

» The spatial context of the input pattern space is pre-
served on the local structure of the lattice. That is, the
structural relationships between neurons capture the local
structure of the source signal distribution,

e [f the structure of the input pattern space changes with
time, the network can adapt its structure to follow the
change.

¢ The network adaptation process is incremental and is
done through local interaction between neurons; hence,
no global structural information is required.

For most kinds of physical sources, the adjacent signals
in a series tend to be highly correlated. For example, ad-
jacent pixel blocks are similar in images, and neighboring
frames of LPC parameters in speech representation tend

to be alike. This is because most of the physical signal-

generating mechanisms can only change gradually and
continuously. This phenomenon transforms into the rep-
resentation of a vector quantizer, which shows that adja-
cent source signals tend to fall into the Voronoi regions
that are close in the pattern space.

The above observation suggests that we can utilize the
features of SPAN in two phases of the coding process.

Exhibit?ﬂ% page D

Authorized licensed use limited to: Univ of Calif Los Angeles, Downloaded on November 18, 2008 at 15:51 from IEEE Xplore. Restrictions apply.

LEE AND PETERSON: ADAPTIVE VECTOR QUANTIZATION 1465

e o o -
o) ol
sl 00|
nl -
T -
wr o 4 o uf OG- G--O—O-0 of O-O-O-0-0-0-0-0-9
af 12
3})
2l s
ol "
TR R I A R e 4 4 P VD U S S VT T S S ey
T N R TI ANT T T 7 g M N I A N RN L A R
w ——
e o e N Oxttnts o mbose(F rberst M i ot P B (1000 0/ prre) Nasron it e Licn Unian {100 Spemors]
“r T wor ’
ol "
sl -
ito@
uf el
) .
A R AYTTTITILE |4
“L 4 |
* w
9
ol s
ol i
A PP P 4 n Y S S ST S T O S Sy
Y R T R RN TR T VI T &3 3 + - """“"“"’“"‘“_‘—'L—-"”w:uuuuuunuum v""',""';
R - i "
nreAT AT e 0 S e Dutroete L ance Umvase 15 Lot e i 1 vt Pt Spacn 19000 o) e Bt L icn U 01400 Brmwm}
e ‘
[
wl- st g]
i+ @
5]
l S 4
&
&
e} o G G
s
T U S U N S | P .)
O A T T T R L TR Lo M B R
w
Db 1 ks P Bace (1050 dersrons) e Dy i Uiy (7500 s |
wor o

@

jrasssoones I ‘

|
|
|
-G ©
B G-®—4 W+
x. v eee o
o} b) 4
“po- I
AW j P L L
u DG | oo
u i 00! labdd 4
- or
ittt S Rt B B)
e s e e St e 8
|
|

b4

®

sequence of generation. Each pair of neighboring neurons is connected
by a bar. We have a MHNS as this example,

Fig. 5. An example showing network growing process. Each graph on the
left column displays the distribution of neuron weight vectors in the
source signal space and each graph on the right column shows the lattice
structure of the network. The circles in each graph represent neurons and
the number inside each circle is the neuron ID, which is ordered in the
® Codebook Search Phase: The local context within source signdls and the coding scheme is in such a way
neuron neighborhoods can be used to guide the codebook that shorter lattice displacement vector requires fewer bits,
search process. then the bit rate for the whole sequence of source vectors
* Encoding Phase: If we encode only the lattice dis- might be minimized. Following this idea, we develop a
placement vector between neurons representing adjacent coding scheme, called the path coding method, for SPAN.
Exhibit %@ Page 539\

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 15:51 from IEEE Xplore. Restrictions apply.

1466 . IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 8, NO. 8, OCTOBER 1990

“
PR + P
Toe-o-6 j -4 .
’ ;_—29—49 @;—fﬁ\y it DS
N [¢ 4
:: G J Q LR 3
64 . d 4
- B4 '
n P : > :
2 ;
s =
X-&ef T
b e e T

s PSS P
LN DA S T By S ey)
x

Hi'on Ditrtutais s oo Spack 1300 derarces] e Dabeui o 0110860 Uniearss (20 dmrsborn]

o \ ot
- &6 I
Y Lol
121 Z
il Y-
“ dod dd
o ¢ ¥
“ L4 d
Py , L
4
200
P) [
7 b >
4
we FL T : |
@ ”
10| U3 >
WO W e M & T2 L M !"l " [[7 3 ‘ ¥ T T ‘) [
i x

ol 3 Igad Paries Mo (3008 K

Pouran Dutrouton ey Unvary# {0000 Mestirs)

o)
N 7%
? &
7 [C, T
' CE
| a
ut
" i i d bbb de L L L L L i
R O R R N N I N TR TR T)
¥
Nigrsron Drpintadenn bt bngud Pterd S (100000 M4rarionsy Novwit Dlgit b I L Lrwwye (150000 snsiwne)
8, [
ae|
-
71
@
i gcs ® &0 T C-G--G-3-0-&-3-G-0
«
29|
0
wh
iy

NS VR S| PO S S S N O]
TRANT BT R R R TR A A 1) 48T § § ¢ 5 ¢ F & F W
w x

euror Darnton v g Pt Eoace L1000 o) tew Catr0 407 - Latow Unkte (5005 apatond)

Flg 6. An example showing the network reduction process. See the cap-
tion of Fig. § for the meaning of symbols.

A. Fast Codebook Search Procedure

Suppose [yq is the lattice position of the préviously se-
lected neuron. If the current source signal is x, then the
codebook search procedure is as follows:

begin
llry old
while (= (lx =yl = lx =yl vk e
N(Iy)))

—

Al « the lattice index of the point in £ (l(,y) clos-
estto (x — y(ly))
by « 1y + Al
end
’new « Ilry
end

where y (L) is the codeword for the neuron at lattice po-
sition l,; DU (L) is the neighborhood of the neuron at
Ly ¥ is lattice index for neuron k; £ (1) is the lattice
spanned by the local axes of neuron llry,7 and I, is the
lattice index for the newly selected neuron (i.e., the neu-
ron to represent x).

Basically, what the above procedure does is 1o repeat-
edly use local axes of neurons to find the next trial posi-
tion on the lattice until the closest neighbor to the source
signal is found.

If the codewords are addressed by their indexes in the
lattice, then the number of table access in the search pro-
cess depends only on how accurately the difference be-
tween the source signal and the previous codeword can be
represented by the local lattice within the neighborhood
of the previously selected neuron. For highly correlated
signal sources, the search complexity tends to be of the
order O(1) on the number of codewords in the codebook.
This is better than the search complexity O(log(n)) for
tree-structured codebooks, and the complexity O(n) for
full search codebooks.,

B. Path Coding Method

The path coding method can be considered a DPCM on
the lattice or a vector version of delta modulation, where
only the information about lattice displacements between
adjacent selected codewords is transmitted through the
channel. To represent the lattice displacement, we encode
only the transition from each neuron to the neurons in its
neighborhood. If a lattice displacement vector is beyond
the neighborhood region, then it is represented by the
concatenation of transitions, The series of transitions
needed to represent a lattice displacement vector from one
neuron position to the other neuron position forms a path
between the two neurons.

A possible coding scheme for the transitions in 2-D
MHNS (minimum homogeneous neighborhood system) is
shown in the following.

Transition Code
(0,0) = (0,0) 0
(0,0) = (1,0) 100
(0,0) = (0, 1) 101

(0,0) = (-1,0) 110
(0,0) = (0, —1) 111

The code for a path is the concatenation of transition
codes. Fig. 7 shows an example of path code,

At any moment, each neuron can be uniquely designated by its position
in the lattice, hence, we may just use the lattice position to denote a neuron,

Fxhibit O page S92

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 45:51 from IEEE Xplore. Restrictions apply.

LEE AND PETERSON: ADAPTIVE VECTOR QUANTIZATION

@ @ 1 01
@ @ 1 01
©O:0-0

Code for the path from 7 to 3
is 100100101101

Fig. 7. A path code example.

To make the sequence of path codes uniquely decoda-
ble, we need to specify the end of each path if the path
code is not 0. This can be done by adding a 0 at the end
of each path. By coding in this way, a simple finite-state
automata can be used to uniquely decode the path se-
quence.

The following lists some examples of path sequence
codes; each pair of adjacent path codes in a sequence is
separated by a blank in order to make the codes more un-
derstandable to the readers.

Path Sequence Code

(0,0)(0,0)(0,0)(1,0)(0,0)
(1,0)(0, ~2)
(0,0)(2,.0)(0,1)(0,0)(0,0)

00010000
1000 1111110
01001000 101000

C. Performance Comparison

We compare the performance of the SPAN coder to the
LBG coder on 2-D Gauss-Markov (GM) sources defined
by the difference equation

x[n] = ax[n — 1] + g[n} (26)

where a is the autoregression constant and {g[n]} is a
sequence of zero-mean, independent, identically distrib-
uted Gaussian random variables. We consider here only
the highly correlated case of @ = 1.® The similarity be-
tween adjacent source vectors is then controlled by the
variance o2 of {g[n]}. The signal source x is two-di-
mensional and distributed within the region of (0, 0) <
(xy, x) = (10, 10), where x; and x, are the first and
second components of x, respectively.

We simulate the operation of LBG and SPAN with the
source model defined above for different o’s. Tables I and
II are the simulation results showing the coding perfor-
mance for an LBG coder and SPAN coder using the path
coding method, respectively. For an LBG coder, the dis-
tortion and rate are essentially insensitive to o; hence, for
every codeword number, only one distortion is listed in
Table 1.

On the other hand, from Table II we found that the rate
decreases with o; hence, with the path coding method, the
smaller the o, the better the performance of SPAN.

Fig. 8 shows the distortion rate curves generated by the
data from Tables I and II. By comparing the distortion
rate curves for LBG and SPAN coders, several interesting
points are observed.

*Tn such a case, {xin]} is actually reduced 1o a Wiener process,

1467

TABLE |
SIMULATION RESULT OF LBG CODER ON 2-D GAUSS-MARKOY SOURCES.
THE SOURCE SIGNALS ARE DISTRIBUTED UNIFORMLY IN THE REGION (0, 0)
< (x).x%) = (10, 10)

No. codewords | Rate (in bits) | Distortion
1 a 15,23827
2 1 $.993180
4 2 3.805799
8 3 2.169564
16 4 1.020008
32 5 0.5383006
64 6 0.2760772
128 7 0.1385902

TABLE 1l
SIMULATION RESULTS OF SPAN CODER ON GAUSS-MARKOV SOURCES
USING THE PATH CODING METHOD. ¢ 15 THE STANDARD DEVIATION OF THE
GAUSSIAN COMPONENT IN A GAUSS-MARKOV SOURCE: THE AYERAGE PATH
LENGTH IS THE AVERAGE NUMBER OF NEIGHBORHOOD TRANSITIONS
REQUIRED TO SPECIFY THE DISPLACEMENT VECTOR BETWEEN ADJACENT
SOURCE VECTORS IN THE TRAINING SEQUENCE: THE RANGE OF SOURCE
SIGNAL DISTRIBUTION 1S (0, 0) < (x), x2) = (10, 10)

o | No. Codewards | Lattice Size | Average Path Length | Average Rate (in bita) | Distortion
1.0 6 Ix2 0.26275001 1788233 | 2.852761
9 3x3 0.3443333 202089 | 1.774432
12 4x3 0.4365917 2.309767 | 1383733
2% 5x5 0.0898200 3.069456 | 0.6541284
48 8x6 1.017548 4.052642 | 0.3537738
100 10x10 1.496417 5.489250 | 0.1655245
132 12x11 1.731668 6.195004 | 0.1259496
05 3 Tx2 0.1338500 T.400533 | 2.998598
9 %3 0.1670444 1.501122 | 1.809933
12 4x3 0.2109750 1.632017 | 1396291
25 5x3 0.3325640 1.997688 | 0.6550556
48 8x6 0.5022479 2506742 | 0.3548502
100 10 x 10 0.7475840 3.242751 | 0.1648479
132 12x11 08727659 2.618297 | 0.1256384
[6 EES) 561 x 1077 1.168283 | 3.014576
9 Ix3 6.227778 % 102 1.186822 | 1874319
12 4x3 81325 x 1073 1.240967 | 1.449642
25 5%5 1.3254 x 107 1397616 | D.6743547
48 Bx6 1.982792 x 101 1.594835 | 0.360651¢
100 10 x 10 2.94362 x 107! 1.883085 | 0.1653093
132 12 x11 3422167 x 10 2.026649 | 0.1250553
B M
w ~
p ~. @- - - LBG Coder
2199+ A——A SPAN without path coding
& »
3 8ot N O~——0 SPAN with path coding, Sigma = 1.0
E 7ot * [C=—{] SPAN with path coding, Sigma = 0.5
§ :‘3 T N H——%K SPAN with path coding, Sigma = 0.2
5 " AY
% 401 \,.\
g 30+ ~
201+
éia L
Gl
.61
05l
o4}
03¢
02+ e
\)
0.1 i |] | ! |

!
0.0 1.0 20 3.0 4.0 5.0 6.0 7o
Average Rate {In tits)

Fig. 8. Performance comparison between LBG and SPAN coder on Gauss-
Markov sources.

¢ For SPAN not using the path coding method (fixed
rate), the performance is similar to LBG.
¢ For SPAN using the path coding method, the perfor-

Exh%bit@_@ﬁPage 567—1((

Authorized licensed use limited to: Univ of Calif Los Angelss. Downloaded on November 19, 2008 at 15:51 from IEEE Xplore. Restrictions apply.

1468 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 8. NO. 8, OCTOBER (990

mance is much better than LBG for highly correlated
sources.

® The higher the degree of similarity between adjacent
source vectors, the better the performance of SPAN is by
using the path coding method.

® As o decreases, the rate becomes less sensitive to the
size of the codebook, This means that the rate does not
scale up with the codebook when the signal source is
highly correlated.

In general, by using the path coding method, the bit rate
only depends on the correlation between source signals
and is quite insensitive to the size of the codebook. Ex-
treme benefits can be gained by using this method when
source signals are highly correlated.

However, if the source signals are totally uncorrelated,
the path coding method might generate a worse perfor-
mance than the LBG. When this situation occurs, the sys-
tem should switch back to the normal encoding scheme
but can still use a SPAN codebook and performance as
good as LBG can be retained. This switching process
should not be too difficult to implement; we must only
check the average path length between adjacent selected
codewords in SPAN periodically. If the average path is
too long, then switch back to the normal coding scheme.
Of course, the same decision criterion should be used on
both sides of the channel.

Fig. 9 shows the codebook searching performance using
our proposed fast codebook search procedure. Notice that
the codebook searching time is quite insensitive to the size
of the codebook.

1V. Aparmive SPAN Coper/DECODER

Since the adaptation process of SPAN is incremental
and requires only local operation on the lattice, we can
use this property to design an adaptive vector quantizer,
Fig. 10 shows a proposed adaptive source coding system
based on the SPAN codebook.

As shown in Fig. 10, at time index n, the input source
vector x[n] is fed into the coder. The neuron in SPAN
with an input weight vector closest to x{n] is then se-
lected. If we let [n] be the lattice position of the selected
neuron and y(I[n]) be the codeword (i.e., the input
weight vector) for neuron {[n]. d[n], the lattice path from
I{n — 17 to I[n] is then encoded using the path coding
method to generate path code ¢[n], where I[n — 1] is
the lattice position of the previous selected neuron. ¢[#n]
is then sent through the main channel.

To enable the adaptation process on both sides of the
channel, the residue vector e[n] = x[n] — y(I[n]) is
encoded and the code r[#] representing the residue code-
word é[n] is sent through the side channel. The residue
codeword é[n] is then used to activate the network ad-
aptation process of SPAN on both sides of the channel
(equivalently, on both sides of the channel, the SPAN
codebooks see the same input signal £[n] = y(I[n]) +
é[n], and hence will adapt themselves with the same
pace).

The residue encoding is carried out by a small-size lat-

g'®Ber .
o A
% 60.0; - =~ Full Search Codebaok A
8 50.0[O==—0 SPAN Codebook, Sigma = 1.0 J
& 400 0] SPAN Codebook, Sigma = 0.5 /
B, ¥——% SPAN Codebook, Sigma = 0.2 ’
® g0l *
g2 o ‘
-3 P
200 ','
L]
’
’
’/
‘8:§ C ./
7ol e
601 S
50 s
40 F /0
3.0 S
,
/
20 P
’
’
’
’
10k I 1 | [N
20 40 80 160 320 640 1280 2560
' Code Book Stze

Fig. 9. Codebook searching efficiency of SPAN coder using fast codebook
search procedure.

Fig. 10. A proposed adaptive SPAN coding/decoding system. x[n] is the
source vector at time n; I[n] is the lattice position of the neuron with
input weight vector closest to x[n]: y(I{n}) is the input weight vector
for the neuron location at /[2] in the lattice; d{n] is the laitice displace-
ment veclor from the lattice position of the previously selected neuron
to that of the current neuron; ¢ n] is the path code for d[n): eln}] is the
vector difference between x1#] and y({n1); é[#] is the quantized ver-
sion of e[n] through the residue encoder; r[n] is the code for é[r}; and
£[n) is the signal regenerated at the receiver end.

tice guantizer in which no codebook is needed.” We can
encode the lattice positions in the residue space using the
path coding method (encode the difference between the
lattice positions and the origin).

Initially, we can have codebooks on both sides of the

°In the lattice quantizer, the space of interests is decomposed regularly
by a lattice structure {6]. Every codeword in the quantizer is a lattice point
in the source signal space. Since lattice points in the source signal space
can be derived through some simple calculation, no codebook storage is
necessary. Reference |7] has developed a serics of coding/decoding algo-
rithms for lattice quantizers,

Exhibit e pa995525

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 15:51 from IEEE Xplore, Restrictions apply.

LEE AND PETERSON: ADAPTIVE VECTOR QUANTIZATION

channel with the same initial random condition (say both
have one neuron residing at the origin). Then, as the
source signals come in, the codebooks will evolve with
the same pace to follow the signal statistics on both sides
of the channel. In the beginning, most of the information
is sent through the side channel; then gradually, as the
structure of the codebooks is built up and approaches that
of the source signal space, more and more information is
sent through the main channel. Eventually, most of the
information will be transmitted through the main channel,
and the side channel will be shut off. Later on, if the sta-
tistics of the source signal change, the side channel will
wake up and the adaptation cycle will start again.

Better performance can be obtained by further incor-
porating some predictive coding mechanism into the en-
coding part of the system. The function of the predictive
mechanism is to predict the next codeword position in the
lattice, based on previously selected neuron positions, The
lattice position difference between the actually selected
codeword and the predicted codeword is encoded using
the path coding method.

V. CONCLUSIONS

As the signal sources become more and more compli-
cated, there is a growing effort to develop codebooks with
an internal structure that reflects some aspect of the signal
space in order to enhance the codeword search process
[4], [5]. The other trend in vector quantizer design is to
incorporate feedback and internal states into the encoder
to eliminate the correlation between source signals in the
sequence [3], [8], [9]. In this case, the codes are sensitive
to the context of the source sequence and finite state au-
tomata models are used to capture the local context buried
in the sequence, so as to eliminate correlations. The cod-
ing/decoding system presented in this paper can be viewed
as an attempt to cover both aspects mentioned above.

In this paper, we described the basic framework and
structure-level adaptation mechanisms for SPAN, and
proposed an adaptive source coding/decoding system
using SPAN. In summary, the most attractive features of
SPAN are that it can map the local context of the source
signal space conformally onto a lattice structure and can
adapt the lattice structure to follow the statistics of the
source signals, We have shown that, by utilizing the local
context built in the lattice, we can achieve both fast code-
book searching (to enhance encoding efficiency) and
source signal correlation elimination (to enhance distor-
tion rate performance) under our proposed framework.

Future work can be done in trying the SPAN coder/
decoder scheme on such physical sources as image,
speech, etc. It is also possible to apply this model to sub-
band coding systems to allocate bits among several chan-
nels. In this case, each channel is taken care of by a
SPAN; in addition, an association mechanism can be
added on top of the group of SPAN’s to adjust the thresh-
old parameters (e.g8., €, €,, etc.) of the networks in order
to optimize the global system performance.

1469

APPENDIX
ASYMPTOTIC VALUE OF w;

According to Kohonen’s learning algorithm, the itera-
tion equation for the weight adjustment of neuron i is

win + 1] =w[n] + ay(x[n + 1])

“(x[n + 1] = wiln])

= (l —ay(x[n+ 1])) wi[n]
+ ay(x[n + 1) x[n + 1]

= (1 — ay(x[n + 1]))((1 - O‘Yi(x["]))
cwi[n— 1]
+ ay,(x[n])x[n])
+ ay (x[n + 1]) x[n + 1]

= <ﬁ (1 - ay(¥[n+ 1 = k]))) w;[0]

k=0

et n+

+a 2 <yi(x[j]) I

j=1 k=j+1
(1 ~01)’.'@”["]))) x[J] (27)
where
J J
‘11+= F ifj =i
=0 otherwise. (28)
In 27),
lim (33)(1—'a%(xbi+ 1-kD)>==O (29)
hence

del
W, = lim w;[n]

n—+oo

= lim ajé <y;(X[j]) x[j]

n—o

n
I (1 - ay, ,
hﬁﬂl ay; (x[k])) (30)

We know that y; (x) # 0 iff x € V; for some j € 9T,
where V; is the Voronoi region for neuron j and ; is the
neighborhood set of neuron /. Let y; (x) = ¥; when x €
V; and let

"

yi(m) o (1 = oy (x[k]))

k=n—m+] (31)
=gm~am”

when rm; is the number of occurrences of x in V; during

the period of m samples.

Ethit_@@_mge 53

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 19, 2008 at 15:51 from IEEE Xplore. Restrictions apply.

1470

For « sufficiently small, 4; (m) can be approximated
by

vi(m) = IL(1 = ma¥y) = 1 - a2my,. (32)
J

We also know E; m; = mand P(j) = m;j/m as m
becomes large, where P(j) is the probability mass func-
tion of the occurrence of input signal in V}, i.e., P(j) =
fv, p(x) dx. Hence, for large m, following (32), we have

vitm) = 1= ma ZP() Y= 1 = amx, < §(m)
(33)

where x; < L, P(j)yy

For « sufficiently small, v; (m) = 1, Assume x[n] is
a stationary process; then y, (x[n]) is also stationary, For
large m, we have

n

(1 = ay (x[£]))

k=n—m+)
n—m
= k=ngm+l (1 B cxy,(x[k]))
n—=jm

i

(1 = ay(x[k])

k=n—(j+m+1

i

. . n
¥i(m), Osj=— -1 (34)

Using the approximation above, if we partition the
summation in (30) into n/m smaller summations with m

terms in each summation, we have

W = lim a< ﬁ)ﬂy;(x[j])x[j]

n—ro j=n-—m

n-m

+hilm) 2 D)l
+(«;,-(m))"/’""jgyf(x[j])x[j]>- (35)
Let
%= E(n(x)x) = L P(k) YiE(x|x € V;)
= 2 P(k) YuX, (36)

where X, is the centroid of Voronoi region V.
Then, (35) can be simplified to

nfm=1 R
W = « lim <m?q', 2 'y;(m)>
n—m k=0
amg; _ amg; _ G

L=, (m) amx; x;

|EEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 8. NO, 8, OCTOBER 1990

%;P(k)Yika SVP(x)yi(x)xdx
SPI Y

[, P () ax

Sn p(x) yi(x) xdx

i

=, (37)
Smp(x) yi(x)dx

Notice that, in the column integration above, we re-
placed the integration range of V by ;. The reason we
can do that is because y; (x) is nonzero only in €;, Thus,
the proof.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their comments, which improved the presentation of
this work,

REFERENCES

{11 S. C. Ahalt, P, Chen, and A. K. Krishnamurthy, ** Performance anal-
ysis of two image vector quantization techniques,’” in Proc. JCNN:
Int. Joint Conf. Neural Networks, June 1989, pp. I-16.

[2] T. Berger, Rate Distortion Theory, Englewood Cliffs, NJ: Prentice-
Hall, 1971.

{3] P.-C. Chang, '‘Predictive, hierarchical, and transform vector quan-
tization for speech coding.”” Ph.D. dissertation, Stanford Univ.,
Stanford, CA, May 1986.

[4] P. A. Chou, T. Laokabaugh, and R, M. Gray, **Optimal pruning with
applications o tree-structured source coding and modeling,’" /EEE
Trans, Inform. Theory, vol. 35, no. 2, pp. 299-315, Mar. 1989,

[5) P. A. Chou, "*Application of information theory to pattern recogni-
tion and the design of decision trees and trellises,”” Ph.D. disserta-
tion, Stanford Univ., Stanford, CA, June 1988,

[6] J. H. Conway and N. I, A. Sloane, **Voronoi regions of lattices,
second moments of polytopes, and quantization,"’ J/EEE Trans. In-
Jorm. Theory, vol. IT-28, no. 2, pp. 211-226, Mar. 1982.

|7] ~—, "*Fast quantizing and decoding algorithms for lattice quantizers
and codes,”” IEEE Trans. Inform. Theory, vol, IT-28, no. 2, pp. 227~
232, Mar. 1982,

[8] M. Ostendorf Dunham, **Finite-state vector quantization for low rate
speed coding,’’ Ph.D, dissertation, Stanford Univ., Stanford, CA,
Feb, 1985,

9} J. Foster, *'Finite-state-vector quantization for waveform coding,”
Ph.D. dissertation, Stanford Univ., Stanford, CA, Nov. 1982.

110) R, G. Gallager. Information Theory and Reliable Communication.
New York: Wiley, 1968,

[11] A. Gersho and V. Cuperman, **Vector quantization: A pattern-match-
ing technique for speech coding,"' IEEE Commun. Mag., pp. 15-21,
Dec. 1983.

112} A. Gersho, *‘On the structure of vector quantizers,”’ JEEE Trans,

Inform. Theory, vol. 1T-28, no. 2, pp. 157166, Mar. 1982,

{131 —. '*Asymptotically optimal block quantization,” /EEE Trans. In-
form, Theory, vol. 1T-25, no. 4, pp, 373-380, July 1979,

[14) A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion, Norwell, MA: Kluwer, 1990,

[15] R. M. Gray, ''Vector quantization."' /EEE ASSP Mag., pp. 4-29,
Apr. 1984,)

{16] ——, Source Coding Theory. Norweil, MA: Kluwer, 1990,

[17] R. M. Gray and L. D. Davisson, Random Processes. Englewood
Cliffs, NJ: Prentice-Hall, 1986.
118} C. Kittel, Introduction to Salid Srate Physics, 6th ed. New York:

Wiley, 1986. ch. 1.

{19] T. Kohonen, *'Self-organized formation of topologically correct fea-
lure maps,'’ Biol, Cybern, . vol. 43, pp. 59-69, 1982.

120] —. Self Organization and Associative Memory, ch. S, pp. 119-155.

Sxhibit ?)@D Page 59‘7

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on November 18, 2008 at 15:51 from IEEE Xplore. Restrictions apply.

LEE AND PETERSON: ADAPTIVE VECTOR QUANTIZATION

[21] -—, **The neural phonetic typewriter,"* Computer, pp. 11-22, Mar,
1988.

[22] —, **An introduction to neural computing,” Neural Networks, vol.
1, no. 1, pp. 3-16, 1988.

23] T.-C. Lee and A. M. Peterson, *'Implementing a self-development
neural network using doubly linked lists,”' in Proc. COMPSACS9,
IEEE 13th Int, Comp. Software Appl. Conf., Sept. 20-22, 1989.

[24] T.-C. Lee, ‘‘Strucwure level adaptation for artificial neural net-
works,"" Ph.D, dissertation, Stanford Univ,, Stanford, CA, 1990.

[25] Y. Linde, A, Buzo, and R. M. Gray, '*An algorithm for vector quan-
tizer design, '’ IEEE Trans. Commun. , vol. COM-28, pp. 84-95, Jan.
1980.

[26] §. P. Lloyd, **Least square quantization in PCM,"" Bell Lab. Tech.
Notes, 1957, also in IEEE Trans. Inform, Theory, vol. IT-28, no, 2,
pp. 129~137, Mar. 1982.

[271 N. M. Nasrabadi, ‘‘Image coding using vector quantization: A re-
view,”" IEEE Trans. Commun., vol. 36, pp, 957-971, Aug. 1988,

[28] N. M. Nasrabadi and Y. Feng, **Vector quantization of images based
upon a neural-network clustering algorithm,”” SPIE Vol. 1001 : Visual
Commun, Image Process.'88, Part 1, pp. 207-213, Nov. 1988.

[29}) —, **Vector quantization of images based upon the Kohonen self-
organization feature maps,’’ in Proc. IEEE Int. Conf. Neural Nei-
works, July 1988, pp. 1-93.

[30) N, Packard and S. Wolfram, *‘Two-dimensional cellular automata,"’
J. Stat. Phys., vol, 38, p, 901, 1985.

[31] C. E. Shannon, ‘A mathematical theory of communication,'’ Befl
Syst, Tech. J., vol. 27, pp. 379-423, 623-656, 1948,

[32) —, **Coding theorem for a discrete source with a fidelity criterion,”’
IRE Nat. Con, Record, Part 4, pp. 142-163, 1959,

(33] Y. Shoham and A, Gersho, ""Efficient bit allocation for ar arbitrary
set of quantizers,’” IEEE Truns. Acoust., Speech, Signal Processing,
vol, 36, pp. 1445-1453, Sept. 1988.

{34] V. V. Tolatand A. M. Peterson, ** A self-organization neural network
for classifying sequences,’ in Proc. IJCNN: Ini. Joint Conf. Neural
Networks, June 1989, pp. 11-561.

[35) A.J. Viterbi and J. K. Omura, Principles of Digital Communication
and Coding. New York: McGraw-Hill, 1979,

[36] J. Yon Neumann, Theory of Self-Reproducing Automata, A. W,
Burks, Ed. Urbana and London: University of Illinois Press, 1966.

{37} §. Wolfram, **Statistical mechanics of cellular automata,'’ Rev. Mod.
Phys., vol. 55, p. 601, 1983,

1471

Tsu-Chang Lee was born in Tuipei, Taiwan, Re-
public of China, on August 8, 1961, He received
the B.S. degree in electrical engineering from the
National Taiwan University in 1983, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1987 and
1990, respectively.

His current research interests include neural
networks, adaptive signal processing, data
compression, and hardware implementation of
novel signal processing systems.

Dr. Lee is a member of ACM and AAAL

Allen M, Peterson (M’56-F'62-LF'90) was bom
in Santa Clara, CA, on May 22, 1922, He re-
ceived the Ph.D. degree in electrical engineering
from Stanford University, Stanford, CA, in 1952,

Since 1952, he has been at Stanford University
where he is Professor of Electrical Engineering,
His research interests include digital signal pro-
cessing, algorithms, architecture and hardware
implementation with applications in telecommu-
nication, radar and remote sensing.

Dr, Peterson is a member of the National
Academy of Engineering.

Exhibit %® Page HIE

Authorized licensed use limited to: Univ of Calif Los Angeles, Downloaded on November 19, 2008 at 15:51 from JEEE Xplore, Restrictions apply.

